JP2017078738A - Carrier core material, and carrier for electrophotography development and developer for electrophotography prepared therewith - Google Patents

Carrier core material, and carrier for electrophotography development and developer for electrophotography prepared therewith Download PDF

Info

Publication number
JP2017078738A
JP2017078738A JP2015205368A JP2015205368A JP2017078738A JP 2017078738 A JP2017078738 A JP 2017078738A JP 2015205368 A JP2015205368 A JP 2015205368A JP 2015205368 A JP2015205368 A JP 2015205368A JP 2017078738 A JP2017078738 A JP 2017078738A
Authority
JP
Japan
Prior art keywords
core material
carrier core
carrier
developer
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015205368A
Other languages
Japanese (ja)
Inventor
心 濱田
Shin Hamada
心 濱田
佐々木 信也
Shinya Sasaki
信也 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Dowa IP Creation Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Dowa IP Creation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd, Dowa IP Creation Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2015205368A priority Critical patent/JP2017078738A/en
Publication of JP2017078738A publication Critical patent/JP2017078738A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a carrier core material capable of preventing the occurrence of a failure in a development memory and others.SOLUTION: A carrier core material has a ferrite particle having a spinel type crystal structure and comprising Sr components, in which the total amount of carbon dioxide detected while heated from 120°C to 450°C is 1.0 μmol/g or more. Preferably an Sr content is 0.14 mass% or more and 0.5 mass% or less and further preferably an Mg content is 3.0 mass% or less.SELECTED DRAWING: Figure 1

Description

本発明は、キャリア芯材並びにこれを用いた電子写真現像用キャリア及び電子写真用現像剤に関するものである。   The present invention relates to a carrier core material, an electrophotographic developer carrier and an electrophotographic developer using the same.

例えば、電子写真方式を用いたファクシミリやプリンター、複写機などの画像形成装置では、感光体の表面に形成された静電潜像にトナーを付着させて可視像化し、この可視像を用紙等に転写した後、加熱・加圧して定着させている。高画質化やカラー化の観点から、現像剤としては、キャリアとトナーとを含むいわゆる二成分現像剤が広く使用されている。   For example, in an image forming apparatus such as a facsimile, printer, or copier using an electrophotographic method, a toner is attached to an electrostatic latent image formed on the surface of a photosensitive member to make a visible image, and the visible image is formed on paper. After being transferred to, etc., it is fixed by heating and pressing. A so-called two-component developer including a carrier and a toner is widely used as a developer from the viewpoint of high image quality and colorization.

二成分現像剤を用いた現像方式では、キャリアとトナーとを現像装置内で撹拌混合し、摩擦によってトナーを所定量まで帯電させる。そして、回転する現像ローラに現像剤を供給し、現像ローラ上で磁気ブラシを形成させて、磁気ブラシを介して感光体へトナーを電気的に移動させて感光体上の静電潜像を可視像化する。トナー移動後のキャリアは現像ローラ上に残留し、現像装置内で再びトナーと混合される。このため、キャリアの特性として、磁気ブラシを形成する磁気特性及び所望の電荷をトナーに付与する帯電特性が要求される。このようなキャリアとしては、マグネタイトや各種フェライト等からなるキャリア芯材の表面を樹脂で被覆した、いわゆるコーティングキャリアがこれまで多く用いられていた。また、コーティングキャリアに用いられていたこれまでのキャリア芯材は真球状であった。   In the developing method using a two-component developer, the carrier and the toner are stirred and mixed in the developing device, and the toner is charged to a predetermined amount by friction. Then, a developer is supplied to the rotating developing roller, a magnetic brush is formed on the developing roller, and the toner is electrically moved to the photosensitive member via the magnetic brush, so that an electrostatic latent image on the photosensitive member can be formed. Visualize. The carrier after the toner movement remains on the developing roller and is mixed with the toner again in the developing device. For this reason, as a characteristic of the carrier, a magnetic characteristic for forming a magnetic brush and a charging characteristic for imparting a desired charge to the toner are required. As such a carrier, a so-called coating carrier in which the surface of a carrier core material made of magnetite, various ferrites or the like is coated with a resin has been widely used. Further, the carrier core material used so far for the coating carrier has a spherical shape.

近年、画像形成装置における画像形成速度の高速化という市場要求に対応するため、現像ローラの回転速度を速めて、現像領域への現像剤の単位時間当たりの供給量を増加させる傾向にある。   In recent years, in order to meet the market demand for higher image forming speed in image forming apparatuses, the rotation speed of the developing roller tends to be increased to increase the amount of developer supplied per unit time to the developing area.

ところが、真球状のキャリア芯材を用いたコーティングキャリアでは、現像領域へのトナー供給が不十分となり画像濃度が低下する不具合があった。例えば、現像ローラの1周前の画像の影響を受けて画像濃度が低下する「現像メモリー」と呼ばれる不具合があった。   However, the coating carrier using the spherical carrier core material has a problem that the toner density to the developing area is insufficient and the image density is lowered. For example, there has been a problem called “development memory” in which the image density decreases due to the influence of the image one round before the developing roller.

そこで、キャリア芯材の表面を凹凸形状としたり、キャリア芯材の形状を異形化することで、感光体表面との摩擦抵抗及びキャリア同士の摩擦抵抗を大きくし、現像領域へのトナー供給量を増加させる技術が提案されている(例えば、特許文献1,2など)。   Therefore, by making the surface of the carrier core material uneven, or by making the shape of the carrier core material irregular, the frictional resistance with the surface of the photoreceptor and the frictional resistance between the carriers are increased, and the amount of toner supplied to the development area is increased. Techniques for increasing the number have been proposed (for example, Patent Documents 1 and 2).

特開2013−25204号公報JP 2013-25204 A 特開2007−148452号公報JP 2007-148452 A

しかしながら、キャリア芯材の表面を単に凹凸形状としただけでは現像メモリーなどの不具合は十分には解消されない。   However, problems such as development memory cannot be sufficiently solved by simply making the surface of the carrier core material uneven.

そこで、本発明の目的は、現像メモリーなどの不具合の発生を抑制できるキャリア芯材を提供することにある。   Therefore, an object of the present invention is to provide a carrier core material that can suppress the occurrence of problems such as development memory.

また本発明の他の目的は、長期間の使用においても安定して良好な画質画像を形成することができる電子写真現像用キャリア及び電子写真用現像剤を提供することにある。   Another object of the present invention is to provide an electrophotographic developer carrier and an electrophotographic developer capable of stably forming a good image quality even after long-term use.

本発明によれば、スピネル型結晶構造を有し、Sr成分を含有するフェライト粒子から構成されるキャリア芯材であって、温度120℃から450℃まで加熱する間に検出される二酸化炭素の総量が1.0μmol/g以上であることを特徴とするキャリア芯材が提供される。   According to the present invention, a carrier core material having a spinel crystal structure and comprising ferrite particles containing an Sr component, the total amount of carbon dioxide detected during heating from 120 ° C. to 450 ° C. Is a carrier core material characterized by being 1.0 μmol / g or more.

ここで、Srの含有量は0.14質量%以上0.5質量%以下の範囲であることが好ましい。   Here, the Sr content is preferably in the range of 0.14% by mass or more and 0.5% by mass or less.

また、Mgの含有量は3.0質量%以下であることが好ましい。   Moreover, it is preferable that content of Mg is 3.0 mass% or less.

キャリア芯材の体積平均粒径(以下、単に「平均粒径」と記すことがある)は25μm以上50μm未満であるのが好ましい。   The volume average particle diameter of the carrier core material (hereinafter sometimes simply referred to as “average particle diameter”) is preferably 25 μm or more and less than 50 μm.

また、本発明によれば、前記記載のキャリア芯材の表面を樹脂で被覆したことを特徴とする電子写真現像用キャリアが提供される。   In addition, according to the present invention, there is provided an electrophotographic developing carrier characterized in that the surface of the carrier core material described above is coated with a resin.

さらに、本発明によれば、前記記載の電子写真現像用キャリアとトナーとを含む電子写真用現像剤が提供される。   Furthermore, according to the present invention, there is provided an electrophotographic developer comprising the electrophotographic developer carrier described above and a toner.

本発明に係るキャリア芯材によれば、現像メモリーなどの不具合の発生を抑制できる。これにより、本発明に係るキャリア芯材を含む現像剤を用いれば、長期間の使用においても安定して良好な画質画像を形成することができる。   According to the carrier core material of the present invention, it is possible to suppress the occurrence of problems such as development memory. Thereby, if the developer containing the carrier core material according to the present invention is used, a good image quality can be stably formed even for a long period of use.

実施例1のキャリア芯材の断面SEM写真である。2 is a cross-sectional SEM photograph of the carrier core material of Example 1. 磁気ブラシ現像を行う現像装置の一例を示す概説図である。It is an outline figure showing an example of a development device which performs magnetic brush development.

