JP2017083474A - Charging state reliability determination device and charging state reliability determination method - Google Patents

Charging state reliability determination device and charging state reliability determination method Download PDF

Info

Publication number
JP2017083474A
JP2017083474A JP2017002522A JP2017002522A JP2017083474A JP 2017083474 A JP2017083474 A JP 2017083474A JP 2017002522 A JP2017002522 A JP 2017002522A JP 2017002522 A JP2017002522 A JP 2017002522A JP 2017083474 A JP2017083474 A JP 2017083474A
Authority
JP
Japan
Prior art keywords
value
state
charge
soc
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017002522A
Other languages
Japanese (ja)
Other versions
JP2017083474A5 (en
JP6477733B2 (en
Inventor
剛之 白石
Takayuki Shiraishi
剛之 白石
勇志 板垣
Yuji Itagaki
勇志 板垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2017002522A priority Critical patent/JP6477733B2/en
Publication of JP2017083474A publication Critical patent/JP2017083474A/en
Publication of JP2017083474A5 publication Critical patent/JP2017083474A5/ja
Application granted granted Critical
Publication of JP6477733B2 publication Critical patent/JP6477733B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To determine reliability of an estimated value of SOC based on a value of a variable element that has correlation relationship with the SOC and is different from OCV.SOLUTION: A CPU35 determines which of a steep change region EH and a micro change region EL includes an estimated value (current integration SOC value) of SOC based on current integration and an estimated value (voltage measurement SOC value) of the SOC based on OCV, and determines reliability of the estimated value of the SOC based on the current integration.SELECTED DRAWING: Figure 1

Description

蓄電素子の充電状態を推定する技術に関する。   The present invention relates to a technique for estimating the state of charge of a storage element.

従来から、蓄電素子の一つである電池の充電状態(残存容量、State Of Chargeともいう 以下、単に「SOC」という)を推定する方法の一例として、電池の開放電圧(Open Circuit Voltage 以下、単に「OCV」という)によるSOC推定方法がある。これは、電池の端子電圧値を検出し、当該電池のSOCに対するOCVの変化特性を参照して、検出された端子電圧値に対応するSOCを、SOCの推定値(以下、「OCVに基づくSOCの推定値」などという)とする方法である。   Conventionally, as an example of a method for estimating the state of charge (remaining capacity, also referred to as “state of charge”, hereinafter simply referred to as “SOC”) of a battery that is one of the storage elements, an open circuit voltage of the battery (hereinafter referred to as “open circuit voltage”) There is an SOC estimation method by “OCV”). This is to detect a terminal voltage value of a battery and refer to a change characteristic of the OCV with respect to the SOC of the battery, and calculate an SOC corresponding to the detected terminal voltage value as an estimated SOC value (hereinafter referred to as an SOC based on the OCV). This is called an “estimated value”.

また、これ以外に電池のSOCを推定する方法の一つとして、電流積算によるSOC推定方法がある。この電流積算によるSOC推定方法は、例えば、SOCの初期値として満充電状態のときにSOC100%とし、その後、電池の充放電電流を積算することによりSOCの変化量(ΔSOC)を求め、SOCの初期値にSOCの変化量を加算したSOCを、SOCの推定値(以下、「電流積算に基づくSOCの推定値」などという)とする方法である。   As another method for estimating the SOC of the battery, there is an SOC estimation method based on current integration. The SOC estimation method based on this current integration is, for example, SOC 100% when fully charged as the initial value of SOC, and thereafter, the amount of change in SOC (ΔSOC) is obtained by integrating the charge / discharge current of the battery. The SOC obtained by adding the SOC change amount to the initial value is used as an estimated SOC value (hereinafter referred to as “an estimated SOC value based on current integration”).

ところで、OCVに基づくSOC推定方法では、上記SOCに対するOCVの変化特性において、SOCの単位変化量あたりのOCVの変化量である開放電圧変化率が比較的に低い領域では、OCVに基づくSOCの推定値とSOCの実際値との誤差が大きくなる等のおそれがある。これに対応する方法としては、電流積算によるSOC推定方法があるが、この方法では、電流積算が長期間実行されると、例えば電流センサの測定誤差等により、電流積算に基づくSOCの推定値とSOCの実際値との間の誤差が積算されて大きくなるという問題がある。   By the way, in the SOC estimation method based on the OCV, in the change characteristic of the OCV with respect to the SOC, the SOC estimation based on the OCV is performed in a region where the open circuit voltage change rate that is the change amount of the OCV per unit change amount of the SOC is relatively low. There is a possibility that an error between the value and the actual value of the SOC becomes large. As a method corresponding to this, there is an SOC estimation method based on current integration. In this method, when current integration is performed for a long time, an estimated value of SOC based on current integration, for example, due to a measurement error of a current sensor, and the like. There is a problem that errors with the actual value of the SOC are integrated and become large.

例えば、正極にリン酸鉄系材料、負極にグラファイトを用いたリチウムイオン電池は、一部のSOC領域を除き、広いSOC領域においてOCVの変化が微小であり、この領域ではOCVに基づくSOC推定は難しい。そこで、電流積算によるSOC推定方法とOCVに基づくSOC推定方法とを組み合わせた技術がある(下記特許文献1参照)。具体的には、この従来技術は、通常は、電流積算によるSOC推定方法でSOCの推定値を求めつつ、予め定められた所定のタイミングで、その電流積算に基づくSOCの推定値を、OCVに基づくSOCの推定値にシフトさせることにより、電流積算に基づくSOCの積算誤差を抑制する方法である。   For example, a lithium ion battery using an iron phosphate-based material for the positive electrode and graphite for the negative electrode has a small change in OCV in a wide SOC region except for a part of the SOC region. In this region, the SOC estimation based on the OCV is difficult. Therefore, there is a technique that combines an SOC estimation method based on current integration and an SOC estimation method based on OCV (see Patent Document 1 below). Specifically, this conventional technique usually obtains an estimated value of SOC by an SOC estimation method based on current integration, and converts the estimated SOC value based on the current integration to OCV at a predetermined timing. This is a method of suppressing an SOC integration error based on current integration by shifting to an estimated SOC value.

特開2010−283922号公報JP 2010-283922 A

しかし、従来、電流積算やOCVに基づくSOCの推定値とSOCの実際値との間の誤差の有無(大小)、即ち、SOCの推定値の信頼性について考慮されていない。このため、上記従来技術では、上記所定のタイミングになると、電流積算に基づくSOCの推定値の信頼性が高いにもかかわらず、無駄に、OCVに基づくSOCの推定値にシフトされるという問題が生じる。なお、SOC推定方法として、電流以外に、電圧や温度等、SOCと相関関係を有する変動要素の値に基づきSOCを推定する方法もある。これらの方法でも、そのSOCの推定値とSOCの実際値との間に誤差が生じることがあり、その信頼性については考慮されていない。   However, conventionally, the presence or absence (large or small) of an error between the estimated value of SOC based on current integration or OCV and the actual value of SOC, that is, the reliability of the estimated value of SOC is not considered. For this reason, the above-described conventional technique has a problem that, when the predetermined timing is reached, the estimated value of the SOC based on the current integration is unreliably shifted to the estimated value of the SOC based on the OCV. Arise. As an SOC estimation method, there is a method of estimating the SOC based on the value of a variable element having a correlation with the SOC, such as voltage and temperature, in addition to the current. Even in these methods, an error may occur between the estimated value of the SOC and the actual value of the SOC, and the reliability is not considered.

本明細書では、SOCと相関関係を有し、且つ、OCVとは異なる変動要素の値に基づくSOCの推定値の信頼性を判定することが可能な技術を開示する。   The present specification discloses a technique capable of determining the reliability of the estimated value of the SOC based on the value of the variable element having a correlation with the SOC and different from the OCV.

本明細書によって開示される充電状態信頼性判定装置は、蓄電素子の充電状態に対する開放電圧の変化特性において、前記充電状態の単位変化量あたりの開放電圧の変化量である開放電圧変化率が相対的に高い高変化領域、および、前記開放電圧変化率が相対的に低い低変化領域を含む複数の充電状態の領域が存在する蓄電素子の電圧を検出する電圧検出部と、制御部と、を備え、前記制御部は、前記充電状態と相関関係を有し、且つ、前記開放電圧とは異なる前記蓄電素子の変動要素の値を取得し、取得した前記変動要素の値に基づき、前記蓄電素子の充電状態を推定する充電状態推定処理と、前記電圧検出部の検出結果に基づき、前記蓄電素子の開放電圧を測定する開放電圧測定処理と、前記変動要素の値に基づく充電状態の推定値が属する領域である推定領域と、前記開放電圧の測定値に対応する充電状態の測定値が属する領域である測定領域とが、前記高変化領域で一致するか、一致しないかを判定する領域判断処理と、前記推定領域と前記測定領域とが前記高変化領域で一致すると判定した場合、前記充電状態の推定値の信頼性が、一致しないと判定した場合に比べて高いと判定する信頼性判定処理と、を実行する構成を有する。   The state-of-charge reliability determination device disclosed in the present specification is such that an open-circuit voltage change rate, which is a change amount of the open-circuit voltage per unit change amount of the charge state, is relatively A voltage detection unit that detects a voltage of a power storage element in which a plurality of charged state regions including a high change region that is high and a low change region in which the open-circuit voltage change rate is relatively low, and a control unit, The control unit acquires a value of a variable element of the power storage element having a correlation with the state of charge and different from the open circuit voltage, and based on the acquired value of the variable element, the power storage element A charge state estimation process for estimating a charge state of the battery, an open circuit voltage measurement process for measuring an open circuit voltage of the power storage element based on a detection result of the voltage detector, and an estimated value of the charge state based on the value of the variable element. Genus Region determination process for determining whether an estimation region that is a region to be measured and a measurement region to which a measurement value of a charging state corresponding to the measurement value of the open circuit voltage is identical or not coincide with each other in the high change region And a reliability determination process that determines that the reliability of the estimated value of the state of charge is higher than that determined when the estimated area and the measurement area coincide with each other in the high-change area And a configuration for executing

本明細書によって開示される発明によれば、SOCと相関関係を有し、且つ、OCVとは異なる変動要素の値に基づくSOCの推定値の信頼性を判定することができる。   According to the invention disclosed by this specification, it is possible to determine the reliability of the estimated value of the SOC based on the value of the variable element that has a correlation with the SOC and is different from the OCV.

一実施形態に係る充電状態信頼性判定装置の電気的構成を示すブロック図The block diagram which shows the electrical constitution of the charge condition reliability determination apparatus which concerns on one Embodiment. 二次電池のOCVとSOCを示すグラフGraph showing OCV and SOC of secondary battery 積算SOC推定処理を示すフローチャートFlow chart showing integrated SOC estimation process SOC推定値の信頼性判定処理を示すフローチャートThe flowchart which shows the reliability determination process of SOC estimated value SOC初期値決定処理Aを示すフローチャートFlowchart showing SOC initial value determination processing A 電流計測補正処理を示すフローチャートFlow chart showing current measurement correction processing SOC初期値決定処理Bを示すフローチャートFlowchart showing SOC initial value determination process B SOC初期値決定処理B1を示すフローチャートThe flowchart which shows SOC initial value decision processing B1 SOC初期値決定処理B2を示すフローチャートThe flowchart which shows SOC initial value decision processing B2 SOC初期値決定処理B3を示すフローチャートThe flowchart which shows SOC initial value decision processing B3 本実施形態の具体例を示すグラフGraph showing a specific example of this embodiment

(本実施形態の概要)   (Outline of this embodiment)

本明細書によって開示される充電状態信頼性判定装置は、蓄電素子の充電状態に対する開放電圧の変化特性において、前記充電状態の単位変化量あたりの開放電圧の変化量である開放電圧変化率が相対的に高い高変化領域、および、前記開放電圧変化率が相対的に低い低変化領域を含む複数の充電状態の領域が存在する蓄電素子の電圧を検出する電圧検出部と、制御部と、を備え、前記制御部は、前記充電状態と相関関係を有し、且つ、前記開放電圧とは異なる前記蓄電素子の変動要素の値を取得し、取得した前記変動要素の値に基づき、前記蓄電素子の充電状態を推定する充電状態推定処理と、前記電圧検出部の検出結果に基づき、前記蓄電素子の開放電圧を測定する開放電圧測定処理と、前記変動要素の値に基づく充電状態の推定値が属する領域である推定領域と、前記開放電圧の測定値に対応する充電状態の測定値が属する領域である測定領域とが、前記高変化領域で一致するか、一致しないかを判定する領域判断処理と、前記推定領域と前記測定領域とが前記高変化領域で一致すると判定した場合、前記充電状態の推定値の信頼性が、一致しないと判定した場合に比べて高いと判定する信頼性判定処理と、を実行する構成を有する。   The state-of-charge reliability determination device disclosed in the present specification is such that an open-circuit voltage change rate, which is a change amount of the open-circuit voltage per unit change amount of the charge state, is relatively A voltage detection unit that detects a voltage of a power storage element in which a plurality of charged state regions including a high change region that is high and a low change region in which the open-circuit voltage change rate is relatively low, and a control unit, The control unit acquires a value of a variable element of the power storage element having a correlation with the state of charge and different from the open circuit voltage, and based on the acquired value of the variable element, the power storage element A charge state estimation process for estimating a charge state of the battery, an open circuit voltage measurement process for measuring an open circuit voltage of the power storage element based on a detection result of the voltage detector, and an estimated value of the charge state based on the value of the variable element. Genus Region determination process for determining whether an estimation region that is a region to be measured and a measurement region to which a measurement value of a charging state corresponding to the measurement value of the open circuit voltage is identical or not coincide with each other in the high change region And a reliability determination process that determines that the reliability of the estimated value of the state of charge is higher than that determined when the estimated area and the measurement area coincide with each other in the high-change area And a configuration for executing

変化特性において、開放電圧の測定値に対応する充電状態の測定値が属する測定領域が高変化領域である場合、開放電圧の測定値に対応する充電状態の測定値は、測定領域が低変化領域である場合に比べて、充電状態の実際値に近い。このため、変動要素の値に基づく充電状態の推定値が属する領域である推定領域が、上記測定領域と高変化領域で一致することは、変動要素の値に基づく充電状態の推定値が、充電状態の実際値に近く、信頼性が高いことを意味する。そこで、この充電状態信頼性判定装置は、推定領域と測定領域とが高変化領域で一致する場合、当該高変化領域で一致しない場合に比べて、充電状態の推定値の信頼性が高いと判定する。これにより、SOCと相関関係を有し、且つ、開放電圧とは異なる変動要素の値に基づくSOCの推定値の信頼性を判定することができる。   In the change characteristic, when the measurement region to which the measurement value of the charging state corresponding to the measurement value of the open-circuit voltage belongs is a high-change region, the measurement value of the charge state corresponding to the measurement value of the open-circuit voltage is the low-change region. It is close to the actual state of charge compared to For this reason, the estimated area, which is the area to which the estimated value of the charging state based on the value of the variable element belongs, matches in the above measurement area and the high change area. It means close to the actual value of the state and high reliability. Therefore, this state-of-charge reliability determination apparatus determines that the reliability of the estimated value of the state of charge is higher when the estimation region and the measurement region match in the high change region than in the case where they do not match in the high change region. To do. Thereby, it is possible to determine the reliability of the estimated value of the SOC based on the value of the variable element having a correlation with the SOC and different from the open circuit voltage.

