JP2005230849A - Continuous casting method using twin-mold, electromagnetic braking apparatus for twin-mold and mold for continuous casting - Google Patents

Continuous casting method using twin-mold, electromagnetic braking apparatus for twin-mold and mold for continuous casting Download PDF

Info

Publication number
JP2005230849A
JP2005230849A JP2004041955A JP2004041955A JP2005230849A JP 2005230849 A JP2005230849 A JP 2005230849A JP 2004041955 A JP2004041955 A JP 2004041955A JP 2004041955 A JP2004041955 A JP 2004041955A JP 2005230849 A JP2005230849 A JP 2005230849A
Authority
JP
Japan
Prior art keywords
mold
electromagnetic
copper plate
width
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004041955A
Other languages
Japanese (ja)
Other versions
JP4296958B2 (en
Inventor
Keinosuke Mori
啓之輔 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004041955A priority Critical patent/JP4296958B2/en
Publication of JP2005230849A publication Critical patent/JP2005230849A/en
Application granted granted Critical
Publication of JP4296958B2 publication Critical patent/JP4296958B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform the optimum control of an electromagnetic brake at the narrow width time and at the wide width time with one set of an electric source device. <P>SOLUTION: In the case of casting by using a twin-mold changeable to the width of both sub-molds 3a, 3b parted with a water-cooled copper plate 3c for parting, inserted into the width center part by individually moving both short wall sides 3d at the outside in the width direction of the mold, a method for continuous casting is performed by setting the total eight pieces of electromagnetic coils 3e for braking by acting the electromagnetic force to molten steel spouted flow from each spouting hole of an immersion nozzle 2 having two holes whose spouting direction is the width direction of the mold at the outer peripheral part of the copper plate of the mold. It is selected by using a changeover circuit at the electric source device 7 side, whether only two of the molten steel spouted flows directed to the interval between the immersion nozzle 2 and the water-cooled copper plate 3c are braked, or the whole four molten steel spouted flows are braked, according to the width of the above sub-molds 3a, 3b at both sides. The brake efficiency can be improved by performing the optimum electromagnetic brake control according to the casting width. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、スラブ連続鋳造設備における品質向上及び鋳込み速度向上(生産性向上)を目的としたツイン鋳型における鋳型内溶鋼流動制御技術に関するものである。   The present invention relates to a molten steel flow control technology in a twin mold for the purpose of quality improvement and casting speed improvement (productivity improvement) in a slab continuous casting facility.

スラブ鋳造において生産性向上を目的としたツイン鋳型鋳造技術がある。これは、同じピンチロールによって二本の鋳片を同時に引き抜くものである。
この鋳造に用いるツイン鋳型21は、図7に示したように、幅中央部に仕切り用の水冷銅板22を挿入したもので、この水冷銅板22で左右に仕切られた副鋳型21a,21bの幅変更、すなわち鋳込み幅の変更は、一般的にはツイン鋳型21の外側に位置する両短辺23を鋳型幅方向に同調移動することによって行うので、左右の副鋳型21a,21bの幅は同一である。
There is twin mold casting technology for improving productivity in slab casting. In this method, two cast pieces are pulled out simultaneously by the same pinch roll.
As shown in FIG. 7, the twin mold 21 used for casting is obtained by inserting a partitioning water-cooled copper plate 22 at the center of the width, and the width of the sub-molds 21 a and 21 b partitioned right and left by the water-cooled copper plate 22. The change, that is, the change of the casting width, is generally performed by synchronously moving both short sides 23 located outside the twin mold 21 in the mold width direction, so that the widths of the left and right sub molds 21a and 21b are the same. is there.

ところで、タンディッシュ内溶鋼を前記ツイン鋳型に注入する浸漬ノズル24は、図7(a)に示したように、鋳込み幅の最も狭い狭幅時に、副鋳型21a,21bの幅中央に位置するよう、タンディッシュの底に固定されており、その位置は不変である。   By the way, the immersion nozzle 24 for injecting the molten steel in the tundish into the twin mold is positioned at the center of the width of the sub molds 21a and 21b when the casting width is the narrowest as shown in FIG. It is fixed to the bottom of the tundish and its position is unchanged.

従って、図7(b)に示したように、鋳込み幅が広い広幅時には、副鋳型21a,21bに対する浸漬ノズル24の相対位置は、副鋳型21a,21bの幅中央から水冷銅板22寄りに位置することになる。   Therefore, as shown in FIG. 7B, when the casting width is wide, the relative position of the immersion nozzle 24 with respect to the sub molds 21a and 21b is located closer to the water-cooled copper plate 22 from the center of the width of the sub molds 21a and 21b. It will be.

かかる広幅時には、浸漬ノズル24(通常2孔ノズル)から吐出される溶鋼の流速エネルギは、中央の水冷銅板22に向かうものが、外側の短辺23に向かうものより強くなって副鋳型21a,21bの幅方向に偏流や温度の偏りが発生し、中央の水冷銅板22側に位置する鋳片部分にかぶれ疵を発生させる場合があることから、溶鋼吐出流のエネルギを内側(中央の水冷鋼板側)と外側(両側の短辺側)で均等にすることが必要になる。   When the width is wide, the flow velocity energy of the molten steel discharged from the immersion nozzle 24 (usually a two-hole nozzle) is stronger toward the water-cooled copper plate 22 at the center than toward the outer short side 23, and the sub molds 21a and 21b. Drift and temperature deviation in the width direction of the steel plate, and stagnation may occur in the slab portion located on the central water-cooled copper plate 22 side. ) And outside (short sides on both sides).

