JP2017080771A - Mold for continuous casting - Google Patents

Mold for continuous casting Download PDF

Info

Publication number
JP2017080771A
JP2017080771A JP2015211578A JP2015211578A JP2017080771A JP 2017080771 A JP2017080771 A JP 2017080771A JP 2015211578 A JP2015211578 A JP 2015211578A JP 2015211578 A JP2015211578 A JP 2015211578A JP 2017080771 A JP2017080771 A JP 2017080771A
Authority
JP
Japan
Prior art keywords
mold
copper block
side wall
temperature
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015211578A
Other languages
Japanese (ja)
Inventor
将志 濱田
Masashi Hamada
将志 濱田
本田 達朗
Tatsuro Honda
達朗 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2015211578A priority Critical patent/JP2017080771A/en
Publication of JP2017080771A publication Critical patent/JP2017080771A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mold for twin casting in which a temperature detection sensor can be fitted to an intermediate partition copper block.SOLUTION: A mold 1 for continuous casting in which a fiber Bragg grating sensor 5, which comprises plural thermally-sensitive parts 5a, 5b, 5c at plural places which measure temperatures of side walls 2a to 2d having molten steel surfaces with which a molten steel in the mold 1 is brought into contact and an intermediate partition copper block 3, is inserted from the side walls 2a to 2d and any one of a top face, an undersurface and a lateral face of the intermediate partition copper block 3.EFFECT: A work time required for installation when performing multipoint measurements can be shortened. Further, a temperature of the intermediate partition copper block of a mold for twin casting can be measured with respect to both molten steel surfaces.SELECTED DRAWING: Figure 3

Description

本発明は、連続鋳造用鋳型に関するもので、特にツイン鋳造用鋳型の中仕切り銅ブロックの温度測定をも可能した連続鋳造用鋳型に関するものである。   The present invention relates to a continuous casting mold, and more particularly to a continuous casting mold capable of measuring the temperature of a partition copper block of a twin casting mold.

従来、連続鋳造用鋳型は、鋳型を構成する銅製の側壁に熱電対を取付け、連続鋳造中、鋳型内での鋳造プロセスをモニタリングしてブレークアウトの予知や鋳型内のプロセス監視・解析に利用している。   Conventionally, continuous casting molds have thermocouples attached to the copper side walls that make up the mold, and during continuous casting, the casting process in the mold is monitored for breakout prediction and process monitoring and analysis in the mold. ing.

ブレークアウト予知システムでは、測定した側壁温度から鋳片と側壁の拘束の有無を判定している。このとき、隣り合う温度測定位置間の温度分布を得ることは困難であるため、判定に使用する情報は、測定している位置での局所的な温度に限定される。   In the breakout prediction system, the presence or absence of restraint between the slab and the side wall is determined from the measured side wall temperature. At this time, since it is difficult to obtain a temperature distribution between adjacent temperature measurement positions, the information used for the determination is limited to the local temperature at the measurement position.

そのため、温度測定位置から離れた位置で拘束が発生した場合、当該拘束が鋳片表面を伝播して温度測定位置の近くまで到達しなければ、拘束を検知することができない。よって、ブレークアウト予知システムの精度を向上するためには、温度測定位置の数を増加して温度測定位置の間隔を狭くすることが必要となる。   Therefore, when a constraint occurs at a position away from the temperature measurement position, the constraint cannot be detected unless the constraint propagates on the surface of the slab and reaches the vicinity of the temperature measurement position. Therefore, in order to improve the accuracy of the breakout prediction system, it is necessary to increase the number of temperature measurement positions and narrow the interval between the temperature measurement positions.

前記熱電対は、側壁の溶鋼が接触する溶鋼面の反対側の対面となるバックプレート側から熱電対の挿入穴を開けて取付けているが、バックプレート側には、冷却用スリットや電磁攪拌等の流動制御装置との設備的な干渉による設置場所の制約がある。   The thermocouple is attached by opening a thermocouple insertion hole from the back plate side opposite to the molten steel surface with which the molten steel on the side wall comes into contact. There are restrictions on the installation location due to equipment interference with the flow control device.

従って、側壁に取付ける熱電対を多くする場合、取付け作業に長時間を要し、また、故障時の復旧作業が困難になるなどの問題がある。   Therefore, when the number of thermocouples attached to the side wall is increased, there are problems that it takes a long time for the attachment work and that the recovery work at the time of failure becomes difficult.