上記充電状態推定装置では、前記制御部は、前記領域判断処理で、前記推定領域と前記測定領域とが一致しないと判定した場合、前記信頼性判定処理では、前記推定領域が前記測定領域から離れている程、前記充電状態の推定値の信頼性が低いと判定する構成でもよい。   In the charging state estimation device, when the control unit determines that the estimation region and the measurement region do not match in the region determination processing, the estimation region is separated from the measurement region in the reliability determination processing. The configuration may be such that the reliability of the estimated value of the state of charge is determined to be lower as it is higher.

この充電状態信頼性判定装置は、領域判断処理で、推定領域と測定領域とが一致しないと判定した場合、推定領域が測定領域から離れている程、充電状態の推定値の信頼性が低いと判定する。これにより、推定領域と測定領域との離れ具合から、充電状態の推定値の信頼性の度合いを判定することができる。   When it is determined in the region determination process that the estimation region and the measurement region do not match, the state of charge reliability determination device indicates that the reliability of the estimation value of the state of charge is lower as the estimation region is farther from the measurement region. judge. Thereby, the degree of reliability of the estimated value of the state of charge can be determined from the degree of separation between the estimation region and the measurement region.

上記充電状態推定装置では、前記制御部は、前記領域判断処理において前記推定領域と前記測定領域とが前記高変化領域で一致しないと判定したことを条件に、前記変動要素の値に基づく充電状態の推定値を、前記変化特性における前記開放電圧の測定値に対応する充電状態の測定値に変更する変更処理を実行する構成でもよい。   In the charging state estimation device, the control unit determines a charging state based on the value of the variable element on the condition that the estimation region and the measurement region are determined not to match in the high change region in the region determination process. It is also possible to perform a change process for changing the estimated value to a measured value of the state of charge corresponding to the measured value of the open circuit voltage in the change characteristic.

この充電状態信頼性判定装置は、推定領域と測定領域とが高変化領域で一致しないと判定したことを条件に、変動要素の値に基づく充電状態の推定値を、変化特性における開放電圧の測定値に対応する充電状態の測定値に変更する。即ち、充電状態の推定値の信頼性が低いことを条件に、当該推定値が、開放電圧の測定値に対応する充電状態の測定値に変更される。従って、充電状態の推定値の信頼性の高低に関係なく、一律に、開放電圧の測定値に対応する充電状態の測定値に変更する構成に比べて、無駄な変更処理がされること等を抑制することができる。   This state-of-charge reliability determination device is configured to measure an open state voltage in a change characteristic based on a value of a variable element on condition that an estimated region and a measurement region are determined not to coincide with each other in a high change region. Change to the measured value of the state of charge corresponding to the value. In other words, on the condition that the reliability of the estimated value of the charging state is low, the estimated value is changed to the measured value of the charging state corresponding to the measured value of the open circuit voltage. Therefore, regardless of the reliability of the estimated value of the charged state, a wasteful change process is performed compared to the configuration in which the measured value is uniformly changed to the measured value of the charged state corresponding to the measured value of the open circuit voltage. Can be suppressed.

上記充電状態推定装置では、前記制御部は、前記領域判断処理で、前記推定領域と前記測定領域とが前記高変化領域で一致しないと判定した場合、前記変更処理では、前記蓄電素子が満充電状態時に、前記充電状態の推定値を、前記開放電圧の測定値に対応する充電状態の測定値に変更する構成でもよい。   In the charging state estimation device, when the control unit determines that the estimation region and the measurement region do not coincide with each other in the high change region in the region determination processing, the storage element is fully charged in the change processing. In the state, the estimated value of the charging state may be changed to a measured value of the charging state corresponding to the measured value of the open circuit voltage.

この充電状態信頼性判定装置は、領域判断処理で、推定領域と測定領域とが高変化領域で一致しないと判定した場合、前記蓄電素子が満充電状態時に、充電状態の推定値を、開放電圧の測定値に対応する充電状態の測定値に変更する。これにより、充電状態の推定値の信頼性判定時に開放電圧がプラトー領域にあった場合でも、正しいSOC値でリセットすることができる。   When it is determined in the region determination process that the estimation region and the measurement region do not coincide with each other in the high-change region, the state-of-charge reliability determination device calculates an estimated value of the state of charge when the storage element is fully charged. Change to the measured value of the charge state corresponding to the measured value. Thereby, even when the open circuit voltage is in the plateau region at the time of determining the reliability of the estimated value of the state of charge, it can be reset with the correct SOC value.

上記充電状態推定装置では、前記制御部は、前記領域判断処理では、更に、前記推定領域が前記高変化領域であり、且つ、前記測定領域が前記低変化領域であるか、を判定し、前記信頼性判定処理では、前記推定領域が前記高変化領域であり、且つ、前記測定領域が前記低変化領域であると判定した場合、前記変更処理の前回以前の実行時からの時間差が大きい程、前記充電状態の推定値の信頼性が低いと判定する構成でもよい。   In the charging state estimation device, in the region determination process, the control unit further determines whether the estimation region is the high change region and the measurement region is the low change region, and In the reliability determination process, when it is determined that the estimation area is the high change area and the measurement area is the low change area, the larger the time difference from the previous execution of the change process, The structure which determines with the reliability of the estimated value of the said charging state being low may be sufficient.

この充電状態信頼性判定装置は、推定領域が高変化領域であり、且つ、測定領域が低変化領域であると判定した場合、変更処理の前回以前の実行時からの時間差が大きい程、前記充電状態の推定値の信頼性が低いと判定する。これにより、充電状態の推定値の信頼性の度合いを判定することができる。   When it is determined that the estimation region is the high change region and the measurement region is the low change region, the charging state reliability determination device increases the charging time as the time difference from the previous execution of the change process increases. It is determined that the reliability of the estimated state value is low. Thereby, the reliability degree of the estimated value of the state of charge can be determined.

上記充電状態推定装置では、前記蓄電素子に流れる充放電電流を検出する電流検出部を備え、前記制御部は、前記充電状態推定処理では、前記電流検出部により検出される電流値を積算し、前記変動要素の値として、その積算値に基づき、前記蓄電素子の充電状態を推定し、前記信頼性判定処理では、前記推定領域が前記高変化領域であり、且つ、前記測定領域が前記低変化領域であると判定した場合、前記変更処理の前回以前の実行時からの時間差、および、前記変更処理の前回以前の実行時からの前記積算値の少なくとも1つの変化量が大きい程、前記充電状態の推定値の信頼性が低いと判定する構成でもよい。   The charging state estimation device includes a current detection unit that detects a charge / discharge current flowing through the power storage element, and the control unit integrates the current value detected by the current detection unit in the charging state estimation process, As the value of the variable element, the state of charge of the power storage element is estimated based on the integrated value. In the reliability determination process, the estimation region is the high change region, and the measurement region is the low change. If it is determined that the region is a region, the time difference from the previous execution time of the change process and the change amount of at least one of the integrated values from the previous execution time of the change process are larger, the charge state It may be determined that the reliability of the estimated value is low.

この充電状態信頼性判定装置は、電流検出部により検出される電流値を積算し、変動要素の値として、その積算値に基づき、蓄電素子の充電状態を推定する。また、推定領域が高変化領域であり、且つ、測定領域が低変化領域であると判定した場合、変更処理の前回以前の実行時からの時間差、および、変更処理の前回以前の実行時からの積算値の少なくとも1つの変化量が大きい程、充電状態の推定値の信頼性が低いと判定する。これにより、電流値の積算値に基づく充電状態の推定値の信頼性の度合いを判定することができる。   This state-of-charge reliability determination apparatus integrates the current values detected by the current detector, and estimates the state of charge of the storage element based on the integrated value as the value of the variable element. In addition, when it is determined that the estimation area is a high change area and the measurement area is a low change area, the time difference from the previous execution of the change process and the previous change execution time It is determined that the reliability of the estimated value of the state of charge is lower as at least one change amount of the integrated value is larger. Thereby, the reliability degree of the estimated value of the state of charge based on the integrated value of the current value can be determined.

上記充電状態推定装置では、前記制御部は、前記領域判断処理では、更に、前記電流値の積算値に基づく充電状態の推定値が前記複数の高変化領域または前記複数の低変化領域のいずれか一つの値であり、前記開放電圧の測定値に対応する充電状態の測定値が前記充電状態の推定値とは異なる領域の値であるとき、前記充電状態の推定値と前記充電状態の測定値との大小関係が同一であることが複数回連続したか、を判定し、前記変更処理が実行され、かつ、前記大小関係が同一であることが複数回連続したと判定した場合、前記電流値の積算値に基づく充電状態の推定値を、前記開放電圧の測定値に対応する充電状態の測定値に近付ける方向に前記電流値を補正する補正処理を実行する構成でもよい。   In the charging state estimation device, in the region determination process, the control unit further determines whether the estimated value of the charging state based on the integrated value of the current value is the plurality of high change regions or the plurality of low change regions. When the measured value of the charging state corresponding to the measured value of the open circuit voltage is a value in a region different from the estimated value of the charged state, the estimated value of the charged state and the measured value of the charged state If the magnitude relationship is the same for a plurality of times, the change process is executed, and it is determined that the magnitude relationship is the same for a plurality of times, the current value The correction process which corrects the said current value in the direction which approaches the estimated value of the charging state based on the integrated value of the charging state to the measured value of the charging state corresponding to the measured value of the open circuit voltage may be performed.

電流値の積算値に基づく充電状態の推定値と、開放電圧の測定値に対応する充電状態の測定値との大小関係が同一であることが、複数回連続した場合、電流検出部における検出電流がずれている可能性がある。そこで、この充電状態信頼性判定装置は、充電状態の推定値を充電状態が満充電時または完全放電時の測定値に置き換えても、当該大小関係が複数回連続したと判定した場合、電流値の積算値に基づく充電状態の推定値を、開放電圧の測定値に対応する充電状態の測定値に近付ける方向に、電流検出部における電流値を補正する。これにより、電流検出部の異常により、信頼性の判定精度が低下することを抑制することができる。   When the estimated value of the charging state based on the integrated value of the current value and the measured value of the charging state corresponding to the measured value of the open circuit voltage are the same, if the number of consecutive times is consecutive, the detected current in the current detection unit May be off. Therefore, this charging state reliability determination device determines the current value when it is determined that the magnitude relationship continues multiple times even if the estimated value of the charging state is replaced with the measured value when the charging state is fully charged or fully discharged. The current value in the current detection unit is corrected so that the estimated value of the charging state based on the integrated value of the current value approaches the measured value of the charging state corresponding to the measured value of the open circuit voltage. Thereby, it can suppress that the determination accuracy of reliability falls by abnormality of an electric current detection part.

上記充電状態推定装置では、前記制御部は、前記領域判断処理では、更に、前記推定領域が前記低変化領域であり、且つ、前記測定領域が前記高変化領域であるか、を判定し、前記信頼性判定処理では、前記推定領域が前記低変化領域であり、且つ、前記測定領域が前記高変化領域であると判定した場合、前記変動要素の値に基づく充電状態の推定値と、前記開放電圧の測定値に対応する充電状態の測定値との差が大きい程、前記充電状態の推定値の信頼性が低いと判定する構成でもよい。   In the state of charge estimation device, the control unit further determines whether the estimation region is the low change region and the measurement region is the high change region in the region determination process, In the reliability determination process, when it is determined that the estimation region is the low change region and the measurement region is the high change region, the estimated value of the charging state based on the value of the variable element, and the release The configuration may be such that the larger the difference from the measured value of the charge state corresponding to the measured value of the voltage, the lower the reliability of the estimated value of the charged state.

この充電状態信頼性判定装置は、推定領域が低変化領域であり、且つ、測定領域が高変化領域であると判定した場合、変動要素の値に基づく充電状態の推定値と、開放電圧の測定値に対応する充電状態の測定値との差が大きい程、充電状態の推定値の信頼性が低いと判定する。測定領域が高変化領域である場合、開放電圧の測定値に対応する充電状態の測定値が、充電状態の実際値に近似するから、上記の差から直接、充電状態の推定値の信頼性の度合いを判定することができる。   When it is determined that the estimation region is a low change region and the measurement region is a high change region, this state of charge reliability determination device measures the estimated value of the charge state based on the value of the variable element and the open circuit voltage. It is determined that the reliability of the estimated value of the state of charge is lower as the difference from the measured value of the state of charge corresponding to the value is larger. When the measurement region is a high change region, the measured value of the charging state corresponding to the measured value of the open circuit voltage approximates the actual value of the charging state, so the reliability of the estimated value of the charging state directly depends on the above difference. The degree can be determined.

また、蓄電素子と、充電状態信頼性判定装置と、を備える蓄電装置でもよい。   In addition, a power storage device including a power storage element and a charged state reliability determination device may be used.

なお、本明細書によって開示される発明は、制御装置、制御方法、これらの方法または装置の機能を実現するためのコンピュータプログラム、そのコンピュータプログラムを記録した記録媒体等の種々の態様で実現することができる。   The invention disclosed in this specification can be realized in various modes such as a control device, a control method, a computer program for realizing the functions of these methods or devices, and a recording medium on which the computer program is recorded. Can do.

<一実施形態>
一実施形態について図1〜図11を参照しつつ説明する。本実施形態の電池パック1は、例えば電気自動車やハイブリッド自動車(以下、単に自動車という)に搭載され、電気エネルギーで作動する動力源に電力を供給する。
<One Embodiment>
An embodiment will be described with reference to FIGS. The battery pack 1 of the present embodiment is mounted on, for example, an electric vehicle or a hybrid vehicle (hereinafter simply referred to as an automobile), and supplies power to a power source that operates with electric energy.

(電池パックの構成)
図1に示すように、電池パック1は、組電池2、及び、電池管理装置(Battery Management System 以下、BMSという)3を備える。組電池2は、蓄電素子の一例であり、複数の電池セルCが直列接続された構成である。各電池セルCは、繰り返し充電可能な二次電池であり、具体的には、正極にリン酸鉄系材料、負極にグラファイトを用いたリチウムイオン電池である。なお、電池パック1は、蓄電装置の一例であり、BMS3は充電状態信頼性判定装置の一例である。
(Battery pack configuration)
As shown in FIG. 1, the battery pack 1 includes an assembled battery 2 and a battery management device (hereinafter referred to as “BMS”) 3. The assembled battery 2 is an example of a power storage element, and has a configuration in which a plurality of battery cells C are connected in series. Each battery cell C is a rechargeable secondary battery, specifically, a lithium ion battery using an iron phosphate-based material for the positive electrode and graphite for the negative electrode. The battery pack 1 is an example of a power storage device, and the BMS 3 is an example of a charged state reliability determination device.

組電池2は、自動車の内部または外部に設けられた充電装置40、または、自動車の内部に設けられた動力源等の負荷41に、配線4およびスイッチ42を介して電気的に接続される。充電装置40は、図示しない外部電源から電力供給を受けて、組電池2を充電する。   The assembled battery 2 is electrically connected via a wiring 4 and a switch 42 to a charging device 40 provided inside or outside the automobile or a load 41 such as a power source provided inside the automobile. The charging device 40 receives power supply from an external power source (not shown) and charges the assembled battery 2.

BMS3は、制御ユニット31、アナログ−デジタル変換機(以下、ADCという)32、電流センサ33、電圧センサ34を備える。制御ユニット31は、中央処理装置(以下、CPUという)35、ROMやRAMなどのメモリ36を有する。メモリ36には、BMS3の動作を制御するための各種のプログラム(SOC推定プログラムを含む)が記憶されており、CPU35は、メモリ36から読み出したプログラムに従って、後述するSOC推定処理を実行するなど、各部の制御を行う。なお、制御ユニット31は、制御部の一例であり、電圧センサ34は電圧検出部の一例である。   The BMS 3 includes a control unit 31, an analog-digital converter (hereinafter referred to as ADC) 32, a current sensor 33, and a voltage sensor 34. The control unit 31 includes a central processing unit (hereinafter referred to as a CPU) 35 and a memory 36 such as a ROM or a RAM. Various programs (including an SOC estimation program) for controlling the operation of the BMS 3 are stored in the memory 36, and the CPU 35 executes an SOC estimation process to be described later according to the program read from the memory 36. Control each part. The control unit 31 is an example of a control unit, and the voltage sensor 34 is an example of a voltage detection unit.