鋳込み速度を速くすることは、連続鋳造の生産性を向上させることになる。しかしながら、鋳込み速度を速くすると、浸漬ノズルからの溶鋼吐出量が多くなり、短辺への衝突エネルギも大きくなって、溶鋼の反転流も強くなり、湯面変動も大きくなる。従って、鋳込み速度を速くするには、溶鋼流を層流化、沈静化する必要がある。この溶鋼流の層流化、沈静化には、電磁制動の適用が有効であり、電磁制動装置(以下、「電磁ブレーキ」という。)を鋳型に設置する技術は公知である。   Increasing the casting speed improves the productivity of continuous casting. However, when the casting speed is increased, the amount of molten steel discharged from the immersion nozzle increases, the collision energy to the short side also increases, the reverse flow of the molten steel increases, and the molten metal surface fluctuation also increases. Therefore, in order to increase the casting speed, it is necessary to laminate and calm the molten steel flow. Application of electromagnetic braking is effective for laminating and calming the molten steel flow, and a technique for installing an electromagnetic braking device (hereinafter referred to as “electromagnetic brake”) on a mold is known.

通常、タンディッシュ内溶鋼を鋳型に吐出する浸漬ノズルは、鋳型幅方向の両側に向けて吐出孔があり、その吐出孔数は一般的には2孔である。狭幅時のように、浸漬ノズルから中央に位置する水冷銅板と外側に位置する短辺までの距離が同じであれば、電磁ブレーキは鋳型全幅に均等に印加すればよいが、広幅時のように、前記距離が異なると鋳型幅方向に電磁ブレーキの印加強度を変える必要がある。   Usually, an immersion nozzle that discharges molten steel in a tundish into a mold has discharge holes on both sides in the mold width direction, and the number of discharge holes is generally two. If the distance from the immersion nozzle to the water-cooled copper plate located in the center and the short side located outside is the same as in the narrow width, the electromagnetic brake may be applied evenly over the entire mold width. In addition, if the distance is different, it is necessary to change the applied strength of the electromagnetic brake in the mold width direction.

また、連続鋳造設備では、鋳込み中における鋳型内の溶鋼流動解析や溶鋼温度測定及びブレイクアウト予知等を目的として、鋳型銅板に熱電対を設置するが、電磁ブレーキや電磁攪拌装置を鋳型に設置する場合は、そのコイル部が鋳型銅板を保持するバックアップフレームに接して設置されるため、熱電対と干渉することになって、コイル設置部分に熱電対を設置することができない。そのため、コイル設置部を避けて熱電対を設置するか、コイルをバックアップフレームから離して設置せざるを得ない。   In continuous casting equipment, thermocouples are installed on the mold copper plate for analysis of molten steel flow in the mold during casting, molten steel temperature measurement and breakout prediction, etc., but electromagnetic brakes and electromagnetic stirrers are installed in the mold. In this case, since the coil portion is installed in contact with the backup frame that holds the mold copper plate, it interferes with the thermocouple, and the thermocouple cannot be installed at the coil installation portion. Therefore, a thermocouple should be installed avoiding the coil installation part, or the coil must be installed away from the backup frame.

しかしながら、ツイン鋳型のそれぞれの副鋳型の内側と外側の吐出流速の減速量を個々に制御するには、図8に示したように、内側と外側の電磁ブレーキの強度を個別に変化させる必要があり、この場合、その電源装置も別々に必要となる。このような理由により、ツイン鋳型を用いた連続鋳造では、通常、狭幅時、広幅時を問わず、各吐出孔近傍で同一の磁場強度を与えている。
特表2001−521444号公報
However, in order to individually control the amount of deceleration of the discharge flow rate inside and outside each sub-mold of the twin mold, it is necessary to individually change the strength of the inner and outer electromagnetic brakes as shown in FIG. In this case, the power supply device is also required separately. For these reasons, in continuous casting using a twin mold, the same magnetic field strength is usually provided in the vicinity of each discharge hole regardless of whether the width is narrow or wide.
JP-T-2001-521444

また、コイル設置部を避けて熱電対を設置した場合には、前記解析精度や測定精度、予知精度が悪くなる一方、コイルをバックアップフレームから離して設置した場合には、電磁ブレーキや電磁攪拌の効率が悪くなる。   In addition, when the thermocouple is installed away from the coil installation part, the analysis accuracy, measurement accuracy, and prediction accuracy are deteriorated.On the other hand, when the coil is installed away from the backup frame, the electromagnetic brake or electromagnetic stirring is not performed. Inefficiency.

本発明が解決しようとする問題点は、ツイン鋳型における鋳型内溶鋼流動制御技術では、1組の電源装置では狭幅時、広幅時における電磁ブレーキの最適制御が行えないという点、また、電磁ブレーキ、電磁攪拌の効率向上と、鋳型内の溶鋼流動解析、溶鋼温度測定及びブレイクアウト予知等の精度向上が両立できないという点である。   The problem to be solved by the present invention is that the molten steel flow control technology in the twin mold cannot perform optimal control of the electromagnetic brake in a narrow width and a wide width with one set of power supply devices. The improvement in the efficiency of electromagnetic agitation and the improvement in accuracy of molten steel flow analysis, molten steel temperature measurement, breakout prediction and the like cannot be achieved at the same time.

ツイン鋳型において、副鋳型の内側と外側の溶鋼吐出流速の減速度合いを個別に制御するには、静磁場を発生させる電源装置が個別(ツイン鋳型においては4個)に設置するのが一般的である。   In a twin mold, in order to individually control the degree of deceleration of the molten steel discharge flow rate inside and outside the sub mold, it is common to install power supply devices that generate static magnetic fields individually (four in a twin mold). is there.

一方、鋳型に設置するコイルは、鋳型内溶鋼による熱影響や鋳型冷却水による蒸気等、設置環境が厳しいので、コイルへの給電ケーブルは対環境性の良い高価なケーブルを使用する場合が多く、極力その本数は必要最小限とすることが望ましい。   On the other hand, the coil installed in the mold has a severe installation environment such as the heat effect of molten steel in the mold and steam from the mold cooling water, so the power supply cable to the coil is often an expensive cable with good environmental resistance, It is desirable to minimize the number as much as possible.

