JPH08197212A - Method for continuously casting molten metal and mold for continuous casting - Google Patents

Method for continuously casting molten metal and mold for continuous casting

Info

Publication number
JPH08197212A
JPH08197212A JP1043895A JP1043895A JPH08197212A JP H08197212 A JPH08197212 A JP H08197212A JP 1043895 A JP1043895 A JP 1043895A JP 1043895 A JP1043895 A JP 1043895A JP H08197212 A JPH08197212 A JP H08197212A
Authority
JP
Japan
Prior art keywords
long side
side plate
meniscus
current
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1043895A
Other languages
Japanese (ja)
Inventor
Hiromitsu Shibata
浩光 柴田
Nagayasu Bessho
永康 別所
Satoshi Idokawa
聡 井戸川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1043895A priority Critical patent/JPH08197212A/en
Publication of JPH08197212A publication Critical patent/JPH08197212A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE: To improve the quality of a cast slab by making the density distributions of magnetic flux and induction current generated near a meniscus part suitable and controlling the solidified shell shape at the initial stage. CONSTITUTION: Molten metal is poured into an electric conductive mold for continuous casting formed with one pair of long side plates 6 and short side plates. While controlling the shell shape at the initial stage by directly conducting the electric power in the vertical direction of the mold to impress AC magnetic field near the meniscus 3, the casting is executed. Then, slits 1 are formed in the vertical direction and thickness direction of the long side plates 6 over the meniscus 3 corresponding part from the upper ends of the long side plates 6. The density distributions of the magnetic flux and the induction current generated near the meniscus part 3 are made to be suitable by adjusting number of the divisions and/or the dividing width and adjusting the current to each divided part of the long side plate 6 electrically divided with the slits 1 while using the variable resistance 7, etc., to control the shape of the solidified shell at the initial stage. By this method, the impressed efficiency of the magnetic field can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、交流磁場を用いる溶
融金属の連続鋳造に関し、特に、鋳型内で生成する初期
凝固シェルの形状を好適に制御することにより、鋳片品
質の向上とともに高速鋳造を可能とする連続鋳造方法お
よび連続鋳造用鋳型を提案するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to continuous casting of molten metal using an alternating magnetic field, and in particular, by suitably controlling the shape of an initially solidified shell produced in a mold, high-speed casting with improved slab quality. The present invention proposes a continuous casting method and a continuous casting mold that enable the above.

【0002】[0002]

【従来の技術】これまで、交流磁場を用い、初期凝固シ
ェルの形状を制御する技術としては、例えば、特公昭5
7−21408号公報(溶融金属の鋳造方法)や特開昭
64−83348号公報(連続鋳造におけるパウダーの
供給方法)に提案開示されている手段がある。
2. Description of the Related Art Heretofore, as a technique for controlling the shape of an initial solidified shell using an alternating magnetic field, for example, Japanese Patent Publication No.
There are means proposed and disclosed in JP-A-7-21408 (casting method for molten metal) and JP-A-64-83348 (powder feeding method in continuous casting).

【0003】しかしながら、これらの手段は、電磁誘導
コイルを鋳型バックアップフレートの外側に設置してい
るため、バックアッププレートと鋳型とを誘導加熱する
こと、および電磁誘導コイルと初期凝固シェルとの距離
か大きいことなどによって、磁場の印加効率が極端に悪
く、電力損失が大きくなるとともに、磁場の印加能力に
限界を生じていた。この傾向は印加する磁場の周波数が
高くなるほど顕著となり、周波数1kHz以上の高周波
領域では実質的に磁場による初期凝固シェルの形状制御
は不可能であった。
However, in these means, since the electromagnetic induction coil is installed on the outside of the mold backup plate, the backup plate and the mold are induction-heated, and the distance between the electromagnetic induction coil and the initial solidification shell is large. As a result, the efficiency of applying the magnetic field is extremely poor, the power loss increases, and the magnetic field applying capability is limited. This tendency becomes more remarkable as the frequency of the applied magnetic field becomes higher, and it is virtually impossible to control the shape of the initial solidified shell by the magnetic field in the high frequency region of 1 kHz or higher.

【0004】このような問題点を解決する技術として特
開平4−100658号公報(連続鋳造用鋳型)に開示
されている手段がある。この手段は、鋳型に直接その横
方向に交流電流を通電するもので、鋳型に電磁誘導コイ
ルの役割を担わせているため、鋳型やバックアッププレ
ートによる磁場の遮蔽や初期凝固シェルとの間隔がなく
なるため、磁場の印加効率が増加するという利点を有し
ている。
As a technique for solving such a problem, there is a means disclosed in JP-A-4-100658 (mold for continuous casting). This means applies an alternating current directly to the mold in the lateral direction, and since the mold plays the role of an electromagnetic induction coil, there is no shielding of the magnetic field by the mold or the backup plate and there is no gap with the initial solidification shell. Therefore, there is an advantage that the magnetic field application efficiency is increased.

【0005】しかしながら、この手段では鋳型全体に電
流が流れることにより、初期凝固シェル部のみ効率よく
磁場を印加することができず、その印加効率が低減する
という問題があった。
However, this means has a problem that the magnetic field cannot be efficiently applied only to the initial solidified shell portion due to the current flowing through the entire mold, and the application efficiency is reduced.