電流センサ33は、充電時に充電装置40から組電池2へ流れる充電電流および、放電時に組電池2から負荷41へ流れる放電電流の電流値I[A]を検出し、その検出した電流値Iに応じたアナログの検出信号SG1をADC32に送信する。なお、以下では、充電電流と放電電流とを区別する必要がない場合は充放電電流という。電圧センサ34は、組電池2の各電池セルCの両端に接続され、電池セルCの端子電圧である電圧値V[V]を検出し、その検出した電圧値Vに応じたアナログの検出信号SG2をADC32に送信する。なお、電圧センサ34では、配線4を介さず、端子電圧を直接検出することで、配線4の配線抵抗による影響を抑制した正確な電圧値Vを検出することができる。   The current sensor 33 detects the charging current that flows from the charging device 40 to the assembled battery 2 during charging and the current value I [A] of the discharging current that flows from the assembled battery 2 to the load 41 during discharging. A corresponding analog detection signal SG1 is transmitted to the ADC 32. Hereinafter, when it is not necessary to distinguish between the charging current and the discharging current, it is referred to as charging / discharging current. The voltage sensor 34 is connected to both ends of each battery cell C of the assembled battery 2, detects a voltage value V [V] which is a terminal voltage of the battery cell C, and an analog detection signal corresponding to the detected voltage value V SG2 is transmitted to the ADC 32. The voltage sensor 34 can detect an accurate voltage value V in which the influence of the wiring resistance of the wiring 4 is suppressed by directly detecting the terminal voltage without using the wiring 4.

ADC32は、電流センサ33、電圧センサ34から送信される検出信号SG1、SG2を、アナログ信号からデジタル信号に変換し、電流値I、電圧値Vを示すデジタルデータを制御ユニット31へ送信する。そして、制御ユニット31は、当該デジタルデータをメモリ36に記憶する。   The ADC 32 converts the detection signals SG1 and SG2 transmitted from the current sensor 33 and the voltage sensor 34 from analog signals to digital signals, and transmits digital data indicating the current value I and the voltage value V to the control unit 31. Then, the control unit 31 stores the digital data in the memory 36.

(二次電池のOCV−SOCカーブ)
図2には、電池セルCのOCV−SOCカーブが実線で示されている。OCV−SOCカーブは、電池セルCのOCVとSOCとの変化特性(相関関係)を示している。このOCV−SOCカーブ上でのOCVとは、充放電電流が流れていない状態が継続している時など、電池セルCの電圧が安定状態にあるときの電池セルCの端子電圧であり、例えば、電池セルCの単位時間当たりの電圧変化量が規定量以下であるときの電池セルCの端子電圧である。なお、当該規定量は、電池セルCの仕様や所定の実験等により予め定めることができる。図1に示す通り、メモリ36に当該OCV−SOCカーブに関するデータが記憶されている。また、電池セルCの端子電圧は変動要素の一例である。
(OCV-SOC curve of secondary battery)
In FIG. 2, the OCV-SOC curve of the battery cell C is shown by a solid line. The OCV-SOC curve indicates the change characteristic (correlation) between the OCV and the SOC of the battery cell C. The OCV on the OCV-SOC curve is a terminal voltage of the battery cell C when the voltage of the battery cell C is in a stable state, such as when a state in which no charge / discharge current is flowing continues. The terminal voltage of the battery cell C when the voltage change amount per unit time of the battery cell C is equal to or less than the specified amount. The prescribed amount can be determined in advance by the specification of the battery cell C, a predetermined experiment, or the like. As shown in FIG. 1, data relating to the OCV-SOC curve is stored in the memory 36. Moreover, the terminal voltage of the battery cell C is an example of a fluctuation element.

同図に示す電池セルCのOCV−SOCカーブによれば、電池セルCの端子電圧が変化し得る変化領域には、OCV変化率が互いに異なる複数の変化領域が含まれている。このOCV変化率は、SOCの単位変化量あたりのOCVの変化量であり、開放電圧変化率の一例である。具体的には、異なる複数の変化領域には、OCV変化率が比較的高い急峻変化領域EH(EH1、EH2、EH3)と、OCV変化率が比較的低い微小変化領域EL(EL1、EL2)とが含まれている。なお、急峻変化領域EHは高変化領域の一例であり、微小変化領域ELは低変化領域の一例である。   According to the OCV-SOC curve of the battery cell C shown in the figure, the change region in which the terminal voltage of the battery cell C can change includes a plurality of change regions having different OCV change rates. The OCV change rate is an OCV change amount per unit change amount of the SOC, and is an example of an open circuit voltage change rate. Specifically, the different change regions include a steep change region EH (EH1, EH2, EH3) having a relatively high OCV change rate and a minute change region EL (EL1, EL2) having a relatively low OCV change rate. It is included. The steep change region EH is an example of a high change region, and the minute change region EL is an example of a low change region.

同図の例で、急峻変化領域EHは、SOCの値が約0%〜約30%の変化領域を、第1急峻変化領域EH1と呼び、SOCの値が約65%〜約68%の変化領域を、第2急峻変化領域EH2と呼び、SOCの値が約94%〜約100%の電圧領域を、第3急峻変化領域EH3と呼ぶ。   In the example of the figure, in the steep change region EH, the change region where the SOC value is about 0% to about 30% is called the first steep change region EH1, and the change of the SOC value is about 65% to about 68%. The region is referred to as a second steep change region EH2, and the voltage region having an SOC value of about 94% to about 100% is referred to as a third steep change region EH3.

なお、第1急峻変化領域EH1でのOCV変化率と第2急峻変化領域EH2でのOCV変化率とは、互いに異なり、具体的には、第2急峻変化領域EH2でのOCV変化率は、第1急峻変化領域EH1でのOCV変化率に比べてやや高い。また、第2急峻変化領域EH2でのOCV変化率と第3急峻変化領域EH3でのOCV変化率とも、互いに異なり、具体的には、第3急峻変化領域EH3でのOCV変化率は、第2急峻変化領域EH2でのOCV変化率に比べてやや高い。   The OCV change rate in the first steep change region EH1 and the OCV change rate in the second steep change region EH2 are different from each other. Specifically, the OCV change rate in the second steep change region EH2 is It is slightly higher than the OCV change rate in the one steep change region EH1. Further, the OCV change rate in the second steep change region EH2 and the OCV change rate in the third steep change region EH3 are different from each other. Specifically, the OCV change rate in the third steep change region EH3 is the second steep change region EH3. It is slightly higher than the OCV change rate in the steep change region EH2.

一方、同図の例で、微小変化領域ELは、SOCの値が約30%〜約65%の変化領域を、第1微小変化領域EL1と呼び、SOCの値が約68%〜約94%の領域を、第2微小変化領域EL2でと呼ぶ。なお、各微小変化領域ELでのOCV変化率は互いに異なり、具体的には、第1微小変化領域EL1でのOCV変化率は、第2微小変化領域EL2でのOCV変化率に比べてやや高い。なお、OCV変化率の高低は、例えば、OCVの所定の検出誤差に対するSOCの推定誤差が許容範囲内であるか否かに応じて決めることができる。   On the other hand, in the example shown in the figure, in the minute change region EL, the change region having the SOC value of about 30% to about 65% is called the first minute change region EL1, and the SOC value is about 68% to about 94%. This area is referred to as a second minute change area EL2. The OCV change rate in each minute change region EL is different from each other. Specifically, the OCV change rate in the first minute change region EL1 is slightly higher than the OCV change rate in the second minute change region EL2. . The level of the OCV change rate can be determined, for example, depending on whether or not the SOC estimation error with respect to the predetermined OCV detection error is within an allowable range.

BMS3は、組電池2の電池セルCから代表セルを選び、当該代表セルの電圧からSOCを推定し、当該SOCを組電池2のSOCとする。具体的には、各電池セルCの端子電圧値を比較し、端子電圧値が最も低い電池セルCを代表セルとする。なお、その他の方法として、端子電圧がメジアン値である電池セルを代表セルとしてもよい。あるいは、BMS3は、例えば、2〜3個の電池セルC毎に端子電圧値の平均値を算出し、最も低い平均値からSOCを推定してもよい。あるいは組電池2の総電圧をセル数で除した平均値からSOCを推定してもよい。あるいは、組電池2の総電圧に対応したOCV−SOCカーブを用意してSOCを推定してもよい。このように様々な方法をとることができる。以下では、SOCの推定に使用されるセルを代表セルDとする。   The BMS 3 selects a representative cell from the battery cell C of the assembled battery 2, estimates the SOC from the voltage of the representative cell, and sets the SOC as the SOC of the assembled battery 2. Specifically, the terminal voltage values of the battery cells C are compared, and the battery cell C having the lowest terminal voltage value is set as the representative cell. As another method, a battery cell whose terminal voltage is a median value may be used as a representative cell. Or BMS3 may calculate the average value of a terminal voltage value for every 2-3 battery cells C, for example, and may estimate SOC from the lowest average value. Alternatively, the SOC may be estimated from an average value obtained by dividing the total voltage of the assembled battery 2 by the number of cells. Alternatively, the SOC may be estimated by preparing an OCV-SOC curve corresponding to the total voltage of the assembled battery 2. In this way, various methods can be taken. Hereinafter, a cell used for SOC estimation is referred to as a representative cell D.

(SOCの推定値の信頼性判定)
先述した通り、電流積算によるSOC推定方法では、例えば電流センサの測定誤差等により、電流積算が長期間実行されると、電流積算に基づくSOCの推定値とSOCの実際値との間の誤差が積算されて大きくなるおそれがある。そこで、OCVに基づくSOC推定方法を用いることで、電流積算による誤差をリセットする。なお、OCVに基づくSOC値は、充電状態の測定値の一例である。
(Determining the reliability of the estimated SOC value)
As described above, in the SOC estimation method based on current integration, if current integration is performed for a long time due to, for example, a measurement error of a current sensor, an error between the estimated value of SOC based on the current integration and the actual value of SOC occurs. There is a risk that it will accumulate and become larger. Therefore, the error due to current integration is reset by using the SOC estimation method based on OCV. The SOC value based on the OCV is an example of a measured value of the state of charge.

しかし、OCVに基づくSOC推定方法では、上記SOCに対するOCVの変化特性において、SOCの単位変化量あたりのOCVの変化量である開放電圧変化率が比較的に低い領域では、OCVに基づくSOCの推定値とSOCの実際値との誤差が大きくなる等のデメリットがある。   However, in the SOC estimation method based on the OCV, in the change characteristic of the OCV with respect to the SOC, the SOC estimation based on the OCV is performed in a region where the open circuit voltage change rate that is the change amount of the OCV per unit change amount of the SOC is relatively low. There is a demerit such that an error between the value and the actual value of the SOC increases.

例えば、図2に示すように、代表セルDの端子電圧値が3.27V(点B)であった場合、OCV−SOCカーブの傾きが存在するため、SOCは約24%と推定することが出来る。   For example, as shown in FIG. 2, when the terminal voltage value of the representative cell D is 3.27 V (point B), there is an inclination of the OCV-SOC curve, so the SOC may be estimated to be about 24%. I can do it.

しかし、代表セルDの端子電圧値が3.34V(点C)であった場合、OCV−SOCカーブの傾きがほとんど存在しないため、SOCは約68%から約94%のいずれかの値としか推定することが出来ない。   However, when the terminal voltage value of the representative cell D is 3.34 V (point C), there is almost no inclination of the OCV-SOC curve, so the SOC is only about 68% to about 94%. It cannot be estimated.

このため、代表セルDの端子電圧値が点Cにある場合では、OCVに基づくSOCの推定ができず、電流積算による誤差をリセットができなくなるという不都合が生じる。   For this reason, when the terminal voltage value of the representative cell D is at the point C, the SOC cannot be estimated based on the OCV, and the error due to current integration cannot be reset.

そこで、電流積算に基づくSOCの推定値とOCVに基づくSOCの推定値とが、急峻変化領域EHと微小変化領域ELのいずれに属するかを判定することにより、電流積算に基づくSOCの推定値の信頼性を判定する。これにより、当該信頼性が低い場合は、例えば組電池2を満充電になるまで充電し、SOCを100%にリセットするなどにより、電流積算による誤差をリセットができなくなるという不都合を抑制することができる。   Therefore, by determining whether the estimated SOC value based on the current integration and the estimated SOC value based on the OCV belong to the steep change region EH or the minute change region EL, the estimated SOC value based on the current integration is determined. Judge reliability. As a result, when the reliability is low, for example, charging the assembled battery 2 until it is fully charged and resetting the SOC to 100% can suppress the inconvenience that the error due to current integration cannot be reset. it can.

(SOC推定処理フロー)
(1)積算SOCの推定処理
例えば、運転者が自動車のキーをオンにすることなどで、組電池2の充放電が開始されたことをトリガとして、CPU35は、電流センサ33が検出した電流値を積算して電流積算に基づくSOCの推定処理を実行する。電流積算に基づくSOCを以下では積算SOCと呼び、個々の積算SOCの値を電流積算SOC値と呼ぶ。図3に示す通り、まず、CPU35は、メモリ36に記憶されている、その時点の電流積算SOC値を読み出す(S1)。そして、CPU35は、組電池2の充放電が停止したか否かを判断する(S2)。
(SOC estimation process flow)
(1) Accumulated SOC estimation process For example, the CPU 35 uses the current value detected by the current sensor 33 as a trigger when charging / discharging of the assembled battery 2 is started, for example, when the driver turns on a car key. And SOC estimation processing based on current integration is executed. The SOC based on current integration is hereinafter referred to as integration SOC, and the value of each integration SOC is referred to as current integration SOC value. As shown in FIG. 3, first, the CPU 35 reads the current accumulated SOC value stored in the memory 36 (S1). And CPU35 judges whether charging / discharging of the assembled battery 2 stopped (S2).

CPU35は、組電池2の充放電が停止していないと判断した場合(S2:NO)、電流センサ33からの検出信号SG1に基づき、充放電電流の電流を積算する(S3)。CPU35は、当該積算値からΔSOCの値を算出し(S4)、メモリ36から読み出した電流積算SOC値にΔSOCの値を加えて算出した値を新たな電流積算SOC値とする(S5)。そして、CPU35は、S2に戻り、組電池2の充放電が停止したか否かを判断する。なお、充放電電流は、変動要素の一例であり、積算SOCや電流積算SOC値は、充電状態の推定値の一例である。   When determining that charging / discharging of the assembled battery 2 has not stopped (S2: NO), the CPU 35 integrates the current of the charging / discharging current based on the detection signal SG1 from the current sensor 33 (S3). The CPU 35 calculates a value of ΔSOC from the integrated value (S4), and sets a value calculated by adding the value of ΔSOC to the current integrated SOC value read from the memory 36 as a new current integrated SOC value (S5). Then, the CPU 35 returns to S2 and determines whether charging / discharging of the assembled battery 2 is stopped. The charge / discharge current is an example of a variable element, and the integrated SOC and the current integrated SOC value are examples of an estimated value of the state of charge.