また、ブレイクアウト予知(検知)用の熱電対は、鋳型温度の挙動を精度よく検知するために、通常、鋳型の長辺側、短辺側における高さ方向及び幅方向に多数設置されるが、その場合、電磁ブレーキや電磁攪拌用のコイルと干渉することなく設置する必要がある。   Also, many thermocouples for breakout prediction (detection) are usually installed in the height direction and width direction on the long side and short side of the mold in order to accurately detect the behavior of the mold temperature. In that case, it is necessary to install without interfering with the electromagnetic brake or electromagnetic stirring coil.

本発明者は、このようなツイン鋳型を用いた連続鋳造操業において、狭幅時と広幅時に印加する電磁力を選択する構成について調査、研究を重ねた結果、ツイン鋳型を構成する副鋳型のそれぞれについて個別に電磁ブレーキの鉄心を設けた場合には、それぞれの鉄心間に空気ギャップが生じ、全体として磁気抵抗が大きくなって、ブレーキ効率が悪くなること、また、発生する電磁力が小さいことを知見した。   As a result of investigating and researching the configuration for selecting the electromagnetic force to be applied at the time of narrow width and wide width in continuous casting operation using such a twin mold, the present inventor has found that each of the sub molds constituting the twin mold. When electromagnetic brake iron cores are provided individually, air gaps are created between the iron cores, increasing the magnetic resistance as a whole, reducing brake efficiency, and reducing the generated electromagnetic force. I found out.

また、左右の副鋳型による鋳込み幅が同一のツイン鋳型では、それぞれの副鋳型に作用させる電磁ブレーキの強度、すなわち、それぞれの副鋳型への印加強度は同一で良いので、同一の電源装置を用いた一括印加が可能である。   In addition, in the twin molds in which the casting widths of the left and right sub-molds are the same, the strength of the electromagnetic brake to be applied to each sub-mold, that is, the applied strength to each sub-mold may be the same. Batch application is possible.

本発明は、本発明者の前記知見に基づいてなされたもので、
本発明の連続鋳造方法は、ツイン鋳型を用いた連続鋳造に際し、吐出方向が鋳型幅方向である2孔を有する浸漬ノズルの各吐出孔からの溶鋼吐出流を制動する電磁コイルを鋳型銅板の外周部に合計8個配置して連続鋳造する方法であって、
狭幅時、広幅時における電磁ブレーキの最適制御を可能とするために、
前記副鋳型の幅に応じて、浸漬ノズルと前記仕切り用水冷銅板間に向く2つの溶鋼吐出流のみを制動するのか、或いは、4つの全ての溶鋼吐出流を制動するのかを、電源装置側の切り替え回路を用いて選択することを最も主要な特徴とする。
The present invention was made based on the above knowledge of the present inventor,
In the continuous casting method of the present invention, in continuous casting using a twin mold, an electromagnetic coil for braking a molten steel discharge flow from each discharge hole of an immersion nozzle having two holes whose discharge direction is the mold width direction is provided on the outer periphery of the mold copper plate. It is a method of arranging a total of 8 pieces in the part and continuously casting,
To enable optimal control of electromagnetic brakes at narrow and wide widths,
Depending on the width of the sub-mold, whether to brake only two molten steel discharge flows facing between the immersion nozzle and the partition water-cooled copper plate or whether to brake all four molten steel discharge flows is determined on the power supply side. Selection using a switching circuit is the main feature.

そして、前記本発明の連続鋳造方法の実施に用いる本発明のツイン鋳型用の電磁ブレーキは、
鋳型の幅中央部に仕切り用水冷銅板が挿入され、外側の両短辺が個々に鋳型幅方向に移動可能なツイン鋳型における鋳型銅板の外周部に配置され、浸漬ノズルの各吐出孔からの溶鋼の吐出流に電磁力を作用させて制動するための電磁コイルと、
この電磁コイルに直流電流を供給するための電源装置と、
この電源装置側に配置され、電流の切り替えを行う回路を有するツイン鋳型の電磁ブレーキであって、
前記電磁コイルが鋳型銅板の外周部に合計8個配置され、
前記浸漬ノズルが、溶鋼吐出方向が鋳型幅方向である2孔を有する場合に、
前記副鋳型の幅に応じて、前記浸漬ノズルと前記仕切り用水冷銅板間の2つの溶鋼吐出流のみを制動するか、或いは、4つの全ての溶鋼吐出流を制動するのかを、前記回路により選択可能としたことを最も主要な特徴とする。
And the electromagnetic brake for the twin mold of the present invention used for carrying out the continuous casting method of the present invention is:
A water-cooled copper plate for partitioning is inserted in the center of the mold width, and the outer short sides are individually arranged in the outer periphery of the mold copper plate in a twin mold that can move in the mold width direction, and the molten steel from each discharge hole of the immersion nozzle An electromagnetic coil for braking by applying an electromagnetic force to the discharge flow of
A power supply device for supplying a direct current to the electromagnetic coil;
It is a twin mold electromagnetic brake that is arranged on the power supply side and has a circuit for switching current,
A total of eight electromagnetic coils are arranged on the outer periphery of the mold copper plate,
When the immersion nozzle has two holes whose molten steel discharge direction is the mold width direction,
Depending on the width of the sub-mold, the circuit selects whether to brake only two molten steel discharge flows between the immersion nozzle and the partition water-cooled copper plate or to brake all four molten steel discharge flows The most important feature is what is possible.