また、ツイン鋳造用の鋳型には、溶鋼面を2面有する中仕切り銅ブロックがある。この中仕切り銅ブロックは、2面の溶鋼面が対面する位置にあるため、構造上の問題により熱電対を設置することが難しく、その結果、中仕切り銅ブロックの温度を把握することができず、ブレークアウトの予知精度が低下する。   Moreover, the mold for twin casting includes a partition copper block having two molten steel surfaces. Since this partition copper block is in a position where the two molten steel surfaces face each other, it is difficult to install a thermocouple due to structural problems, and as a result, the temperature of the partition copper block cannot be grasped. The prediction accuracy of breakout is reduced.

そこで、熱電対に代わる温度測定技術として、温度や歪みの変化を光波長の変化として検出するファイバー・ブラッグ・グレーティング(Fiber Bragg Grating:FBG)センサーを使用する技術が開発された。   Therefore, as a temperature measurement technique instead of a thermocouple, a technique using a fiber Bragg grating (FBG) sensor that detects a change in temperature or strain as a change in optical wavelength has been developed.

このFBGセンサーは、熱電対を使用する場合と比較して、鋳型本体からの熱の応答性を向上でき、鋳型本体の温度変化を容易に捉えることができて、ブレークアウトの予知精度が向上する(特許文献1の段落0010,0020参照。)。   This FBG sensor can improve the responsiveness of heat from the mold body and can easily detect the temperature change of the mold body, compared with the case where a thermocouple is used, and the prediction accuracy of breakout is improved. (See paragraphs 0010 and 0020 of Patent Document 1.)

前記FBGセンサーを取付けた鋳型が特許文献2に開示されているが、特許文献2で開示された鋳型の場合も、FBGセンサーの取付け態様は熱電対の場合と同様、側壁のバックプレート側からFBGセンサーを挿入し、側壁と一体化するものである。従って、FBGセンサーの設置数を増加する場合は、熱電対を使用する場合と同じ問題がある。また、高価なFBGセンサーの寿命が側壁寿命に律速されてしまうという問題もある。   The mold with the FBG sensor attached is disclosed in Patent Document 2, but in the case of the mold disclosed in Patent Document 2, the FBG sensor is attached from the back plate side of the side wall as in the case of the thermocouple. The sensor is inserted and integrated with the side wall. Therefore, increasing the number of FBG sensors installed has the same problem as using a thermocouple. There is also a problem that the lifetime of the expensive FBG sensor is limited by the side wall lifetime.

特許第4568301号公報Japanese Patent No. 4568301 特許第5579174号公報Japanese Patent No. 5579174

本発明が解決しようとする問題点は、特許文献2で開示された鋳型も、FBGセンサーの取付け態様は熱電対の場合と同様であるため、FBGセンサーの設置数を増加する場合は、熱電対を使用する場合と同じ問題を有するという点である。また、高価なFBGセンサーの寿命が側壁寿命に律速されてしまうという点である。   The problem to be solved by the present invention is that the mold disclosed in Patent Document 2 has the same FBG sensor mounting manner as that of a thermocouple. Therefore, when the number of FBG sensors to be installed is increased, the thermocouple It has the same problem as using. In addition, the lifetime of the expensive FBG sensor is limited by the side wall lifetime.

本発明は、鋳型本体からの熱の応答性が良くブレークアウトの予知精度が向上するFBGセンサーを、ツイン鋳造用鋳型の中仕切り銅ブロックへの取付けをも可能にすることを目的とするものである。また、側壁寿命に関係なくFBGセンサーの繰り返し使用を可能にすることを目的とするものである。   An object of the present invention is to make it possible to attach an FBG sensor that has good heat responsiveness from the mold body and improves the prediction accuracy of breakout to a partitioning copper block of a mold for twin casting. is there. Another object of the present invention is to enable repeated use of the FBG sensor regardless of the side wall life.

熱電対を、側壁のバックプレート側から取付ける方法では、正対する2面の溶鋼面を有するツイン鋳造用鋳型の中仕切り銅ブロックに取付けることができない。   In the method of attaching the thermocouple from the back plate side of the side wall, the thermocouple cannot be attached to the partitioning copper block of the twin casting mold having the two molten steel surfaces facing each other.