CPU35は、組電池2の充放電が停止したと判断した場合(S2:YES)、電流積算SOC値をメモリ36に記憶する(S6)。そして、CPU35は、積算SOCの推定処理を終了する。また、SOCの推定をするには、これ以外に様々な公知技術を利用することができる。なお、S5の処理は、充電状態推定処理の一例である。   When CPU 35 determines that charging / discharging of assembled battery 2 has stopped (S2: YES), CPU 35 stores the current integrated SOC value in memory 36 (S6). And CPU35 complete | finishes the estimation process of integrated SOC. In addition, various known techniques can be used to estimate the SOC. Note that the process of S5 is an example of a charge state estimation process.

また、CPU35は、外部機器や上位の電子制御ユニットから要求があった場合、その時点の電流積算SOC値を現在のSOCの値として送信する。   Further, when there is a request from an external device or a host electronic control unit, the CPU 35 transmits the current integrated SOC value at that time as the current SOC value.

なお、「組電池2の充放電が停止した」とは、組電池2が完全に充放電を停止している場合(スイッチ42が開放されている状態)に限らず、スイッチ42を介して組電池2が接続されている負荷41に待機電流が流れている場合(例えば、数mA未満)でも、BMS3に暗電流が流れている場合(例えば、数百μA未満)でもよい。   Note that “the charging / discharging of the assembled battery 2 has stopped” is not limited to the case where the charging / discharging of the assembled battery 2 is completely stopped (a state in which the switch 42 is opened), but is assembled via the switch 42. Even when a standby current flows through the load 41 to which the battery 2 is connected (for example, less than several mA), a dark current flows through the BMS 3 (for example, less than several hundred μA).

一方、BMS3に電源供給されている間、CPU35は、次述するSOC推定値の信頼性判定処理を常時実行している。   On the other hand, while the power is supplied to the BMS 3, the CPU 35 constantly executes the SOC estimation value reliability determination process described below.

(2)SOC推定値の信頼性判定処理
図4に示すように、CPU35は、まず、組電池2の充放電が停止したか否かを判定する(S11)。CPU35は、組電池2の充放電が停止していないと判定した場合(S11:NO)、待機し、組電池2の充放電が停止したと判定した場合(S11:YES)、CPU35は、所定時間(例えば2時間)が経過しているか否かを判定する(S12)。所定時間は、組電池2の充放電が停止したときを起点とし、電池セルCの端子電圧が安定するまでの時間である。所定時間は実験や経験などにより決めることができる。
(2) SOC Estimated Value Reliability Determination Processing As shown in FIG. 4, the CPU 35 first determines whether charging / discharging of the assembled battery 2 has stopped (S11). When it is determined that charging / discharging of the assembled battery 2 has not stopped (S11: NO), the CPU 35 stands by, and when it is determined that charging / discharging of the assembled battery 2 has been stopped (S11: YES), the CPU 35 is predetermined. It is determined whether time (for example, 2 hours) has elapsed (S12). The predetermined time is a time from when charging / discharging of the assembled battery 2 is stopped to the time when the terminal voltage of the battery cell C is stabilized. The predetermined time can be determined by experiment or experience.

CPU35は、所定時間が経過していないと判定した場合は(S12:NO)、S11に戻り、所定時間が経過したと判定した場合は(S12:YES)、CPU35は、電圧センサ34からの検出信号SG2に基づき、代表セルDの端子電圧値を検出する(S13)。CPU35は、所定時間が経過した状態で代表セルDの端子電圧値を検出しているため、当該端子電圧値は、代表セルDのOCVと略等しくなる。つまり、S12およびS13の処理は、代表セルDのOCVを検出するとも言える。したがって、S12およびS13の処理は、開放電圧測定処理の一例である。   When the CPU 35 determines that the predetermined time has not elapsed (S12: NO), the CPU 35 returns to S11. When the CPU 35 determines that the predetermined time has elapsed (S12: YES), the CPU 35 detects from the voltage sensor 34. Based on the signal SG2, the terminal voltage value of the representative cell D is detected (S13). Since the CPU 35 detects the terminal voltage value of the representative cell D after a predetermined time has elapsed, the terminal voltage value becomes substantially equal to the OCV of the representative cell D. That is, it can be said that the processing of S12 and S13 detects the OCV of the representative cell D. Therefore, the process of S12 and S13 is an example of an open circuit voltage measurement process.

そして、CPU35は、当該端子電圧値に基づいてメモリ36に記憶されている電圧測定SOC値を読み出す(S14)。電圧測定SOC値とは、CPU35が代表セルDの端子電圧に基づき、SOC−OCVカーブから算出したSOC値を指す。なお、電圧測定SOC値は、充電状態の測定値の一例である。   Then, the CPU 35 reads the voltage measurement SOC value stored in the memory 36 based on the terminal voltage value (S14). The voltage measurement SOC value refers to the SOC value calculated by the CPU 35 from the SOC-OCV curve based on the terminal voltage of the representative cell D. The voltage measurement SOC value is an example of a measurement value of the state of charge.

その後、CPU35は、メモリ36に記憶されている電流積算SOC値を読み出し(S15)、電流積算SOC値が第2急峻変化領域EH2にあるか否かを判定する(S16)。CPU35は、電流積算SOC値が第2急峻変化領域EH2にあると判定した場合(S16:YES)は、後述するSOC初期値決定処理Aを実行し(S17)、電流積算SOC値が第2急峻変化領域EH2にないと判定した場合(S16:NO)は、後述するSOC初期値決定処理Bを実行する(S18)。そして、SOC初期値決定処理の中で、SOC推定値の信頼性判定が行われる。本明細書では、電流積算SOC値に関して、信頼性判定後のリセットされた電流積算SOC値のことを、特にSOC初期値と呼ぶ。なお、S16の処理がYESの場合、本発明における推定領域は、第2急峻変化領域EH2となる。   Thereafter, the CPU 35 reads the current integrated SOC value stored in the memory 36 (S15), and determines whether or not the current integrated SOC value is in the second steep change region EH2 (S16). If the CPU 35 determines that the current integrated SOC value is in the second steep change region EH2 (S16: YES), the CPU 35 executes an SOC initial value determination process A described later (S17), and the current integrated SOC value is the second steep change region EH2. When it determines with it not being in change area EH2 (S16: NO), the SOC initial value determination process B mentioned later is performed (S18). Then, the reliability of the estimated SOC value is determined in the SOC initial value determination process. In this specification, regarding the current integrated SOC value, the reset current integrated SOC value after reliability determination is particularly referred to as an SOC initial value. When the process of S16 is YES, the estimated area in the present invention is the second steep change area EH2.

(2−1)SOC初期値決定処理A(電流積算SOC値が第2急峻変化領域にある場合)
SOC初期値決定処理Aは、図4において、CPU35が、電流積算SOC値が第2急峻変化領域にあると判定した場合(S16:YES)、S13で検出した代表セルDの端子電圧値に従って推定したSOC値(電圧測定SOC値)が属する変化領域に応じて、電流積算SOC値の信頼性を判定する処理である。
(2-1) SOC initial value determination processing A (when the current integrated SOC value is in the second steep change region)
In FIG. 4, the SOC initial value determination process A is estimated according to the terminal voltage value of the representative cell D detected in S <b> 13 when the CPU 35 determines that the current integrated SOC value is in the second steep change region (S <b> 16: YES). This is a process for determining the reliability of the current integrated SOC value according to the change region to which the SOC value (voltage measurement SOC value) belongs.

図5に示すように、まず、CPU35は、電圧測定SOC値が第2急峻変化領域にあるか否かを判定する(S21)。CPU35は、電圧測定SOC値が第2急峻変化領域にあると判定した場合(S21:YES)、電流積算SOC値と電圧測定SOC値とは同じ領域にあり、かつ、SOCの値の範囲が約65%〜約68%と狭い第2急峻変化領域EH2にあるため、電流積算SOC値が高信頼性と判定する(S22)。そして、OCVの値が第2急峻変化領域(EH2)にあることから、CPU35は、電圧測定SOC値を新たなSOC初期値とする(S23)。   As shown in FIG. 5, first, the CPU 35 determines whether or not the voltage measurement SOC value is in the second steep change region (S21). If the CPU 35 determines that the voltage measurement SOC value is in the second steep change region (S21: YES), the current integrated SOC value and the voltage measurement SOC value are in the same region, and the range of the SOC value is about Since it is in the second steep change region EH2 that is as narrow as 65% to about 68%, the current integrated SOC value is determined to be highly reliable (S22). Since the OCV value is in the second steep change region (EH2), the CPU 35 sets the voltage measurement SOC value as a new SOC initial value (S23).

この場合、信頼性判定が高信頼性であるため、電流積算SOC値を新たなSOC初期値としてもよいが、OCVが急峻変化領域にある場合は、電圧測定SOC値を新たなSOC初期値とする(S23)方が好ましい。なお、S21の処理は、領域判断処理の一例であり、S22の処理は、信頼性判定処理の一例である。また、S21の処理がYESの場合、本発明における測定領域は、第2急峻変化領域となる。   In this case, since the reliability determination is highly reliable, the current integrated SOC value may be set as a new SOC initial value. However, when the OCV is in the steep change region, the voltage measurement SOC value is set as the new SOC initial value. (S23) is preferable. Note that the process of S21 is an example of an area determination process, and the process of S22 is an example of a reliability determination process. When the process of S21 is YES, the measurement area in the present invention is the second steep change area.

一方、CPU35は、電圧測定SOC値が第2急峻変化領域にないと判定した場合(S21:NO)、CPU35は、電圧測定SOC値が第1微小変化領域EL1または第2微小変化領域EL2にあるか否かを判定する(S24)。CPU35は、電圧測定SOC値が第1微小変化領域EL1または第2微小変化領域EL2にあると判定した場合(S24:YES)、電流積算SOC値と電圧測定SOC値が異なる領域にあるため、電流積算SOC値を低信頼性であると判定する(S110)。   On the other hand, when the CPU 35 determines that the voltage measurement SOC value is not in the second steep change region (S21: NO), the CPU 35 has the voltage measurement SOC value in the first minute change region EL1 or the second minute change region EL2. It is determined whether or not (S24). When the CPU 35 determines that the voltage measurement SOC value is in the first minute change region EL1 or the second minute change region EL2 (S24: YES), the current integrated SOC value and the voltage measurement SOC value are in different regions. The integrated SOC value is determined to be low reliability (S110).

なお、S24の処理は、領域判断処理の一例であり、S110の処理は、信頼性判定処理の一例である。しかし、電圧測定SOC値は微小変化領域ELにあるため、CPU35はSOCの値を正確に推定することができない。   The process of S24 is an example of a region determination process, and the process of S110 is an example of a reliability determination process. However, since the voltage measurement SOC value is in the minute change region EL, the CPU 35 cannot accurately estimate the SOC value.

そこで、CPU35は、SOCの値を正確に推定するために、例えば組電池2を満充電にして、SOCの値を100%とする(S120)。そして、CPU35は、SOC初期値を100%とする(S130)ことで、正確なSOCの値をSOC初期値として設定する。具体的には、組電池2を充電し、開放電圧値が所定の満充電に相当する値になると電流積算SOC値を100%として設定する。さらに、その後、後述する電流計測補正処理を実行する(S400)。   Therefore, in order to accurately estimate the SOC value, for example, the CPU 35 fully charges the assembled battery 2 and sets the SOC value to 100% (S120). Then, the CPU 35 sets the accurate SOC value as the SOC initial value by setting the SOC initial value to 100% (S130). Specifically, the assembled battery 2 is charged, and when the open circuit voltage value becomes a value corresponding to a predetermined full charge, the current integrated SOC value is set as 100%. Further, a current measurement correction process to be described later is executed (S400).

CPU35は、電圧測定SOC値が第1微小変化領域EL1または第2微小変化領域EL2にないと判定した場合(S24:NO)、即ち、電圧測定SOC値が第1急峻変化領域EH1または第3急峻変化領域EH3にあると判定した場合、電流積算SOC値と電圧測定SOC値とは異なる領域にあるものの、電圧測定SOC値は、CPU35がSOCの値を正確に推定することができる急峻変化領域EHにあるため、信頼性を判定せず(S160)、S13で検出した端子電圧値に従ってSOCを推定する(S170)。   When the CPU 35 determines that the voltage measurement SOC value is not in the first minute change region EL1 or the second minute change region EL2 (S24: NO), that is, the voltage measurement SOC value is the first steep change region EH1 or the third steep change region EL2. If it is determined that the current value is in the change region EH3, the current integrated SOC value and the voltage measurement SOC value are in different regions, but the voltage measurement SOC value is a steep change region EH in which the CPU 35 can accurately estimate the SOC value. Therefore, the reliability is not determined (S160), and the SOC is estimated according to the terminal voltage value detected in S13 (S170).

そして、CPU35は、電圧測定SOC値を新たなSOC初期値とし(S180)、SOC初期値決定処理Aを終了する。なお、S160では信頼性を判定しないとしたが、信頼性を判定するようにしてもよい。この場合、一旦、低信頼性と判定されるが、その直後に電流積算SOC値は電圧測定SOC値に変更(リセット)される。また、S180およびS130の処理は、変更処理の一例である。   Then, the CPU 35 sets the voltage measurement SOC value as a new SOC initial value (S180), and ends the SOC initial value determination processing A. Although the reliability is not determined in S160, the reliability may be determined. In this case, although it is determined that the reliability is once low, the current integrated SOC value is changed (reset) to the voltage measurement SOC value immediately after that. Further, the processes of S180 and S130 are an example of a change process.

(2−2)電流計測補正処理
電流計測補正処理は、所定の実行条件が満たされた際にCPU35が電流センサの電流計測値を補正する処理である。所定の実行条件とは、時間的に連続している期間内で、電流積算SOC値のリセットを複数回実施している際、複数回の信頼性判定処理において、電流積算SOC値と電圧測定SOC値とが異なる領域にあり、かつ、電流積算SOC値と電圧測定SOC値の大小関係が同一であることが複数回連続しているとCPU35が判定することである。なお、「複数回連続」は、例えば連続3回など、適宜設定することができる。
(2-2) Current Measurement Correction Process The current measurement correction process is a process in which the CPU 35 corrects the current measurement value of the current sensor when a predetermined execution condition is satisfied. The predetermined execution condition is that when the reset of the current integrated SOC value is performed a plurality of times within a time continuous period, the current integrated SOC value and the voltage measurement SOC are determined in a plurality of reliability determination processes. The CPU 35 determines that the current integration SOC value and the voltage measurement SOC value are the same in a plurality of times that the values are in different regions and the magnitude relationship between the voltage measurement SOC value is the same. Note that “continuous multiple times” can be set as appropriate, for example, three consecutive times.

電流積算SOC値と電圧測定SOC値とが異なる領域にあり、かつ、電流積算SOC値と電圧測定SOC値の大小関係が同一であるか否かの判定は、種々の方法を採用することができるが、本実施形態では、簡便な方法で実施している。   Various methods can be used to determine whether the current integrated SOC value and the voltage measured SOC value are in different regions and whether the magnitude relationship between the current integrated SOC value and the voltage measured SOC value is the same. However, in this embodiment, it is implemented by a simple method.

具体的には、図4〜図6に示すように、まず、電流積算SOC値が第2急峻変化領域にあることを確認し(図4のS16)、次に電圧測定SOC値が微小変化領域にあることを確認する(図5のS24)。その後、SOCのリセット(図5のS130)を挟んで、電圧測定SOC値が前回の信頼性判定時と同じ微小変化領域にあるか否か(図6のS34)ということで判定している。   Specifically, as shown in FIGS. 4 to 6, first, it is confirmed that the current integrated SOC value is in the second steep change region (S16 in FIG. 4), and then the voltage measurement SOC value is in the minute change region. (S24 in FIG. 5). Thereafter, it is determined whether or not the voltage measurement SOC value is in the same minute change region as in the previous reliability determination (S34 in FIG. 6) with the reset of the SOC (S130 in FIG. 5) interposed therebetween.