前記本発明のツイン鋳型用の電磁ブレーキでは、
前記8個の電磁コイルに交流電流から変換した直流電流を供給する前記電源装置が1組であり、該電源装置から8個の電磁コイルへの給電ケーブルが6本とすること、また、溶鋼の吐出流に電磁力を作用させるための磁極が浸漬ノズルの各吐出孔近傍に合計8個配置され、各長辺側の4個の磁極をそれぞれ一体型構造とすることが望ましい。
In the electromagnetic brake for the twin mold of the present invention,
The power supply device for supplying a direct current converted from an alternating current to the eight electromagnetic coils is one set, and six power supply cables from the power supply device to the eight electromagnetic coils are used. It is desirable that a total of eight magnetic poles for applying electromagnetic force to the discharge flow are arranged in the vicinity of each discharge hole of the immersion nozzle, and that the four magnetic poles on each long side are each of an integrated structure.

また、前記本発明の連続鋳造方法の実施に用いる本発明の連続鋳造用鋳型は、
鋳型銅板と、
該鋳型銅板を支持するバックアップフレームと、
前記鋳型銅板の温度を測定する熱電対と、
前記鋳型銅板の外周に配置された電磁コイルを有する鋳型であって、
前記電磁コイルと干渉する位置のバックアップフレームの熱電対設置部位にスリット状の切欠き部を設けて前記熱電対を配置し、
前記干渉する位置のバックアップフレームに前記電磁コイルを接触状に配置できるように構成したことを最も主要な特徴とする。
Further, the continuous casting mold of the present invention used for carrying out the continuous casting method of the present invention,
Mold copper plate,
A backup frame for supporting the mold copper plate;
A thermocouple for measuring the temperature of the mold copper plate;
A mold having an electromagnetic coil disposed on the outer periphery of the mold copper plate,
Place the thermocouple by providing a slit-shaped notch in the thermocouple installation site of the backup frame at a position that interferes with the electromagnetic coil,
The main feature is that the electromagnetic coil can be arranged in contact with the backup frame at the interference position.

本発明は、ツイン鋳型を用いた連続鋳造において、鋳込み幅に応じて、制動する電磁コイルを選択するので、鋳込み幅に応じた最適の電磁ブレーキ制御が行えてブレーキ効率の向上が図れるという利点がある。   According to the present invention, in continuous casting using a twin mold, an electromagnetic coil to be braked is selected according to the casting width, so that the optimum electromagnetic brake control according to the casting width can be performed and the braking efficiency can be improved. is there.

また、本発明の連続鋳造用鋳型では、バックアップフレームに接して設置した電磁コイルの近傍に熱電対を設置できるので、電磁ブレーキや電磁攪拌効率を悪化させることなく、鋳型内の溶鋼流動解析、溶鋼温度測定及びブレイクアウト予知等の精度向上が図れるという利点がある。   Further, in the continuous casting mold of the present invention, since a thermocouple can be installed in the vicinity of the electromagnetic coil installed in contact with the backup frame, the molten steel flow analysis in the mold, molten steel can be performed without deteriorating the electromagnetic brake and electromagnetic stirring efficiency. There is an advantage that accuracy can be improved such as temperature measurement and breakout prediction.

以下、本発明を実施するための最良の形態について、図1〜図5を用いて説明する。
図1は本発明のツイン鋳型を用いた連続鋳造を説明する図で、(a)図に示したように、タンディッシュ1内の溶鋼は浸漬ノズル2を介して、例えば鋳込み方向の長さが900mmのツイン鋳型3の両副鋳型3a,3bに注入される。この際、溶鋼流は、矢印で示したように、中央の水冷銅板3cと外側の短辺3d側に向けて、例えば下向きに25°の角度で浸漬ノズル2から吐出される。
Hereinafter, the best mode for carrying out the present invention will be described with reference to FIGS.
FIG. 1 is a view for explaining continuous casting using the twin mold of the present invention. As shown in FIG. 1 (a), the molten steel in the tundish 1 has a length in the casting direction, for example, via an immersion nozzle 2. It is injected into both sub-molds 3a and 3b of the twin mold 3 of 900 mm. At this time, as indicated by the arrows, the molten steel flow is discharged from the immersion nozzle 2 downward, for example, at an angle of 25 ° toward the central water-cooled copper plate 3c and the outer short side 3d.

3eは前記浸漬ノズル2の吐出孔から吐出される溶鋼流に電磁ブレーキ力を作用させ、溶鋼の流速エネルギを均一化する電磁コイル3eで、図1(b)に示したように、例えば副鋳型3a,3bの長辺側における浸漬ノズル2の吐出孔の両側に高さ方向の中心がくるよう、それぞれ2個ずつで合計8個配置されている。なお、図1中の4は鋳型内の湯面レベルを検知する渦流レベル計、5は浸漬ノズル2に取り付けられたスライディングノズル、6はピンチロールを示す。   3e is an electromagnetic coil 3e that applies an electromagnetic brake force to the molten steel flow discharged from the discharge hole of the immersion nozzle 2 to equalize the flow velocity energy of the molten steel. As shown in FIG. A total of eight are arranged, two each so that the center in the height direction comes to both sides of the discharge hole of the immersion nozzle 2 on the long side of 3a and 3b. In FIG. 1, reference numeral 4 denotes a vortex flow level meter for detecting the level of hot water in the mold, 5 denotes a sliding nozzle attached to the immersion nozzle 2, and 6 denotes a pinch roll.

前記電磁コイル3eは、前記したように副鋳型3a,3bの各長辺側に各2個ずつ配置した電磁コイル3eの磁極を、例えば図2に示したように、一体型構造とした構成で、鋳込み幅に応じて、これらの電磁コイル3eのうちの印加する電磁コイル3eを選択する。   As described above, the electromagnetic coil 3e has a structure in which the magnetic poles of the electromagnetic coil 3e arranged on the long side of each of the sub-molds 3a and 3b are integrated as shown in FIG. Depending on the casting width, the electromagnetic coil 3e to be applied is selected from these electromagnetic coils 3e.