【0006】すなわち、電学論A.110巻、9号、p
591 〜597 ( 平成2年)にも示されているように、交流
電流を導体平板に通電した場合、電流と電流自体によっ
て発生する磁場との相互作用により、図1に示すように
電流が両端エッジ部分に集中する現象があり、この傾向
は周波数が高くなるほど顕著になることなどあって、初
期凝固シェル部に適切かつ効率よく磁場を印加すること
は困難であった。
In other words, the theory of electronics A. Volume 110, Issue 9, p
As shown in 591-597 (1992), when an alternating current is applied to a conductor plate, the current and the magnetic field generated by the current itself cause the current to flow at both ends as shown in Fig. 1. There is a phenomenon that the magnetic field concentrates on the edge part, and this tendency becomes more remarkable as the frequency becomes higher. Therefore, it was difficult to apply the magnetic field appropriately and efficiently to the initial solidified shell part.

【0007】なお、図1は鋳型板左右方向に通電した場
合の電流密度分布を示す説明図である。
FIG. 1 is an explanatory diagram showing a current density distribution when electricity is applied in the left-right direction of the mold plate.

【0008】[0008]

【発明が解決しようとする課題】この発明は、前記した
問題点を有利に解決しようとするものであり、効率よく
かつ磁束および誘導電流の密度分布を適正化して、初期
凝固シェルの形状を好適に制御できる溶融金属の連続鋳
造方法および連続鋳造用鋳型を提案することを目的とす
る。
DISCLOSURE OF THE INVENTION The present invention is intended to solve the above-mentioned problems in an advantageous manner, and efficiently optimizes the density distribution of magnetic flux and induced current so as to optimize the shape of the initial solidified shell. The object of the present invention is to propose a continuous casting method for molten metal and a casting mold for continuous casting, which can be controlled in a constant manner.

【0009】[0009]

【課題を解決するための手段】この発明は、平板を流れ
る電流密度分布を、その表面に発生する磁束密度を測定
することによって調査した結果、平板を流れる交流電流
は、電流径路が短かいほどエッジ部に集中する傾向が減
少すること、相対する平板両端に複数の端子を設けた場
合、該端子の位置を変化させることにより電流密度分布
を変化させることができるとの知見により達成したもの
である。すなわち、この発明の要旨は以下の通りであ
る。
According to the present invention, as a result of investigating a current density distribution flowing through a flat plate by measuring a magnetic flux density generated on the surface thereof, an AC current flowing through the flat plate has a shorter current path. It was achieved by the knowledge that the tendency to concentrate on the edge part decreases and that the current density distribution can be changed by changing the position of the terminals when multiple terminals are provided on opposite ends of the flat plate. is there. That is, the gist of the present invention is as follows.

【0010】それぞれ1対の長辺板と短辺板とからな
る導電性の連続鋳造用鋳型に金属溶湯を注入し、鋳型上
下方向に直接通電することよりメニスカス近傍に交流磁
場を印加して初期凝固シェルの形状を制御しながら鋳造
する溶融金属の連続鋳造方法であって、長辺板上端から
メニスカス相当部分にわたって上下方向でかつ長辺板厚
さ方向にスリットを有し、該スリットにより電気的に分
割する長辺板の、分割数および/または分割幅の調整な
らびに各分割辺への電流量の調整により、メニスカス部
近傍に発生する磁束および誘導電流の密度分布を適正化
し、初期凝固シェルの形状を制御することを特徴とする
溶融金属の連続鋳造方法である。
The molten metal is poured into a conductive continuous casting mold consisting of a pair of long side plates and short side plates, and an alternating magnetic field is applied in the vicinity of the meniscus by directly energizing the mold vertically. A continuous casting method for molten metal in which the shape of a solidified shell is controlled while controlling the shape of a solidified shell, and has a slit in the vertical direction and the thickness direction of the long side plate from the upper end of the long side plate to a portion corresponding to the meniscus, and the slit electrically By adjusting the number of divisions and / or the division width of the long side plate that is divided into two and adjusting the amount of current to each division side, the density distribution of the magnetic flux and induced current generated near the meniscus is optimized, and the initial solidification shell It is a continuous casting method for molten metal, characterized by controlling the shape.

【0011】それぞれ1対の長辺板と短辺板とからな
る導電性の連続鋳造用鋳型に金属溶湯を注入し、鋳型上
下方向に直接通電することよりメニスカス近傍に交流磁
場を印加して初期凝固シェルの形状を制御しながら鋳造
する溶融金属の連続鋳造方法であって、長辺板のメニス
カス下部相当部分に設ける交流電流用端子の個数と位置
との変更により、鋳型に流れる電流密度分布を調整して
メニスカス近傍に発生する磁束および誘導電流の密度分
布を適正化し、初期凝固シェルの形状を制御することを
特徴とする溶融金属の連続鋳造方法である。
The molten metal is poured into a conductive continuous casting mold consisting of a pair of long side plates and short side plates, and an alternating magnetic field is applied in the vicinity of the meniscus by directly energizing the mold in the vertical direction. A method for continuous casting of molten metal in which the shape of the solidified shell is controlled, in which the distribution of the current density flowing in the mold can be changed by changing the number and position of the AC current terminals provided in the portion corresponding to the lower portion of the meniscus of the long side plate. This is a continuous casting method for molten metal, characterized by adjusting the density distribution of magnetic flux and induced current generated near the meniscus to control the shape of the initial solidified shell.