図5等で示す通り、CPU35は、SOCの値を正確に推定するために、電流積算SOC値が低信頼性であると判定された場合、例えば組電池2を満充電にして、SOCの値を100%とし、電流積算SOC値をリセットしている。   As shown in FIG. 5 and the like, when the CPU 35 determines that the current integrated SOC value is low reliability in order to accurately estimate the SOC value, for example, the battery pack 2 is fully charged and the SOC value is determined. Is 100%, and the current integrated SOC value is reset.

しかし、CPU35は、電流積算SOC値をリセットしているにも関わらず、信頼性判定処理において、電流積算SOC値と電圧測定SOC値とが異なる領域にあり、かつ、電流積算SOC値と電圧測定SOC値の大小関係が同一であることが複数回連続することから、電流計測の計測誤差が大きくなっていると判断できる。即ち、CPU35は、電流センサ33の計測値が実際値に対してずれが生じていると判断できる。   However, in spite of resetting the current integrated SOC value, the CPU 35 is in a region where the current integrated SOC value and the voltage measurement SOC value are different from each other in the reliability determination process, and the current integrated SOC value and the voltage measurement. It can be determined that the measurement error of the current measurement has increased because the SOC value has the same magnitude relationship for a plurality of times. That is, the CPU 35 can determine that the measured value of the current sensor 33 is deviated from the actual value.

そこで、図6に示すように、CPU35は、上記実行条件を満たしたと判定した場合(S34:YES)、電流センサ33が、実際に流れる充放電電流よりも大きい値または小さい値で電流値Iを検出していると判定し、電流センサ33が検出した電流値Iを補正する(S35)。   Therefore, as shown in FIG. 6, when the CPU 35 determines that the execution condition is satisfied (S34: YES), the current sensor 33 sets the current value I to a value larger or smaller than the charge / discharge current that actually flows. It is determined that the current is detected, and the current value I detected by the current sensor 33 is corrected (S35).

例えば、電流積算SOC値をリセット後、放電時において、電流積算SOC値が第2急峻変化領域EH2にあり、電圧測定SOC値が第1微小変化領域EL1にある(即ち、電流積算SOC値よりも小さな値)と判定することが、複数回のリセットを挟んで継続した場合、CPU35は以下の処理を行う。CPU35は、電流センサ33が検出した電流値I(放電電流値I)は実際に流れる放電電流値よりも小さい値であると判定し、電流センサ33が検出する放電電流が大きくなるように補正する。なお、一つの電流センサで放電側、充電側の電流を計測する場合は、電流センサの零点を調整する等の補正を行う。   For example, after resetting the current integrated SOC value, at the time of discharging, the current integrated SOC value is in the second steep change region EH2, and the voltage measurement SOC value is in the first minute change region EL1 (that is, more than the current integrated SOC value). If the determination of (small value) continues with a plurality of resets, the CPU 35 performs the following processing. The CPU 35 determines that the current value I (discharge current value I) detected by the current sensor 33 is smaller than the actually flowing discharge current value, and corrects the discharge current detected by the current sensor 33 to be large. . When the current on the discharge side and the charge side is measured with one current sensor, correction such as adjusting the zero point of the current sensor is performed.

そして、CPU35は、電流計測補正処理を終了する。なお、S35の処理は、補正処理の一例である。   Then, the CPU 35 ends the current measurement correction process. The process of S35 is an example of a correction process.

CPU35は、上記実行条件が満たされていないと判定した場合は(S34:NO)、そのまま電流計測補正処理を終了する。   When determining that the execution condition is not satisfied (S34: NO), the CPU 35 ends the current measurement correction process as it is.

(2−3)SOC初期値決定処理B(電流積算SOC値が第2急峻変化領域にない場合)
SOC初期値決定処理Bは、CPU35が、電流積算SOC値が第2急峻変化領域EH2にないと判定した場合(S15:NO)、電流積算SOC値と電圧測定SOC値とが属する変化領域に応じて、SOC初期値を決定する処理である。具体的には、図7等に示すように、CPU35は、まず、電流積算SOC値がどの変化領域にあるかを判定し(S41、S50)、その後、図8〜図10に示すように電圧測定SOC値がどの変化領域にあるかを判定する(S42、S45、S51、S54、S59)。
(2-3) SOC initial value determination process B (when the current integrated SOC value is not in the second steep change region)
In the SOC initial value determination process B, when the CPU 35 determines that the current integrated SOC value is not in the second steep change region EH2 (S15: NO), the SOC initial value determination processing B is performed according to the change region to which the current integrated SOC value and the voltage measurement SOC value belong. Thus, the SOC initial value is determined. Specifically, as shown in FIG. 7 and the like, the CPU 35 first determines in which change region the current integrated SOC value is present (S41, S50), and then the voltage as shown in FIGS. It is determined which change region the measured SOC value is in (S42, S45, S51, S54, S59).

CPU35は、まず、電流積算SOC値が第1微小変化領域EL1にあるか否かを判定する(S41)。   First, the CPU 35 determines whether or not the current integrated SOC value is in the first minute change region EL1 (S41).

(i)電流積算SOC値が第1微小変化領域EL1にある場合
CPU35は、電流積算SOC値が第1微小変化領域EL1にあると判定した場合(S41:YES)、図8に示すSOC初期値決定処理B1を実行する(S500)。このSOC初期値決定処理B1では、CPU35は、電圧測定SOC値が第1微小変化領域EL1にあるか否かを判定する(S42)。
(I) When the current integrated SOC value is in the first minute change region EL1 When the CPU 35 determines that the current integrated SOC value is in the first minute change region EL1 (S41: YES), the SOC initial value shown in FIG. The determination process B1 is executed (S500). In this SOC initial value determination process B1, the CPU 35 determines whether or not the voltage measurement SOC value is in the first minute change region EL1 (S42).

CPU35が電圧測定SOC値が第1微小変化領域EL1にあると判定した場合(S42:YES)、電流積算SOC値と電圧測定SOC値とは同じ第1微小変化領域EL1にある。しかし、第1微小変化領域EL1は、SOCの値の取り得る範囲が約30%〜約65%と極めて広く、電流積算SOC値と電圧測定SOC値とは、近しいSOCの値となっている可能性もある一方で、全く異なるSOCの値となっている可能性もある。   When the CPU 35 determines that the voltage measurement SOC value is in the first minute change region EL1 (S42: YES), the current integrated SOC value and the voltage measurement SOC value are in the same first minute change region EL1. However, the first minute change region EL1 has a very wide SOC value range of about 30% to about 65%, and the current integrated SOC value and the voltage measurement SOC value can be close to the SOC value. On the other hand, there may be a completely different SOC value.

このため、CPU35は、電流積算SOC値の信頼性を判定せず(S210)、S5で算出した電流積算SOC値を新たなSOC初期値にし(S220)、SOC初期値決定処理B1を終了する。そして、CPU35は、SOC推定値の信頼性判定処理を終了する。   Therefore, the CPU 35 does not determine the reliability of the current integrated SOC value (S210), sets the current integrated SOC value calculated in S5 to a new SOC initial value (S220), and ends the SOC initial value determination process B1. Then, the CPU 35 ends the SOC estimation value reliability determination process.

CPU35は、電圧測定SOC値が第1微小変化領域EL1にないと判定した場合(S42:NO)、電圧測定SOC値が第2微小変化領域EL2にあるか否かを判定する(S45)。CPU35は、電圧測定SOC値が第2微小変化領域EL2にあると判定した場合(S45:YES)、電流積算SOC値と電圧測定SOC値とは異なる変化領域にあり、かつ、電圧測定SOC値は第2微小変化領域EL2にあるため、電流積算SOC値を低信頼性であると判定する(S110)。しかし、電圧測定SOC値は微小変化領域ELにあるため、CPU35はSOCの値を正確に推定することができない。   When determining that the voltage measurement SOC value is not in the first minute change region EL1 (S42: NO), the CPU 35 determines whether the voltage measurement SOC value is in the second minute change region EL2 (S45). If the CPU 35 determines that the voltage measurement SOC value is in the second minute change region EL2 (S45: YES), the current integrated SOC value and the voltage measurement SOC value are in different change regions, and the voltage measurement SOC value is Since it is in the second minute change region EL2, the current integrated SOC value is determined to be low reliability (S110). However, since the voltage measurement SOC value is in the minute change region EL, the CPU 35 cannot accurately estimate the SOC value.

そこで、CPU35は、SOCの値を正確に推定するために、例えば組電池2を満充電にして、SOCの値を100%とする(S120)。そして、CPU35は、SOC初期値を100%とする(S130)ことで、正確なSOCの値をSOC初期値として設定する。なお、CPU35は、SOCの値を正確に推定できればよく、例えば組電池2を完全放電して、SOCの値を0%とする。そして、CPU35は、SOC初期値を0%とすることで、正確なSOCの値をSOC初期値として設定してもよい。   Therefore, in order to accurately estimate the SOC value, for example, the CPU 35 fully charges the assembled battery 2 and sets the SOC value to 100% (S120). Then, the CPU 35 sets the accurate SOC value as the SOC initial value by setting the SOC initial value to 100% (S130). Note that the CPU 35 only needs to be able to accurately estimate the SOC value. For example, the assembled battery 2 is completely discharged to set the SOC value to 0%. Then, the CPU 35 may set an accurate SOC value as the SOC initial value by setting the SOC initial value to 0%.

そして、CPU35は、前述した電流計測補正処理を実行し(S400)、SOC初期値決定処理B1を終了する。そして、CPU35は、SOC推定値の信頼性判定処理を終了する。   Then, the CPU 35 executes the above-described current measurement correction process (S400), and ends the SOC initial value determination process B1. Then, the CPU 35 ends the SOC estimation value reliability determination process.

一方、CPU35は、電圧測定SOC値が第2微小変化領域EL2にないと判定した場合(S45:NO)、即ち、電圧測定SOC値が急峻変化領域EHにあると判定した場合、電流積算SOC値と電圧測定SOC値とは異なる領域にあるものの、電圧測定SOC値は、CPU35がSOCの値を正確に推定することができる急峻変化領域EHにあるため、信頼性を判定しない(S160)。   On the other hand, when the CPU 35 determines that the voltage measurement SOC value is not in the second minute change region EL2 (S45: NO), that is, when it is determined that the voltage measurement SOC value is in the steep change region EH, the current integrated SOC value However, since the voltage measurement SOC value is in the steep change region EH in which the CPU 35 can accurately estimate the SOC value, the reliability is not determined (S160).

そして、CPU35は、S13で検出した端子電圧値に従ってSOCを推定し(S170)、電圧測定SOC値を新たなSOC初期値にし(S180)、SOC初期値決定処理B1を終了する。そして、CPU35は、SOC推定値の信頼性判定処理を終了する。なお、S160では信頼性を判定しないとしたが、信頼性を判定するようにしてもよい。この場合、一旦、低信頼性と判定されるが、その直後に電流積算SOC値は電圧測定SOC値に変更(リセット)される。   Then, the CPU 35 estimates the SOC according to the terminal voltage value detected in S13 (S170), sets the voltage measurement SOC value to a new SOC initial value (S180), and ends the SOC initial value determination process B1. Then, the CPU 35 ends the SOC estimation value reliability determination process. Although the reliability is not determined in S160, the reliability may be determined. In this case, although it is determined that the reliability is once low, the current integrated SOC value is changed (reset) to the voltage measurement SOC value immediately after that.

(ii)電流積算SOC値が第2微小変化領域EL2にある場合
CPU35は、電流積算SOC値が第1微小変化領域EL1にないと判定した場合(S41:NO)、電流積算SOC値が第2微小変化領域EL2にあるか否かを判定する(S50)。CPU35は、電流積算SOC値が第2微小変化領域EL2にあると判定した場合(S50:YES)、図9に示すSOC初期値決定処理B2を実行する(S600)。このSOC初期値決定処理B2では、CPU35は、電圧測定SOC値が第2微小変化領域EL2にあるか否かを判定する(S51)。
(Ii) When the current integrated SOC value is in the second minute change region EL2 When the CPU 35 determines that the current integrated SOC value is not in the first minute change region EL1 (S41: NO), the current integrated SOC value is second. It is determined whether or not it is in the minute change region EL2 (S50). When determining that the current integrated SOC value is in the second minute change region EL2 (S50: YES), the CPU 35 executes the SOC initial value determination process B2 shown in FIG. 9 (S600). In this SOC initial value determination process B2, the CPU 35 determines whether or not the voltage measurement SOC value is in the second minute change region EL2 (S51).

CPU35は、電圧測定SOC値が第2微小変化領域EL2にあると判定した場合(S51:YES)、電流積算SOC値と電圧測定SOC値とは同じ第2微小変化領域EL2にある。しかし、第2微小変化領域EL2は、SOCの値の取り得る範囲が約68%〜約94%と極めて広く、電流積算SOC値と電圧測定SOC値とは、近しいSOCの値となっている可能性もある一方で、全く異なるSOCの値となっている可能性もある。   When the CPU 35 determines that the voltage measurement SOC value is in the second minute change region EL2 (S51: YES), the current integrated SOC value and the voltage measurement SOC value are in the same second minute change region EL2. However, the second minute change region EL2 has an extremely wide SOC value range of about 68% to about 94%, and the current integrated SOC value and the voltage measurement SOC value can be close to the SOC value. On the other hand, there may be a completely different SOC value.

このため、CPU35は、電流積算SOC値の信頼性を判定せず(S210)、S5で算出した電流積算SOC値を新たなSOC初期値にし(S220)、SOC初期値決定処理B2を終了する。そして、CPU35は、SOC推定値の信頼性判定処理を終了する。   Therefore, the CPU 35 does not determine the reliability of the current integrated SOC value (S210), sets the current integrated SOC value calculated in S5 to a new SOC initial value (S220), and ends the SOC initial value determination process B2. Then, the CPU 35 ends the SOC estimation value reliability determination process.

CPU35は、電圧測定SOC値が第2微小変化領域EL2にないと判定した場合(S51:NO)、電圧測定SOC値が第1微小変化領域EL1にあるか否かを判定する(S54)。CPU35は、電圧測定SOC値が第1微小変化領域EL1にあると判定した場合(S54:YES)、電流積算SOC値と電圧測定SOC値とは異なる変化領域にあり、かつ、電圧測定SOC値は第1微小変化領域EL1にあるため、電流積算SOC値を低信頼性であると判定する(S110)。しかし、電圧測定SOC値は微小変化領域ELにあるため、CPU35はSOCの値を正確に推定することができない。   When determining that the voltage measurement SOC value is not in the second minute change region EL2 (S51: NO), the CPU 35 determines whether the voltage measurement SOC value is in the first minute change region EL1 (S54). When the CPU 35 determines that the voltage measurement SOC value is in the first minute change region EL1 (S54: YES), the current integrated SOC value and the voltage measurement SOC value are in different change regions, and the voltage measurement SOC value is Since it is in the first minute change region EL1, the current integrated SOC value is determined to be low reliability (S110). However, since the voltage measurement SOC value is in the minute change region EL, the CPU 35 cannot accurately estimate the SOC value.

そこで、CPU35は、SOCの値を正確に推定するために、例えば組電池2を満充電にして、SOCの値を100%とする(S120)。そして、CPU35は、SOC初期値を100%とする(S130)ことで、正確なSOCの値をSOC初期値として設定する。なお、CPU35は、SOCの値を正確に推定できればよく、例えば組電池2を完全放電して、SOCの値を0%とする。そして、CPU35は、SOC初期値を0%とすることで、正確なSOCの値をSOC初期値として設定してもよい。   Therefore, in order to accurately estimate the SOC value, for example, the CPU 35 fully charges the assembled battery 2 and sets the SOC value to 100% (S120). Then, the CPU 35 sets the accurate SOC value as the SOC initial value by setting the SOC initial value to 100% (S130). Note that the CPU 35 only needs to be able to accurately estimate the SOC value. For example, the assembled battery 2 is completely discharged to set the SOC value to 0%. Then, the CPU 35 may set an accurate SOC value as the SOC initial value by setting the SOC initial value to 0%.

そして、CPU35は、前述した電流計測補正処理を実行し(S400)、SOC初期値決定処理B2を終了する。そして、CPU35は、SOC推定値の信頼性判定処理を終了する。   Then, the CPU 35 executes the above-described current measurement correction process (S400), and ends the SOC initial value determination process B2. Then, the CPU 35 ends the SOC estimation value reliability determination process.

一方、CPU35は、電圧測定SOC値が第1微小変化領域EL1にないと判定した場合(S54:NO)、即ち、電圧測定SOC値が急峻変化領域EHにあると判定した場合、電流積算SOC値と電圧測定SOC値とは異なる領域にあるものの、電圧測定SOC値は、CPU35がSOCの値を正確に推定することができる急峻変化領域EHにあるため、信頼性を判定しない(S160)。   On the other hand, if the CPU 35 determines that the voltage measurement SOC value is not in the first minute change region EL1 (S54: NO), that is, if it is determined that the voltage measurement SOC value is in the steep change region EH, the current integrated SOC value However, since the voltage measurement SOC value is in the steep change region EH in which the CPU 35 can accurately estimate the SOC value, the reliability is not determined (S160).

そして、CPU35は、S13で検出した端子電圧値に従ってSOCを推定し(S170)、電圧測定SOC値を新たなSOC初期値にし(S180)、SOC初期値決定処理B2を終了する。そして、CPU35は、SOC推定値の信頼性判定処理を終了する。なお、S160では信頼性を判定しないとしたが、信頼性を判定するようにしてもよい。この場合、一旦、低信頼性と判定されるが、その直後に電流積算SOC値は電圧測定SOC値に変更(リセット)される。   Then, the CPU 35 estimates the SOC according to the terminal voltage value detected in S13 (S170), sets the voltage measurement SOC value to a new SOC initial value (S180), and ends the SOC initial value determination process B2. Then, the CPU 35 ends the SOC estimation value reliability determination process. Although the reliability is not determined in S160, the reliability may be determined. In this case, although it is determined that the reliability is once low, the current integrated SOC value is changed (reset) to the voltage measurement SOC value immediately after that.

(iii)電流積算SOC値が第1急峻変化領域EH1または第3急峻変化領域EH3にある場合
CPU35は、電流積算SOC値が第2微小変化領域EL2にないと判定した場合(S50:NO)、即ち、電流積算SOC値が第1急峻変化領域EH1または第3急峻変化領域EH3にあると判定した場合、図10に示すSOC初期値決定処理B3を実行する(S700)。このSOC初期値決定処理B3では、CPU35は、電圧測定SOC値が第1微小変化領域EL1または第2微小変化領域EL2にあるか否かを判定する(S59)。
(Iii) When the current integrated SOC value is in the first steep change region EH1 or the third steep change region EH3 When the CPU 35 determines that the current integrated SOC value is not in the second minute change region EL2 (S50: NO), That is, when it is determined that the current integrated SOC value is in the first steep change region EH1 or the third steep change region EH3, the SOC initial value determination process B3 shown in FIG. 10 is executed (S700). In this SOC initial value determination process B3, the CPU 35 determines whether or not the voltage measurement SOC value is in the first minute change region EL1 or the second minute change region EL2 (S59).

CPU35は、電圧測定SOC値が第1微小変化領域EL1または第2微小変化領域EL2にあると判定した場合(S59:YES)、電流積算SOC値と電圧測定SOC値とは異なる変化領域にあり、かつ、電圧測定SOC値は第1微小変化領域EL1または第2微小変化領域EL2にあるため、電流積算SOC値を低信頼性であると判定する(S110)。しかし、電圧測定SOC値は微小変化領域ELにあるため、CPU35はSOCの値を正確に推定することができない。   When the CPU 35 determines that the voltage measurement SOC value is in the first minute change region EL1 or the second minute change region EL2 (S59: YES), the current integrated SOC value and the voltage measurement SOC value are in different change regions, In addition, since the voltage measurement SOC value is in the first minute change region EL1 or the second minute change region EL2, it is determined that the current integrated SOC value has low reliability (S110). However, since the voltage measurement SOC value is in the minute change region EL, the CPU 35 cannot accurately estimate the SOC value.

そこで、CPU35は、SOCの値を正確に推定するために、例えば組電池2を満充電にして、SOCの値を100%とする(S120)。そして、CPU35は、SOC初期値を100%とする(S130)ことで、正確なSOCの値をSOC初期値として設定する。なお、CPU35は、SOCの値を正確に推定できればよく、例えば組電池2を完全放電して、SOCの値を0%とする。そして、CPU35は、SOC初期値を0%とすることで、正確なSOCの値をSOC初期値として設定してもよい。   Therefore, in order to accurately estimate the SOC value, for example, the CPU 35 fully charges the assembled battery 2 and sets the SOC value to 100% (S120). Then, the CPU 35 sets the accurate SOC value as the SOC initial value by setting the SOC initial value to 100% (S130). Note that the CPU 35 only needs to be able to accurately estimate the SOC value. For example, the assembled battery 2 is completely discharged to set the SOC value to 0%. Then, the CPU 35 may set an accurate SOC value as the SOC initial value by setting the SOC initial value to 0%.

そして、CPU35は、前述した電流計測補正処理を実行し(S400)、SOC初期値決定処理B3を終了する。そして、CPU35は、SOC推定値の信頼性判定処理を終了する。   Then, the CPU 35 executes the current measurement correction process described above (S400), and ends the SOC initial value determination process B3. Then, the CPU 35 ends the SOC estimation value reliability determination process.

一方、CPU35は、電圧測定SOC値が第1微小変化領域EL1または第2微小変化領域EL2にないと判定した場合(S59:NO)、即ち、電圧測定SOC値が第1急峻変化領域EH1、または第2急峻変化領域EH2、または第3急峻変化領域EH3にあると判定した場合、以下の処理を実行する。   On the other hand, if the CPU 35 determines that the voltage measurement SOC value is not in the first minute change region EL1 or the second minute change region EL2 (S59: NO), that is, the voltage measurement SOC value is the first steep change region EH1, or When it is determined that the second steep change region EH2 or the third steep change region EH3 is present, the following processing is executed.

電流積算SOC値と電圧測定SOC値とは異なる変化領域にあるものの、電圧測定SOC値は、CPU35がSOCの値を正確に推定することができる急峻変化領域EHにあるため、CPU35は、信頼性を判定せず(S160)、S13で検出した端子電圧値に従ってSOCを推定し(S170)、電圧測定SOC値を新たなSOC初期値にし(S180)、SOC初期値決定処理B3を終了する。そして、CPU35は、SOC推定値の信頼性判定処理を終了する。   Although the current integrated SOC value and the voltage measurement SOC value are in different change regions, the voltage measurement SOC value is in the steep change region EH in which the CPU 35 can accurately estimate the SOC value. (S160), the SOC is estimated according to the terminal voltage value detected in S13 (S170), the voltage measurement SOC value is set to a new SOC initial value (S180), and the SOC initial value determination process B3 is terminated. Then, the CPU 35 ends the SOC estimation value reliability determination process.

次に、電流積算に基づくSOCの推定値(電流積算SOC値)とOCVに基づくSOCの推定値(電圧測定SOC値)とが、急峻変化領域EHと微小変化領域ELのいずれに属するかを判定し、電流積算に基づくSOCの推定値の信頼性を判定することの効果について図2、図11で例を挙げて説明する。   Next, it is determined whether the estimated SOC value based on current integration (current integrated SOC value) and the estimated SOC value based on OCV (voltage measurement SOC value) belong to the steep change region EH or the minute change region EL. The effect of determining the reliability of the estimated SOC value based on the current integration will be described with reference to FIGS.

(ケース1)
図2に示すように、ある時点の代表セルDの電流積算SOC値が約65%であり(OCV−SOCカーブ上では第2急峻変化領域EH2の点T、S16:YES)、OCVの値が約3.33Vで、電圧測定SOC値が約67%で第2急峻変化領域EH2にある(点A)場合(S21:YES)をケース1とする。
(Case 1)
As shown in FIG. 2, the current integrated SOC value of the representative cell D at a certain point in time is about 65% (on the OCV-SOC curve, point T in the second steep change region EH2, S16: YES), and the OCV value is Case 1 is set when the voltage measurement SOC value is about 67% and is in the second steep change region EH2 (point A) (S21: YES) at about 3.33V.

ケース1では、電流積算SOC値と電圧測定SOC値とはどちらも同じ変化領域にあり、SOCの値の範囲が約63%〜約68%と狭い第2急峻変化領域EH2にあるため、CPU35は、電流積算SOC値を高信頼性であると判定する(S22)。   In case 1, the current integrated SOC value and the voltage measurement SOC value are both in the same change region, and the range of the SOC value is in the narrow second steep change region EH2 of about 63% to about 68%. The current integrated SOC value is determined to be highly reliable (S22).

ここで、CPU35は、OCVの値が急峻変化領域(EH2)にあることから、電圧測定SOC値を新たなSOC初期値とする(S23)。なお、電流積算SOC値と電圧測定SOC値とは同じ急峻変化領域にあり、誤差は最大でも5%しかないため、電流積算SOC値を新たなSOC初期値としてもよい。   Here, since the value of OCV is in the steep change region (EH2), the CPU 35 sets the voltage measurement SOC value as a new SOC initial value (S23). Since the current integrated SOC value and the voltage measurement SOC value are in the same steep change region and the error is only 5% at the maximum, the current integrated SOC value may be set as a new SOC initial value.

(ケース2)
また、図2に示すように、ある時点の代表セルDの電流積算SOC値が約65%であり(OCV−SOCカーブ上では第2急峻変化領域EH2の点T、S16:YES)、OCVの値が約3.27Vで、電圧測定SOC値が約24%で第1急峻変化領域EH1にある(点B)場合(S24:NO)をケース2とする。
(Case 2)
Further, as shown in FIG. 2, the current integrated SOC value of the representative cell D at a certain point in time is about 65% (on the OCV-SOC curve, point T in the second steep change region EH2, S16: YES), and the OCV Case 2 is a case where the value is about 3.27 V, the voltage measurement SOC value is about 24% and is in the first steep change region EH1 (point B) (S24: NO).

ケース2では、電流積算SOC値と電圧測定SOC値とは異なる変化領域にあり、電流積算SOC値と電圧測定SOC値との差は約41%ある。しかし、電圧測定SOC値は、CPU35がSOCの値を正確に推定することができる第1急峻変化領域EH1にあるため、CPU35は、電流積算SOC値の信頼性を判定しない(S160)。そしてCPU35は、電圧測定SOC値を新たなSOC初期値とする(S180)。   In Case 2, the current integrated SOC value and the voltage measured SOC value are in different change regions, and the difference between the current integrated SOC value and the voltage measured SOC value is about 41%. However, since the voltage measurement SOC value is in the first steep change region EH1 in which the CPU 35 can accurately estimate the SOC value, the CPU 35 does not determine the reliability of the current integrated SOC value (S160). Then, the CPU 35 sets the voltage measurement SOC value as a new SOC initial value (S180).

(ケース3)
また、図2に示すように、ある時点の代表セルDの電流積算SOC値が約65%であり(OCV−SOCカーブ上では第2急峻変化領域EH2の点T、S16:YES)、OCVの値が約3.34Vで、電圧測定SOC値が約68%〜約94%のいずれかの値で第2微小変化領域EL2にある(範囲C)場合(S24:YES)をケース3とする。
(Case 3)
Further, as shown in FIG. 2, the current integrated SOC value of the representative cell D at a certain point in time is about 65% (on the OCV-SOC curve, point T in the second steep change region EH2, S16: YES), and the OCV Case 3 is determined when the value is about 3.34 V and the voltage measurement SOC value is any value of about 68% to about 94% in the second minute change region EL2 (range C) (S24: YES).

ケース3では、電流積算SOC値と電圧測定SOC値とは異なる変化領域にあるため、CPU35は、電流積算SOC値を低信頼性であると判定する(S110)。しかし、電圧測定SOC値は約68%〜約94%のいずれかの値であるため、CPU35はSOCの値を正確に推定することができない。   In case 3, since the current integrated SOC value and the voltage measurement SOC value are in different change regions, the CPU 35 determines that the current integrated SOC value is low reliability (S110). However, since the voltage measurement SOC value is any one of about 68% to about 94%, the CPU 35 cannot accurately estimate the SOC value.

そこで、CPU35は、SOCの値を正確に推定するために、例えば組電池2を満充電にして、SOCの値を100%とする(S120)。そして、CPU35は、SOC初期値を100%とする(S130)ことで、正確なSOCの値をSOC初期値として設定する。   Therefore, in order to accurately estimate the SOC value, for example, the CPU 35 fully charges the assembled battery 2 and sets the SOC value to 100% (S120). Then, the CPU 35 sets the accurate SOC value as the SOC initial value by setting the SOC initial value to 100% (S130).

(ケース4)
また、図11に示すように、ある時点の代表セルDの電流積算SOC値が約45%であり(OCV−SOCカーブ上では第1微小変化領域EL1の点D、S41:YES)、OCVの値が約3.34Vで、電圧測定SOC値が約68%〜約94%のいずれかの値で第2微小変化領域EL2にある(範囲C)場合(S45:YES)をケース4とする。
(Case 4)
Further, as shown in FIG. 11, the current integrated SOC value of the representative cell D at a certain point in time is about 45% (on the OCV-SOC curve, point D of the first minute change region EL1, S41: YES), and the OCV Case 4 is determined when the value is about 3.34 V and the voltage measurement SOC value is any value between about 68% and about 94% in the second minute change region EL2 (range C) (S45: YES).

ケース4では、電流積算SOC値と電圧測定SOC値とは異なる変化領域にあるため、CPU35は、電流積算SOC値を低信頼性であると判定する(S110)。しかし、電圧測定SOC値は約68%〜約94%のいずれかの値であるため、CPU35はSOCの値を正確に推定することができない。   In case 4, since the current integrated SOC value and the voltage measurement SOC value are in different change regions, the CPU 35 determines that the current integrated SOC value is low reliability (S110). However, since the voltage measurement SOC value is any one of about 68% to about 94%, the CPU 35 cannot accurately estimate the SOC value.

そこで、CPU35は、SOCの値を正確に推定するために、例えば組電池2を満充電にして、SOCの値を100%とする(S120)。そして、CPU35は、SOC初期値を100%とする(S130)ことで、正確なSOCの値をSOC初期値として設定する。   Therefore, in order to accurately estimate the SOC value, for example, the CPU 35 fully charges the assembled battery 2 and sets the SOC value to 100% (S120). Then, the CPU 35 sets the accurate SOC value as the SOC initial value by setting the SOC initial value to 100% (S130).