かかる電磁コイル3eに交流電流から変換した直流電流を供給するための電源装置7と、この電源装置7側に配置されて、電磁コイル3eに通電する電流の切り替えを行う回路の一例を図3に示す。図3に示したように、通電する電流は、スイッチ盤9により、内側の電磁コイル3eのみ印加する時(A)と、全ての電磁コイル3eを印加する時(B)に切り替えるようになっている。   FIG. 3 shows an example of a power supply device 7 for supplying a direct current converted from an alternating current to the electromagnetic coil 3e, and a circuit that is arranged on the power supply device 7 side and switches the current to be supplied to the electromagnetic coil 3e. Show. As shown in FIG. 3, the energized current is switched by the switch board 9 when only the inner electromagnetic coil 3e is applied (A) and when all the electromagnetic coils 3e are applied (B). Yes.

そして、この図3に示した例は、1組の前記電源装置7から8個の電磁コイル3eに6本の給電ケーブル8a〜8fで接続しているものを示しているが、回路を工夫することで、狭幅時から広幅時への通電する電流の切り替えに対応して、中央に位置する4個の電磁コイル3eのうち片方(図3では紙面右側)の電磁コイルの極性が、括弧で示したようにS極のものはN極へ、N極のものはS極へと変わるようになっている。なお、図3中の10は電磁コイル3e間を接続するケーブルであり、このケーブル10は外部には現れない。   The example shown in FIG. 3 shows that one power supply device 7 is connected to eight electromagnetic coils 3e by six power supply cables 8a to 8f, but the circuit is devised. Thus, the polarity of one of the four electromagnetic coils 3e located at the center (the right side in FIG. 3) in parentheses corresponds to the switching of the current to be supplied from the narrow to the wide. As shown, the S pole is changed to the N pole, and the N pole is changed to the S pole. In addition, 10 in FIG. 3 is a cable which connects between the electromagnetic coils 3e, and this cable 10 does not appear outside.

かかる構成のツイン鋳型3を用いた連続鋳造では、その両短辺3dを幅中央側に寄せた、鋳型鋳込み幅が狭い場合には、両浸漬ノズル2は、副鋳型3a,3bの中央に位置する水冷銅板3cと外側に位置する短辺3dの中心に位置している。   In the continuous casting using the twin mold 3 having such a configuration, when both of the short sides 3d are brought closer to the center of the width and the casting width is narrow, the two immersion nozzles 2 are positioned at the center of the sub-molds 3a and 3b. The water-cooled copper plate 3c and the short side 3d located outside are located at the center.

従って、図4(a)に示したように、スイッチ盤9をBに切り替え、前記8個の電磁コイル3eには、図2(a)に示すように、同一の印加を施し(白抜き矢印で示す)、中央に位置する水冷銅板2cと外側に位置する短辺3dへの両吐出流に矢印で示すようなブレーキ力を作用させる。   Therefore, as shown in FIG. 4A, the switch panel 9 is switched to B, and the same application is applied to the eight electromagnetic coils 3e as shown in FIG. A braking force as indicated by an arrow is applied to both discharge flows to the water-cooled copper plate 2c located at the center and the short side 3d located outside.

これに対して、両短辺3dをツイン鋳型3の幅外側に寄せた、鋳込み幅が広い場合は、両浸漬ノズル2は副鋳型3a,3bの中央に位置する水冷銅板3cまでの距離L1が外側に位置する短辺3dまでの距離L2よりも短い(図1(b)参照)。   On the other hand, when the casting width is wide when both short sides 3d are moved to the outside of the twin mold 3, the distance L1 between the two immersion nozzles 2 to the water-cooled copper plate 3c located at the center of the sub-molds 3a and 3b is small. It is shorter than the distance L2 to the short side 3d located outside (see FIG. 1B).

従って、図4(b)に示したように、スイッチ盤9をAに切り替え、図2(b)に示したように、中央に位置する4個の電磁コイル3eにのみ印加して(白抜き矢印で示す)、中央に位置する水冷銅板2cへの吐出流にのみ矢印で示すようなブレーキ力を作用させる。   Therefore, as shown in FIG. 4B, the switch panel 9 is switched to A and applied only to the four electromagnetic coils 3e located at the center as shown in FIG. A braking force as indicated by an arrow is applied only to the discharge flow to the water-cooled copper plate 2c located at the center.

前述の本発明の連続鋳造方法に使用するツイン鋳型3、或いは、本発明の電磁ブレーキを設置するツイン鋳型3にあっては、ブレイクアウトを予知するために設置する熱電対11は、前述の課題を解決するには電磁ブレーキの電磁コイル3eと干渉することなく設置することが望ましい。   In the twin mold 3 used in the above-described continuous casting method of the present invention, or in the twin mold 3 in which the electromagnetic brake of the present invention is installed, the thermocouple 11 installed to predict breakout is the above-mentioned problem. In order to solve the problem, it is desirable to install without interfering with the electromagnetic coil 3e of the electromagnetic brake.

そこで、本発明のツイン鋳型3では、図5に示したように、鋳型銅板3fを支持するバックアップフレーム3gの熱電対11設置部位に、例えば幅50mm、深さ30mm、長さ400mmのスリット状の切欠き部3gaを設け、この切欠き部3gaに熱電対11を配置することで、バックアップフレーム3gに前記鋳型銅板3fの外周に配置された電磁コイル3eを接触状に配置できるようにしている。なお、この切欠き部3gaに取り付ける熱電対11は、図5(a)に示すように、その他の部位に取り付ける熱電対11よりも短いものを使用することはいうまでもない。   Therefore, in the twin mold 3 of the present invention, as shown in FIG. 5, a slit-like shape having a width of 50 mm, a depth of 30 mm, and a length of 400 mm, for example, is provided at the thermocouple 11 installation site of the backup frame 3g that supports the mold copper plate 3f. By providing a notch 3ga and disposing the thermocouple 11 in the notch 3ga, the electromagnetic coil 3e disposed on the outer periphery of the mold copper plate 3f can be disposed in contact with the backup frame 3g. Needless to say, the thermocouple 11 attached to the notch 3ga is shorter than the thermocouple 11 attached to other parts as shown in FIG.