【0012】それぞれ1対の長辺板と短辺板とからな
る導電性の連続鋳造用鋳型であって、長辺板が、その上
端からメニスカス直上相当部分にわたって上下方向でか
つ長辺板厚さ方向に1本以上のスリットを有し、該スリ
ットにより電気的に分割された各上端部に交流電流用端
子を設けるとともに、長辺板下方端に交流電流用端子を
設けてなる溶融金属の連続鋳造用鋳型である。
A conductive continuous casting mold comprising a pair of a long side plate and a short side plate, wherein the long side plate extends vertically from the upper end to a portion immediately above the meniscus and has a long side plate thickness. A continuous molten metal that has one or more slits in the direction and is provided with an AC current terminal at each upper end electrically divided by the slits and an AC current terminal at the lower end of the long side plate. It is a casting mold.

【0013】それぞれ1対の長辺板と短辺板とからな
る導電性の連続鋳造用鋳型であって、長辺板が、メニス
カス下部相当部分左右方向に1ケ以上の通電用穴を有
し、該通電用穴に交流電流用端子を設けるとともに、長
辺板上方端に交流電流用端子を設けてなる溶融金属の連
続鋳造用鋳型である。
A conductive continuous casting mold comprising a pair of a long side plate and a short side plate, wherein the long side plate has one or more current-carrying holes in the lateral direction corresponding to the lower portion of the meniscus. A casting mold for continuous casting of molten metal, wherein an alternating current terminal is provided in the energization hole and an alternating current terminal is provided at an upper end of the long side plate.

【0014】それぞれ1対の長辺板と短辺板とからな
る導電性の連続鋳造用鋳型であって、長辺板が、その上
端からメニスカス直上相当部分にわたって上下方向でか
つ長辺板厚さ方向に1本以上のスリットを有し、該スリ
ットにより電気的に分割された各上端部に交流電流用端
子を設けるとともに、メニスカス下部相当部分左右方向
に1ケ以上の通電用穴と該通電用穴にそれぞれ同位相の
交流電流用端子を設けてなる溶融金属の連続鋳造用鋳型
である。
A conductive continuous casting mold comprising a pair of a long side plate and a short side plate, wherein the long side plate extends from the upper end to a portion immediately above the meniscus in the vertical direction and the thickness of the long side plate. Direction has one or more slits, and an AC current terminal is provided at each upper end portion electrically divided by the slits, and one or more current-carrying holes and one or more current-carrying holes are provided in the left-right direction of the portion corresponding to the lower part of the meniscus. It is a mold for continuous casting of molten metal in which holes have alternating current terminals of the same phase.

【0015】こゝで、鋳型長辺板にスリットを設け電気
的に分割することは、このスリット部での絶縁が、長辺
板上端からの通電距離が長くなるにつれ、電流が左右方
向に偏っていくのを防止するという効果を有するためで
ある。また、このスリットを設けることによる湯差しお
よびスリットの条痕が鋳片に発生することを防止するた
め、該スリットの下方端はメニスカスより上の位置とす
ることが好ましい。
Here, by providing a slit on the long side plate of the mold and electrically dividing it, the insulation at this slit part causes the current to be biased to the left and right as the energizing distance from the upper end of the long side plate becomes longer. This is because it has the effect of preventing the movement. Further, in order to prevent a slag and a scratch of the slit from being generated on the slab by providing the slit, the lower end of the slit is preferably located above the meniscus.

【0016】[0016]

【作用】この発明の作用について以下に説明する。この
発明は、それぞれ1対の長辺板と短辺板とからなる導電
性の連続鋳造用鋳型に金属溶湯を注入し、鋳型上下方向
に直接交流電流を通電することによりメニスカス近傍に
交流磁場を印加して初期凝固シェルの形状を制御しなが
ら溶融金属を連続鋳造する際、該鋳型長辺板のメニスカ
ス上方相当部分が電気的に分割されていることにより、
長辺板が電気的に分割されていない場合のように、電流
密度が長辺板エッジ部で大きく中央部で極端に減少する
ことがなくなり、磁束および誘導電流の密度分布を適正
化でき、その結果、鋳片品質を全幅にわたって向上させ
ると同時に安定した高速鋳造を可能とする。
The operation of the present invention will be described below. This invention injects a molten metal into a conductive continuous casting mold consisting of a pair of long side plates and short side plates, respectively, and applies an alternating current directly in the vertical direction of the mold to generate an alternating magnetic field near the meniscus. When continuously casting the molten metal while controlling the shape of the initial solidified shell by applying, the portion corresponding to above the meniscus of the mold long side plate is electrically divided,
Unlike the case where the long side plate is not electrically divided, the current density does not greatly decrease at the edge part of the long side plate and extremely decreases at the center part, and the density distribution of magnetic flux and induced current can be optimized. As a result, the quality of the slab is improved over the entire width, and at the same time, stable high speed casting is possible.

【0017】さらに、上記において、電気的分割の数お
よび/または分割の幅ならびに各分割部への電流量の調
整により、長辺板に流れる電流密度分布をより適正化す
ることができ、より一層の鋳片品質の向上がはかれる。
Further, in the above, by adjusting the number of electrical divisions and / or the width of division and the amount of current to each division, the distribution of the current density flowing in the long side plate can be further optimized, and further The slab quality can be improved.