また、熱電対で測定できる温度は、検出部のスポット温度であり、鋳型全体の温度分布を高精度に得るためには、測定位置に設置する熱電対の本数が膨大な量となって、取付け作業が長時間に及び、また、故障時の復旧作業も困難になる。   In addition, the temperature that can be measured with the thermocouple is the spot temperature of the detection part, and in order to obtain the temperature distribution of the entire mold with high accuracy, the number of thermocouples installed at the measurement position becomes an enormous amount. The work takes a long time, and the recovery work at the time of failure becomes difficult.

さらに、バックプレート側から測定位置まで側壁に熱電対の挿入穴を加工する必要があるため、冷却用スリットや電磁攪拌等の流動制御装置との設備的な干渉による設置場所の制約がある。   Furthermore, since it is necessary to process a thermocouple insertion hole on the side wall from the back plate side to the measurement position, there is a restriction on the installation location due to equipment interference with a flow control device such as a cooling slit or electromagnetic stirring.

そこで、発明者らは、溶鋼面の反対側のバックプレート側以外の面、すなわち、側壁(ツイン鋳造用鋳型の場合は、側壁と中仕切り銅ブロック)の上面、下面、側面の何れかから挿入し、側壁の複数点の温度を測定可能とすることで、多点測定を行う際の作業負荷を軽減し、設備的な干渉を抑制できる仕様を検討した。   Therefore, the inventors insert from the surface other than the back plate side opposite to the molten steel surface, that is, the upper surface, the lower surface, or the side surface of the side wall (in the case of a mold for twin casting, the side wall and the partition copper block). Then, by making it possible to measure the temperature at multiple points on the side wall, we studied a specification that can reduce the work load when performing multi-point measurement and suppress equipment interference.

本発明は、発明者らの上記検討に基づいてなされたもので、
連続鋳造用鋳型において、
前記鋳型の溶鋼が接触する溶鋼面を有する側壁(ツイン鋳造用鋳型の場合は、側壁と中仕切り銅ブロック)の温度を測定する、複数か所の熱感知部を備えたFBGセンサーを、前記側壁(ツイン鋳造用鋳型の場合は、側壁と中仕切り銅ブロック)の上面、下面、側面の何れかから挿入したことを最も主要な特徴としている。
The present invention has been made on the basis of the above examination by the inventors,
In continuous casting molds,
An FBG sensor having a plurality of heat sensing units for measuring the temperature of a side wall having a molten steel surface in contact with the molten steel of the mold (in the case of a twin casting mold, the side wall and the partition copper block) (In the case of a casting mold for twin casting, the main feature is that it is inserted from any one of the upper surface, the lower surface, and the side surface of the side wall and the partition copper block).

上記本発明は、複数か所の熱感知部を備えたFBGセンサーで側壁や中仕切り銅ブロックの温度を測定するので、鋳造方向或いは鋳造方向と直角の水平方向の複数か所における温度を、1つのFBGセンサーで測定することができる。また、熱電対を使用する場合とは異なり、測定か所の全てにFBGセンサーの設置用の挿入穴を開ける必要がなく、作業性が良くなる。   In the present invention, the temperature of the side wall and the partition copper block is measured by the FBG sensor having a plurality of heat sensing units, so that the temperature at a plurality of locations in the casting direction or in the horizontal direction perpendicular to the casting direction is 1 It can be measured with two FBG sensors. In addition, unlike the case of using a thermocouple, it is not necessary to make an insertion hole for installing the FBG sensor at all the measurement points, and the workability is improved.

そのため、鋳型の側壁や中仕切り銅ブロックの上面、下面、側面の何れかから1つのFBGセンサーを挿入すれば、鋳造方向或いは鋳造方向と直角の水平方向の複数か所における温度の測定ができ、側壁のバックプレート側からFBGセンサーを取付けなくてもよい。また、従来は、温度測定が困難であった、ツイン鋳造用鋳型の中仕切り銅ブロックの温度を両溶鋼面について測定することができる。   Therefore, if one FBG sensor is inserted from any of the upper surface, the lower surface, and the side surface of the mold side wall and the partition copper block, the temperature can be measured at a plurality of locations in the casting direction or in the horizontal direction perpendicular to the casting direction. It is not necessary to attach the FBG sensor from the back plate side of the side wall. Further, conventionally, the temperature of the partitioning copper block of the twin casting mold, which was difficult to measure the temperature, can be measured on both molten steel surfaces.