このような構成の本発明のツイン鋳型3は、電磁ブレーキを設けるものに限らず、電磁攪拌装置を設けるものでも適用可能である。   The twin mold 3 of the present invention having such a configuration is not limited to the one provided with an electromagnetic brake, but can be applied to one provided with an electromagnetic stirring device.

以下、本発明の効果を確認するために行った実験結果について説明する。
実験に使用したツイン鋳型は図3及び図5に示した構成で、電磁コイルは、ケイ素鋼板の積層構造である鉄心部に、一つの磁極当り100ターンのコイルを巻いたものを使用した。この電磁コイルが発生する磁束密度は最大0.35テスラ、通常適用磁束密度は0.15〜0.35テスラであり、電源装置は直流440ボルト、750アンペアで330kWのものを使用した。
Hereinafter, the results of experiments conducted to confirm the effects of the present invention will be described.
The twin mold used in the experiment has the configuration shown in FIG. 3 and FIG. 5, and the electromagnetic coil used was a coil of 100 turns per magnetic pole wound around an iron core that is a laminated structure of silicon steel plates. The magnetic flux generated by this electromagnetic coil has a maximum magnetic flux density of 0.35 Tesla, the normal applied magnetic flux density is 0.15 to 0.35 Tesla, and a power supply having a direct current of 440 volts, 750 amps and 330 kW is used.

前記の本発明ツイン鋳型と電磁ブレーキを用いた本発明方法により、低炭素鋼を1250mm幅で鋳込んだ場合の結果を図6に示した。図6より明らかなように、電磁ブレーキ制御を行わなかった(電磁ブレーキなし)場合には、かぶれ疵を発生させない最大鋳込み速度は1.4m/分であった(図6中の実線)。   FIG. 6 shows the results when low carbon steel was cast at a width of 1250 mm by the method of the present invention using the twin mold of the present invention and the electromagnetic brake. As is clear from FIG. 6, when the electromagnetic brake control was not performed (no electromagnetic brake), the maximum casting speed at which no rash occurred was 1.4 m / min (solid line in FIG. 6).

これに対して、本発明による電磁ブレーキ制御を実施した場合(電磁ブレーキ電流250A、及び、500A通電:図6中の破線)には、かぶれ疵を発生させない最大鋳込み速度は1.6m/分まで向上させることができた。   On the other hand, when the electromagnetic brake control according to the present invention is carried out (electromagnetic brake current 250A and 500A energization: broken line in FIG. 6), the maximum casting speed that does not cause rash is 1.6 m / min. I was able to improve.

本発明は上記の例に限らず、各請求項に記載された技術的思想の範囲内で、適宜実施の形態を変更しても良いことは、言うまでもない。   It goes without saying that the present invention is not limited to the above-described examples, and the embodiment may be appropriately changed within the scope of the technical idea described in each claim.

以上の本発明は、ツイン鋳型に限らず、通常の鋳型であっても、長辺方向に対称的に電磁力を制御できるものであれば適用できる。   The present invention described above is not limited to a twin mold, and can be applied to an ordinary mold as long as the electromagnetic force can be controlled symmetrically in the long side direction.

本発明のツイン鋳型を用いた連続鋳造を説明するための正面図で、(a)は浸漬ノズルの吐出孔と渦流レベル計の説明図、(b)は電磁コイルの配置位置の説明図である。It is a front view for demonstrating the continuous casting using the twin mold of this invention, (a) is explanatory drawing of the discharge hole and eddy current level meter of an immersion nozzle, (b) is explanatory drawing of the arrangement position of an electromagnetic coil. . 本発明のツイン鋳型を用いた連続鋳造操業時に作用させるブレーキ力を説明するための図で、(a)は狭幅時、(b)は広幅時である。It is a figure for demonstrating the brake force applied at the time of the continuous casting operation using the twin mold of this invention, (a) is at the time of narrow width, (b) is at the time of wide. 本発明のツイン鋳型の電源装置と電磁コイルとの結線状態を説明する図である。It is a figure explaining the connection state of the power supply device of the twin mold of this invention, and an electromagnetic coil. 図3と同様の図で、(a)は狭幅時における印加時の図、(b)は広幅時における印加時の図である。FIGS. 3A and 3B are diagrams similar to FIG. 3, in which FIG. 3A is a diagram when applying a narrow width, and FIG. 3B is a diagram when applying a wide width. 本発明のツイン鋳型における熱電対の設置状態を説明する図で、(a)は平面から見た図、(b)は(a)のB−B断面図である。It is a figure explaining the installation state of the thermocouple in the twin mold of this invention, (a) is the figure seen from the plane, (b) is BB sectional drawing of (a). 本発明の効果を示した図で、鋳造速度と溶鋼過熱度との関係を示した図である。It is the figure which showed the effect of this invention, and is the figure which showed the relationship between casting speed and molten steel superheat degree. ツイン鋳型の説明図で、(a)は狭幅時、(b)は広幅時を示す。It is explanatory drawing of a twin casting_mold | template, (a) shows the time of narrow width, (b) shows the time of wide width. 従来技術でツイン鋳型に印加する電磁ブレーキ力を変化させる場合の電磁コイルの構成を説明する図である。It is a figure explaining the structure of the electromagnetic coil in the case of changing the electromagnetic brake force applied to a twin mold | type with a prior art.