【0018】上記における長辺板の電気的分割には、そ
の上端からメニスカス直上相当部分にわたって上下方向
でかつ長辺板厚さ方向にスリットを設けることが適して
いる。
For the electrical division of the long side plate in the above, it is suitable to provide a slit in the vertical direction from the upper end to a portion immediately above the meniscus and in the thickness direction of the long side plate.

【0019】また、長辺板メニスカス下部相当部分に通
電用穴と該通電用穴に交流電流用端子を設け長辺板上端
に設けた交流電流用端子との間で交流電流を通電するこ
と、さらに該通電用穴を左右方向に適宜設けることによ
り、上記と同様に鋳片品質の向上ができるとともに、初
期凝固シェル部分に重点的に磁場が印加されることにな
るため、磁場の印加効率を著しく向上できる。
In addition, an AC current is passed between the AC current terminal provided at the upper end of the long side plate by providing an AC current hole in the portion corresponding to the lower portion of the meniscus of the long side plate and an AC current terminal in the hole for conduction. Further, by appropriately providing the current-carrying holes in the left-right direction, the quality of the slab can be improved in the same manner as described above, and since the magnetic field is applied predominantly to the initial solidified shell portion, the application efficiency of the magnetic field can be improved. It can be significantly improved.

【0020】加えて、上記スリットにより電気的に分割
することと通電用穴を設けることを併用し適当に組合せ
て用いれば、極めて優れる磁場の印加効率が得られると
ともに、より一層の鋳片品質の向上および一層の高速鋳
造ができるようになる。
In addition, when electrically dividing by the slit and providing a current-carrying hole are used in combination with each other, an extremely excellent magnetic field application efficiency can be obtained and a further slab quality can be obtained. It becomes possible to improve and further high speed casting.

【0021】[0021]

【実施例】【Example】

実施例1 この発明に適合する鋳型長辺板の空心状態で通電を行っ
た際、長辺板表面に発生する磁束密度を測定することに
よって得られた長辺板内の電流密度分布を示す説明図を
図2〜5に示す。なお、これらの図において、それぞれ
(a)は正面からの図(b)は側面からの図である。
Example 1 Explanation of the current density distribution in the long side plate obtained by measuring the magnetic flux density generated on the surface of the long side plate when energizing the mold long side plate conforming to the present invention in the air-core state The figures are shown in FIGS. In each of these figures, (a) is a front view and (b) is a side view.

【0022】図2は、上端からメニスカス直上相当部分
にわたって上下方向でかつ長辺板厚さ方向にスリットを
設けて電気的に分割した鋳型長辺板内の電流密度分布を
示す説明図である。
FIG. 2 is an explanatory view showing the current density distribution in the long side plate of the mold which is electrically divided by providing slits in the vertical direction and the thickness direction of the long side plate from the upper end to a portion immediately above the meniscus.

【0023】図3は、上端からメニスカス直上相当部分
にわたって上下方向でかつ長辺板厚さ方向にスリットを
設けて電気的に分割し、その分割部通電径路に電流調整
用可変抵抗を配した鋳型長辺板内の電流密度分布を示す
説明図である。なお、この図において、通電用穴は絶縁
物で埋め込みを行っためくら穴としているが、貫通孔と
してもよく、その場合の貫通部口径は通電孔による鋳片
表面疵発生防止のため0.5mm以下とすることがよい。
FIG. 3 is a mold in which slits are provided in the vertical direction and in the thickness direction of the long side from the upper end to a portion immediately above the meniscus for electrical division, and a variable resistor for current adjustment is arranged in the division energizing path. It is explanatory drawing which shows the current density distribution in a long side plate. In this figure, the current-carrying hole is a blind hole because it is filled with an insulator, but it may be a through-hole. In this case, the diameter of the through-hole is 0.5 mm to prevent the occurrence of flaws on the surface of the slab due to the current-carrying hole. The following is recommended.

【0024】図4は、メニスカス下部相当部分に通電用
穴と該通電用穴に交流電流用端子を設けた鋳型長辺板内
の電流密度分布を示す説明図である。
FIG. 4 is an explanatory view showing a current density distribution in a long side plate of a mold in which an energization hole is provided in a portion corresponding to a lower portion of a meniscus and an AC current terminal is provided in the energization hole.

【0025】図5は、上端からメニスカス直上相当部分
にわたって上下方向でかつ長辺板厚さ方向にスリットを
設けて電気的に分割し、メニスカス下部相当部に通電用
穴と該通電用穴に交流電流用端子を設け、その分割部通
電路に電流調整用可変抵抗を配した鋳型長辺板内の電流
密度分布を示す説明図である。
In FIG. 5, slits are provided in the vertical direction from the upper end to a portion directly above the meniscus and in the thickness direction of the long side plate to electrically divide them, and an electrical conduction hole is provided in the portion corresponding to the lower portion of the meniscus and an alternating current is applied to the electrical conduction hole. It is explanatory drawing which shows the current density distribution in the long side plate of a mold which provided the terminal for electric current and arranged the variable resistance for electric current adjustment in the division | segmentation part electricity supply path.

【0026】これらの図において、1はスリット、2は
交流電流用端子、3はメニスカス、4は通電用穴、5は
電流径路、6は鋳型長辺板、7は可変抵抗、8は導線で
ある。
In these figures, 1 is a slit, 2 is a terminal for alternating current, 3 is a meniscus, 4 is a hole for energization, 5 is a current path, 6 is a long side plate of a mold, 7 is a variable resistor, and 8 is a conductive wire. is there.