従って、冷却用スリットや電磁攪拌等の流動制御装置との設備的な干渉による設置場所の制約がなく、多点測定を行う際の設置に要する作業時間を短縮することができる。   Accordingly, there is no restriction on the installation location due to equipment interference with a flow control device such as a cooling slit or electromagnetic stirring, and the work time required for installation when performing multipoint measurement can be shortened.

本発明において、FBGセンサーを、保護管に装入した後に保護管とともに側壁や中仕切り銅ブロックに挿入すれば、FBGセンサーを繰り返し使用することができる。   In the present invention, when the FBG sensor is inserted into the protective tube and then inserted into the side wall or the partition copper block together with the protective tube, the FBG sensor can be used repeatedly.

本発明では、冷却用スリットや電磁攪拌等の流動制御装置との設備的な干渉による設置場所の制約がなく、多点測定を行う際の設置に要する作業時間を短縮することができる。また、従来は、温度測定が困難であった、ツイン鋳造用鋳型の中仕切り銅ブロックの温度を両溶鋼面についても測定することができる。   In this invention, there is no restriction | limiting of the installation place by installation interference with flow control apparatuses, such as a cooling slit and electromagnetic stirring, and the work time required for installation at the time of performing multipoint measurement can be shortened. Further, conventionally, the temperature of the partitioning copper block of the twin casting mold, which is difficult to measure the temperature, can be measured on both molten steel surfaces.

試験に用いたツイン鋳造用鋳型におけるFBGセンサーの設置位置を示した図である。It is the figure which showed the installation position of the FBG sensor in the mold for twin casting used for the test. (a)は熱電対によって測定した側壁の温度、(b)〜(d)はFBGセンサーによって測定した短辺側の側壁及び中仕切り銅ブロックの温度、(e)は(a)〜(d)で示した測定温度を得た際の鋳造速度を示した図である。(A) is the temperature of the side wall measured by a thermocouple, (b) to (d) are the temperatures of the side wall and the partition copper block on the short side measured by the FBG sensor, and (e) is (a) to (d). It is the figure which showed the casting speed at the time of obtaining the measurement temperature shown by. ツイン鋳造用鋳型における短辺側の側壁と中仕切り銅ブロックの温度測定位置を示すために、図1における紙面左側のストランドの短辺側の側壁、L面側の側壁、中仕切り銅ブロック、F面側の側壁を展開して示した図で、(a)は従来の熱電対を使用した場合、(b)は本発明のFBGセンサーを使用した場合である。In order to show the temperature measurement position of the short side wall and the partition copper block in the twin casting mold, the side wall on the short side of the strand on the left side in FIG. It is the figure which expanded and showed the side wall of the surface side, (a) is a case where the conventional thermocouple is used, (b) is a case where the FBG sensor of this invention is used.

本発明では、温度検知センサーを、ツイン鋳造用鋳型の中仕切り銅ブロックへ取付けることを可能にするという目的を、複数か所の熱感知部を備えたFBGセンサーを中仕切り銅ブロックの上面、下面、側面の何れかから挿入することで実現した。   In the present invention, for the purpose of enabling the temperature detection sensor to be attached to the partitioning copper block of the twin casting mold, the upper and lower surfaces of the partitioning copper block are provided with the FBG sensor having a plurality of heat sensing portions. Realized by inserting from either side.

以下、本発明の効果を確認するために行った試験及びその結果について添付図面を用いて説明する。   Hereinafter, tests conducted for confirming the effects of the present invention and the results thereof will be described with reference to the accompanying drawings.

図1はツイン鋳造用鋳型1を説明した図であり、短辺側の側壁2a,2bの中間に中仕切り銅ブロック3が配置されている。本試験では、例えば紙面左側のストランドの側壁2aのF面側、及び中仕切り銅ブロック3のL面側の上面から、鋳造方向に穴4を開け、この穴4にFBGセンサー5を挿入して、鋳造中、側壁2a及び中仕切り銅ブロック3の温度を測定した。   FIG. 1 is a diagram for explaining a twin casting mold 1 in which a partition copper block 3 is arranged in the middle between the side walls 2a and 2b on the short side. In this test, for example, a hole 4 is made in the casting direction from the F surface side of the side wall 2a of the strand on the left side of the paper and the L surface side of the partitioning copper block 3, and the FBG sensor 5 is inserted into this hole 4. During the casting, the temperatures of the side wall 2a and the partition copper block 3 were measured.

前記ストランドの側壁2aに開けた前記穴4は、従来の熱電対を使用した場合の測定位置Aの温度と比較できるよう、当該側壁2aの鋳型短辺の長さ方向位置を決定した。また、鋳造方向の位置も、FBGセンサー5の熱感知部5a〜5cのうちの5bの位置が従来の熱電対を使用した場合の測定位置Aと同じ位置になるようにした。   The position of the hole 4 in the side wall 2a of the strand in the length direction of the short side of the mold of the side wall 2a was determined so that it could be compared with the temperature at the measurement position A when a conventional thermocouple was used. Also, the position in the casting direction was set to be the same as the measurement position A when the conventional thermocouple was used in the position 5b of the heat sensing portions 5a to 5c of the FBG sensor 5.

一方、中仕切り銅ブロック3の穴4に挿入したFBGセンサー5の熱感知部5a〜5cは、上面からの距離が前記ストランドの側壁2aに開けた前記穴4に挿入したFBGセンサー5の熱感知部5a〜5cと同じ位置になるようにした。   On the other hand, the heat sensing parts 5a to 5c of the FBG sensor 5 inserted into the hole 4 of the partitioning copper block 3 are heat-sensing of the FBG sensor 5 inserted into the hole 4 opened in the side wall 2a of the strand. It was made to become the same position as parts 5a-5c.

側壁2a及び中仕切り銅ブロック3の温度を正確に測定するためには、FBGセンサー5と側壁2a及び中仕切り銅ブロック3とを密着させる必要がある。従って、試験では、FBGセンサー5をポリイミド保護管に通した状態で、ケプラー糸を用いて銅棒に固定し、前記穴4に挿入した。   In order to accurately measure the temperature of the side wall 2a and the partition copper block 3, the FBG sensor 5, the side wall 2a, and the partition copper block 3 must be brought into close contact with each other. Therefore, in the test, the FBG sensor 5 was passed through the polyimide protective tube, fixed to a copper rod using Kepler yarn, and inserted into the hole 4.

上記ツイン鋳造用鋳型1に低炭素鋼の溶鋼を供給しつつ、図2(e)に示した鋳造速度で、幅が1250mm、厚みが250mmの鋳片を連続鋳造した際の、測定温度を図2(a)〜(d)に示す。   Fig. 2 shows the measured temperature when continuously casting a slab having a width of 1250mm and a thickness of 250mm at the casting speed shown in Fig. 2 (e) while supplying molten steel of low carbon steel to the above-mentioned twin casting mold 1. 2 (a) to (d).

図2(a)は熱電対を使用して前記A位置を測定した温度、図2(b)はFBGセンサー5の熱感知部5aにおける測定温度、図2(c)は同じく熱感知部5bにおける測定温度、図2(d)は同じく熱感知部5cにおける測定温度である。なお、図2(b)(c)(d)では、便宜上、1,2,5キャスト目は短辺側の温度測定結果を、また、3,4キャスト目は中仕切り側の温度測定結果を記載した。   2A is a temperature at which the position A is measured using a thermocouple, FIG. 2B is a measured temperature at the heat sensing unit 5a of the FBG sensor 5, and FIG. 2C is a temperature at the heat sensing unit 5b. The measured temperature, FIG. 2D, is also the measured temperature in the heat sensing unit 5c. 2B, 2C, and 2D, for convenience, the first, second, and fifth casts show the temperature measurement results on the short side, and the third and fourth casts show the temperature measurement results on the partition side. Described.

測定は40時間継続して実施した。図2(a)と図2(c)はよく一致しており、試験の初期と末期での差も見受けられないことから、本発明の測定精度に問題がないことが判明した。   The measurement was continued for 40 hours. 2 (a) and FIG. 2 (c) are in good agreement, and since there is no difference between the initial stage and the final stage of the test, it has been found that there is no problem in the measurement accuracy of the present invention.

本発明は、上記試験の結果に基づいてなされたものであり、
例えば、図1における紙面左側のストランドの短辺側の側壁2a、L面側の側壁2c、中仕切り銅ブロック3、F面側の側壁2dを展開した図3(b)に示すように、
ツイン鋳造用鋳型1において、
前記鋳型1の溶鋼が接触する溶鋼面を有する短辺側の側壁2a,2b、長辺側の側壁2c、2d、及び中仕切り銅ブロック3の温度を測定する、3か所の熱感知部5a,5b,5cを備えたFBGセンサー5を、前記側壁2a〜2d及び中仕切り銅ブロック3の例えば上面から挿入したことを特徴とするものである。
The present invention has been made based on the results of the above test,
For example, as shown in FIG. 3B in which the side wall 2a on the short side of the strand on the left side in FIG. 1, the side wall 2c on the L side, the partition copper block 3, and the side wall 2d on the F side are developed.
In the twin casting mold 1,
Three heat sensing parts 5a for measuring the temperatures of the short side walls 2a and 2b, the long side walls 2c and 2d, and the partition copper block 3 having the molten steel surface with which the molten steel of the mold 1 contacts. , 5b, 5c, the FBG sensor 5 is inserted from, for example, the upper surfaces of the side walls 2a to 2d and the partition copper block 3.

上記本発明によれば、図3(a)に示した熱電対6を側壁2a〜2dのバックプレート側に取り付けた従来鋳型と比較して、測定位置の多点化が容易に行えることになる。また、熱電対を取付けることができなかったツイン鋳造用鋳型1の中仕切り銅ブロック3の両溶鋼面側にもFBGセンサー5を取付けることができ、中仕切り銅ブロック3の両溶鋼面の温度測定が可能になる。   According to the present invention described above, the number of measurement positions can be easily increased as compared with the conventional mold in which the thermocouple 6 shown in FIG. 3A is attached to the back plate side of the side walls 2a to 2d. . In addition, the FBG sensor 5 can be attached to both molten steel surfaces of the inner partition copper block 3 of the twin casting mold 1 where the thermocouple could not be attached, and the temperature of both molten steel surfaces of the inner partition copper block 3 can be measured. Is possible.

本発明は上記の例に限らず、各請求項に記載された技術的思想の範疇であれば、適宜実施の形態を変更しても良いことは言うまでもない。   The present invention is not limited to the above example, and it goes without saying that the embodiments may be changed as appropriate within the scope of the technical idea described in each claim.

例えば、上記の例ではツイン鋳造用鋳型1に本発明を適用したものについて説明したが、本発明はツイン鋳造用鋳型1に限らない。   For example, in the example described above, the present invention is applied to the twin casting mold 1, but the present invention is not limited to the twin casting mold 1.

また、上記の例では、側壁2a〜2dや中仕切り銅ブロック3の上面からFBGセンサー5を挿入して取付けたものを示したが、側壁2a〜2dや中仕切り銅ブロック3の下面、或いは側面からFBGセンサー5を挿入して取付けてもよい。   In the above example, the FBG sensor 5 is inserted and attached from the side walls 2a to 2d and the upper surface of the partition copper block 3, but the lower surface or side surface of the side walls 2a to 2d and the partition copper block 3 is shown. The FBG sensor 5 may be inserted and attached.

1 ツイン鋳造用鋳型
2a,2b,2c,2d 側壁
3 中仕切り銅ブロック
5 FBGセンサー
5a,5b,5c 熱感知部
DESCRIPTION OF SYMBOLS 1 Twin casting mold 2a, 2b, 2c, 2d Side wall 3 Partition copper block 5 FBG sensor 5a, 5b, 5c Heat sensing part

Claims (3)

連続鋳造用鋳型において、
前記鋳型の溶鋼が接触する溶鋼面を有する側壁の温度を測定する、複数か所の熱感知部を備えたファイバー・ブラッグ・グレーティングセンサーを、前記側壁の上面、下面、側面の何れかから挿入したことを特徴とする連続鋳造用鋳型。
In continuous casting molds,
A fiber Bragg grating sensor having a plurality of heat sensing units for measuring the temperature of the side wall having the molten steel surface with which the molten steel of the mold contacts is inserted from any one of the upper surface, the lower surface, and the side surface of the side wall. A casting mold for continuous casting characterized by the above.
連続鋳造用鋳型において、
前記鋳型の溶鋼が接触する溶鋼面を有する側壁及び中仕切り銅ブロックの温度を測定する、複数か所の熱感知部を備えたファイバー・ブラッグ・グレーティングセンサーを、前記側壁及び中仕切り銅ブロックの上面、下面、側面の何れかから挿入したことを特徴とする連続鋳造用鋳型。
In continuous casting molds,
A fiber Bragg grating sensor having a plurality of heat sensing parts for measuring the temperature of a side wall and a partition copper block having a molten steel surface with which the molten steel of the mold contacts, and an upper surface of the side wall and the partition copper block A continuous casting mold, which is inserted from any one of the lower surface and the side surface.
前記ファイバー・ブラッグ・グレーティングセンサーは、保護管に装入した後に保護管とともに前記側壁に挿入することを特徴とする請求項1又は2に記載の連続鋳造用鋳型。   3. The continuous casting mold according to claim 1, wherein the fiber Bragg grating sensor is inserted into the side wall together with the protective tube after being inserted into the protective tube. 4.
JP2015211578A 2015-10-28 2015-10-28 Mold for continuous casting Pending JP2017080771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015211578A JP2017080771A (en) 2015-10-28 2015-10-28 Mold for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015211578A JP2017080771A (en) 2015-10-28 2015-10-28 Mold for continuous casting

Publications (1)

Publication Number Publication Date
JP2017080771A true JP2017080771A (en) 2017-05-18

Family

ID=58710209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015211578A Pending JP2017080771A (en) 2015-10-28 2015-10-28 Mold for continuous casting

Country Status (1)

Country Link
JP (1) JP2017080771A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021533061A (en) * 2018-08-01 2021-12-02 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン Wear detector for glass furnace

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005230849A (en) * 2004-02-18 2005-09-02 Sumitomo Metal Ind Ltd Continuous casting method using twin-mold, electromagnetic braking apparatus for twin-mold and mold for continuous casting
JP2008043981A (en) * 2006-08-17 2008-02-28 Nippon Steel Corp Method for continuously casting steel
JP2008260046A (en) * 2007-04-12 2008-10-30 Mishima Kosan Co Ltd Mold for continuous casting

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005230849A (en) * 2004-02-18 2005-09-02 Sumitomo Metal Ind Ltd Continuous casting method using twin-mold, electromagnetic braking apparatus for twin-mold and mold for continuous casting
JP2008043981A (en) * 2006-08-17 2008-02-28 Nippon Steel Corp Method for continuously casting steel
JP2008260046A (en) * 2007-04-12 2008-10-30 Mishima Kosan Co Ltd Mold for continuous casting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021533061A (en) * 2018-08-01 2021-12-02 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン Wear detector for glass furnace
JP7082241B2 (en) 2018-08-01 2022-06-07 サン-ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン Wear detector for glass furnace

Similar Documents

Publication Publication Date Title
US20110167905A1 (en) Casting level measurement in a mold by means of a fiber optic measuring method
JP5204304B2 (en) Temperature measurement in mold by fiber optic measurement method
EP3337632B1 (en) A casting mold and a method for detecting a temperature distribution of molten metal in a casting mold
JP4688755B2 (en) Steel continuous casting method
JP5505086B2 (en) Method, apparatus and program for estimating state in mold in continuous casting
CN102575962A (en) Sensor element for measuring a temperature gradient
JP5387508B2 (en) Continuous casting method, continuous casting control device and program
JP2017080771A (en) Mold for continuous casting
Braun et al. Tap-hole monitoring technologies
Hedin et al. Exploring opportunities in mold temperature monitoring utilizing Fiber Bragg Gratings
WO2011104053A1 (en) Foundry ladle or intermediate vessel for receiving a liquid metal, comprising an integrated measuring element for detecting the temperature and/or mechanical load
JP5408040B2 (en) Continuous casting method, continuous casting control device and program
KR20120128645A (en) Electrode arm of a metallurgical melting furnace
WO2024070088A1 (en) Casting mold, control equipment, and continuous casting method for steel
Thomas et al. Implementation of Temperature and Strain Micro‐Sensors into a Casting Mold Surface
JP6688942B2 (en) Method and device for identifying temperature distribution in a template for a metal manufacturing process
US9200843B2 (en) Injector cooling block for holding at least one injector
KR20090073495A (en) Break out monitoring system and its method in continuous casting process
JP2005205462A (en) Method for preventing longitudinal crack on continuously cast piece
JPH0446658A (en) Device for predicting breakout in continuous casting apparatus
KR20170018634A (en) Visualization apparatus surface level of molten steel
JP5387506B2 (en) Continuous casting method, continuous casting control device and program
JP5387505B2 (en) Continuous casting method, continuous casting control device and program
KR20110035076A (en) Stave having isolated wire and system for measuring thickness of a melting furnace using the same
JP5391758B2 (en) Thick steel plate quality assurance equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190903