(ケース5)
また、図11に示すように、ある時点の代表セルDの電流積算SOC値が約87%であり(OCV−SOCカーブ上では第2微小変化領域EL2の点E、S50:YES)、OCVの値が約3.34Vで、電圧測定SOC値が約68%〜約94%のいずれかの値で第2微小変化領域EL2にある(範囲C)場合(S51:YES)をケース5とする。
(Case 5)
Further, as shown in FIG. 11, the current integrated SOC value of the representative cell D at a certain point in time is about 87% (on the OCV-SOC curve, point E in the second minute change region EL2, S50: YES), and the OCV Case 5 is a case where the value is about 3.34 V and the voltage measurement SOC value is any value of about 68% to about 94% and is in the second minute change region EL2 (range C) (S51: YES).

ケース5では、電流積算SOC値と電圧測定SOC値とは同じ第2微小変化領域EL2にある。しかし、第2微小変化領域EL2は、SOCの値の取り得る範囲が約68%〜約94%と極めて広く、電流積算SOC値と電圧測定SOC値とは、同じ約87%となっている可能性もある一方で、全く異なるSOCの値となっている可能性もある。   In case 5, the current integrated SOC value and the voltage measurement SOC value are in the same second minute change region EL2. However, in the second minute change region EL2, the possible range of the SOC value is extremely wide, about 68% to about 94%, and the current integrated SOC value and the voltage measurement SOC value can be the same about 87%. On the other hand, there may be a completely different SOC value.

このため、CPU35は、電流積算SOC値の信頼性を判定せず(S210)、電流積算SOC値をそのまま新たなSOC初期値にする(S220)。   Therefore, the CPU 35 does not determine the reliability of the current integrated SOC value (S210), and sets the current integrated SOC value as it is as a new SOC initial value (S220).

(本実施形態の効果)
本実施形態では、電流積算に基づくSOCの推定値(電流積算SOC値)とOCVに基づくSOCの推定値(電圧測定SOC値)とが、急峻変化領域EHと微小変化領域ELのいずれに属するかを判定し、電流積算に基づくSOCの推定値の信頼性を判定する。これにより、電流積算による誤差をリセットができなくなるという不都合を抑制することができる。
(Effect of this embodiment)
In the present embodiment, whether the estimated SOC value based on current integration (current integrated SOC value) or the estimated SOC value based on OCV (voltage measurement SOC value) belongs to the steep change region EH or the minute change region EL. And the reliability of the estimated value of the SOC based on the current integration is determined. As a result, the inconvenience that the error due to current integration cannot be reset can be suppressed.

<他の実施形態>
本明細書で開示される技術は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような種々の態様も含まれる。
<Other embodiments>
The technology disclosed in the present specification is not limited to the embodiments described with reference to the above description and drawings, and includes, for example, the following various aspects.

上記実施形態では、制御部の一例として、1つのCPU35を有する制御ユニット31を例に挙げた。しかし、制御部は、これに限らず、複数のCPUを備える構成や、ASIC(Application Specific Integrated Circuit)、FPGA(Field−Programmable Gate Array)などのハード回路を備える構成や、ハード回路及びCPUの両方を備える構成でもよい。例えば上記領域判断処理、条件設定処理、推定処理の少なくとも2つを、別々のCPUやハード回路で実行する構成でもよい。   In the said embodiment, the control unit 31 which has one CPU35 was mentioned as an example as an example of a control part. However, the control unit is not limited thereto, and includes a configuration including a plurality of CPUs, a configuration including hardware circuits such as an application specific integrated circuit (ASIC) and a field-programmable gate array (FPGA), and both hardware circuits and CPUs. The structure provided with may be sufficient. For example, a configuration in which at least two of the area determination process, the condition setting process, and the estimation process are executed by separate CPUs and hardware circuits may be used.

上記実施形態では、SOC推定プログラムの一例として、RAMやROMを有するメモリ36に記憶されたものを例に挙げた。しかし、SOC推定プログラムは、これに限らず、ハードディスク装置、フラッシュメモリなどの不揮発性メモリや、CD−Rなどの記憶媒体などに記憶されたものでもよい。   In the above embodiment, an example of the SOC estimation program stored in the memory 36 having the RAM or ROM is taken as an example. However, the SOC estimation program is not limited to this, and may be a non-volatile memory such as a hard disk device or a flash memory, or a storage medium such as a CD-R.

上記実施形態では、蓄電素子として組電池を例に挙げた。しかしこれに限らず、蓄電素子は、単電池でも、複数のセルを直列接続されたものでも、並列接続されたものでもよく、セル数は適宜変更可能である。また、蓄電素子は、リン酸鉄系リチウムイオン電池に限らず、マンガン系リチウムイオン電池、鉛電池など他の二次電池でもよい。更に、蓄電素子は、二次電池に限らず、キャパシタでもよい。   In the above embodiment, an assembled battery is taken as an example of the power storage element. However, the present invention is not limited thereto, and the power storage element may be a single battery, a plurality of cells connected in series, or a parallel connection, and the number of cells can be changed as appropriate. The power storage element is not limited to an iron phosphate lithium ion battery, but may be another secondary battery such as a manganese lithium ion battery or a lead battery. Furthermore, the power storage element is not limited to a secondary battery, and may be a capacitor.

上記実施形態では、変動要素の一例として、充放電電流を例に挙げた。しかしこれに限らず、変動要素は、電池温度や電池の内部抵抗および内部抵抗の劣化率、充放電時間などでもよい。   In the said embodiment, charging / discharging electric current was mentioned as an example as an example of a variable element. However, the present invention is not limited to this, and the variable element may be the battery temperature, the internal resistance of the battery, the deterioration rate of the internal resistance, the charge / discharge time, or the like.

上記実施形態では、CPU35は、電流積算SOC値の信頼性判定は、高信頼性であるか低信頼性であるかを判定する構成であった。しかしこれに限らず、CPU35は、信頼性判定において度合いを加えて判定する構成でもよい。この構成では、CPU35は前回の信頼性判定処理と今回の信頼性判定処理の間の時間を計測している。前回信頼性判定処理S110で電流積算SOC値は低信頼性であると判定し、今回再度、信頼性判定処理S110で電流積算SOC値は低信頼性であると判定した場合、前回信頼性判定処理S110と今回の信頼性判定処理S110との間の時間を計測し、当該計測時間が長ければ長いほど、電流積算SOC値はより低信頼性であると判定する。電流計測の計測誤差が積み重なり、電流積算SOC値の誤差も前回に比べて増大していると考えられるためである。あるいは、また、CPU35は、過去の信頼性判定処理S110で電流積算SOC値は低信頼性であると判定したときの電流積算SOC値をメモリ36に記憶しておき、再度信頼性判定処理S110で電流積算SOC値は低信頼性であると判定したときの電流積算SOC値と比較し、両電流積算SOC値の差が大きければ大きいほど、電流積算SOC値はより低信頼性であると判定してもよい。   In the above embodiment, the CPU 35 is configured to determine whether the reliability determination of the current integrated SOC value is high reliability or low reliability. However, the present invention is not limited to this, and the CPU 35 may have a configuration in which a degree is determined in reliability determination. In this configuration, the CPU 35 measures the time between the previous reliability determination process and the current reliability determination process. If it is determined in the previous reliability determination process S110 that the current integrated SOC value is low reliability, and this time in the reliability determination process S110 again, it is determined that the current integrated SOC value is low reliability, the previous reliability determination process The time between S110 and the current reliability determination process S110 is measured, and the longer the measurement time is, the more the current integrated SOC value is determined to be lower reliability. This is because the measurement errors of the current measurement are accumulated and the error of the current integrated SOC value is considered to be increased compared to the previous time. Alternatively, the CPU 35 stores the current integrated SOC value in the memory 36 when the current integrated SOC value is determined to be low reliability in the past reliability determination process S110, and again in the reliability determination process S110. The current integrated SOC value is compared with the current integrated SOC value when it is determined that the current integrated SOC value is low. The larger the difference between the two current integrated SOC values, the more the current integrated SOC value is determined to be less reliable. May be.

上記実施形態では、CPU35は、電流積算SOC値が第2急峻変化領域EH2にあり、電圧測定SOC値が第2微小変化領域EL2にある場合(S24:YES)、電流積算SOC値を低信頼性であると判定する(S110)構成であった。しかしこれに限らず、CPU35は、電流積算SOC値と電圧測定SOC値との差を算出し、当該差が大きい程、電流積算SOC値が低信頼性であると判定する構成であってもよい。   In the above embodiment, when the current integrated SOC value is in the second steep change region EH2 and the voltage measurement SOC value is in the second minute change region EL2 (S24: YES), the CPU 35 determines the current integrated SOC value as low reliability. (S110). However, the present invention is not limited to this, and the CPU 35 may be configured to calculate the difference between the current integrated SOC value and the voltage measurement SOC value and determine that the current integrated SOC value is less reliable as the difference is larger. .

上記実施形態では、CPU35は、電流積算SOC値が第2急峻変化領域EH2にあると判定した場合は、SOC初期値決定処理Aを実行し、電流積算SOC値が第2急峻変化領域EH2にないと判定した場合は、SOC初期値決定処理Bを実行する構成であった。しかしこれに限らず、CPU35は、SOC初期値決定処理Aのみを実行する構成でもよい。   In the above embodiment, when the CPU 35 determines that the current integrated SOC value is in the second steep change region EH2, the CPU 35 executes the SOC initial value determination process A, and the current integrated SOC value is not in the second steep change region EH2. Is determined, the SOC initial value determination process B is executed. However, the present invention is not limited to this, and the CPU 35 may be configured to execute only the SOC initial value determination process A.

上記実施形態では、電流積算SOC値が低信頼性の判定となった場合、組電池を充電し、開放電圧値を測定することによって満充電の判断を行い、電流積算SOC値を100%としてリセットした。しかしこれに限らず、満充電のリセットとしては、開放電圧測定による方法の他に、定電圧充電中に充電電流が垂下していき所定値以下になったことを検出して、満充電の判断を行い、電流積算SOC値を100%としてリセットしてもよい。   In the above embodiment, when the current integrated SOC value is determined to be low reliability, the battery pack is charged and the full charge is determined by measuring the open-circuit voltage value, and the current integrated SOC value is reset to 100%. did. However, this is not the only case. In addition to the method based on open-circuit voltage measurement, full charge can be reset by detecting that the charging current has dropped during constant voltage charging and has fallen below the specified value. And the current integrated SOC value may be reset to 100%.

上記実施形態では、CPU35は、電流積算SOC値が低信頼性であると判定した場合、満充電にするなどして電流積算SOC値のリセットを行い、その後電流計測補正処理を実行する構成であった。しかしこれに限らず、CPU35は電流計測補正処理を行わない構成としてもよい。   In the above embodiment, when the CPU 35 determines that the current integrated SOC value is low reliability, the CPU 35 resets the current integrated SOC value by, for example, full charging, and then executes the current measurement correction process. It was. However, the present invention is not limited to this, and the CPU 35 may be configured not to perform the current measurement correction process.

1:電池パック 2:組電池 3:BMS 31:制御ユニット 33:電流センサ 34:電圧センサ 36:メモリ   1: battery pack 2: assembled battery 3: BMS 31: control unit 33: current sensor 34: voltage sensor 36: memory

Claims (10)

蓄電素子の充電状態に対する開放電圧の変化特性において、前記充電状態の単位変化量あたりの開放電圧の変化量である開放電圧変化率が相対的に高い高変化領域、および、前記開放電圧変化率が相対的に低い低変化領域を含む複数の充電状態の領域が存在する蓄電素子の電圧を検出する電圧検出部と、
制御部と、を備え、
前記制御部は、
前記充電状態と相関関係を有し、且つ、前記開放電圧とは異なる前記蓄電素子の変動要素の値を取得し、取得した前記変動要素の値に基づき、前記蓄電素子の充電状態を推定する充電状態推定処理と、
前記電圧検出部の検出結果に基づき、前記蓄電素子の開放電圧を測定する開放電圧測定処理と、
前記変動要素の値に基づく充電状態の推定値が属する領域である推定領域と、前記開放電圧の測定値に対応する充電状態の測定値が属する領域である測定領域とが、前記高変化領域で一致するか、一致しないかを判断する領域判断処理と、
前記推定領域と前記測定領域とが前記高変化領域で一致すると判断した場合、前記充電状態の推定値の信頼性が、一致しないと判断した場合に比べて高いと判定する信頼性判定処理と、を実行する構成を有する、充電状態信頼性判定装置。
In the change characteristics of the open circuit voltage with respect to the charge state of the storage element, a high change region in which the open circuit voltage change rate that is the change amount of the open voltage per unit change amount of the charge state is relatively high, and the open circuit voltage change rate is A voltage detection unit for detecting a voltage of a storage element in which a plurality of charged state regions including a relatively low low change region exist;
A control unit,
The controller is
Charging that has a correlation with the state of charge and that is different from the open-circuit voltage and that has a variable element value of the power storage element and estimates the charge state of the power storage element based on the acquired value of the variable element State estimation processing;
Based on the detection result of the voltage detector, an open-circuit voltage measurement process for measuring the open-circuit voltage of the storage element,
The estimation region, to which the estimated value of the charging state based on the value of the variable element belongs, and the measurement region to which the measured value of the charging state corresponding to the measurement value of the open circuit voltage belong to the high change region. Region determination processing for determining whether or not they match,
When it is determined that the estimated region and the measurement region match in the high change region, reliability determination processing that determines that the reliability of the estimated value of the state of charge is higher than when determined not to match, The charge state reliability determination apparatus which has the structure which performs.
請求項1に記載の充電状態信頼性判定装置であって、
前記制御部は、
前記領域判断処理で、前記推定領域と前記測定領域とが一致しないと判断した場合、
前記信頼性判定処理では、前記推定領域が前記測定領域から離れている程、前記充電状態の推定値の信頼性が低いと判定する、充電状態信頼性判定装置。
The state-of-charge reliability determination apparatus according to claim 1,
The controller is
If it is determined in the area determination process that the estimated area and the measurement area do not match,
In the reliability determination process, a state-of-charge reliability determination apparatus that determines that the reliability of the estimated value of the state of charge is lower as the estimated region is farther from the measurement region.
請求項1または2に記載の充電状態信頼性判定装置であって、
前記制御部は、
前記領域判断処理において前記推定領域と前記測定領域とが前記高変化領域で一致しないと判断したことを条件に、前記変動要素の値に基づく充電状態の推定値を、前記変化特性における前記開放電圧の測定値に対応する充電状態の測定値に変更する変更処理を実行する構成を有する、充電状態信頼性判定装置。
The state-of-charge reliability determination device according to claim 1 or 2,
The controller is
On the condition that the estimation area and the measurement area do not coincide with each other in the high change area in the area determination process, the estimated value of the charging state based on the value of the variable element is used as the open circuit voltage in the change characteristic. The charge state reliability determination apparatus which has the structure which performs the change process which changes to the measured value of the charge state corresponding to the measured value of.
請求項3に記載の充電状態信頼性判定装置であって、
前記制御部は、
前記領域判断処理で、前記推定領域と前記測定領域とが前記高変化領域で一致しないと判断した場合、
前記変更処理では、前記蓄電素子が満充電状態時に、前記充電状態の推定値を、前記開放電圧の測定値に対応する充電状態の測定値に変更する構成を有する、充電状態信頼性判定装置。
The state-of-charge reliability determination apparatus according to claim 3,
The controller is
In the area determination process, when it is determined that the estimated area and the measurement area do not match in the high change area,
In the change process, the state of charge reliability determination device has a configuration in which when the power storage element is in a fully charged state, the estimated value of the charged state is changed to a measured value of a charged state corresponding to the measured value of the open circuit voltage.
請求項3に記載の充電状態信頼性判定装置であって、
前記制御部は、
前記領域判断処理では、更に、前記推定領域が前記高変化領域であり、且つ、前記測定領域が前記低変化領域であるか、を判断し、
前記信頼性判定処理では、前記推定領域が前記高変化領域であり、且つ、前記測定領域が前記低変化領域であると判断した場合、前記変更処理の前回以前の実行時からの時間差が大きい程、前記充電状態の推定値の信頼性が低いと判定する、充電状態信頼性判定装置。
The state-of-charge reliability determination apparatus according to claim 3,
The controller is
In the area determination process, it is further determined whether the estimated area is the high change area and the measurement area is the low change area,
In the reliability determination process, when it is determined that the estimation area is the high change area and the measurement area is the low change area, the time difference from the previous execution of the change process is larger. A state-of-charge reliability determination apparatus that determines that the estimated value of the state of charge is low in reliability.
請求項5に記載の充電状態信頼性判定装置であって、
前記蓄電素子に流れる充放電電流を検出する電流検出部を備え、
前記制御部は、
前記充電状態推定処理では、前記電流検出部により検出される電流値を積算し、前記変動要素の値として、その積算値に基づき、前記蓄電素子の充電状態を推定し、
前記信頼性判定処理では、前記推定領域が前記高変化領域であり、且つ、前記測定領域が前記低変化領域であると判断した場合、前記変更処理の前回以前の実行時からの時間差、および、前記変更処理の前回以前の実行時からの前記積算値の少なくとも1つの変化量が大きい程、前記充電状態の推定値の信頼性が低いと判定する、充電状態信頼性判定装置。
The state-of-charge reliability determination device according to claim 5,
A current detection unit for detecting a charge / discharge current flowing in the power storage element;
The controller is
In the charging state estimation process, the current value detected by the current detection unit is integrated, and as the value of the variable element, the charging state of the power storage element is estimated based on the integrated value,
In the reliability determination process, when it is determined that the estimation area is the high change area and the measurement area is the low change area, a time difference from the previous execution of the change process, and A state-of-charge reliability determination apparatus that determines that the reliability of the estimated value of the state of charge is lower as at least one change amount of the integrated value from the previous execution time of the change process is larger.
請求項6に記載の充電状態信頼性判定装置であって、
前記制御部は、
前記領域判断処理では、更に、前記電流値の積算値に基づく充電状態の推定値が前記複数の高変化領域または前記複数の低変化領域のいずれか一つの値であり、前記開放電圧の測定値に対応する充電状態の測定値が前記充電状態の推定値とは異なる領域の値であるとき、前記充電状態の推定値と前記充電状態の測定値との大小関係が同一であることが複数回連続したか、を判定し、
前記変更処理が実行され、かつ、前記大小関係が同一であることが複数回連続したと判断した場合、前記電流値の積算値に基づく充電状態の推定値を、前記開放電圧の測定値に対応する充電状態の測定値に近付ける方向に前記電流値を補正する補正処理を実行する構成を有する、充電状態信頼性判定装置。
The state-of-charge reliability determination device according to claim 6,
The controller is
In the region determination process, the estimated value of the charging state based on the integrated value of the current value is any one of the plurality of high change regions or the plurality of low change regions, and the measured value of the open circuit voltage When the measured value of the state of charge corresponding to is a value in a region different from the estimated value of the state of charge, the magnitude relationship between the estimated value of the state of charge and the measured value of the state of charge is the same several times. Judge whether it was continuous,
When it is determined that the change process is performed and the magnitude relationship is the same for a plurality of times, the estimated state of charge based on the integrated value of the current value corresponds to the measured value of the open circuit voltage A state-of-charge reliability determination apparatus having a configuration for executing a correction process for correcting the current value in a direction approaching a measured value of a state of charge to be performed.
請求項1から7のいずれか一項に記載の充電状態信頼性判定装置であって、
前記制御部は、
前記領域判断処理では、更に、前記推定領域が前記低変化領域であり、且つ、前記測定領域が前記高変化領域であるか、を判断し、
前記信頼性判定処理では、前記推定領域が前記低変化領域であり、且つ、前記測定領域が前記高変化領域であると判断した場合、前記変動要素の値に基づく充電状態の推定値と、前記開放電圧の測定値に対応する充電状態の測定値との差が大きい程、前記充電状態の推定値の信頼性が低いと判定する、充電状態信頼性判定装置。
The state-of-charge reliability determination apparatus according to any one of claims 1 to 7,
The controller is
In the area determination process, it is further determined whether the estimated area is the low change area and the measurement area is the high change area,
In the reliability determination process, when it is determined that the estimation region is the low change region and the measurement region is the high change region, an estimated value of the charging state based on the value of the variable element, and The state-of-charge reliability determination apparatus that determines that the reliability of the estimated value of the state of charge is lower as the difference from the value of the state of charge corresponding to the measured value of the open circuit voltage is larger.
蓄電素子と、
請求項1から8のいずれか一項に記載の充電状態信頼性判定装置と、を備える蓄電装置。
A storage element;
A power storage device comprising: the state-of-charge reliability determination device according to any one of claims 1 to 8.
蓄電素子の充電状態に対する開放電圧の変化特性において、前記充電状態の単位変化量あたりの開放電圧の変化量である開放電圧変化率が相対的に高い高変化領域、および、前記開放電圧変化率が相対的に低い低変化領域を含む複数の充電状態の領域が存在する蓄電素子の充電状態信頼性判定方法であって、
前記充電状態と相関関係を有し、且つ、前記開放電圧とは異なる前記蓄電素子の変動要素の値を取得し、取得した前記変動要素の値に基づき、前記蓄電素子の充電状態を推定する充電状態推定工程と、
前記蓄電素子の開放電圧を測定する開放電圧測定工程と、
前記変動要素の値に基づく充電状態の推定値が属する領域である推定領域と、前記開放電圧の測定値に対応する充電状態の測定値が属する領域である測定領域とが、前記高変化領域で一致するか、一致しないかを判断する領域判断工程と、
前記推定領域と前記測定領域とが前記高変化領域で一致すると判断した場合、前記充電状態の推定値の信頼性が、一致しないと判断した場合に比べて高いと判定する信頼性判定工程と、を含む、充電状態信頼性判定方法。
In the change characteristics of the open circuit voltage with respect to the charge state of the storage element, a high change region in which the open circuit voltage change rate that is the change amount of the open voltage per unit change amount of the charge state is relatively high, and the open circuit voltage change rate is A method for determining a state of charge reliability of a power storage device including a plurality of regions of a state of charge including a relatively low low change region,
Charging that has a correlation with the state of charge and that is different from the open-circuit voltage and that has a variable element value of the power storage element and estimates the charge state of the power storage element based on the acquired value of the variable element A state estimation process;
An open-circuit voltage measuring step for measuring an open-circuit voltage of the storage element;
The estimation region, to which the estimated value of the charging state based on the value of the variable element belongs, and the measurement region to which the measured value of the charging state corresponding to the measurement value of the open circuit voltage belong to the high change region. An area determination step for determining whether or not they match,
When it is determined that the estimated region and the measurement region match in the high change region, a reliability determination step that determines that the reliability of the estimated value of the state of charge is higher than when determined not to match, A method for determining a state of charge reliability, including:
JP2017002522A 2013-08-19 2017-01-11 Charge state estimation device Active JP6477733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017002522A JP6477733B2 (en) 2013-08-19 2017-01-11 Charge state estimation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013169725A JP6075242B2 (en) 2013-08-19 2013-08-19 Charge state reliability determination device and charge state reliability determination method
JP2017002522A JP6477733B2 (en) 2013-08-19 2017-01-11 Charge state estimation device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013169725A Division JP6075242B2 (en) 2013-08-19 2013-08-19 Charge state reliability determination device and charge state reliability determination method

Publications (3)

Publication Number Publication Date
JP2017083474A true JP2017083474A (en) 2017-05-18
JP2017083474A5 JP2017083474A5 (en) 2017-06-29
JP6477733B2 JP6477733B2 (en) 2019-03-06

Family

ID=52631591

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013169725A Active JP6075242B2 (en) 2013-08-19 2013-08-19 Charge state reliability determination device and charge state reliability determination method
JP2017002522A Active JP6477733B2 (en) 2013-08-19 2017-01-11 Charge state estimation device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013169725A Active JP6075242B2 (en) 2013-08-19 2013-08-19 Charge state reliability determination device and charge state reliability determination method

Country Status (1)

Country Link
JP (2) JP6075242B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3650265A1 (en) * 2018-11-09 2020-05-13 Toyota Jidosha Kabushiki Kaisha Battery control unit
JP2020137308A (en) * 2019-02-22 2020-08-31 三菱電機株式会社 Charger and charging method
WO2022209343A1 (en) 2021-03-29 2022-10-06 パナソニックIpマネジメント株式会社 Remaining capacity notification device, remaining capacity notification method, and remaining capacity notification program
JP2022185439A (en) * 2021-06-02 2022-12-14 長瀬産業株式会社 Determination method, light-receiving device, and program
JP7423697B2 (en) 2021-07-23 2024-01-29 シーメンス アクチエンゲゼルシヤフト Method, device, and computer program product for calculating remaining capacity value of storage battery
US11946978B2 (en) 2021-07-23 2024-04-02 Siemens Aktiengesellschaft Method, apparatus and computer program product for estimating the service life of battery storage systems

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6634854B2 (en) * 2015-03-05 2020-01-22 株式会社Gsユアサ Storage element management device, storage element management method, storage element module, storage element management program, and moving object
US10101401B2 (en) 2015-03-05 2018-10-16 Gs Yuasa International Ltd. Energy storage device management apparatus, energy storage device management method, energy storage device module, energy storage device management program, and movable body
JP6489366B2 (en) * 2015-05-26 2019-03-27 株式会社Gsユアサ A battery pack monitoring device and battery pack capacity equalization method.
JP6713283B2 (en) * 2016-01-12 2020-06-24 本田技研工業株式会社 Power storage device, transportation device, and control method
JP6830318B2 (en) 2016-01-15 2021-02-17 株式会社Gsユアサ Power storage element management device, power storage element module, vehicle and power storage element management method
KR102559200B1 (en) 2016-10-05 2023-07-25 삼성전자주식회사 Apparatus, method, and system for managing battery
CN108051756A (en) * 2017-12-14 2018-05-18 株洲广锐电气科技有限公司 Evaluation method, system and the storage medium of accumulator SOC
WO2019239706A1 (en) * 2018-06-14 2019-12-19 株式会社Gsユアサ Communication device, information processing system, information processing method, and computer program
JP7275490B2 (en) * 2018-07-31 2023-05-18 株式会社Gsユアサ CAPACITY ESTIMATION SYSTEM, CAPACITY ESTIMATION METHOD, AND COMMUNICATION DEVICE
JP6822443B2 (en) * 2018-06-14 2021-01-27 株式会社Gsユアサ Communication devices, information processing systems, information processing methods and computer programs
CN112946496A (en) * 2019-06-24 2021-06-11 宁德时代新能源科技股份有限公司 Battery state of charge determining method, device, management system and storage medium
TWI715367B (en) * 2019-12-23 2021-01-01 台達電子工業股份有限公司 Battery controller and battery level measurement method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058114A (en) * 2004-08-19 2006-03-02 Toyota Motor Corp Control system, estimation system, residual-capacity estimating system for battery using the same, and residual-capacity estimation method
US20130006454A1 (en) * 2011-06-28 2013-01-03 Ford Global Technologies, Llc Nonlinear Adaptive Observation Approach to Battery State of Charge Estimation
JP2013134962A (en) * 2011-12-27 2013-07-08 Toyota Motor Corp Lithium ion secondary battery system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5261828B2 (en) * 2009-05-12 2013-08-14 本田技研工業株式会社 Battery state estimation device
JP5699870B2 (en) * 2011-09-07 2015-04-15 株式会社Gsユアサ Battery management device, battery pack, battery management program, and SOC estimation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058114A (en) * 2004-08-19 2006-03-02 Toyota Motor Corp Control system, estimation system, residual-capacity estimating system for battery using the same, and residual-capacity estimation method
US20130006454A1 (en) * 2011-06-28 2013-01-03 Ford Global Technologies, Llc Nonlinear Adaptive Observation Approach to Battery State of Charge Estimation
JP2013134962A (en) * 2011-12-27 2013-07-08 Toyota Motor Corp Lithium ion secondary battery system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3650265A1 (en) * 2018-11-09 2020-05-13 Toyota Jidosha Kabushiki Kaisha Battery control unit
CN111169323A (en) * 2018-11-09 2020-05-19 丰田自动车株式会社 Battery control device
CN111169323B (en) * 2018-11-09 2023-04-07 丰田自动车株式会社 Battery control device
JP2020137308A (en) * 2019-02-22 2020-08-31 三菱電機株式会社 Charger and charging method
JP7058620B2 (en) 2019-02-22 2022-04-22 三菱電機株式会社 Charging device and charging method
WO2022209343A1 (en) 2021-03-29 2022-10-06 パナソニックIpマネジメント株式会社 Remaining capacity notification device, remaining capacity notification method, and remaining capacity notification program
JP2022185439A (en) * 2021-06-02 2022-12-14 長瀬産業株式会社 Determination method, light-receiving device, and program
JP7423697B2 (en) 2021-07-23 2024-01-29 シーメンス アクチエンゲゼルシヤフト Method, device, and computer program product for calculating remaining capacity value of storage battery
US11946978B2 (en) 2021-07-23 2024-04-02 Siemens Aktiengesellschaft Method, apparatus and computer program product for estimating the service life of battery storage systems

Also Published As

Publication number Publication date
JP6075242B2 (en) 2017-02-08
JP6477733B2 (en) 2019-03-06
JP2015038437A (en) 2015-02-26

Similar Documents

Publication Publication Date Title
JP6477733B2 (en) Charge state estimation device
KR102066702B1 (en) Battery management apparatus and soc calibrating method using the same
JP6119402B2 (en) Internal resistance estimation device and internal resistance estimation method
US11124072B2 (en) Battery control device and electric motor vehicle system
JP5282789B2 (en) Battery capacity detection device for lithium ion secondary battery
JP5439126B2 (en) Status detector for power supply
US9438059B2 (en) Battery control apparatus and battery control method
US8965722B2 (en) Apparatus for calculating residual capacity of secondary battery
US10725111B2 (en) Battery state detection device, secondary battery system, program product, and battery state detection method
US10901039B2 (en) Open circuit voltage estimation device, condition estimation device, and method of estimating open circuit voltage
US10686229B2 (en) Battery state detection device, secondary battery system, program product, and battery state detection method
JP7072607B2 (en) Effective Battery Cell Balancing Methods and Systems Using Duty Control
JP5568583B2 (en) Lithium ion secondary battery system, inspection method for lithium ion secondary battery, control method for lithium ion secondary battery
JP6379956B2 (en) Storage element abnormality determination device
JP2017009577A (en) State estimation device and state estimation method
US11029363B2 (en) Method and device for predicting battery life
CN112534283B (en) Battery management system, battery management method, battery pack, and electric vehicle
JP3721853B2 (en) Battery life and remaining capacity judgment device
JP6155743B2 (en) Charge state detection device and charge state detection method
JP2018125977A (en) Control apparatus of battery module
KR20210074003A (en) Apparatus and method for diagnosing degeneracy of battery
JP6770933B2 (en) Power storage system
US20150212163A1 (en) Device for detecting remaining battery capacity, battery system, method of detecting remaining battery capacity and program
JP2019070622A (en) Secondary battery system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171026

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190121

R150 Certificate of patent or registration of utility model

Ref document number: 6477733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371