符号の説明Explanation of symbols

2 浸漬ノズル
3 ツイン鋳型
3a、3b 副鋳型
3c 水冷銅板
3d 短辺
3e 電磁コイル
3f 鋳型銅板
3g バックアップフレーム
3ga 切欠き部
7 電源装置
8a〜8f 給電ケーブル
9 スイッチ盤
11 熱電対
2 Submerged nozzle 3 Twin mold 3a, 3b Sub mold 3c Water-cooled copper plate 3d Short side 3e Electromagnetic coil 3f Molded copper plate 3g Backup frame 3ga Notch 7 Power supply device 8a-8f Power supply cable 9 Switch panel 11 Thermocouple

Claims (5)

外側の両短辺を個々に鋳型幅方向に移動することで、幅中央部に挿入した仕切り用水冷銅板によって仕切られた両副鋳型の幅を変更可能としたツイン鋳型を用いて鋳造する際に、
吐出方向が鋳型幅方向である2孔を有する浸漬ノズルの各吐出孔からの溶鋼吐出流に電磁力を作用させて制動する電磁コイルを鋳型銅板の外周部に合計8個配置して連続鋳造する方法であって、
前記副鋳型の幅に応じて、浸漬ノズルと前記仕切り用水冷銅板間に向く2つの溶鋼吐出流のみを制動するのか、或いは、4つの全ての溶鋼吐出流を制動するのかを、電源装置側の切り替え回路を用いて選択することを特徴とするツイン鋳型を用いた連続鋳造方法。
When casting using twin molds that can change the width of both sub molds partitioned by the water-cooled copper plate for partition inserted in the center of the width by individually moving the outer short sides in the mold width direction ,
A total of eight electromagnetic coils that are braked by applying electromagnetic force to the molten steel discharge flow from each discharge hole of the immersion nozzle having two holes whose discharge direction is the mold width direction are continuously cast on the outer periphery of the mold copper plate. A method,
Depending on the width of the sub-mold, whether to brake only two molten steel discharge flows facing between the immersion nozzle and the partition water-cooled copper plate or whether to brake all four molten steel discharge flows is determined on the power supply side. A continuous casting method using a twin mold, wherein selection is performed using a switching circuit.
鋳型の幅中央部に仕切り用水冷銅板が挿入され、外側の両短辺が個々に鋳型幅方向に移動可能なツイン鋳型における鋳型銅板の外周部に配置され、浸漬ノズルの各吐出孔からの溶鋼の吐出流に電磁力を作用させて制動するための電磁コイルと、
この電磁コイルに直流電流を供給するための電源装置と、
この電源装置側に配置され、電流の切り替えを行う回路を有するツイン鋳型の電磁制動装置であって、
前記電磁コイルが鋳型銅板の外周部に合計8個配置され、
前記浸漬ノズルが、溶鋼吐出方向が鋳型幅方向である2孔を有する場合に、
前記副鋳型の幅に応じて、前記浸漬ノズルと前記仕切り用水冷銅板間の2つの溶鋼吐出流のみを制動するか、或いは、4つの全ての溶鋼吐出流を制動するのかを、前記回路により選択可能としたことを特徴とするツイン鋳型用の電磁制動装置。
A water-cooled copper plate for partitioning is inserted in the center of the mold width, and both outer short sides are individually arranged on the outer periphery of the mold copper plate in the twin mold that can move in the mold width direction, and the molten steel from each discharge hole of the immersion nozzle An electromagnetic coil for braking by applying an electromagnetic force to the discharge flow of
A power supply device for supplying a direct current to the electromagnetic coil;
A twin mold electromagnetic braking device that is arranged on the power supply device side and has a circuit for switching current,
A total of eight electromagnetic coils are arranged on the outer periphery of the mold copper plate,
When the immersion nozzle has two holes whose molten steel discharge direction is the mold width direction,
Depending on the width of the sub-mold, the circuit selects whether to brake only two molten steel discharge flows between the immersion nozzle and the partition water-cooled copper plate or to brake all four molten steel discharge flows An electromagnetic braking device for a twin mold characterized by being made possible.
前記8個の電磁コイルに交流電流から変換した直流電流を供給する前記電源装置が1組であり、該電源装置から8個の電磁コイルへの給電ケーブルが6本であることを特徴とする請求項2記載のツイン鋳型用の電磁制動装置。   The power supply device for supplying a direct current converted from an alternating current to the eight electromagnetic coils is one set, and six power supply cables from the power supply device to the eight electromagnetic coils are provided. Item 3. An electromagnetic braking device for a twin mold according to Item 2. 溶鋼の吐出流に電磁力を作用させるための磁極が浸漬ノズルの各吐出孔近傍に合計8個配置され、各長辺側の4個の磁極をそれぞれ一体型構造としたことを特徴とする請求項2又は3記載のツイン鋳型用の電磁制動装置。   A total of eight magnetic poles for applying an electromagnetic force to the discharge flow of molten steel are arranged in the vicinity of each discharge hole of the immersion nozzle, and each of the four magnetic poles on the long side has an integrated structure. Item 4. The electromagnetic braking device for a twin mold according to Item 2 or 3. 鋳型銅板と、
該鋳型銅板を支持するバックアップフレームと、
前記鋳型銅板の温度を測定する熱電対と、
前記鋳型銅板の外周に配置された電磁コイルを有する鋳型であって、
前記電磁コイルと干渉する位置のバックアップフレームの熱電対設置部位にスリット状の切欠き部を設けて前記熱電対を配置し、
前記干渉する位置のバックアップフレームに前記電磁コイルを接触状に配置できるように構成したことを特徴とする連続鋳造用鋳型。
Mold copper plate,
A backup frame for supporting the mold copper plate;
A thermocouple for measuring the temperature of the mold copper plate;
A mold having an electromagnetic coil disposed on the outer periphery of the mold copper plate,
Place the thermocouple by providing a slit-like notch in the thermocouple installation site of the backup frame at a position that interferes with the electromagnetic coil,
A casting mold for continuous casting, characterized in that the electromagnetic coil can be disposed in contact with the backup frame at the interference position.
JP2004041955A 2004-02-18 2004-02-18 Continuous casting method using twin mold, electromagnetic braking device for twin mold, and continuous casting mold Expired - Fee Related JP4296958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004041955A JP4296958B2 (en) 2004-02-18 2004-02-18 Continuous casting method using twin mold, electromagnetic braking device for twin mold, and continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004041955A JP4296958B2 (en) 2004-02-18 2004-02-18 Continuous casting method using twin mold, electromagnetic braking device for twin mold, and continuous casting mold