本発明者等は、現像メモリーなどの不具合の発生を抑制できないか鋭意検討を重ねた結果、キャリア芯材の表面を樹脂で被覆してキャリアとしたときに、トナー保持性がよく且つトナーの帯電立ち上がりがよいと現像メモリーが抑制される傾向あるとの知見を得た。そしてさらに検討を続け、トナー保持性及びトナー帯電立ち上がり性を向上させるには、樹脂被覆キャリアとしたときに、キャリア芯材が露出している部分と樹脂で被覆されている部分とがキャリア表面に存在していることが重要であることを見出した。被覆樹脂の電気抵抗は高く、樹脂被覆された部分でトナーが帯電され保持される。一方、キャリア芯材の露出部分は電気抵抗が低く、この部分からキャリアに溜まった電荷が放出されることでトナーの帯電立ち上がりが向上する。   As a result of intensive investigations as to whether or not problems such as development memory can be suppressed, the present inventors have achieved good toner retention and charge of the toner when the carrier core surface is coated with a resin. It was found that development memory tends to be suppressed when the rise is good. In order to further improve the toner retention and toner charge rising property, when the resin coated carrier is used, the carrier core material exposed portion and the resin coated portion are formed on the carrier surface. I found it important to exist. The electric resistance of the coating resin is high, and the toner is charged and held in the resin-coated portion. On the other hand, the exposed portion of the carrier core material has a low electrical resistance, and the charge buildup on the carrier is released from this portion, so that the charge rising of the toner is improved.

そして、キャリア芯材の露出部分と樹脂被覆された部分とをキャリア表面に設けるためには、キャリア芯材を凹凸形状とし、キャリア芯材の凹部を樹脂で被覆し、キャリア芯材の凸部を露出させればよいとの着想を得た。   Then, in order to provide the exposed portion of the carrier core material and the resin-coated portion on the carrier surface, the carrier core material is formed into an uneven shape, the concave portion of the carrier core material is covered with resin, and the convex portion of the carrier core material is formed. I got the idea that it should be exposed.

そこで、本発明では、まず、キャリア芯材を凹凸形状化するためにSr成分を添加することとした。Sr成分は、球状化されたキャリア芯材の前駆体(造粒物)の焼成工程においてスピネル型結晶の粒界に偏析し、スピネル型結晶の周方向への結晶成長を妨げる。この結果、スピネル型結晶が半径方向外方へ成長しキャリア芯材は凹凸形状となる。Srの含有量は0.14質量%以上0.50質量%以下であるのが好ましく、0.37質量%以上0.50質量%以下であるのがより好ましい。   Therefore, in the present invention, first, the Sr component is added to make the carrier core material uneven. The Sr component segregates at the grain boundary of the spinel crystal in the firing step of the spheroidized carrier core material precursor (granulated product), and prevents crystal growth in the circumferential direction of the spinel crystal. As a result, the spinel crystal grows outward in the radial direction, and the carrier core material has an uneven shape. The content of Sr is preferably 0.14% by mass or more and 0.50% by mass or less, and more preferably 0.37% by mass or more and 0.50% by mass or less.

次いで、キャリア芯材の凹部に被覆樹脂を主に存在させるため検討を種々行ったところ、キャリア芯材の製造工程において所定量の二酸化炭素と水分とを存在させると、生成したキャリア芯材の凹部が優先的に樹脂被覆されるとの知見を得た。キャリア芯材の製造工程において所定量の二酸化炭素と水分とを存在させると、生成したキャリア芯材の凹部が優先的に樹脂被覆される機構について今のところ十分には解明されていないが、本発明者等は次のような機構ではないかと今のところ推測している。   Next, various investigations were made to make the coating resin mainly exist in the concave portion of the carrier core material. When a predetermined amount of carbon dioxide and moisture were present in the carrier core material manufacturing process, the concave portion of the generated carrier core material was obtained. Has been found to be preferentially resin-coated. The mechanism of preferentially resin-covering the recesses of the generated carrier core material when a predetermined amount of carbon dioxide and moisture are present in the manufacturing process of the carrier core material has not yet been fully elucidated. The inventors have speculated that the mechanism is as follows.

前述のように、Sr成分の添加によってキャリア芯材は凹凸形状となるが、凹部にSrが偏析するため、凹部における被覆樹脂との親和性が低下し、凹部を樹脂被覆し難い状態が生じていた。これに対して、キャリア芯材製造工程において所定量の二酸化炭素と水分とを存在させると、水分を介して二酸化炭素がキャリア芯材の表面全面に吸着もしくは表面近傍の結晶格子内部まで浸透し、キャリア芯材表面が二酸化炭素によって被覆された状態となる。これにより、キャリア芯材表面の被覆樹脂に対する親和性の不均一性が解消され、樹脂被覆の際にキャリア芯材粒子同士の衝突などによって、凸部に付着した樹脂成分が凹部へ押し出され、キャリア芯材の凹部が優先的に樹脂被覆される。   As described above, the carrier core material has an uneven shape due to the addition of the Sr component. However, since Sr segregates in the recesses, the affinity with the coating resin in the recesses is lowered, and it is difficult to coat the recesses with the resin. It was. On the other hand, when a predetermined amount of carbon dioxide and moisture are present in the carrier core manufacturing process, carbon dioxide is adsorbed on the entire surface of the carrier core through moisture or penetrates into the crystal lattice near the surface, The carrier core material surface is covered with carbon dioxide. As a result, the non-uniformity of the affinity for the coating resin on the surface of the carrier core material is eliminated, and the resin component adhering to the convex portion is pushed out into the concave portion due to collision of the carrier core material particles during the resin coating, and the carrier The concave portion of the core material is preferentially resin-coated.

キャリア芯材表面が二酸化炭素で被覆される際に、キャリア芯材にアルカリ金属元素又はアルカリ土類金属元素が含まれていると、アルカリ金属元素又はアルカリ土類金属元素が触媒的に作用して、キャリア芯材の水分中への二酸化炭素の吸収が促進され、キャリア芯材表面が二酸化炭素で均一に被覆されやすくなる。アルカリ金属元素又はアルカリ土類金属元素としては、Li、Na、K、Rb、Cs、Mg、Ca、Baが好ましい。これらの中でもMg、Caがより好ましい。   When the carrier core material is coated with carbon dioxide and the carrier core material contains an alkali metal element or alkaline earth metal element, the alkali metal element or alkaline earth metal element acts catalytically. The absorption of carbon dioxide into the moisture of the carrier core material is promoted, and the surface of the carrier core material is easily coated uniformly with carbon dioxide. As the alkali metal element or alkaline earth metal element, Li, Na, K, Rb, Cs, Mg, Ca, and Ba are preferable. Among these, Mg and Ca are more preferable.

しかしながら、キャリア芯材にアルカリ金属元素又はアルカリ土類金属元素が過剰に含まれていると、キャリア芯材表面に存在する水分とアルカリ金属元素又はアルカリ土類金属元素との反応が進行し、キャリア芯材表面が二酸化炭素で被覆されにくくなる。このため、アルカリ金属元素又はアルカリ土類金属元素としてMgを含有させる場合には、Mgの含有量は3.0質量%以下であるのが好ましく、2.1質量%以下であるのがより好ましい。   However, if the carrier core material contains an excessive amount of alkali metal element or alkaline earth metal element, the reaction between the water present on the surface of the carrier core material and the alkali metal element or alkaline earth metal element proceeds, and the carrier It becomes difficult for the core surface to be covered with carbon dioxide. For this reason, when Mg is contained as an alkali metal element or an alkaline earth metal element, the Mg content is preferably 3.0% by mass or less, and more preferably 2.1% by mass or less. .

本発明ではキャリア芯材の二酸化炭素の量を、所定温度まで加熱する間に検出される、キャリア芯材単位質量あたりの二酸化炭素の総量として昇温脱離法を用い規定した。   In the present invention, the amount of carbon dioxide in the carrier core material is defined using the temperature programmed desorption method as the total amount of carbon dioxide per unit mass of the carrier core material detected during heating to a predetermined temperature.

具体的には、温度120℃から450℃まで加熱する間に検出される二酸化炭素の総量は1.0μmol/g以上である。二酸化炭素の総量が1.0μmol/g未満であると、キャリア芯材の表面が二酸化炭素で十分に被覆されないために、キャリア芯材の凹部が十分に樹脂被覆されず、現像メモリーなどの不具合が解消されない。また、前記の二酸化炭素の総量の好ましい上限値は5.0μmol/gである。   Specifically, the total amount of carbon dioxide detected during heating from 120 ° C. to 450 ° C. is 1.0 μmol / g or more. When the total amount of carbon dioxide is less than 1.0 μmol / g, the surface of the carrier core material is not sufficiently covered with carbon dioxide, so that the concave portion of the carrier core material is not sufficiently resin-coated, and there is a problem such as development memory. It will not be resolved. Moreover, the preferable upper limit of the total amount of carbon dioxide is 5.0 μmol / g.

本発明のキャリア芯材を構成するフェライト粒子はスピネル型結晶構造を有し、Sr成分を含有するものであれば特に限定はなく、例えば、組成式MFe3−X(但し、Mは、Mg,Mn,Ca,Ti,Cu,Zn,Niからなる群より選択される少なくとも1種の金属元素、0≦X≦1)で表されるものが挙げられる。 The ferrite particles constituting the carrier core material of the present invention are not particularly limited as long as they have a spinel crystal structure and contain a Sr component. For example, the composition formula M X Fe 3-X O 4 (M Includes at least one metal element selected from the group consisting of Mg, Mn, Ca, Ti, Cu, Zn, and Ni, represented by 0 ≦ X ≦ 1).

本発明のキャリア芯材の体積平均粒径としては、25μm以上50μm未満の範囲が好ましく、より好ましくは30μm以上40μm以下の範囲である。   The volume average particle size of the carrier core material of the present invention is preferably in the range of 25 μm or more and less than 50 μm, more preferably in the range of 30 μm or more and 40 μm or less.

本発明のキャリア芯材の製造方法に特に限定はないが、以下に説明する製造方法が好適である。   Although there is no limitation in particular in the manufacturing method of the carrier core material of this invention, the manufacturing method demonstrated below is suitable.

まず、Fe成分原料、M成分原料、Sr成分原料を秤量する。なお、MはMg、Mn、Ca、Ti、Cu、Zn、Ni等の2価の価数をとり得る金属元素から選ばれる少なくとも1種の金属元素である。Fe成分原料としては、Fe等が好適に使用される。M成分原料としては、MnであればMnCO、Mn等が使用でき、MgであればMgO、Mg(OH)、MgCOが好適に使用できる。また、Ca成分原料としては、CaO、Ca(OH)、CaCO等から選択される少なくとも1種の化合物が好適に使用される。Sr成分原料としては、SrCO、Sr(NOなどが好適に使用される。 First, the Fe component raw material, the M component raw material, and the Sr component raw material are weighed. Note that M is at least one metal element selected from metal elements capable of taking a divalent valence such as Mg, Mn, Ca, Ti, Cu, Zn, and Ni. As the Fe component material, Fe 2 O 3 or the like is preferably used. As the M component raw material, MnCO 3 , Mn 3 O 4 and the like can be used for Mn, and MgO, Mg (OH) 2 and MgCO 3 can be suitably used for Mg. As the Ca component raw material, at least one compound selected from CaO, Ca (OH) 2 , CaCO 3 and the like is preferably used. As the Sr component raw material, SrCO 3 , Sr (NO 3 ) 2 or the like is preferably used.

次いで、原料を分散媒中に投入しスラリーを作製する。本発明で使用する分散媒としては水が好適である。分散媒には、前記仮焼成原料の他、必要によりバインダー、分散剤等を配合してもよい。バインダーとしては、例えば、ポリビニルアルコールが好適に使用できる。バインダーの配合量としてはスラリー中の濃度が0.5質量%〜2質量%程度とするのが好ましい。また、分散剤としては、例えば、ポリカルボン酸アンモニウム等が好適に使用できる。分散剤の配合量としてはスラリー中の濃度が0.5質量%〜2質量%程度とするのが好ましい。その他、潤滑剤や焼結促進剤等を配合してもよい。スラリーの固形分濃度は50質量%〜90質量%の範囲が望ましい。より好ましくは60質量%〜80質量%である。60質量%以上であれば、造粒品中に粒子内細孔が少なく、焼成時の焼結不足を防ぐことができる   Next, the raw material is charged into a dispersion medium to prepare a slurry. Water is preferred as the dispersion medium used in the present invention. In addition to the calcined raw material, a binder, a dispersant and the like may be blended in the dispersion medium as necessary. For example, polyvinyl alcohol can be suitably used as the binder. As a compounding quantity of a binder, it is preferable that the density | concentration in a slurry shall be about 0.5 mass%-2 mass%. Moreover, as a dispersing agent, polycarboxylate ammonium etc. can be used conveniently, for example. The blending amount of the dispersing agent is preferably about 0.5% by mass to 2% by mass in the slurry. In addition, you may mix | blend a lubricant, a sintering accelerator, etc. The solid content concentration of the slurry is desirably in the range of 50 mass% to 90 mass%. More preferably, it is 60 mass%-80 mass%. If it is 60% by mass or more, there are few intra-particle pores in the granulated product, and insufficient sintering during firing can be prevented.

なお、秤量した原料を混合し仮焼成し解粒した後、分散媒に投入しスラリーを作製してもよい。仮焼成の温度としては750℃〜900℃の範囲が好ましい。750℃以上であれば、仮焼による一部フェライト化が進み、焼成時のガス発生量が少なく、固体間反応が十分に進むため、好ましい。一方、900℃以下であれば、仮焼による焼結が弱く、後のスラリー粉砕工程で原料を十分に粉砕できるので好ましい。また、仮焼成時の雰囲気としては大気雰囲気が好ましい。   In addition, after mixing the weighed raw materials, pre-baking and pulverizing, it may be put into a dispersion medium to produce a slurry. The pre-baking temperature is preferably in the range of 750 ° C to 900 ° C. If it is 750 degreeC or more, since part ferrite-ization by calcination advances, the amount of gas generation at the time of baking is small, and reaction between solids fully advances, it is preferable. On the other hand, if it is 900 degrees C or less, since sintering by calcination is weak and a raw material can fully be grind | pulverized at a subsequent slurry grinding process, it is preferable. Moreover, an air atmosphere is preferable as the atmosphere at the time of temporary firing.

次に、以上のようにして作製されたスラリーを湿式粉砕する。例えば、ボールミルや振動ミルを用いて所定時間湿式粉砕する。粉砕後の原材料の平均粒径は5μm以下が好ましく、より好ましくは1μm以下である。振動ミルやボールミルには、所定粒径のメディアを内在させるのがよい。メディアの材質としては、鉄系のクロム鋼や酸化物系のジルコニア、チタニア、アルミナなどが挙げられる。粉砕工程の形態としては連続式及び回分式のいずれであってもよい。粉砕物の粒径は、粉砕時間や回転速度、使用するメディアの材質・粒径などによって調整される。   Next, the slurry produced as described above is wet pulverized. For example, wet grinding is performed for a predetermined time using a ball mill or a vibration mill. The average particle diameter of the raw material after pulverization is preferably 5 μm or less, more preferably 1 μm or less. The vibration mill or ball mill preferably contains a medium having a predetermined particle diameter. Examples of the material of the media include iron-based chromium steel and oxide-based zirconia, titania, and alumina. As a form of a grinding | pulverization process, any of a continuous type and a batch type may be sufficient. The particle size of the pulverized product is adjusted depending on the pulverization time and rotation speed, the material and particle size of the media used, and the like.

そして、粉砕されたスラリーを噴霧乾燥させて造粒する。具体的には、スプレードライヤーなどの噴霧乾燥機にスラリーを導入し、雰囲気中へ噴霧することによって球状に造粒する。噴霧乾燥時の雰囲気温度は100℃〜300℃の範囲が好ましい。これにより、粒径10μm〜75μmの球状の造粒物が得られる。次いで、得られた造粒物を振動ふるいを用いて分級し所定の粒径範囲の造粒物を作製する。   Then, the pulverized slurry is spray-dried and granulated. Specifically, the slurry is introduced into a spray dryer such as a spray dryer, and granulated into a spherical shape by spraying into the atmosphere. The atmospheric temperature during spray drying is preferably in the range of 100 ° C to 300 ° C. Thereby, a spherical granulated product having a particle size of 10 μm to 75 μm is obtained. Next, the obtained granulated product is classified using a vibration sieve to produce a granulated product having a predetermined particle size range.

次に、前記の造粒物を所定温度に加熱した炉に投入して、フェライト粒子を合成するための一般的な手法で焼成することにより、フェライト粒子を生成させる。焼成温度としては1100℃〜1300℃の範囲が好ましい。焼成温度が1100℃以下であると、相変態が起こりにくくなるとともに焼結も進みにくくなる。また、焼成温度が1300℃を超えると、過剰焼結による過大グレインの発生がするおそれがある。前記焼成温度に至るまでの昇温速度としては250℃/h〜500℃/hの範囲が好ましい。焼成工程における酸素濃度は0.05%〜5%の範囲に制御するのが好ましい。   Next, the granulated material is put into a furnace heated to a predetermined temperature and fired by a general method for synthesizing ferrite particles, thereby generating ferrite particles. The firing temperature is preferably in the range of 1100 ° C to 1300 ° C. When the firing temperature is 1100 ° C. or lower, the phase transformation is less likely to occur and the sintering is less likely to proceed. On the other hand, if the firing temperature exceeds 1300 ° C., excessive grains may be generated due to excessive sintering. The rate of temperature increase up to the firing temperature is preferably in the range of 250 ° C / h to 500 ° C / h. The oxygen concentration in the firing step is preferably controlled in the range of 0.05% to 5%.

このようにして得られた焼成物を解粒する。具体的には、例えば、ハンマーミル等によって焼成物を解粒する。解粒工程の形態としては連続式及び回分式のいずれであってもよい。   The fired product thus obtained is pulverized. Specifically, for example, the fired product is pulverized by a hammer mill or the like. The form of the granulation step may be either a continuous type or a batch type.

解粒処理後、必要により、粒径を所定範囲に揃えるため分級を行ってもよい。分級方法としては、風力分級や篩分級など従来公知の方法を用いることができる。また、風力分級機で1次分級した後、振動篩や超音波篩で粒径を所定範囲に揃えるようにしてもよい。さらに、分級工程後に、磁場選鉱機によって非磁性粒子を除去するようにしてもよい。フェライト粒子の粒径としては25μm以上50μm未満が好ましい。   After the pulverization treatment, classification may be performed, if necessary, in order to align the particle size within a predetermined range. As a classification method, a conventionally known method such as air classification or sieve classification can be used. In addition, after primary classification with an air classifier, the particle size may be aligned within a predetermined range with a vibration sieve or an ultrasonic sieve. Furthermore, you may make it remove a nonmagnetic particle with a magnetic field separator after a classification process. The particle diameter of the ferrite particles is preferably 25 μm or more and less than 50 μm.

その後、必要に応じて、分級後のフェライト粒子を酸化性雰囲気中で加熱して、粒子表面に酸化被膜を形成してフェライト粒子の高抵抗化を図ってもよい(高抵抗化処理)。酸化性雰囲気としては大気雰囲気又は酸素と窒素の混合雰囲気のいずれでもよい。また、加熱温度は、200℃〜800℃の範囲が好ましく、250℃〜600℃の範囲がさらに好ましい。加熱時間は0.5時間〜5時間の範囲が好ましい。   Thereafter, if necessary, the ferrite particles after classification may be heated in an oxidizing atmosphere to form an oxide film on the particle surface to increase the resistance of the ferrite particles (high resistance treatment). The oxidizing atmosphere may be either an air atmosphere or a mixed atmosphere of oxygen and nitrogen. The heating temperature is preferably in the range of 200 ° C to 800 ° C, and more preferably in the range of 250 ° C to 600 ° C. The heating time is preferably in the range of 0.5 hours to 5 hours.

フェライト粒子の表面に二酸化炭素を存在させる方法としては、特に定める方法はないが、固定床や流動床の吸着装置を用いて、ガス分圧とガス温度を調整した雰囲気でガス処理することが好ましい。ガス処理は、キャリア芯材製造における最終工程だけでなく、上述の焼成工程、解粒工程、分級工程、酸化工程のうち任意の工程において行うことができる。   There is no specific method for causing carbon dioxide to be present on the surface of the ferrite particles. However, it is preferable to perform gas treatment in an atmosphere in which the gas partial pressure and the gas temperature are adjusted using a fixed bed or fluidized bed adsorption device. The gas treatment can be performed not only in the final step in the production of the carrier core material, but also in any step among the above-described firing step, pulverization step, classification step, and oxidation step.

例えば、焼成工程においてガス処理を行う場合には、後述の開放式の焼成方法及び密閉式の焼成方法のいずれも選択できる。造粒物へのガス流通を伴う開放式の焼成方法の場合、熱源に炭化水素の燃焼熱を利用するタイプの焼成炉では、焼成時の空燃比を制御することで二酸化炭素ガスと水蒸気の分圧を調整してガス処理することができる。また、熱源に発熱体に電気を流すことで発生する熱を利用するタイプの焼成炉では、流通するガスへ二酸化炭素ガスと水蒸気を供給することで、それらのガス分圧を調整してガス処理することができる。一方、蓋付きの容器内などで焼成する密閉式の焼成方法では、任意のガス分圧となるように、予め、熱分解によって二酸化炭素や水蒸気を生成する物質を混合し、密閉容器内におけるそれらのガス分圧を調整してガス処理することができる。また、酸化工程においても同様の方法でガス処理を行うことができる。   For example, when performing gas treatment in the firing step, any of an open firing method and a closed firing method described later can be selected. In the case of an open-type firing method that involves the flow of gas to the granulated product, in a firing furnace that uses the combustion heat of hydrocarbons as the heat source, the air-fuel ratio during firing is controlled to control the separation of carbon dioxide gas and water vapor. The gas can be treated by adjusting the pressure. Also, in a type of firing furnace that uses heat generated by flowing electricity to a heating element to a heat source, by supplying carbon dioxide gas and water vapor to the circulating gas, the gas partial pressure is adjusted to perform gas treatment can do. On the other hand, in a closed baking method in which baking is performed in a container with a lid or the like, substances that generate carbon dioxide and water vapor by thermal decomposition are mixed in advance so that an arbitrary gas partial pressure is obtained, and those in a closed container are then mixed. The gas partial pressure can be adjusted to perform gas treatment. In the oxidation step, gas treatment can be performed by the same method.

ガス処理の温度に特に限定はないが、ガス処理温度が高すぎると二酸化炭素がキャリア芯材から脱離してしまうので、二酸化炭素の脱離温度より低温で行うことが好ましい。具体的には温度25℃〜140℃が好ましく、110℃〜140℃がより好ましい。前記温度範囲内でガス処理することで、キャリア芯材表面における二酸化炭素の拡散速度が速くなるとともに、キャリア芯材表面からの二酸化炭素の脱離を抑えられるのでキャリア芯材表面の樹脂に対する親和性の不均一性が解消できる。   There is no particular limitation on the temperature of the gas treatment, but if the gas treatment temperature is too high, carbon dioxide will be desorbed from the carrier core material, so it is preferable to carry out at a temperature lower than the desorption temperature of carbon dioxide. Specifically, the temperature is preferably 25 ° C to 140 ° C, more preferably 110 ° C to 140 ° C. By performing gas treatment within the above temperature range, the diffusion rate of carbon dioxide on the surface of the carrier core material is increased, and desorption of carbon dioxide from the surface of the carrier core material can be suppressed, so the affinity for the resin on the surface of the carrier core material Can eliminate the non-uniformity.

ガス処理の圧力に特に限定はないが、圧力容器など密閉系で圧力が極端に高くなると、超臨界二酸化炭素や亜臨界二酸化炭素などの溶解性の高い二酸化炭素が生成し、キャリア芯材を溶解させることがあるので、2気圧以上の加圧は好ましくない。常圧で処理することが好ましい。   There is no particular limitation on the gas treatment pressure, but if the pressure is extremely high in a closed system such as a pressure vessel, highly soluble carbon dioxide such as supercritical carbon dioxide and subcritical carbon dioxide is generated, and the carrier core material is dissolved. Therefore, pressurization of 2 atm or more is not preferable. It is preferable to process at normal pressure.

以上のようにして作製したフェライト粒子を本発明のキャリア芯材として用いる。そして、所望の帯電性等を得るために、キャリア芯材の表面を樹脂で被覆して電子写真現像用キャリアとする。   The ferrite particles produced as described above are used as the carrier core material of the present invention. Then, in order to obtain desired chargeability and the like, the surface of the carrier core material is coated with a resin to obtain an electrophotographic developing carrier.

キャリア芯材の表面を被覆する樹脂としては、従来公知のものが使用でき、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ−4−メチルペンテン−1、ポリ塩化ビニリデン、ABS(アクリロニトリル−ブタジエン−スチレン)樹脂、ポリスチレン、(メタ)アクリル系樹脂、ポリビニルアルコール系樹脂、並びにポリ塩化ビニル系やポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系等の熱可塑性エストラマー、フッ素シリコーン系樹脂などが挙げられる。   As the resin for coating the surface of the carrier core material, conventionally known resins can be used, for example, polyethylene, polypropylene, polyvinyl chloride, poly-4-methylpentene-1, polyvinylidene chloride, ABS (acrylonitrile-butadiene-styrene). ) Resin, polystyrene, (meth) acrylic resin, polyvinyl alcohol resin, polyvinyl chloride, polyurethane, polyester, polyamide, polybutadiene, and other thermoplastic elastomers, and fluorosilicone resins.

キャリア芯材の表面を樹脂で被覆するには、樹脂の溶液又は分散液をキャリア芯材に施せばよい。塗布溶液用の溶媒としては、トルエン、キシレン等の芳香族炭化水素系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;テトラヒドロフラン、ジオキサン等の環状エーテル類溶媒;エタノール、プロパノール、ブタノール等のアルコール系溶媒;エチルセロソルブ、ブチルセロソルブ等のセロソルブ系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒などの1種又は2種以上を用いることができる。塗布溶液中の樹脂成分濃度は、一般に0.001質量%〜30質量%、特に0.001質量%〜2質量%の範囲内にあるのがよい。   In order to coat the surface of the carrier core material with the resin, a resin solution or dispersion may be applied to the carrier core material. Solvents for the coating solution include aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; cyclic ether solvents such as tetrahydrofuran and dioxane; ethanol, propanol, and butanol Alcohol solvents such as ethyl cellosolve, cellosolve solvents such as butyl cellosolve; ester solvents such as ethyl acetate and butyl acetate; amide solvents such as dimethylformamide and dimethylacetamide, etc. . The resin component concentration in the coating solution should generally be in the range of 0.001% to 30% by weight, particularly 0.001% to 2% by weight.

キャリア芯材への樹脂の被覆方法としては、例えばスプレードライ法や流動床法あるいは流動床を用いたスプレードライ法、浸漬法等を用いることができる。これらの中でも、少ない樹脂量で効率的に塗布できる点で流動床法が特に好ましい。樹脂被覆量は、例えば流動床法の場合には吹き付ける樹脂溶液量や吹き付け時間によって調整することができる。   As a method of coating the resin on the carrier core material, for example, a spray drying method, a fluidized bed method, a spray drying method using a fluidized bed, an immersion method, or the like can be used. Among these, the fluidized bed method is particularly preferable in that it can be efficiently applied with a small amount of resin. For example, in the case of the fluidized bed method, the resin coating amount can be adjusted by the amount of resin solution sprayed and the spraying time.

キャリアの粒子径は、一般に、体積平均粒子径で25μm以上50μm未満の範囲、特に30μm以上40μm以下の範囲が好ましい。   The particle diameter of the carrier is generally preferably in the range of 25 μm or more and less than 50 μm, particularly in the range of 30 μm or more and 40 μm or less in terms of volume average particle diameter.

本発明に係る電子写真用現像剤は、以上のようにして作製したキャリアとトナーとを混合してなる。キャリアとトナーとの混合比に特に限定はなく、使用する現像装置の現像条件などから適宜決定すればよい。一般に現像剤中のトナー濃度は1質量%〜15質量%の範囲が好ましい。トナー濃度が1質量%未満の場合、画像濃度が薄くなりすぎ、他方トナー濃度が15質量%を超える場合、現像装置内でトナー飛散が発生し機内汚れや転写紙などの背景部分にトナーが付着する不具合が生じるおそれがあるからである。より好ましいトナー濃度は3質量%〜10質量%の範囲である。   The electrophotographic developer according to the present invention is obtained by mixing the carrier prepared as described above and a toner. The mixing ratio of the carrier and the toner is not particularly limited, and may be determined as appropriate based on the developing conditions of the developing device to be used. Generally, the toner concentration in the developer is preferably in the range of 1% by mass to 15% by mass. When the toner density is less than 1% by mass, the image density becomes too low, while when the toner density exceeds 15% by mass, toner scattering occurs in the developing device, and the toner adheres to the background portion such as internal dirt or transfer paper. This is because there is a risk of malfunction. A more preferable toner concentration is in the range of 3% by mass to 10% by mass.

トナーとしては、重合法、粉砕分級法、溶融造粒法、スプレー造粒法など従来公知の方法で製造したものが使用できる。具体的には、熱可塑性樹脂を主成分とする結着樹脂中に、着色剤、離型剤、帯電制御剤等を含有させたものが好適に使用できる。   As the toner, toner produced by a conventionally known method such as a polymerization method, a pulverization classification method, a melt granulation method, or a spray granulation method can be used. Specifically, a binder resin containing a thermoplastic resin as a main component and containing a colorant, a release agent, a charge control agent and the like can be suitably used.

トナーの粒径は、一般に、コールターカウンターによる体積平均粒径で5μm〜15μmの範囲が好ましく、7μm〜12μmの範囲がより好ましい。   In general, the particle diameter of the toner is preferably in the range of 5 μm to 15 μm, more preferably in the range of 7 μm to 12 μm, as a volume average particle diameter measured by a Coulter counter.

トナー表面には、必要により、改質剤を添加してもよい。改質剤としては、例えば、シリカ、アルミナ、酸化亜鉛、酸化チタン、酸化マグネシウム、ポリメチルメタクリレート等が挙げられる。これらの1種又は2種以上を組み合わせて使用できる。   If necessary, a modifier may be added to the toner surface. Examples of the modifier include silica, alumina, zinc oxide, titanium oxide, magnesium oxide, polymethyl methacrylate and the like. These 1 type (s) or 2 or more types can be used in combination.

キャリアとトナーとの混合は、従来公知の混合装置を用いることができる。例えばヘンシェルミキサー、V型混合機、タンブラーミキサー、ハイブリタイザー等を用いることができる。   A known mixing device can be used for mixing the carrier and the toner. For example, a Henschel mixer, a V-type mixer, a tumbler mixer, a hybridizer, or the like can be used.

本発明の現像剤を用いた現像方法に特に限定はないが、磁気ブラシ現像法が好適である。図2に、磁気ブラシ現像を行う現像装置の一例を示す概説図を示す。図2に示す現像装置は、複数の磁極を内蔵した回転自在の現像ローラ3と、現像部へ搬送される現像ローラ3上の現像剤量を規制する規制ブレード6と、水平方向に平行に配置され、互いに逆向きに現像剤を撹拌搬送する2本のスクリュー1,2と、2本のスクリュー1,2の間に形成され、両スクリューの両端部において、一方のスクリューから他方のスクリューに現像剤の移動を可能とし、両端部以外での現像剤の移動を防ぐ仕切板4とを備える。   The developing method using the developer of the present invention is not particularly limited, but a magnetic brush developing method is preferable. FIG. 2 is a schematic diagram showing an example of a developing device that performs magnetic brush development. The developing device shown in FIG. 2 is arranged in parallel to a horizontal direction, and a rotatable developing roller 3 incorporating a plurality of magnetic poles, a regulating blade 6 for regulating the amount of developer on the developing roller 3 conveyed to the developing unit. Formed between the two screws 1 and 2 that stir and convey the developer in opposite directions and the two screws 1 and 2, and develops from one screw to the other at both ends of both screws. And a partition plate 4 that allows the developer to move and prevents the developer from moving except at both ends.

2本のスクリュー1,2は、螺旋状の羽根13,23が同じ傾斜角で軸部11,21に形成されたものであって、不図示の駆動機構によって同方向に回転し、現像剤を互いに逆方向に搬送する。そして、スクリュー1,2の両端部において一方のスクリューから他方のスクリューに現像剤が移動する。これによりトナーとキャリアからなる現像剤は装置内を常に循環し撹拌されることになる。   The two screws 1 and 2 have spiral blades 13 and 23 formed on the shaft portions 11 and 21 at the same inclination angle, and are rotated in the same direction by a drive mechanism (not shown) to remove the developer. Transport in opposite directions. The developer moves from one screw to the other screw at both ends of the screws 1 and 2. As a result, the developer composed of toner and carrier is constantly circulated and stirred in the apparatus.

一方、現像ローラ3は、表面に数μmの凹凸を付けた金属製の筒状体の内部に、磁極発生手段として、現像磁極N、搬送磁極S、剥離磁極N、汲み上げ磁極N、ブレード磁極Sの5つの磁極を順に配置した固定磁石を有してなる。現像ローラ3が矢印方向に回転すると、汲み上げ磁極Nの磁力によって、スクリュー1から現像ローラ3へ現像剤が汲み上げられる。現像ローラ3の表面に担持された現像剤は、規制ブレード6により層規制された後、現像領域へ搬送される。 On the other hand, the developing roller 3 has, as a magnetic pole generating means, a developing magnetic pole N 1 , a transporting magnetic pole S 1 , a peeling magnetic pole N 2 , and a pumping magnetic pole N 3 inside a metal cylindrical body having a surface with a few μm unevenness. , comprising a fixed magnet disposed five pole blade pole S 2 in order. When the development roller 3 is rotated in the arrow direction, by the magnetic force of the magnetic pole N 3, the developer is pumped from the screw 1 to the developing roller 3. The developer carried on the surface of the developing roller 3 is regulated by the regulating blade 6 and then conveyed to the developing area.

現像領域では、直流電圧に交流電圧を重畳したバイアス電圧が転写電圧電源8から現像ローラ3に印加される。バイアス電圧の直流電圧成分は、感光体ドラム5表面の背景部電位と画像部電位との間の電位とされる。また、背景部電位と画像部電位とは、バイアス電圧の最大値と最小値との間の電位とされる。バイアス電圧のピーク間電圧は0.5〜5kVの範囲が好ましく、周波数は1〜10kHzの範囲が好ましい。またバイアス電圧の波形は矩形波、サイン波、三角波などいずれであってもよい。これによって、現像領域においてトナー及びキャリアが振動し、トナーが感光体ドラム5上の静電潜像に付着して現像がなされる。   In the developing region, a bias voltage obtained by superimposing an AC voltage on a DC voltage is applied from the transfer voltage power supply 8 to the developing roller 3. The DC voltage component of the bias voltage is a potential between the background portion potential on the surface of the photosensitive drum 5 and the image portion potential. Further, the background portion potential and the image portion potential are set to a potential between the maximum value and the minimum value of the bias voltage. The peak-to-peak voltage of the bias voltage is preferably in the range of 0.5 to 5 kV, and the frequency is preferably in the range of 1 to 10 kHz. The waveform of the bias voltage may be any of a rectangular wave, a sine wave, a triangular wave, and the like. As a result, the toner and the carrier vibrate in the development area, and the toner adheres to the electrostatic latent image on the photosensitive drum 5 and development is performed.

その後現像ローラ3上の現像剤は、搬送磁極Sによって装置内部に搬送され、剥離電極Nによって現像ローラ3から剥離して、スクリュー1,2によって装置内を再び循環搬送され、現像に供していない現像剤と混合撹拌される。そして汲み上げ極Nによって、新たに現像剤がスクリュー1から現像ローラ3へ供給される。 Thereafter, the developer on the developing roller 3 is conveyed to the inside of the apparatus by the conveying magnetic pole S 1 , peeled off from the developing roller 3 by the peeling electrode N 2 , and circulated and conveyed again inside the apparatus by the screws 1 and 2 for development. Mix and stir with undeveloped developer. Then, the developer is newly supplied from the screw 1 to the developing roller 3 by the pumping pole N 3 .

なお、図2に示した実施形態では現像ローラ3に内蔵された磁極は5つであったが、現像剤の現像領域での移動量を一層大きくしたり、汲み上げ性等を一層向上させるために、磁極を8極や10極、12極と増やしてももちろん構わない。   In the embodiment shown in FIG. 2, the number of magnetic poles built in the developing roller 3 is five. However, in order to further increase the amount of movement of the developer in the developing region and to further improve the pumping performance and the like. Of course, the number of magnetic poles may be increased to 8 poles, 10 poles or 12 poles.

以下、本発明を実施例によりさらに詳しく説明するが本発明はこれらの例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these examples at all.

実施例1
Fe(平均粒径:0.6μm)7.100kg、Mn(平均粒径:0.9μm)2.840kg、SrCO(平均粒径:0.6μm)0.060kgを純水4.256kg中に分散し、分散剤としてポリカルボン酸アンモニウム系分散剤を30g、還元剤としてのカーボンブラックを38g添加して混合物とした。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。
この混合スラリーをスプレードライヤーにて約130℃の熱風中に噴霧し、粒径10μm〜75μmの乾燥造粒物を得た。この造粒物から粒径50μmを超える粗粒は篩を用いて除去した。
この造粒物を、電気炉に投入し1170℃まで4.5時間かけて昇温した。その後、1170℃で3時間保持することにより焼成を行った。その後8時間かけて室温まで冷却した。この間、電気炉内の酸素濃度は15000ppmとなるよう、酸素と窒素とを混合したガスを炉内に供給した。
得られた焼成物をハンマーミル(三庄インダストリー社製「ハンマークラッシャーNH−34S」,スクリーン目開き:0.3mm)で1回解粒した後、パルベライザー(DOWAテクノエンジ社製)でさらに2回解粒し、平均粒径34.0μmのキャリア芯材を得た。
そして、恒温調湿機(PH−1KT)を用いて、キャリア芯材をガス処理温度25℃/湿度60%RHの大気雰囲気下で24時間静置し、キャリア芯材の表面を水分で処理するとともに、キャリア芯材の周囲に二酸化炭素を存在させた。
得られたキャリア芯材の組成、加熱による二酸化炭素の総量、物性、現像剤特性などを後述の方法で測定した。測定結果を表1に示す。また、図1に、実施例1のキャリア芯材の断面SEM写真を示す。
Example 1
Pure Fe 2 O 3 (average particle size: 0.6 μm) 7.100 kg, Mn 3 O 4 (average particle size: 0.9 μm) 2.840 kg, SrCO 3 (average particle size: 0.6 μm) 0.060 kg The mixture was dispersed in 4.256 kg of water, and 30 g of an ammonium polycarboxylate dispersant as a dispersant and 38 g of carbon black as a reducing agent were added to obtain a mixture. This mixture was pulverized by a wet ball mill (media diameter 2 mm) to obtain a mixed slurry.
This mixed slurry was sprayed into hot air of about 130 ° C. with a spray dryer to obtain a dry granulated product having a particle size of 10 μm to 75 μm. Coarse particles having a particle size exceeding 50 μm were removed from the granulated product using a sieve.
This granulated product was put into an electric furnace and heated to 1170 ° C. over 4.5 hours. Then, it baked by hold | maintaining at 1170 degreeC for 3 hours. Thereafter, it was cooled to room temperature over 8 hours. During this time, a gas in which oxygen and nitrogen were mixed was supplied into the furnace so that the oxygen concentration in the electric furnace was 15000 ppm.
The fired product obtained was pulverized once with a hammer mill (“Hammer Crusher NH-34S” manufactured by Sansho Industry Co., Ltd., screen opening: 0.3 mm) and then further twice with a pulverizer (manufactured by DOWA Techno Engineering). By pulverization, a carrier core material having an average particle diameter of 34.0 μm was obtained.
Then, using a thermo-hygrostat (PH-1KT), the carrier core material is allowed to stand for 24 hours in an air atmosphere at a gas treatment temperature of 25 ° C./humidity of 60% RH, and the surface of the carrier core material is treated with moisture. At the same time, carbon dioxide was present around the carrier core.
The composition of the obtained carrier core material, the total amount of carbon dioxide by heating, physical properties, developer characteristics, and the like were measured by the methods described below. The measurement results are shown in Table 1. FIG. 1 shows a cross-sectional SEM photograph of the carrier core material of Example 1.

実施例2
Feを6.964kg、Mnを2.737kg、SrCOを0.023kg、MgCO(平均粒径:0.6μm)を0.254kg、CaCOを0.022kg、SiOを0.5gとした以外は実施例1と同様にしてキャリア芯材を作製し、平均粒径34.8μmのキャリア芯材を得た。得られたキャリア芯材の組成、加熱による二酸化炭素の総量、物性、現像剤特性などを後述の方法で測定した。測定結果を表1に示す。
Example 2
Fe 2 O 3 6.964 kg, Mn 3 O 4 2.737 kg, SrCO 3 0.023 kg, MgCO 3 (average particle size: 0.6 μm) 0.254 kg, CaCO 3 0.022 kg, SiO 2 A carrier core material was produced in the same manner as in Example 1 except that the amount was 0.5 g, and a carrier core material having an average particle diameter of 34.8 μm was obtained. The composition of the obtained carrier core material, the total amount of carbon dioxide by heating, physical properties, developer characteristics, and the like were measured by the methods described below. The measurement results are shown in Table 1.

実施例3
ガス処理温度を110℃にした以外は、実施例1と同様にしてキャリア芯材を作製した。得られたキャリア芯材の組成、加熱による二酸化炭素の総量、物性、現像剤特性などを後述の方法で測定した。測定結果を表1に示す。
Example 3
A carrier core material was produced in the same manner as in Example 1 except that the gas treatment temperature was 110 ° C. The composition of the obtained carrier core material, the total amount of carbon dioxide by heating, physical properties, developer characteristics, and the like were measured by the methods described below. The measurement results are shown in Table 1.

実施例4
Feを7.026kg、Mnを2.496kg、SrCOを0.025kg、MgCO(平均粒径:0.6μm)を0.422kg、CaCOを0.027kg、SiOを3.5g、ガス処理温度を110℃にした以外は実施例1と同様にしてキャリア芯材を作製し、平均粒径37.2μmのキャリア芯材を得た。得られたキャリア芯材の組成、加熱による二酸化炭素の総量、物性、現像剤特性などを後述の方法で測定した。測定結果を表1に示す。
Example 4
Fe 2 O 3 7.026 kg, Mn 3 O 4 2.496 kg, SrCO 3 0.025 kg, MgCO 3 (average particle size: 0.6 μm) 0.422 kg, CaCO 3 0.027 kg, SiO 2 A carrier core material having an average particle size of 37.2 μm was obtained in the same manner as in Example 1 except that 3.5 g was used and the gas treatment temperature was 110 ° C. The composition of the obtained carrier core material, the total amount of carbon dioxide by heating, physical properties, developer characteristics, and the like were measured by the methods described below. The measurement results are shown in Table 1.

実施例5
Feを7.066kg、Mnを2.437kg、SrCOを0.029kg、MgCO(平均粒径:0.6μm)を0.443kg、CaCOを0.023kg、SiOを1.1g、ガス処理温度を110℃にした以外は実施例1と同様にしてキャリア芯材を作製し、平均粒径32.5μmのキャリア芯材を得た。得られたキャリア芯材の組成、加熱による二酸化炭素の総量、物性、現像剤特性などを後述の方法で測定した。測定結果を表1に示す。
Example 5
Fe 2 O 3 7.066 kg, Mn 3 O 4 2.437 kg, SrCO 3 0.029 kg, MgCO 3 (average particle size: 0.6 μm) 0.443 kg, CaCO 3 0.023 kg, SiO 2 A carrier core material having an average particle diameter of 32.5 μm was obtained in the same manner as in Example 1 except that 1.1 g was used and the gas treatment temperature was 110 ° C. The composition of the obtained carrier core material, the total amount of carbon dioxide by heating, physical properties, developer characteristics, and the like were measured by the methods described below. The measurement results are shown in Table 1.

比較例1
Feを6.796kg、Mnを3.076kg、SrCOを0.092kg、MgCOを0.035kgとした以外は実施例1と同様にしてキャリア芯材を作製し、平均粒径34.0μmのキャリア芯材を得た。得られたキャリア芯材の組成、加熱による二酸化炭素の総量、物性、現像剤特性などを後述の方法で測定した。測定結果を表1に示す。
Comparative Example 1
A carrier core material was prepared in the same manner as in Example 1 except that 6.796 kg of Fe 2 O 3 , 3.076 kg of Mn 3 O 4 , 0.092 kg of SrCO 3 and 0.035 kg of MgCO 3 were prepared. A carrier core material having a particle size of 34.0 μm was obtained. The composition of the obtained carrier core material, the total amount of carbon dioxide by heating, physical properties, developer characteristics, and the like were measured by the methods described below. The measurement results are shown in Table 1.

比較例2
Feを7.092kg、Mnを2.371kg、MgCOを0.537kgとした以外は実施例1と同様にしてキャリア芯材を作製し、平均粒径34.1μmのキャリア芯材を得た。得られたキャリア芯材の組成、加熱による二酸化炭素の総量、物性、現像剤特性などを後述の方法で測定した。測定結果を表1に示す。
Comparative Example 2
A carrier core material was prepared in the same manner as in Example 1 except that 7.092 kg of Fe 2 O 3 , 2.371 kg of Mn 3 O 4 and 0.537 kg of MgCO 3 were used, and a carrier having an average particle diameter of 34.1 μm. A core material was obtained. The composition of the obtained carrier core material, the total amount of carbon dioxide by heating, physical properties, developer characteristics, and the like were measured by the methods described below. The measurement results are shown in Table 1.

比較例3
Feを6.706kg、Mnを3.196kg、SrCOを0.098kgとした以外は実施例1と同様にしてキャリア芯材を作製し、平均粒径34.6μmのキャリア芯材を得た。得られたキャリア芯材の組成、加熱による二酸化炭素の総量、物性、現像剤特性などを後述の方法で測定した。測定結果を表1に示す。
Comparative Example 3
A carrier core material was prepared in the same manner as in Example 1 except that 6.706 kg of Fe 2 O 3 , 3.196 kg of Mn 3 O 4 and 0.098 kg of SrCO 3 were prepared, and a carrier having an average particle diameter of 34.6 μm A core material was obtained. The composition of the obtained carrier core material, the total amount of carbon dioxide by heating, physical properties, developer characteristics, and the like were measured by the methods described below. The measurement results are shown in Table 1.

比較例4
恒温調湿機でのガス処理工程を行わなかった以外は実施例1と同様にしてキャリア芯材を作製し、得られたキャリア芯材の組成、加熱による二酸化炭素の総量、物性、現像剤特性などを後述の方法で測定した。測定結果を表1に示す。
Comparative Example 4
A carrier core material was produced in the same manner as in Example 1 except that the gas treatment step in the thermostatic humidity controller was not performed. The composition of the obtained carrier core material, the total amount of carbon dioxide by heating, physical properties, developer characteristics Etc. were measured by the method described later. The measurement results are shown in Table 1.

(組成分析)
実施例及び比較例のキャリア芯材の組成(質量%)を下記の方法で算出した。
(Feの分析)
鉄元素を含むキャリア芯材を秤量し、塩酸と硝酸の混酸水に溶解させた。この溶液を蒸発乾固させた後、硫酸水を添加して再溶解し過剰な塩酸と硝酸とを揮発させる。この溶液に固体Alを添加して液中のFe3+を全てFe2+に還元する。続いて、この溶液中のFe2+イオンの量を過マンガン酸カリウム溶液で電位差滴定することにより定量分析し、Fe(Fe2+)の滴定量を求めた。
(Mnの分析)
キャリア芯材のMn含有量は、JIS G1311−1987記載のフェロマンガン分析方法(電位差滴定法)に準拠して定量分析を行った。本願発明に記載したキャリア芯材のMn含有量は、このフェロマンガン分析方法(電位差滴定法)で定量分析し得られたMn量である。
(Mgの分析)
キャリア芯材のMg含有量は、以下の方法で分析を行った。本願発明に係るキャリア芯材を酸溶液中で溶解し、ICPにて定量分析を行った。本願発明に記載したキャリア芯材のMg含有量は、このICPによる定量分析で得られたMg量である。
(Caの分析)
キャリア芯材のCa含有量は、Mgの分析同様にICPによる定量分析で行った。
(Srの分析)
キャリア芯材のSr含有量は、Mgの分析同様にICPによる定量分析で行った。
(Siの分析)
キャリア芯材のSiO含有量は、JIS M8214−1995記載の二酸化珪素重量法に準拠して定量分析を行なった。
(Composition analysis)
The composition (mass%) of the carrier core materials of Examples and Comparative Examples was calculated by the following method.
(Analysis of Fe)
The carrier core material containing iron element was weighed and dissolved in a mixed acid water of hydrochloric acid and nitric acid. After evaporating this solution to dryness, sulfuric acid water is added and redissolved to volatilize excess hydrochloric acid and nitric acid. Solid Al is added to this solution to reduce all Fe 3+ in the solution to Fe 2+ . Subsequently, the amount of Fe 2+ ions in the solution was quantitatively analyzed by potentiometric titration with a potassium permanganate solution to obtain a titer of Fe (Fe 2+ ).
(Analysis of Mn)
The Mn content of the carrier core material was quantitatively analyzed according to the ferromanganese analysis method (potentiometric titration method) described in JIS G1311-1987. The Mn content of the carrier core material described in the present invention is the amount of Mn obtained by quantitative analysis by this ferromanganese analysis method (potentiometric titration method).
(Analysis of Mg)
The Mg content of the carrier core material was analyzed by the following method. The carrier core material according to the present invention was dissolved in an acid solution, and quantitative analysis was performed by ICP. The Mg content of the carrier core material described in the present invention is the amount of Mg obtained by this quantitative analysis by ICP.
(Ca analysis)
The Ca content of the carrier core material was determined by ICP quantitative analysis as in the case of Mg analysis.
(Sr analysis)
The Sr content of the carrier core material was determined by ICP quantitative analysis as in the case of Mg analysis.
(Analysis of Si)
The SiO 2 content of the carrier core material was quantitatively analyzed based on the silicon dioxide weight method described in JIS M8214-1995.

(CO総量)
CO脱離量は流通式反応装置を用いて測定した。まず、キャリア芯材1.5gを直径8mmの石英管に充填し、21%O/残Nの混合ガス流通下、10℃/minの速度で昇温した。混合ガスの流量は0.5L/minとした。昇温時の出口ガスに含まれるCO濃度を赤外吸収式ガス検出器(NICOLET4700)を用いて測定した。CO脱離量は、120℃〜450℃までのCO濃度を積分し、mol量へ換算した後、サンプル量(1.5g)で除して算出した。
(CO 2 total amount)
The amount of CO 2 desorption was measured using a flow reactor. First, 1.5 g of a carrier core material was filled in a quartz tube having a diameter of 8 mm, and the temperature was raised at a rate of 10 ° C./min under a mixed gas flow of 21% O 2 / remaining N 2 . The flow rate of the mixed gas was 0.5 L / min. The CO 2 concentration contained in the outlet gas at the time of temperature increase was measured using an infrared absorption gas detector (NICOLET4700). The CO 2 desorption amount was calculated by integrating the CO 2 concentration from 120 ° C. to 450 ° C. and converting to a mol amount, and then dividing by the sample amount (1.5 g).

(平均粒径)
キャリア芯材の体積平均粒径は、レーザー回折式粒度分布測定装置(日機装社製「マイクロトラックModel9320−X100」)を用いて測定した。
(Average particle size)
The volume average particle diameter of the carrier core material was measured using a laser diffraction particle size distribution measuring device (“Microtrack Model 9320-X100” manufactured by Nikkiso Co., Ltd.).

(画像メモリー)
得られたキャリア芯材の表面を樹脂で被覆してキャリアを作製した。具体的には、
アクリル/スチレン混合樹脂75gをハイスピードミキサー(深江パウテック社製「FS−GS−10JD型」)を用いてキャリア芯材2.5kgに塗布しキャリアを得た。ハイスピードミキサーの撹拌回転数は400rpm、撹拌時間は90分間とした。以下、全ての実施例、比較例についても同様にしてキャリアを得た。
(Image memory)
The surface of the obtained carrier core material was coated with a resin to prepare a carrier. In particular,
A carrier was obtained by applying 75 g of an acrylic / styrene mixed resin to 2.5 kg of the carrier core material using a high speed mixer ("FS-GS-10JD type" manufactured by Fukae Pautech Co., Ltd.). The stirring speed of the high speed mixer was 400 rpm, and the stirring time was 90 minutes. Hereinafter, carriers were obtained in the same manner for all of the examples and comparative examples.

得られたキャリアと平均粒径5.0μm程度のトナーとを、ポットミルを用いて所定時間混合し、二成分系の電子写真現像剤を得た。この場合、キャリアとトナーとをトナーの質量/(トナーおよびキャリアの質量)=5/100となるように調整した。以下、全ての実施例、比較例についても同様にして現像剤を得た。得られた現像剤を、図2に示す構造の現像装置(現像スリーブの周速度Vs:406mm/sec,感光体ドラムの周速度Vp:205mm/sec,感光体ドラム−現像スリーブ間距離:0.3mm)に投入し、感光体ドラムの長手方向にベタ画像部と非画像部とが隣り合い、その後は広い面積の中間調が続く画像を初期と20万枚画像形成後に取得し、現像ローラ2周目の現像ローラ1周目のベタ画像が現像された領域とそうでない領域との画像濃度を反射濃度計(東京電色社製の型番TC−6D)を用いて測定し、その差を求め下記基準で評価した。結果を表1に合わせて示す。
「◎」:0.003未満
「○」:0.003以上0.006未満
「△」:0.006以上0.020未満
「×」:0.020以上
The obtained carrier and a toner having an average particle diameter of about 5.0 μm were mixed for a predetermined time using a pot mill to obtain a two-component electrophotographic developer. In this case, the carrier and the toner were adjusted so that the mass of the toner / (the mass of the toner and the carrier) = 5/100. Hereinafter, developers were obtained in the same manner for all of the Examples and Comparative Examples. The developer thus obtained was developed into a developing device having a structure shown in FIG. 2 (developing sleeve peripheral speed Vs: 406 mm / sec, photosensitive drum peripheral speed Vp: 205 mm / sec, photosensitive drum-developing sleeve distance: 0. 3 mm), an image in which a solid image portion and a non-image portion are adjacent to each other in the longitudinal direction of the photosensitive drum, and a halftone of a wide area thereafter is obtained after the initial and 200,000 sheets are formed, and the developing roller 2 Measure the image density between the area where the solid image on the first development roller of the circumference is developed and the area where it is not, using a reflection densitometer (Model No. TC-6D manufactured by Tokyo Denshoku Co., Ltd.), and determine the difference. Evaluation was made according to the following criteria. The results are shown in Table 1.
“◎”: Less than 0.003 “O”: 0.003 or more and less than 0.006 “Δ”: 0.006 or more and less than 0.020 “X”: 0.020 or more

実施例1、実施例3及び比較例4のキャリア芯材の比較において、ガス処理を行うことによってCO総量が多くなること、またガス処理温度を高くすることによってCO総量が多くなることがわかる。そして、CO総量が多いと現像メモリーの発生が抑制されることがわかる。 Example 1, in comparison to the carrier core material of Example 3 and Comparative Example 4, CO 2 total is increased by performing the gas processing, also be made many CO 2 amount by increasing the gas processing temperature Recognize. It can be seen that the development memory is suppressed when the total amount of CO 2 is large.

また、実施例1〜5及び比較例1〜3の芯材での比較において、Sr含有量が0.14質量%以上0.5質量%以下で、Mg含有量が3.0質量%以下であると、アルカリ金属元素又はアルカリ土類金属元素と水分との反応が抑えられて、CO総量が1.0μmol/g以上となり現像メモリーの発生が抑制されることがわかる。 Moreover, in the comparison with the core material of Examples 1-5 and Comparative Examples 1-3, Sr content is 0.14 mass% or more and 0.5 mass% or less, and Mg content is 3.0 mass% or less. It can be seen that the reaction between the alkali metal element or alkaline earth metal element and moisture is suppressed, and the total amount of CO 2 becomes 1.0 μmol / g or more, and the development memory is suppressed.

本発明に係るキャリア芯材によれば、現像メモリーなどの不具合の発生を抑制できる。   According to the carrier core material of the present invention, it is possible to suppress the occurrence of problems such as development memory.

3 現像ローラ
5 感光体ドラム
3 Developing roller 5 Photosensitive drum

Claims (6)

スピネル型結晶構造を有し、Sr成分を含有するフェライト粒子から構成されるキャリア芯材であって、
温度120℃から450℃まで加熱する間に検出される二酸化炭素の総量が1.0μmol/g以上である
ことを特徴とするキャリア芯材。
A carrier core material having a spinel crystal structure and comprising ferrite particles containing a Sr component,
A carrier core material, wherein the total amount of carbon dioxide detected during heating from 120 ° C. to 450 ° C. is 1.0 μmol / g or more.
Srの含有量が0.14質量%以上0.5質量%以下の範囲である請求項1記載のキャリア芯材。   The carrier core material according to claim 1, wherein the Sr content is in the range of 0.14% by mass or more and 0.5% by mass or less. Mgの含有量が3.0質量%以下である請求項1又は2記載のキャリア芯材。   The carrier core material according to claim 1 or 2, wherein the Mg content is 3.0 mass% or less. 体積平均粒径が25μm以上50μm未満である請求項1〜3のいずれかに記載のキャリア芯材。   The carrier core material according to any one of claims 1 to 3, which has a volume average particle size of 25 µm or more and less than 50 µm. 請求項1〜4のいずれかに記載のキャリア芯材の表面を樹脂で被覆したことを特徴とする電子写真現像用キャリア。   A carrier for electrophotographic development, wherein the surface of the carrier core material according to any one of claims 1 to 4 is coated with a resin. 請求項5記載の電子写真現像用キャリアとトナーとを含む電子写真用現像剤。   An electrophotographic developer comprising the carrier for electrophotographic development according to claim 5 and a toner.
JP2015205368A 2015-10-19 2015-10-19 Carrier core material, and carrier for electrophotography development and developer for electrophotography prepared therewith Pending JP2017078738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015205368A JP2017078738A (en) 2015-10-19 2015-10-19 Carrier core material, and carrier for electrophotography development and developer for electrophotography prepared therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015205368A JP2017078738A (en) 2015-10-19 2015-10-19 Carrier core material, and carrier for electrophotography development and developer for electrophotography prepared therewith

Publications (1)

Publication Number Publication Date
JP2017078738A true JP2017078738A (en) 2017-04-27

Family

ID=58665301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015205368A Pending JP2017078738A (en) 2015-10-19 2015-10-19 Carrier core material, and carrier for electrophotography development and developer for electrophotography prepared therewith

Country Status (1)

Country Link
JP (1) JP2017078738A (en)

Similar Documents

Publication Publication Date Title
JP5751688B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP5822415B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP6450621B2 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP5957623B1 (en) Carrier core
JP5726360B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP5839639B1 (en) Carrier core
JP5828569B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP6633898B2 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
WO2018180543A1 (en) Carrier core material, and electrophotographic carrier and electrophotographic developer that use carrier core material
JP5736078B1 (en) Ferrite particles, electrophotographic carrier and electrophotographic developer using the same
JP6494453B2 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP7275361B2 (en) Carrier core material, electrophotographic development carrier and electrophotographic developer using the same
JP5620699B2 (en) Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles
JP5761921B2 (en) Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles
JP2019061188A (en) Carrier core material, carrier for developing electrophotography using the same, and developer for electrophotography
JP6511320B2 (en) Carrier core material and method for manufacturing the same
JP5854541B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP2018106015A (en) Carrier core material and carrier for electrophotographic development, and electrophotographic developer
JP2017078738A (en) Carrier core material, and carrier for electrophotography development and developer for electrophotography prepared therewith
JP5478322B2 (en) Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles
JP2014149464A (en) Carrier particle
JP2018155827A (en) Carrier core material, and carrier for electrophotographic development and developer for electrophotography using the same
JP5839640B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP6650300B2 (en) Carrier core material
JP2023145902A (en) Carrier core material, electrophotographic development career using the same and electrophotographic developer