【0027】これら図2〜5から明らかなように、メニ
スカス3近傍における長辺板内の電流密度分布は前掲図
1に示したようにその両端エッジ部で密になるようなこ
とはなく均等化している。
As is apparent from FIGS. 2 to 5, the current density distribution in the long side plate in the vicinity of the meniscus 3 does not become dense at both end edges thereof as shown in FIG. 1 and is equalized. ing.

【0028】また、これらの図において、メニスカス下
部相当部分通電用穴とその通電用穴に交流電源用端子を
設けた図4および図5はメニスカス3近傍相当部のみに
電流が流れるので、磁場の印加効率が向上することは明
白であり、分割数および/または分割幅の調整ならびに
各分割部への電流量が調整容易な図3および図5では、
電流密度分布の調整がより容易になり、したがって、メ
ニスカス近傍に発生する磁束および誘導電流の密度分布
のより一層の適正化が容易になる。
Further, in these figures, in FIGS. 4 and 5 in which the meniscus lower part corresponding current carrying hole and the AC power supply terminal are provided in the current carrying hole, the current flows only in the part corresponding to the vicinity of the meniscus 3, so that the magnetic field It is obvious that the application efficiency is improved, and in FIG. 3 and FIG. 5 in which it is easy to adjust the number of divisions and / or the division width and the amount of current to each division,
It becomes easier to adjust the current density distribution, and thus it becomes easier to further optimize the density distribution of the magnetic flux and the induced current generated near the meniscus.

【0029】実施例2 前掲図1に示した従来例の鋳型長辺板と図5に示したこ
の発明の適合例の鋳型長辺板とに、それぞれ空心状態で
同一の電源を用いて通電した際のメニスカス近傍相当部
長辺板幅方向表面において磁束密度分布を測定した結果
をまとめて図6に示す。図6は、鋳型長辺板幅方向にお
ける磁束密度分布を示すグラフである。
Example 2 The mold long side plate of the conventional example shown in FIG. 1 and the mold long side plate of the conforming example of the present invention shown in FIG. 5 were energized by using the same power source in an air-core state. FIG. 6 shows a summary of the results of measuring the magnetic flux density distribution on the surface of the long side plate width direction corresponding to the vicinity of the meniscus. FIG. 6 is a graph showing a magnetic flux density distribution in the long side plate width direction of the mold.

【0030】ここで、磁束密度分布は、各測定箇所にサ
ーチコイルを設置して測定した起電力が磁束密度と比例
することより、該起電力の分布から求めた。なお、図6
の磁束密度指数は測定値の最大値を1としてあらわした
ものである。
Here, the magnetic flux density distribution was obtained from the distribution of the electromotive force because the electromotive force measured by installing a search coil at each measurement location is proportional to the magnetic flux density. Note that FIG.
The magnetic flux density index of is represented by setting the maximum measured value to 1.

【0031】図6から明らかなように、磁束密度分布指
数は従来例ではその幅方向で長辺板両端に比してその中
央部で極端に低くなっているのに対し、この発明の適合
例では一様に高い値を示している。
As is clear from FIG. 6, in the conventional example, the magnetic flux density distribution index is extremely lower in the central portion of the widthwise direction of the long side plate than at the both ends thereof, whereas the conformity example of the present invention. Shows a uniformly high value.

【0032】実施例3 図7に示すように、前掲図5に示した1対の長辺板と、
1対の短辺板とからなる連続鋳造用鋳型を用い鋼の連続
鋳造を行った(適合例)。
Example 3 As shown in FIG. 7, a pair of long side plates shown in FIG.
Continuous casting of steel was performed using a continuous casting mold consisting of a pair of short side plates (compliance example).

【0033】その鋳造条件を以下に示す。 鋳片断面サイズ:200mm(短辺)×1600mm(長
辺) 鋳造速度:3m/min 供給電源:電力 --- 300kw、周波数 ----1kHz 鋼種:極低炭素鋼〔c〕≒ 0.01mass%)
The casting conditions are shown below. Cross-sectional size of slab: 200mm (short side) x 1600mm (long side) Casting speed: 3m / min Power supply: Electric power --- 300kw, Frequency ---- 1kHz Steel type: Ultra low carbon steel [c] ≒ 0.01mass% )

【0034】ここで、図7はこの発明に適合する連続鋳
造用鋳型を用い鋼を鋳造するときの縦断面の説明図で、
1はスリット、2は交流電流用端子、3はメニスカス、
4は通電用穴、6は鋳型長辺板、7は可変抵抗、8は導
線、9はタンディッシュ10は浸漬ノズル、11は初期
凝固シェル、12は溶湯、13はパウダー、14は交流
電源である。
Here, FIG. 7 is an explanatory view of a vertical section when steel is cast using a continuous casting mold conforming to the present invention.
1 is a slit, 2 is a terminal for alternating current, 3 is a meniscus,
4 is a hole for energization, 6 is a long side plate of the mold, 7 is a variable resistance, 8 is a conducting wire, 9 is a tundish 10 is an immersion nozzle, 11 is an initial solidification shell, 12 is a molten metal, 13 is powder, and 14 is an AC power supply. is there.

【0035】なお、図7は相対する長辺板への交流電源
の接続を直列にしたものであるが、図8のこの発明に適
合する連続鋳造用鋳型を用い鋼を鋳造するときの断面の
説明図のように並列とすることもよい。
Although FIG. 7 shows the connection of AC power sources to the opposite long side plates in series, the cross section of the steel used in the continuous casting mold of FIG. It may be arranged in parallel as illustrated.

【0036】また、比較のため前掲図1に示した長辺板
を有する連続鋳造用鋳型を用いて上記と同様に鋼の連続
鋳造を行なった(従来例)。
For comparison, continuous casting of steel was carried out in the same manner as above using the continuous casting mold having the long side plate shown in FIG. 1 (conventional example).

【0037】これらによって得られた鋳片について、鋳
片表面欠陥およびブレークアウトにつながると考えられ
るスティッキングマークなどを調査した。これらの調査
結果をそれぞれ図9および図10にまとめて示す。
The slabs thus obtained were investigated for slab surface defects and sticking marks which may lead to breakout. The results of these investigations are shown in FIGS. 9 and 10, respectively.

【0038】図9は、従来例と適合例の表面欠陥発生指
数を示すグラフ、図10は、従来例と適合例のスティッ
キングマーク発生指数を示すグラフである。
FIG. 9 is a graph showing the surface defect generation index of the conventional example and the conforming example, and FIG. 10 is a graph showing the sticking mark generation index of the conventional example and the conforming example.

【0039】こゝで、表面欠陥発生指数とは、スラブの
表面積あたりについて、割れ、カミ込み、ブローホール
等の欠陥が発生した割合を従来例での発生率を1として
示したものである。
Here, the surface defect generation index indicates the ratio of defects such as cracks, dents, and blowholes per surface area of the slab, with the occurrence ratio in the conventional example being 1.

【0040】スティッキングマーク発生指数とは、スラ
ブ表面積あたりについて、スティッキングマークが発生
した割合を従来例での発生率を1として示したものであ
る。
The sticking mark generation index is a ratio of the sticking marks generated per surface area of the slab, with the generation rate in the conventional example being 1.

【0041】図9および図10から明らかなように従来
例に比しこの発明の適合例は表面欠陥発生指数ならびに
スティッキングマーク発生指数とも大幅に減少している
ことがわかる。
As is clear from FIGS. 9 and 10, the surface defect generation index and the sticking mark generation index are greatly reduced in the conforming example of the present invention as compared with the conventional example.

【0042】[0042]

【発明の効果】この発明は、溶融金属の連続鋳造におい
て、鋳型の上下方向に直接通電して初期凝固シェルの形
状を制御するに際し、鋳型上端にスリットを設けて電気
的に分離するおよび/またはメニスカス下部相当部鋳型
に通電用穴と端子とを設置することにより、鋳型に流れ
る電流密度分布を調整し、メニスカス近傍に適切な磁束
と誘導電流の密度分布を与えるものであり、この発明に
よれば、初期凝固シェルの形状を好適に制御でき、得ら
れる鋳片の品質を大幅に向上できる。さらに、磁場の印
加効率を向上させることもでき、省電力の見地からも極
めて有利である。
INDUSTRIAL APPLICABILITY The present invention, in continuous casting of molten metal, provides a slit at the upper end of the mold to electrically separate the mold when the shape of the initial solidified shell is controlled by directly energizing the mold in the vertical direction and / or By installing the current-carrying holes and terminals in the mold corresponding to the lower part of the meniscus, the density distribution of the current flowing through the mold is adjusted, and the density distribution of the appropriate magnetic flux and induced current is provided in the vicinity of the meniscus. If so, the shape of the initially solidified shell can be suitably controlled, and the quality of the obtained slab can be significantly improved. Furthermore, the efficiency of applying the magnetic field can be improved, which is extremely advantageous from the viewpoint of power saving.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋳型板左右方向に通電した場合の電流密度分布
を示す説明図である。
FIG. 1 is an explanatory diagram showing a current density distribution when electricity is applied in the left-right direction of a mold plate.

【図2】上端からメニスカス直上相当部分にわたって上
下方向でかつ長辺板厚さ方向にスリットを設けて電気的
に分割した、鋳型長辺板内の電流密度分布を示す説明図
である。
FIG. 2 is an explanatory diagram showing a current density distribution in a long side plate of a mold, which is electrically divided by providing slits in a vertical direction and a thickness direction of the long side plate from a top end to a portion immediately above a meniscus.

【図3】上端からメニスカス直上相当部分にわたって上
下方向でかつ長辺板厚さ方向にスリットを設けて電気的
に分割し、その分割部通電径路に電流調整用可変抵抗を
配した鋳型長辺板内の電流密度分布を示す説明図であ
る。
FIG. 3 is a mold long side plate in which a slit is provided vertically from the upper end to a portion immediately above the meniscus and in the thickness direction of the long side plate for electrical division, and a variable resistor for current adjustment is arranged in the division energizing path. It is explanatory drawing which shows the current density distribution inside.

【図4】メニスカス下部相当部分に通電用穴と該通電用
穴に交流電流用端子を設けた鋳型長辺板内の電流密度分
布を示す説明図である。
FIG. 4 is an explanatory diagram showing a current density distribution in a long side plate of a mold in which an energization hole is provided in a portion corresponding to a lower portion of a meniscus and an AC current terminal is provided in the energization hole.

【図5】上端からメニスカス直上相当部分にわたって上
下方向でかつ長辺板厚さ方向にスリットを設けて電気的
に分割し、メニスカス下部相当部分に通電用穴と該通電
用穴に交流電流用端子を設け、その分割部通電路に電流
調整用可変抵抗を配した鋳型長辺板内の電流密度分布を
示す説明図である。
FIG. 5 is a view in which a slit is provided in the vertical direction and in the thickness direction of the long side plate from the upper end to a portion directly above the meniscus to electrically divide, and a current-carrying hole is provided in a portion corresponding to the lower part of the meniscus and an AC current terminal is provided in the current-carrying hole. FIG. 3 is an explanatory view showing a current density distribution in a long side plate of a mold in which a variable resistance for current adjustment is arranged in a divided portion energization path.

【図6】鋳型長辺板幅方向における磁束密度分布指数を
示すグラフである。
FIG. 6 is a graph showing a magnetic flux density distribution index in the width direction of the long side plate of the mold.

【図7】この発明に適合する連続鋳造用鋳型を用いて鋼
を鋳造する際の縦断面の説明図である。(交流電源直列
接続)
FIG. 7 is an explanatory view of a vertical cross section when casting steel using a continuous casting mold that is compatible with the present invention. (AC power supply series connection)

【図8】この発明に適合する連続鋳造用鋳型を用いて鋼
を鋳造する際の縦断面の説明図である。(交流電源並列
接続)
FIG. 8 is an explanatory view of a vertical cross section when casting steel using a continuous casting mold that is compatible with the present invention. (AC power supply parallel connection)

【図9】従来例と適合例の表面欠陥発生指数を示すグラ
フである。
FIG. 9 is a graph showing surface defect occurrence indexes of a conventional example and a compatible example.

【図10】従来例と適合例のステンキングマーク発生指
数を示すグラフである。
FIG. 10 is a graph showing a stenking mark generation index of a conventional example and a compatible example.

【符号の説明】[Explanation of symbols]

1 スリット 2 交流電流用端子 3 メニスカス 4 通電用穴 5 電流径路 6 鋳型長辺板 7 可変抵抗 8 導線 9 タンディッシュ 10 浸漬ノズル 11 初期凝固シェル 12 溶湯 13 パウダー 14 交流電源 1 Slit 2 AC Current Terminal 3 Meniscus 4 Energizing Hole 5 Current Path 6 Mold Long Side Plate 7 Variable Resistance 8 Conductor Wire 9 Tundish 10 Immersion Nozzle 11 Initial Solidification Shell 12 Molten Metal 13 Powder 14 AC Power Supply

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 それぞれ1対の長辺板と短辺板とからな
る導電性の連続鋳造用鋳型に金属溶湯を注入し、鋳型上
下方向に直接通電することよりメニスカス近傍に交流磁
場を印加して初期凝固シェルの形状を制御しながら鋳造
する溶融金属の連続鋳造方法であって、 長辺板上端からメニスカス相当部分にわたって上下方向
でかつ長辺板厚さ方向にスリットを有し、該スリットに
より電気的に分割する長辺板の、分割数および/または
分割幅の調整ならびに各分割部への電流量の調整によ
り、メニスカス部近傍に発生する磁束および誘導電流の
密度分布を適正化し、初期凝固シェルの形状を制御する
ことを特徴とする溶融金属の連続鋳造方法。
1. An alternating magnetic field is applied in the vicinity of a meniscus by injecting a molten metal into a conductive continuous casting mold that is composed of a pair of long side plates and short side plates, and by directly energizing the mold vertically. A method for continuous casting of molten metal in which the shape of the initially solidified shell is controlled by controlling the shape of the long side plate from the upper end to the portion corresponding to the meniscus in the vertical direction and in the thickness direction of the long side plate, and by the slit, By adjusting the number of divisions and / or the division width of the long side plate that is electrically divided and adjusting the amount of current to each division, the density distribution of the magnetic flux and induced current generated near the meniscus is optimized and initial solidification is performed. A continuous casting method for molten metal, which comprises controlling the shape of a shell.
【請求項2】 それぞれ1対の長辺板と短辺板とからな
る導電性の連続鋳造用鋳型に金属溶湯を注入し、鋳型上
下方向に直接通電することよりメニスカス近傍に交流磁
場を印加して初期凝固シェルの形状を制御しながら鋳造
する溶融金属の連続鋳造方法であって、 長辺板のメニスカス下部相当部分に設ける交流電流用端
子の個数と位置との変更により、鋳型に流れる電流密度
分布を調整してメニスカス近傍に発生する磁束および誘
導電流の密度分布を適正化し、初期凝固シェルの形状を
制御することを特徴とする溶融金属の連続鋳造方法。
2. An alternating magnetic field is applied in the vicinity of the meniscus by injecting a molten metal into a conductive continuous casting mold that is composed of a pair of long side plates and a short side plate, and directly energizing the mold vertically. This is a continuous casting method for molten metal in which the shape of the initial solidified shell is controlled while controlling the shape of the initial solidified shell.The current density flowing in the mold can be changed by changing the number and position of the AC current terminals provided in the portion corresponding to the bottom of the meniscus of the long side plate. A continuous casting method for molten metal, characterized by adjusting the distribution to optimize the density distribution of magnetic flux and induced current generated near the meniscus, and controlling the shape of the initial solidified shell.
【請求項3】 それぞれ1対の長辺板と短辺板とからな
る導電性の連続鋳造用鋳型であって、 長辺板が、その上端からメニスカス直上相当部分にわた
って上下方向でかつ長辺板厚さ方向に1本以上のスリッ
トを有し、該スリットにより電気的に分割された各上端
部に交流電流用端子を設けるとともに、長辺板下方端に
交流電流用端子を設けてなる溶融金属の連続鋳造用鋳
型。
3. A conductive continuous casting mold comprising a pair of a long side plate and a short side plate, wherein the long side plate extends from the upper end to a portion immediately above the meniscus in the vertical direction and the long side plate. Molten metal having one or more slits in the thickness direction and provided with an AC current terminal at each upper end portion electrically divided by the slit and an AC current terminal at the lower end of the long side plate. Continuous casting mold.
【請求項4】 それぞれ1対の長辺板と短辺板とからな
る導電性の連続鋳造用鋳型であって、 長辺板が、メニスカス下部相当部分左右方向に1ケ以上
の通電用穴を有し、該通電用穴に交流電流用端子を設け
るとともに、長辺板上方端に交流電流用端子を設けてな
る溶融金属の連続鋳造用鋳型。
4. A conductive continuous casting mold comprising a pair of a long side plate and a short side plate, wherein the long side plate has one or more current-carrying holes in the lateral direction corresponding to the lower portion of the meniscus. A casting mold for continuous casting of molten metal, comprising an alternating current terminal provided in the energizing hole and an alternating current terminal provided at an upper end of the long side plate.
【請求項5】 それぞれ1対の長辺板と短辺板とからな
る導電性の連続鋳造用鋳型であって、 長辺板が、その上端からメニスカス直上相当部分にわた
って上下方向でかつ長辺板厚さ方向に1本以上のスリッ
トを有し、該スリットにより電気的に分割された各上端
部に交流電流用端子を設けるとともに、メニスカス下部
相当部分左右方向に1ケ以上の通電用穴と該通電用穴に
それぞれ同位相の交流電流用端子を設けてなる溶融金属
の連続鋳造用鋳型。
5. A conductive continuous casting mold comprising a pair of a long side plate and a short side plate, wherein the long side plate extends from the upper end to a portion directly above the meniscus in the vertical direction and the long side plate. There is one or more slits in the thickness direction, an AC current terminal is provided at each upper end portion electrically divided by the slits, and one or more current-carrying holes and one or more current-carrying holes in the left-right direction corresponding to the lower portion of the meniscus are provided. A mold for continuous casting of molten metal, in which terminals for alternating current of the same phase are provided in the current-carrying holes.
JP1043895A 1995-01-26 1995-01-26 Method for continuously casting molten metal and mold for continuous casting Pending JPH08197212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1043895A JPH08197212A (en) 1995-01-26 1995-01-26 Method for continuously casting molten metal and mold for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1043895A JPH08197212A (en) 1995-01-26 1995-01-26 Method for continuously casting molten metal and mold for continuous casting

Publications (1)

Publication Number Publication Date
JPH08197212A true JPH08197212A (en) 1996-08-06

Family

ID=11750171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1043895A Pending JPH08197212A (en) 1995-01-26 1995-01-26 Method for continuously casting molten metal and mold for continuous casting

Country Status (1)

Country Link
JP (1) JPH08197212A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021091925A (en) * 2019-12-09 2021-06-17 国立大学法人東北大学 Fe-BASED ALLOY HAVING EXCELLENT CORROSION PITTING RESISTANCE AND METHOD FOR PRODUCING THE SAME

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021091925A (en) * 2019-12-09 2021-06-17 国立大学法人東北大学 Fe-BASED ALLOY HAVING EXCELLENT CORROSION PITTING RESISTANCE AND METHOD FOR PRODUCING THE SAME

Similar Documents

Publication Publication Date Title
US4645534A (en) Process for control of continuous casting conditions
US4678024A (en) Horizontal electromagnetic casting of thin metal sheets
CA1132671A (en) Inductor for an electromagnetic mold for continuous casting
US4273800A (en) Coating mass control using magnetic field
EP0445328B1 (en) Method for continuous casting of steel
JP4591156B2 (en) Steel continuous casting method
JPH08197212A (en) Method for continuously casting molten metal and mold for continuous casting
US4033398A (en) Methods of manufacturing laminated metal strip bearing materials
US4106546A (en) Method for inductively stirring molten steel in a continuously cast steel strand
US4741383A (en) Horizontal electromagnetic casting of thin metal sheets
JP2005230849A (en) Continuous casting method using twin-mold, electromagnetic braking apparatus for twin-mold and mold for continuous casting
CA1128283A (en) Controlling the solidification of a continuous casting
JP2005238276A (en) Electromagnetic-stirring casting apparatus
JPS61199557A (en) Device for controlling flow rate of molten steel in mold for continuous casting
JP3088917B2 (en) Continuous casting method of molten metal
US5695001A (en) Electromagnetic confining dam for continuous strip caster
JP2671336B2 (en) Continuous casting of steel
US4605054A (en) Casting apparatus including a conductor for electromagnetic induction heating
JP3304884B2 (en) Molten metal braking device and continuous casting method
WO1999011404A1 (en) Method and device for continuous or semi-continuous casting of metal
JPS6236782B2 (en)
US4516627A (en) Multi-turn coils of controlled pitch for electromagnetic casting
GB2041803A (en) Electromagnetic casting apparatus and process
JP3083234B2 (en) Continuous casting method of molten metal
KR100244660B1 (en) Control device for molten metal of continuous casting mould