Publications (2)

Publication Number Publication Date
JP2005230849A true JP2005230849A (en) 2005-09-02
JP4296958B2 JP4296958B2 (en) 2009-07-15

Family

ID=35014326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004041955A Expired - Fee Related JP4296958B2 (en) 2004-02-18 2004-02-18 Continuous casting method using twin mold, electromagnetic braking device for twin mold, and continuous casting mold

Country Status (1)

Country Link
JP (1) JP4296958B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008073717A (en) * 2006-09-20 2008-04-03 Sumitomo Metal Ind Ltd Casting mold for continuous casting, and continuous casting method using the same
JP2008073744A (en) * 2006-09-22 2008-04-03 Sumitomo Metal Ind Ltd Continuous casting method
JP2009248110A (en) * 2008-04-03 2009-10-29 Sumitomo Metal Ind Ltd Connection method for electromagnetic coil device usable for both electromagnetic stirring and electromagnetic braking
JP2010036191A (en) * 2008-07-31 2010-02-18 Sumitomo Metal Ind Ltd Continuous casting method for steel
JP2017080771A (en) * 2015-10-28 2017-05-18 新日鐵住金株式会社 Mold for continuous casting
CN107000049A (en) * 2014-11-20 2017-08-01 Abb瑞士股份有限公司 The method of electormagnetic braking sytem and control molten metal flowing in metal manufacturing process
JP2020011257A (en) * 2018-07-17 2020-01-23 日本製鉄株式会社 Continuous casting machine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008073717A (en) * 2006-09-20 2008-04-03 Sumitomo Metal Ind Ltd Casting mold for continuous casting, and continuous casting method using the same
JP2008073744A (en) * 2006-09-22 2008-04-03 Sumitomo Metal Ind Ltd Continuous casting method
JP2009248110A (en) * 2008-04-03 2009-10-29 Sumitomo Metal Ind Ltd Connection method for electromagnetic coil device usable for both electromagnetic stirring and electromagnetic braking
JP2010036191A (en) * 2008-07-31 2010-02-18 Sumitomo Metal Ind Ltd Continuous casting method for steel
CN107000049A (en) * 2014-11-20 2017-08-01 Abb瑞士股份有限公司 The method of electormagnetic braking sytem and control molten metal flowing in metal manufacturing process
JP2017080771A (en) * 2015-10-28 2017-05-18 新日鐵住金株式会社 Mold for continuous casting
JP2020011257A (en) * 2018-07-17 2020-01-23 日本製鉄株式会社 Continuous casting machine
JP7119684B2 (en) 2018-07-17 2022-08-17 日本製鉄株式会社 continuous casting machine

Also Published As

Publication number Publication date
JP4296958B2 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
KR101396734B1 (en) Method and apparatus for controlling the flow of molten steel in a mould
KR960706383A (en) CONTINUOUS CASTING METHOD AND APPARATUS
JP4794858B2 (en) Method and apparatus for controlling flow in ingot molds for continuous slab casting.
JP4296958B2 (en) Continuous casting method using twin mold, electromagnetic braking device for twin mold, and continuous casting mold
US5836376A (en) Method and apparatus for giving vibration to molten metal in twin roll continuous casting machine
JP4591156B2 (en) Steel continuous casting method
JP2006289448A (en) Linear-moving magnetic field type electromagnetic-stirring apparatus
JP5672909B2 (en) Molten steel flow velocity measuring method, molten steel flow velocity measuring apparatus, and continuous casting operation method
JP4356531B2 (en) Steel continuous casting method and electromagnetic force control device for molten steel in mold
JP2008055431A (en) Method of continuous casting for steel
KR100751021B1 (en) Equipment for supplying molten metal to a continuous casting ingot mould and Method for using same
JP5375242B2 (en) Continuous casting apparatus and continuous casting method
JP5369808B2 (en) Continuous casting apparatus and continuous casting method
JP4669367B2 (en) Molten steel flow control device
JP2005238276A (en) Electromagnetic-stirring casting apparatus
CN113557097A (en) Electromagnetic brake for a casting mould of a continuous slab casting installation
JPH11123511A (en) Electromagnetic stirring method and electromagnetic strring device
CN113365758B (en) Device for controlling the flow rate in a metal continuous casting mould and related system
JPH06304719A (en) Method for braking molten metal in mold for continuous casting and electromagnetic device for brake
JP4595351B2 (en) Steel continuous casting method
JP4254576B2 (en) Steel continuous casting apparatus and continuous casting method
JP2000197952A (en) Method for controlling molten steel flow in mold in continuous casting
JP4858037B2 (en) Continuous casting mold and continuous casting method using the same
JPH08197212A (en) Method for continuously casting molten metal and mold for continuous casting
KR20200130488A (en) Molding equipment and continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090406

R150 Certificate of patent or registration of utility model

Ref document number: 4296958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees