JP2017077999A - Hydrogen-containing gas producing apparatus - Google Patents

Hydrogen-containing gas producing apparatus Download PDF

Info

Publication number
JP2017077999A
JP2017077999A JP2015207392A JP2015207392A JP2017077999A JP 2017077999 A JP2017077999 A JP 2017077999A JP 2015207392 A JP2015207392 A JP 2015207392A JP 2015207392 A JP2015207392 A JP 2015207392A JP 2017077999 A JP2017077999 A JP 2017077999A
Authority
JP
Japan
Prior art keywords
desulfurization
unit
temperature
catalyst
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015207392A
Other languages
Japanese (ja)
Other versions
JP6521832B2 (en
Inventor
松本 明
Akira Matsumoto
明 松本
真吾 渡邉
Shingo Watanabe
真吾 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2015207392A priority Critical patent/JP6521832B2/en
Publication of JP2017077999A publication Critical patent/JP2017077999A/en
Application granted granted Critical
Publication of JP6521832B2 publication Critical patent/JP6521832B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen-containing gas producing apparatus that can suppress the reduction of a hydrogen-containing gas producing capability with the elapse of operation time.SOLUTION: Provided is a hydrogen-containing gas producing apparatus configured to execute a start-up temperature-increase process in which operation control means C controls desulfurization unit heating means 21 to temperature-increase a desulfurization treatment catalyst 1c to a start-up desulfurization unit temperature before starting the feed of a raw fuel gas to a desulfurization unit 1 to start the reforming process in a reforming unit 2, and in which there is provided preliminary heating means H for heating the desulfurization treatment catalyst 1c to a desulfurization unit preliminary heating temperature which is lower than the start-up desulfurization unit temperature, and the operation control means C is configured to execute the start-up temperature-increase process after actuating the preliminary heating means H to heat the desulfurization treatment catalyst 1c to a desulfurization unit preliminary heating temperature.SELECTED DRAWING: Figure 1

Description

本発明は、容器の内部の触媒収容空間に脱硫処理触媒が収容されて、供給される原燃料ガスに対して脱硫処理を施す容器状の脱硫部と、脱硫部の一部を外部から加熱することで脱硫処理触媒を加熱する脱硫部加熱手段と、改質処理触媒が収容され且つガス受け入れ可能に脱硫部に接続されて、脱硫部から供給される脱硫処理後の原燃料ガスを改質処理して水素ガスを主成分とする改質ガスを生成する改質部と、運転を制御する運転制御手段とが設けられ、運転制御手段が、脱硫部への原燃料ガスの供給を開始して改質部にて改質処理を開始する前に、脱硫処理触媒を起動時脱硫部温度に昇温させるべく脱硫部加熱手段を制御する起動時昇温処理を実行するように構成された水素含有ガス生成装置に関する。   In the present invention, a desulfurization treatment catalyst is housed in a catalyst housing space inside a container, and a container-shaped desulfurization section that performs desulfurization treatment on the supplied raw fuel gas, and a part of the desulfurization section are heated from the outside. The desulfurization part heating means for heating the desulfurization process catalyst, and the reforming process catalyst is accommodated and connected to the desulfurization part so as to accept gas, and the raw fuel gas after the desulfurization process supplied from the desulfurization part is reformed A reforming section for generating a reformed gas containing hydrogen gas as a main component and an operation control means for controlling the operation, and the operation control means starts supplying raw fuel gas to the desulfurization section. Hydrogen content configured to perform start-up temperature rise processing to control the desulfurization section heating means to raise the temperature of the desulfurization treatment catalyst to the start-up desulfurization section temperature before starting the reforming process in the reforming section The present invention relates to a gas generator.

かかる水素含有ガス生成装置は、炭化水素系の原燃料ガスを脱硫部で脱硫すると共に、その脱硫原燃料ガスを改質部で改質処理して、水素を主成分とする水素含有ガスを生成するものであり、生成された水素含有ガスは、例えば、燃料電池で消費される。
脱硫部は、容器の内部の触媒収容空間に粒状の脱硫処理触媒が収容されて、容器状に構成される。
そして、脱硫部で所望通りに脱硫処理が可能になるのを速めて、所定の成分で水素含有ガスの生成が可能になるのに要する起動時間を短縮すべく、起動時に、脱硫処理触媒を起動時脱硫部温度に昇温させるために、容器状の脱硫部の一部を外部から加熱することで脱硫処理触媒を加熱する脱硫部加熱手段が設けられている(例えば、特許文献1参照。)。
Such a hydrogen-containing gas generation device desulfurizes a hydrocarbon-based raw fuel gas in a desulfurization section, and reforms the desulfurized raw fuel gas in a reforming section to generate a hydrogen-containing gas containing hydrogen as a main component. The generated hydrogen-containing gas is consumed by, for example, a fuel cell.
The desulfurization unit is configured in a container shape in which a granular desulfurization treatment catalyst is accommodated in a catalyst accommodating space inside the container.
And start desulfurization treatment catalyst at start-up to speed up the desulfurization process as desired in the desulfurization section and shorten the start-up time required to generate the hydrogen-containing gas with the specified components In order to raise the temperature to the time desulfurization part temperature, a desulfurization part heating means for heating the desulfurization treatment catalyst by heating a part of the container-like desulfurization part from the outside is provided (for example, see Patent Document 1). .

又、特許文献1にも開示されているように、一酸化炭素ガス濃度がより一層低い水素含有ガスを生成するために、改質部で脱硫原燃料ガスが改質処理されて生成された改質ガスに対して、一酸化炭素を二酸化炭素に変成する変成処理を施す変成部、及び、変成部で変成処理された改質ガスに対して、一酸化炭素を選択除去する選択除去処理を施す選択除去部が設けられる場合もある。   Further, as disclosed in Patent Document 1, in order to generate a hydrogen-containing gas having a lower carbon monoxide gas concentration, the reformed gas generated by the reforming treatment of the desulfurized raw fuel gas in the reforming section. The gas conversion gas is subjected to a modification process for transforming carbon monoxide into carbon dioxide, and the reformed gas subjected to the modification process in the modification part is subjected to a selective removal process for selectively removing carbon monoxide. A selective removal unit may be provided.

この場合は、変成部で所望通りに変成処理が可能になるのを速めると共に、選択除去部で所望通りに選択除去処理が可能になるのを速めて、起動時間を短縮すべく、起動時に、変成処理触媒を起動時変成部温度に昇温させるために、容器状の変成部の一部を外部から加熱することで変成処理触媒を加熱する変成部加熱手段、及び、起動時に、選択除去処理触媒を起動時選択除去部温度に昇温させるために、容器状の選択除去部の一部を外部から加熱することで選択除去処理触媒を加熱する選択除去部加熱手段も設けられる。
変成部も、容器の内部の触媒収容空間に粒状の変成処理触媒が収容されて、容器状に構成され、選択除去部も、容器の内部の触媒収容空間に粒状の選択除去処理触媒が収容されて、容器状に構成される。
In this case, at the time of start-up, in order to shorten the start-up time in order to shorten the start-up time by accelerating that the metamorphic unit can perform the metamorphic process as desired and speeding up the selective removal process as desired by the selective-removal unit. In order to raise the temperature of the shift treatment catalyst to the start-up shift section temperature, a shift section heating means for heating the shift treatment catalyst by heating a part of the container-shaped shift section from the outside, and selective removal processing at the start-up In order to raise the temperature of the catalyst to the selective removal section at the time of activation, a selective removal section heating means for heating the selective removal treatment catalyst by heating a part of the container-shaped selective removal section from the outside is also provided.
The shift portion is also configured in a container shape in which the granular shift treatment catalyst is accommodated in the catalyst accommodating space inside the container, and the selective removal portion is also accommodated in the catalyst accommodating space inside the container. And configured in a container shape.

図6(a)に示すように、例えば、脱硫部1の触媒収容空間Rが、扁平状の容器B内に形成され、その扁平状の触媒収容空間Rに脱硫処理触媒1cが収容される。
この容器Bは、例えば、厚さ方向視で矩形状の一対の皿形状容器形成部材51の間に、厚さ方向視で矩形状の平板状の区画部材52を位置させた状態で、周辺部が溶接接続されて、内部に二つの偏平な内部空間Sが区画形成される。そして、例えば、二つの内部空間Sの一方を触媒収容空間Rとして、その触媒収容空間Rに脱硫処理触媒1cが収容されることにより、容器Bを用いて、容器状の脱硫部1が構成される。
図示を省略するが、変成部、選択除去部も、夫々、脱硫部を構成するのと同様の扁平状の容器Bを用いて、容器状に構成される。
As shown in FIG. 6A, for example, the catalyst housing space R of the desulfurization unit 1 is formed in a flat container B, and the desulfurization treatment catalyst 1c is housed in the flat catalyst housing space R.
The container B is, for example, in a state where a rectangular flat plate-shaped partition member 52 is positioned between a pair of rectangular dish-shaped container forming members 51 as viewed in the thickness direction. Are connected by welding, and two flat internal spaces S are defined inside. For example, the desulfurization treatment catalyst 1c is accommodated in the catalyst accommodating space R by using one of the two internal spaces S as the catalyst accommodating space R, whereby the container-shaped desulfurization unit 1 is configured using the container B. The
Although not shown, the metamorphic part and the selective removal part are each configured in a container shape using a flat container B similar to that constituting the desulfurization part.

図6(a)に示すように、脱硫部加熱手段21は、例えば、厚さ方向視が矩形状で、プレート状の電気ヒータにて構成され、このようなプレート状の脱硫部加熱手段21が、触媒収容空間Rを形成する皿形状容器形成部材51の外面に当て付けて設けられて、容器状の脱硫部1の一部を外部から加熱することで脱硫処理触媒1cを加熱するように構成されている。
図示を省略するが、変成部加熱手段、選択除去部加熱手段も、夫々、脱硫部加熱手段21と同様のプレート状に構成されて、脱硫部加熱手段21と同様に、扁平状の容器Bに対して設けられる。
As shown in FIG. 6A, the desulfurization part heating means 21 is, for example, a rectangular electric heater in the thickness direction, and is constituted by a plate-like electric heater. The desulfurization treatment catalyst 1c is heated by applying a part of the container-shaped desulfurization part 1 from the outside, and is applied to the outer surface of the dish-shaped container forming member 51 that forms the catalyst housing space R. Has been.
Although not shown in the figure, the transformation part heating means and the selective removal part heating means are each configured in the same plate shape as the desulfurization part heating means 21, and like the desulfurization part heating means 21, the flat container B is provided. It is provided for.

特開2002−356309号公報JP 2002-356309 A

ところで、起動時昇温処理が実行される間は、脱硫部加熱手段により、脱硫部を構成する容器の一部が局所的に外部から加熱されることになる。そして、その容器における局所的に加熱される部分は、他の部分に比べて、面方向に速く且つ大きく伸びて、局所的に大きく熱膨張することになるが、その局所的に加熱される部分は、脱硫部加熱手段によって、触媒収容空間の外方側への反りが規制されるので、触媒収容空間の内方側へ反ることになる。
例えば、図6(a)に示すように、脱硫部1が扁平状の容器Bを用いて構成される場合、起動時昇温処理が実行されると、図6(b)に示すように、皿形状容器形成部材51において脱硫部加熱手段21により加熱される部分が、触媒収容空間Rの内方側へ反ることになる。尚、図6(b)は、皿形状容器形成部材51の反りの状態を分かり易く示すために、反りの状態を誇張して示している。
By the way, while the temperature raising process at the time of starting is executed, a part of the container constituting the desulfurization unit is locally heated from the outside by the desulfurization unit heating means. And the part heated locally in the container expands quickly and greatly in the surface direction compared with other parts, and it expands greatly locally, but the part heated locally Since the warping to the outside of the catalyst housing space is regulated by the desulfurization section heating means, the warping to the inside of the catalyst housing space is performed.
For example, as shown in FIG. 6 (a), when the desulfurization unit 1 is configured using a flat container B, when the startup temperature increase process is executed, as shown in FIG. 6 (b), The part heated by the desulfurization part heating means 21 in the dish-shaped container forming member 51 warps inward of the catalyst housing space R. FIG. 6B exaggerates the warped state in order to easily show the warped state of the dish-shaped container forming member 51.

そして、脱硫部を構成する容器の一部が局所的に触媒収容空間の内方側へ反ると、触媒収容空間に収容されている脱硫処理触媒に対して圧縮応力が加わるので、起動時昇温処理によって、脱硫処理触媒の圧壊が促進されて、脱硫処理触媒の細粒化が進行する虞がある。脱硫処理触媒の細粒化が進行すると、触媒収容空間を通流する原燃料ガスに偏流が生じ易くなるので、触媒収容空間において原燃料ガスに対して脱硫処理が施される領域が狭められて、原燃料ガスに脱硫処理を施す処理能力が低下し、延いては、水素含有ガス生成能力が低下することになる。   If a part of the container constituting the desulfurization section locally warps inward of the catalyst housing space, a compressive stress is applied to the desulfurization treatment catalyst housed in the catalyst housing space. There is a possibility that the heat treatment promotes the crushing of the desulfurization treatment catalyst, and the desulfurization treatment catalyst becomes finer. As the desulfurization catalyst becomes finer, the raw fuel gas flowing through the catalyst housing space tends to drift, so the area where the raw fuel gas is desulfurized in the catalyst housing space is narrowed. As a result, the processing capability of subjecting the raw fuel gas to the desulfurization treatment is reduced, and the hydrogen-containing gas generation capability is reduced.

同様に、変成部や選択除去部においても、起動時昇温処理の間に、変成処理触媒や選択除去処理触媒の圧壊による細粒化が進行する虞があるので、変成処理能力や選択除去処理能力が低下する虞があり、延いては、水素含有ガス生成能力がより一層低下することになる。   Similarly, in the metamorphic section and the selective removal section, there is a possibility that the conversion process catalyst and the selective removal process catalyst may become finer due to the collapse of the conversion process catalyst or the selective removal process catalyst. There is a possibility that the capacity is lowered, and as a result, the hydrogen-containing gas generation capacity is further lowered.

本発明は、かかる実情に鑑みてなされたものであり、その目的は、運転時間の経過に伴う水素含有ガスの生成能力低下を抑制し得る水素含有ガス生成装置を提供することにある。   This invention is made | formed in view of this situation, The objective is to provide the hydrogen containing gas production | generation apparatus which can suppress the production capability generation | occurrence | production of hydrogen containing gas accompanying progress of operation time.

上記目的を達成するための本発明に係る水素含有ガス生成装置は、容器の内部の触媒収容空間に脱硫処理触媒が収容されて、供給される原燃料ガスに対して脱硫処理を施す容器状の脱硫部と、前記脱硫部の一部を外部から加熱することで前記脱硫処理触媒を加熱する脱硫部加熱手段と、改質処理触媒が収容され且つガス受け入れ可能に前記脱硫部に接続されて、前記脱硫部から供給される脱硫処理後の原燃料ガスを改質処理して水素ガスを主成分とする改質ガスを生成する改質部と、運転を制御する運転制御手段とが設けられ、
前記運転制御手段が、前記脱硫部への原燃料ガスの供給を開始して前記改質部にて改質処理を開始する前に、前記脱硫処理触媒を起動時脱硫部温度に昇温させるべく前記脱硫部加熱手段を制御する起動時昇温処理を実行するように構成された水素含有ガス生成装置であって、その特徴構成は、
前記脱硫処理触媒を前記起動時脱硫部温度よりも低い脱硫部予備加熱温度に加熱する予備加熱手段が設けられ、
前記運転制御手段が、前記予備加熱手段を作動させて、前記脱硫処理触媒を前記脱硫部予備加熱温度に加熱した後、前記起動時昇温処理を実行するように構成されている点にある。
In order to achieve the above object, a hydrogen-containing gas generating apparatus according to the present invention is a container-shaped device in which a desulfurization treatment catalyst is accommodated in a catalyst accommodating space inside a vessel and desulfurization treatment is performed on the supplied raw fuel gas. A desulfurization section, a desulfurization section heating means for heating the desulfurization treatment catalyst by heating a part of the desulfurization section from the outside, and a reforming treatment catalyst is accommodated and connected to the desulfurization section so as to receive gas, A reforming section for reforming the raw fuel gas after the desulfurization process supplied from the desulfurization section to generate a reformed gas containing hydrogen gas as a main component, and an operation control means for controlling operation;
Before the operation control means starts supplying the raw fuel gas to the desulfurization section and starts the reforming process in the reforming section, the operation control means should raise the temperature of the desulfurization treatment catalyst to the desulfurization section temperature at start-up. A hydrogen-containing gas generation device configured to perform a startup temperature increase process for controlling the desulfurization unit heating means, the characteristic configuration is:
Preheating means for heating the desulfurization treatment catalyst to a desulfurization part preheating temperature lower than the desulfurization part temperature at the start-up is provided,
The operation control means is configured to execute the temperature raising process at the start-up after operating the preheating means to heat the desulfurization treatment catalyst to the desulfurization part preheating temperature.

上記特徴構成によれば、予備加熱手段により、脱硫処理触媒が起動時脱硫部温度よりも低い脱硫部予備加熱温度に加熱された後、脱硫部加熱手段により、脱硫部を構成する容器の一部が外部から加熱されることで、脱硫処理触媒が起動時脱硫部温度に加熱される。   According to the above characteristic configuration, after the desulfurization treatment catalyst is heated to the desulfurization part preheating temperature lower than the start-up desulfurization part temperature by the preheating unit, the desulfurization part heating unit performs a part of the container constituting the desulfurization unit. Is heated from the outside, whereby the desulfurization treatment catalyst is heated to the desulfurization part temperature at the time of startup.

つまり、予備加熱手段を構成するに、脱硫部を構成する容器の広範囲にわたって熱膨張を行きわたらせる状態で、脱硫処理触媒を加熱可能に構成する。すると、予備加熱手段を作動させて、脱硫処理触媒を常温から起動時脱硫部温度に至るまでの途中の脱硫部予備加熱温度に加熱することにより、脱硫部を構成する容器の広範囲にわたって熱膨張を行きわたらせることが可能となる。
そして、脱硫部加熱手段による容器の一部の外部からの加熱によって、脱硫処理触媒を起動時脱硫部温度に昇温させるにしても、予備加熱手段の作動によって、常温から起動時脱硫部温度に至るまでの途中の脱硫部予備加熱温度で、脱硫部を構成する容器の熱膨張を極力広範囲に行きわたらせた後に、脱硫部加熱手段による容器の一部の外部からの加熱によって、脱硫処理触媒を起動時脱硫部温度に昇温させる。すると、脱硫部加熱手段による容器の一部の外部からの加熱によって、脱硫処理触媒を一挙に常温から起動時脱硫部温度に昇温させる場合に比べて、脱硫部を構成する容器の局所的な熱膨張を抑制することができるので、脱硫部を構成する容器が局所的に触媒収容空間の内方側へ反るのを抑制することができる。
従って、起動時における脱硫処理触媒の圧壊を抑制することにより、脱硫部における脱硫処理能力の低下を抑制することができるので、運転時間の経過に伴う水素含有ガスの生成能力低下を抑制し得る水素含有ガス生成装置を提供することができる。
That is, to constitute the preheating means, the desulfurization treatment catalyst is configured to be heatable in a state where thermal expansion is spread over a wide range of the container constituting the desulfurization section. Then, by operating the preheating means, the desulfurization treatment catalyst is heated to the desulfurization part preheating temperature in the middle from the normal temperature to the start-up desulfurization part temperature, thereby expanding the thermal expansion over a wide range of the containers constituting the desulfurization part. It becomes possible to spread.
Even if the desulfurization treatment catalyst is heated to the start-up desulfurization section temperature by heating from the outside of a part of the container by the desulfurization section heating means, the temperature of the start-up desulfurization section is increased by the operation of the preheating means. After the thermal expansion of the vessel constituting the desulfurization unit is spread over a wide range as much as possible at the preheating temperature of the desulfurization unit on the way to the desulfurization treatment catalyst by heating from the outside of a part of the vessel by the desulfurization unit heating means The temperature is raised to the desulfurization section temperature at startup. Then, compared with the case where the temperature of the desulfurization treatment catalyst is increased from normal temperature to the desulfurization temperature at start-up by heating from the outside of a part of the container by the desulfurization section heating means, the locality of the container constituting the desulfurization section is increased. Since thermal expansion can be suppressed, it can suppress that the container which comprises a desulfurization part warps locally to the inner side of a catalyst accommodation space.
Therefore, by suppressing the collapse of the desulfurization treatment catalyst at the time of start-up, it is possible to suppress a decrease in the desulfurization treatment capacity in the desulfurization section, and thus hydrogen that can suppress a decrease in the production capacity of the hydrogen-containing gas with the passage of operating time A contained gas generator can be provided.

本発明に係る水素含有ガス生成装置の更なる特徴構成は、前記予備加熱手段が、前記脱硫部に供給される原燃料ガスを前記起動時脱硫部温度よりも低い原燃料ガス予備加熱温度に加熱する原燃料ガス加熱手段と、前記脱硫処理触媒が前記脱硫部予備加熱温度に加熱されるまで、前記原燃料ガス加熱手段にて加熱された原燃料ガスを前記脱硫部へ供給する予備加熱制御手段とを備えて構成されている点にある。   The hydrogen-containing gas generator according to the present invention is further characterized in that the preheating means heats the raw fuel gas supplied to the desulfurization section to a raw fuel gas preheating temperature lower than the start-up desulfurization section temperature. Raw fuel gas heating means, and preheating control means for supplying the raw fuel gas heated by the raw fuel gas heating means to the desulfurization section until the desulfurization treatment catalyst is heated to the desulfurization section preheating temperature. It is in the point comprised with.

上記特徴構成によれば、原燃料ガス加熱手段によって原燃料ガス予備加熱温度に加熱された原燃料ガスが、脱硫処理触媒を収容した脱硫部の触媒収容空間を通流することで、触媒収容空間に収容されている脱硫処理触媒が広範囲にわたって均等に加熱される。
そのような形態での脱硫処理触媒の加熱が、脱硫処理触媒が脱硫部予備加熱温度に加熱されるまで継続されるので、脱硫部を構成する容器が、一層広範囲にわたって一層均等に脱硫部予備加熱温度に近い温度に加熱されることになり、脱硫部を構成する容器の熱膨張を一層広範囲に且つ均等に行きわたらせることが可能となる。
According to the above characteristic configuration, the raw fuel gas heated to the raw fuel gas preheating temperature by the raw fuel gas heating means flows through the catalyst storage space of the desulfurization section that stores the desulfurization treatment catalyst, so that the catalyst storage space. The desulfurization treatment catalyst contained in the catalyst is heated uniformly over a wide range.
Since the heating of the desulfurization treatment catalyst in such a form is continued until the desulfurization treatment catalyst is heated to the desulfurization part preheating temperature, the vessel constituting the desulfurization part is preheated more uniformly over a wider range. It will be heated to a temperature close to the temperature, and the thermal expansion of the vessel constituting the desulfurization section can be spread over a wider range and evenly.

そして、そのように、常温から起動時脱硫部温度に至るまでの途中の脱硫部予備加熱温度で、脱硫部を構成する容器の熱膨張が一層広範囲に且つ均等に行きわたった後に、脱硫部加熱手段によって、脱硫部を構成する容器の一部を外部から加熱して、脱硫処理触媒を起動時脱硫部温度に昇温させる。すると、脱硫部を構成する容器の局所的な熱膨張を更に抑制することができるので、脱硫部を構成する容器の触媒収容空間内方側への局所的な反りを更に抑制することができる。
従って、起動時における脱硫処理触媒の圧壊を更に抑制して、脱硫部における脱硫処理能力の低下を更に抑制することができるので、運転時間の経過に伴う水素含有ガスの生成能力低下を更に抑制することができる。
Then, after the thermal expansion of the vessel constituting the desulfurization part has spread over a wider range and evenly at the desulfurization part preheating temperature in the middle from the normal temperature to the start-up desulfurization part temperature, the desulfurization part heating is performed. By means, a part of the vessel constituting the desulfurization section is heated from the outside, and the desulfurization treatment catalyst is heated to the desulfurization section temperature at the start-up. Then, since the local thermal expansion of the container which comprises a desulfurization part can be further suppressed, the local curvature to the catalyst storage space inner side of the container which comprises a desulfurization part can further be suppressed.
Therefore, it is possible to further suppress the collapse of the desulfurization treatment catalyst at the time of start-up and further suppress the decrease in the desulfurization processing capacity in the desulfurization section, and thus further suppress the decrease in the generation capacity of the hydrogen-containing gas with the lapse of the operation time. be able to.

本発明に係る水素含有ガス生成装置の更なる特徴構成は、容器の内部の触媒収容空間に変成処理触媒が収容され且つガス受け入れ可能に前記改質部に接続されて、前記改質部から供給される改質ガスに対して、一酸化炭素を二酸化炭素に変成する変成処理を施す容器状の変成部と、前記変成部の一部を外部から加熱することで前記変成処理触媒を加熱する変成部加熱手段と、容器の内部の触媒収容空間に選択除去処理触媒が収容され且つガス受け入れ可能に前記変成部に接続されて、前記変成部から供給される変成処理後の改質ガスに対して、一酸化炭素を選択除去する選択除去処理を施す容器状の選択除去部と、前記選択除去部の一部を外部から加熱することで前記選択除去処理触媒を加熱する選択除去部加熱手段とが設けられ、
前記運転制御手段が、
前記起動時昇温処理において、前記変成処理触媒を起動時変成部温度に昇温させるべく前記変成部加熱手段を制御し、且つ、前記選択除去処理触媒を起動時選択除去部温度に昇温させるべく前記選択除去部加熱手段を制御するように構成されている点にある。
A further characteristic configuration of the hydrogen-containing gas generation device according to the present invention is that the shift treatment catalyst is accommodated in the catalyst accommodating space inside the container and is connected to the reforming unit so as to receive gas, and supplied from the reforming unit. A container-shaped shift section for performing a shift process for converting carbon monoxide to carbon dioxide with respect to the reformed gas, and a shift process for heating the shift catalyst by heating a part of the shift section from the outside. The selective removal treatment catalyst is housed in the catalyst housing space inside the container and is connected to the shift section so as to receive gas, and the reformed gas supplied from the shift section is supplied to the reformed gas after the shift process. A container-shaped selective removal unit that performs selective removal processing for selectively removing carbon monoxide, and a selective removal unit heating unit that heats the selective removal treatment catalyst by heating a part of the selective removal unit from the outside. Provided,
The operation control means is
In the start-up temperature increase process, the shift unit heating means is controlled to increase the temperature of the shift process catalyst to the start-up shift unit temperature, and the selective removal process catalyst is heated to the start-up selective removal unit temperature. Therefore, the selective removal portion heating means is configured to be controlled.

上記特徴構成によれば、改質部にて原燃料ガスが改質処理されて生成された改質ガスが、変成部、選択除去部を順に通流して、変成部では、改質ガスに対して、一酸化炭素を二酸化炭素に変成する変成処理が施され、選択除去部では、変成処理後の改質ガスに対して、一酸化炭素を選択除去する選択除去処理が施されるので、一酸化炭素濃度がより一層低い水素含有ガスが生成される。   According to the above characteristic configuration, the reformed gas generated by reforming the raw fuel gas in the reforming section passes through the shift section and the selective removal section in order, The selective removal section performs selective removal processing for selectively removing carbon monoxide on the reformed gas after the transformation treatment, so that carbon monoxide is transformed into carbon dioxide. A hydrogen-containing gas with a lower carbon oxide concentration is produced.

起動時には、原燃料ガス加熱手段にて加熱された原燃料ガスを、脱硫部を通過させた後、変成部、選択除去部の順に通流させることが可能であるので、変成部を構成する容器、及び、選択除去部を構成する容器も、広範囲にわたって一層均等に加熱されるようにすることが可能となり、夫々の容器の熱膨張を一層広範囲に且つ均等に行きわたらせることが可能となる。
そして、変成部を構成する容器の熱膨張が一層広範囲に且つ均等に行きわたった後に、変成部加熱手段によって、変成部を構成する容器の一部を外部から加熱して、変成処理触媒を起動時変成部温度に昇温させ、並びに、選択除去部を構成する容器の熱膨張が一層広範囲に且つ均等に行きわたった後に、選択除去部加熱手段によって、選択除去部を構成する容器の一部を外部から加熱して、選択除去処理触媒を起動時選択除去部温度に昇温させる。
すると、変成部を構成する容器及び選択除去部を構成する容器夫々の局所的な熱膨張を抑制することができるので、変成部を構成する容器及び選択除去部を構成する容器夫々の触媒収容空間内方側への局所的な反りを抑制することができる。
従って、改質部で生成された改質ガスに対して変成処理及び選択除去処理が施されて、一酸化炭素ガスが低減されるので、一酸化炭素濃度がより一層低い水素含有ガスが生成される。そして、そのように一酸化炭素濃度がより一層低い水素含有ガスの生成が可能な水素含有ガス生成装置において、脱硫部における脱硫処理能力の低下の抑制に加えて、起動時における変成処理触媒及び選択除去処理触媒の圧壊を抑制して、変成部における変成処理能力及び選択除去部における選択除去処理能力の低下を抑制することができるので、運転時間の経過に伴う水素含有ガスの生成能力低下を抑制することができる。
At the time of start-up, the raw fuel gas heated by the raw fuel gas heating means can pass through the desulfurization section and then flow in the order of the shift section and the selective removal section. Therefore, the container constituting the shift section The containers constituting the selective removal unit can also be heated more uniformly over a wide range, and the thermal expansion of each container can be spread over a wider range and evenly.
Then, after the thermal expansion of the container constituting the metamorphic part has spread over a wider range and evenly, the metamorphic part heating means heats a part of the container constituting the metamorphic part from the outside to start the transformation treatment catalyst. A part of the container constituting the selective removal section by the selective removal section heating means after the temperature is raised to the time-transforming section temperature and the thermal expansion of the container constituting the selective removal section has spread over a wider range and evenly. Is heated from the outside to raise the temperature of the selective removal treatment catalyst to the selective removal portion temperature at startup.
Then, since the local thermal expansion of each of the container constituting the metamorphic part and the container constituting the selective removal part can be suppressed, the catalyst accommodating space of each of the container constituting the metamorphic part and each of the containers constituting the selective removal part Local warping to the inward side can be suppressed.
Therefore, the reforming process and the selective removal process are performed on the reformed gas generated in the reforming unit to reduce the carbon monoxide gas, so that a hydrogen-containing gas having a lower carbon monoxide concentration is generated. The In such a hydrogen-containing gas generator that can generate a hydrogen-containing gas having a lower carbon monoxide concentration, in addition to suppressing a decrease in the desulfurization treatment capacity in the desulfurization section, the shift treatment catalyst and selection at the time of startup By suppressing crushing of the removal treatment catalyst, it is possible to suppress the degradation of the transformation treatment capacity in the transformation section and the selective removal treatment capacity in the selective removal section, thereby suppressing the decrease in the production capacity of the hydrogen-containing gas with the passage of operating time can do.

本発明に係る水素含有ガス生成装置の更なる特徴構成は、前記改質処理触媒を起動時改質部温度に加熱する改質用バーナと、
前記原燃料ガス加熱手段にて加熱された原燃料ガスを、少なくとも前記変成部を通過させた後に取り出して、前記改質用バーナに燃焼用燃料として供給するリサイクル路が設けられている点にある。
A further characteristic configuration of the hydrogen-containing gas generation device according to the present invention is a reforming burner for heating the reforming treatment catalyst to a reforming section temperature at startup,
A recycle path is provided in which the raw fuel gas heated by the raw fuel gas heating means is taken out after passing through at least the metamorphic portion and supplied to the reforming burner as combustion fuel. .

上記特徴構成によれば、原燃料ガス加熱手段にて加熱された後、脱硫部を通過して脱硫処理触媒の加熱に寄与した原燃料ガスが、少なくとも変成部を通過して変成処理触媒の加熱に寄与した後、リサイクル路によって取り出されて、改質用バーナに燃焼用燃料として供給される。そして、リサイクル路を通して供給される原燃料ガスを改質用バーナにて燃焼させることにより、改質処理触媒が加熱される。
つまり、改質部で所望通りに改質処理が可能になるのを速めて、起動時間を短縮すべく、起動時に、改質用バーナを燃焼させて、改質処理触媒を所定の起動時改質部温度に昇温させるようになっている。
そこで、起動時に、脱硫部を構成する容器の局所的な反りを抑制するために、原燃料ガス加熱手段にて加熱して脱硫部に供給する原燃料ガスを、脱硫部の通過後、少なくとも変成部を通過させた後に取り出して、改質用バーナで燃焼させることにより、起動時の改質処理触媒の昇温用として用いることができる。
従って、水素含有ガス生成にあたってのエネルギー効率の低下を抑制しながら、運転時間の経過に伴う水素含有ガスの生成能力低下を抑制することができる。
According to the above characteristic configuration, after being heated by the raw fuel gas heating means, the raw fuel gas that has passed through the desulfurization section and contributed to the heating of the desulfurization treatment catalyst has passed through at least the shift section and heated the shift treatment catalyst. Then, it is taken out by a recycling path and supplied to the reforming burner as a combustion fuel. Then, the reforming catalyst is heated by burning the raw fuel gas supplied through the recycling path in the reforming burner.
In other words, in order to accelerate the reforming process as desired in the reforming section and shorten the start-up time, the reforming burner is burned at the time of start-up, and the reforming process catalyst is modified at a predetermined start-up time. The temperature is raised to the material temperature.
Therefore, at the time of start-up, in order to suppress local warping of the vessel constituting the desulfurization section, the raw fuel gas heated by the raw fuel gas heating means and supplied to the desulfurization section is at least transformed after passing through the desulfurization section. It can be used for raising the temperature of the reforming catalyst at the time of start-up by taking it out after passing through the section and burning it with a reforming burner.
Therefore, it is possible to suppress a decrease in the hydrogen-containing gas generation capability with the lapse of operating time while suppressing a decrease in energy efficiency in generating the hydrogen-containing gas.

本発明に係る水素含有ガス生成装置の更なる特徴構成は、前記運転制御手段が、前記脱硫部への原燃料ガスの供給が停止されて前記改質部での改質処理が停止される運転停止中、前記脱硫処理触媒を前記脱硫部予備加熱温度に維持するように前記脱硫部加熱手段を制御する待機加熱処理を実行するように構成され、
前記予備加熱手段が、前記脱硫部加熱手段と前記運転制御手段とを備えて構成されている点にある。
A further characteristic configuration of the hydrogen-containing gas generation device according to the present invention is an operation in which the operation control unit is configured to stop the supply of the raw fuel gas to the desulfurization unit and stop the reforming process in the reforming unit. During the stop, the desulfurization treatment catalyst is configured to perform a standby heating process for controlling the desulfurization unit heating means so as to maintain the desulfurization unit preheating temperature,
The preheating means includes the desulfurization section heating means and the operation control means.

上記特徴構成によれば、脱硫部への原燃料ガスの供給が停止されて改質部での改質処理が停止される運転停止中も、脱硫処理触媒の温度を脱硫部予備加熱温度に維持するように、脱硫部加熱手段が制御される。
ここで、運転停止中とは、改質処理が実行された後、脱硫部への原燃料ガスの供給が停止される運転停止中以外に、水素含有ガス生成装置が設置されて、初めて改質処理が行われる前の運転停止中も含むものである。
According to the above characteristic configuration, the temperature of the desulfurization treatment catalyst is maintained at the preheating temperature of the desulfurization unit even during the operation stop when the supply of the raw fuel gas to the desulfurization unit is stopped and the reforming process in the reforming unit is stopped. Thus, the desulfurization part heating means is controlled.
Here, when the operation is stopped, after the reforming process is executed, the reforming process is performed for the first time after the hydrogen-containing gas generation device is installed in addition to the operation stop during which the supply of the raw fuel gas to the desulfurization unit is stopped. This includes the time during which the operation is stopped before the processing is performed.

つまり、脱硫部へ原燃料ガスが供給されて改質部で改質処理が行われる運転中は、脱硫処理触媒は脱硫処理が可能な脱硫処理温度に維持されていることから、脱硫部を構成する容器は、略全体にわたって均等に脱硫処理温度に近い温度に加熱されているので、脱硫部を構成する容器の熱膨張が均等に全体に行きわたっている。
そのように運転中に脱硫部を構成する容器の熱膨張が均等に全体に行きわたっている状態で、運転が停止されると、待機加熱処理が実行される。つまり、脱硫部を構成する容器内に収容されている脱硫処理触媒の温度が脱硫部予備加熱温度近くに下がると、脱硫処理触媒の温度を脱硫部予備加熱温度に維持するように、脱硫部加熱手段が制御されるので、脱硫部を構成する容器の熱膨張が均等に全体に行きわたっている状態が維持される。
又、初めて改質処理が行われる前に待機加熱処理が実行される場合は、脱硫処理触媒の温度を脱硫部予備加熱温度に維持するように、脱硫部加熱手段が制御されると共に、そのような脱硫部加熱手段の制御が、脱硫部を構成する容器の熱膨張が均等に全体に行きわたる程度にまで継続されるようにすることが可能である。
In other words, during operation in which the raw fuel gas is supplied to the desulfurization unit and the reforming process is performed in the reforming unit, the desulfurization treatment catalyst is maintained at a desulfurization processing temperature at which desulfurization processing is possible. Since the container to be heated is heated to a temperature close to the desulfurization treatment temperature evenly over substantially the whole, the thermal expansion of the container constituting the desulfurization part is evenly distributed throughout.
When the operation is stopped in such a state that the thermal expansion of the container constituting the desulfurization unit is evenly distributed throughout the operation, standby heating processing is performed. In other words, when the temperature of the desulfurization treatment catalyst accommodated in the vessel constituting the desulfurization section is lowered near the desulfurization section preheating temperature, the desulfurization section heating is performed so that the temperature of the desulfurization treatment catalyst is maintained at the desulfurization section preheating temperature. Since the means is controlled, the state in which the thermal expansion of the container constituting the desulfurization part is evenly distributed is maintained.
In addition, when the standby heating process is performed before the reforming process is performed for the first time, the desulfurization section heating means is controlled so as to maintain the temperature of the desulfurization process catalyst at the desulfurization section preheating temperature. It is possible to continue the control of the desulfurization section heating means to such an extent that the thermal expansion of the containers constituting the desulfurization section is evenly distributed throughout.

そして、起動時には、常温から起動時脱硫部温度に至るまでの途中の脱硫部予備加熱温度で、脱硫部を構成する容器の熱膨張が均等に全体に行きわたっている状態で、脱硫部加熱手段によって、脱硫部を構成する容器の一部を外部から加熱して、脱硫処理触媒を起動時脱硫部温度に昇温させることにより、脱硫部を構成する容器の局所的な熱膨張を更に抑制することができるので、脱硫部を構成する容器の触媒収容空間内方側への局所的な反りを更に抑制することができる。
従って、起動時における脱硫処理触媒の圧壊を更に抑制して、脱硫部における脱硫処理能力の低下を更に抑制することができるので、運転時間の経過に伴う水素含有ガスの生成能力低下を更に抑制することができる。
And, at the time of start-up, the desulfurization part heating means is in a state where the thermal expansion of the vessel constituting the desulfurization part is evenly distributed at the desulfurization part preheating temperature in the middle from the normal temperature to the start-up desulfurization part temperature. To further suppress local thermal expansion of the vessel constituting the desulfurization unit by heating a part of the vessel constituting the desulfurization unit from the outside and raising the temperature of the desulfurization treatment catalyst to the desulfurization unit temperature at start-up Therefore, local warpage of the container constituting the desulfurization portion toward the inner side of the catalyst housing space can be further suppressed.
Therefore, it is possible to further suppress the collapse of the desulfurization treatment catalyst at the time of start-up and further suppress the decrease in the desulfurization processing capacity in the desulfurization section, and thus further suppress the decrease in the generation capacity of the hydrogen-containing gas with the lapse of operation time be able to.

本発明に係る水素含有ガス生成装置の更なる特徴構成は、前記運転制御手段が、前記脱硫部への原燃料ガスの供給が停止された運転停止時点から、次に前記脱硫部への原燃料ガスの供給が開始されて改質処理が開始されるまでの運転停止期間が、所定の設定期間よりも長いときは、前記待機加熱処理の実行を停止するように構成されている点にある。   A further characteristic configuration of the hydrogen-containing gas generation device according to the present invention is that the operation control means starts from the time when the supply of the raw fuel gas to the desulfurization unit is stopped, and then the raw fuel to the desulfurization unit. When the operation stop period from the start of the gas supply to the start of the reforming process is longer than a predetermined setting period, the standby heating process is stopped.

上記特徴構成によれば、運転停止期間が所定の設定期間よりも長いときは、待機加熱処理の実行が停止される。
つまり、運転停止中に、脱硫処理触媒の温度を脱硫部予備加熱温度に維持すべく、脱硫部加熱手段を作動させる待機加熱処理を実行するにしても、運転停止期間が所定の設定期間よりも長いときは、待機加熱処理の実行が停止されるので、エネルギーの過度な消費を防止することができる。
従って、水素含有ガス生成にあたってのエネルギー効率の低下を抑制しながら、運転時間の経過に伴う水素含有ガスの生成能力低下を抑制することができる。
According to the above characteristic configuration, when the operation stop period is longer than the predetermined set period, the standby heating process is stopped.
That is, even when the standby heat treatment for operating the desulfurization unit heating means is performed during the operation stop to maintain the temperature of the desulfurization treatment catalyst at the desulfurization unit preheating temperature, the operation stop period is longer than the predetermined set period. When it is long, the standby heating process is stopped, so that excessive consumption of energy can be prevented.
Therefore, it is possible to suppress a decrease in the hydrogen-containing gas generation capability with the lapse of operating time while suppressing a decrease in energy efficiency in generating the hydrogen-containing gas.

本発明に係る水素含有ガス生成装置の更なる特徴構成は、容器の内部の触媒収容空間に変成処理触媒が収容され且つガス受け入れ可能に前記改質部に接続されて、前記改質部から供給される改質ガスに対して、一酸化炭素を二酸化炭素に変成する変成処理を施す容器状の変成部と、前記変成部の一部を外部から加熱することで前記変成処理触媒を加熱する変成部加熱手段と、容器の内部の触媒収容空間に選択除去処理触媒が収容され且つガス受け入れ可能に前記変成部に接続されて、前記変成部から供給される変成処理後の改質ガスに対して、一酸化炭素を選択除去する選択除去処理を施す容器状の選択除去部と、前記選択除去部の一部を外部から加熱することで前記選択除去処理触媒を加熱する選択除去部加熱手段とが設けられ、
前記運転制御手段が、
前記起動時昇温処理において、前記変成処理触媒を起動時変成部温度に昇温させるべく前記変成部加熱手段を制御し、且つ、前記選択除去処理触媒を起動時選択除去部温度に昇温させるべく前記選択除去部加熱手段を制御するように構成され、並びに、
前記待機加熱処理において、前記変成処理触媒を前記起動時変成部温度よりも低い変成部予備加熱温度に維持すべく前記変成部加熱手段を制御し、且つ、前記選択除去処理触媒を前記起動時選択除去部温度よりも低い選択除去部予備加熱温度に維持すべく前記選択除去部加熱手段を制御するように構成されている点にある。
A further characteristic configuration of the hydrogen-containing gas generation device according to the present invention is that the shift treatment catalyst is accommodated in the catalyst accommodating space inside the container and is connected to the reforming unit so as to receive gas, and supplied from the reforming unit. A container-shaped shift section for performing a shift process for converting carbon monoxide to carbon dioxide with respect to the reformed gas, and a shift process for heating the shift catalyst by heating a part of the shift section from the outside. The selective removal treatment catalyst is housed in the catalyst housing space inside the container and is connected to the shift section so as to receive gas, and the reformed gas supplied from the shift section is supplied to the reformed gas after the shift process. A container-shaped selective removal unit that performs selective removal processing for selectively removing carbon monoxide, and a selective removal unit heating unit that heats the selective removal treatment catalyst by heating a part of the selective removal unit from the outside. Provided,
The operation control means is
In the start-up temperature increase process, the shift unit heating means is controlled to increase the temperature of the shift process catalyst to the start-up shift unit temperature, and the selective removal process catalyst is heated to the start-up selective removal unit temperature. And configured to control the selective removing unit heating means, and
In the standby heating process, the shift unit heating unit is controlled to maintain the shift process catalyst at a shift unit preheating temperature lower than the start-up shift unit temperature, and the selective removal process catalyst is selected at the start-up time. The selective removal unit heating means is controlled to maintain the selective removal unit preheating temperature lower than the removal unit temperature.

上記特徴構成によれば、改質部にて原燃料ガスが改質処理されて生成された改質ガスが、変成部、選択除去部を順に通流して、変成部では、改質ガスに対して、一酸化炭素を二酸化炭素に変成する変成処理が施され、選択除去部では、変成処理後の改質ガスに対して、一酸化炭素を選択除去する選択除去処理が施されるので、一酸化炭素濃度がより一層低い水素含有ガスが生成される。   According to the above characteristic configuration, the reformed gas generated by reforming the raw fuel gas in the reforming section passes through the shift section and the selective removal section in order, The selective removal section performs selective removal processing for selectively removing carbon monoxide on the reformed gas after the transformation treatment, so that carbon monoxide is transformed into carbon dioxide. A hydrogen-containing gas with a lower carbon oxide concentration is produced.

運転中は、変成処理触媒は変成処理が可能な変成処理温度に維持され、選択除去処理触媒は選択除去処理が可能な選択除去処理温度に維持されているので、変成部を構成する容器、選択除去部を構成する容器は、夫々、略全体にわたって均等に変成処理温度に近い温度、選択除去処理温度に近い温度に加熱されているので、夫々の容器の熱膨張が均等に全体に行きわたっている。   During operation, the shift treatment catalyst is maintained at the shift treatment temperature at which shift treatment is possible, and the selective removal treatment catalyst is maintained at the selective removal treatment temperature at which selective removal treatment is possible. The containers constituting the removal unit are heated to a temperature close to the transformation treatment temperature and a temperature close to the selective removal treatment temperature almost uniformly throughout, so that the thermal expansion of the respective containers is evenly distributed throughout. Yes.

運転が停止されると、待機加熱処理が実行されて、変成処理触媒の温度を変成部予備加熱温度に維持するように変成部加熱手段が制御され、並びに、選択除去処理触媒の温度を選択除去部予備加熱温度に維持するように選択除去部加熱手段が制御されるので、変成部を構成する容器及び選択除去部を構成する容器夫々の熱膨張が均等に全体に行きわたっている状態が維持される。
又、初めて改質処理が行われる前に待機加熱処理が実行される場合は、変成処理触媒の温度を変成部予備加熱温度に維持するように変成部加熱手段が制御され、並びに、選択除去処理触媒の温度を選択除去部予備加熱温度に維持するように選択除去部加熱手段が制御されると共に、そのような変成部加熱手段及び選択除去部加熱手段の制御が、変成部及び選択除去部夫々を構成する容器の熱膨張が均等に全体に行きわたる程度にまで継続されるようにすることが可能である。
そして、起動時には、常温から起動時変成部温度に至るまでの途中の変成部予備加熱温度で、変成部を構成する容器の熱膨張が均等に全体に行きわたっている状態で、変成部加熱手段によって、変成部を構成する容器の一部を外部から加熱して、変成処理触媒を起動時変成部温度に昇温させることにより、変成部を構成する容器の局所的な熱膨張を抑制することができる。同様に、起動時には、常温から起動時選択除去部温度に至るまでの途中の選択除去部予備加熱温度で、選択除去部を構成する容器の熱膨張が均等に全体に行きわたっている状態で、選択除去部加熱手段によって、選択除去部を構成する容器の一部を外部から加熱して、選択除去処理触媒を起動時選択除去部温度に昇温させることにより、選択除去部を構成する容器の局所的な熱膨張を抑制することができる。これらのことにより、変成部を構成する容器及び選択除去部を構成する容器夫々の触媒収容空間内方側への局所的な反りを抑制することができる。
従って、改質部で生成された改質ガスに対して変成処理及び選択除去処理が施されて、一酸化炭素ガスが低減されるので、一酸化炭素濃度がより一層低い水素含有ガスが生成される。そして、そのように一酸化炭素濃度がより一層低い水素含有ガスの生成が可能な水素含有ガス生成装置において、脱硫部における脱硫処理能力の低下の抑制に加えて、起動時における変成処理触媒及び選択除去処理触媒の圧壊を抑制して、変成部における変成処理能力及び選択除去部における選択除去処理能力の低下を抑制することができるので、運転時間の経過に伴う水素含有ガスの生成能力低下を抑制することができる。
When the operation is stopped, a standby heating process is performed, the shift unit heating means is controlled to maintain the temperature of the shift process catalyst at the shift unit preheating temperature, and the temperature of the selective removal process catalyst is selectively removed. The selective removal unit heating means is controlled so as to maintain the temperature at the partial preheating temperature, so that the thermal expansion of each of the container constituting the metamorphic part and the container constituting the selective removal part is uniformly distributed. Is done.
In addition, when the standby heating process is performed before the reforming process is performed for the first time, the shift unit heating means is controlled so as to maintain the temperature of the shift process catalyst at the shift unit preheating temperature, and the selective removal process is performed. The selective removal unit heating means is controlled so as to maintain the temperature of the catalyst at the selective removal unit preheating temperature, and the control of the transformation unit heating unit and the selective removal unit heating unit is controlled by the transformation unit and the selective removal unit, respectively. It is possible to continue to such an extent that the thermal expansion of the container which comprises is spread over the whole.
And at the time of start-up, in the state where the thermal expansion of the container constituting the metamorphic part is evenly distributed over the whole at the metamorphic part preheating temperature from the normal temperature to the start-time metamorphic part temperature, the metamorphic part heating means To suppress local thermal expansion of the container constituting the shift section by heating a part of the container constituting the shift section from the outside and raising the temperature of the shift treatment catalyst to the start-up shift section temperature. Can do. Similarly, at the time of start-up, in the state where the thermal expansion of the container constituting the selective removal unit is spread evenly at the selective removal unit preheating temperature on the way from room temperature to the selective removal unit temperature at the start, The selective removal section heating means heats a part of the container constituting the selective removal section from the outside, and raises the selective removal treatment catalyst to the selective removal section temperature at start-up. Local thermal expansion can be suppressed. By these things, the local curvature to the catalyst accommodating space inner side of the container which comprises a metamorphic part, and the container which comprises a selective removal part can be suppressed.
Therefore, the reforming process and the selective removal process are performed on the reformed gas generated in the reforming unit to reduce the carbon monoxide gas, so that a hydrogen-containing gas having a lower carbon monoxide concentration is generated. The In such a hydrogen-containing gas generator that can generate a hydrogen-containing gas having a lower carbon monoxide concentration, in addition to suppressing a decrease in the desulfurization treatment capacity in the desulfurization section, the shift treatment catalyst and selection at the time of startup By suppressing crushing of the removal treatment catalyst, it is possible to suppress the degradation of the transformation treatment capacity in the transformation section and the selective removal treatment capacity in the selective removal section, thereby suppressing the decrease in the production capacity of the hydrogen-containing gas with the passage of operating time can do.

本発明に係る水素含有ガス生成装置の更なる特徴構成は、前記脱硫部、前記変成部及び前記選択除去部夫々の前記触媒収容空間が、扁平状の各別の容器内に形成され、
前記脱硫部、前記変成部及び前記選択除去部夫々の前記触媒収容空間を夫々形成する複数の前記容器が、容器厚さ方向に積層状態に並べられている点にある。
In the hydrogen-containing gas generation device according to the present invention, the catalyst containing space of each of the desulfurization unit, the shift conversion unit, and the selective removal unit is formed in a separate flat container,
The plurality of containers that form the catalyst housing spaces of the desulfurization section, the transformation section, and the selective removal section are arranged in a stacked state in the container thickness direction.

上記特徴構成によれば、脱硫部、変成部及び選択除去部夫々を構成する複数の扁平状の容器が、容器厚さ方向に積層状態に並べられているので、水素含有ガス生成装置をコンパクトに構成することができる。
一方、脱硫部、変成部、選択除去部夫々を構成する容器が積層状態に並べられることで、夫々の容器における容器厚さ方向に直交する面を形成する部分は、容器厚さ方向における触媒収容空間の外方側への反りがきつく規制されるので、触媒収容空間の内方側へ反り易い。
そこで、予備加熱手段を設けて起動時に作動させることにより、脱硫部、変成部、選択除去部夫々を構成する容器について、夫々の容器における容器厚さ方向に直交する面を形成する部分が触媒収容空間の内方側へ反るのを効果的に抑制することができる。
従って、水素含有ガス生成装置をコンパクトに構成しながらも、運転時間の経過に伴う水素含有ガスの生成能力低下を効果的に抑制することができる。
According to the above characteristic configuration, since the plurality of flat containers constituting the desulfurization section, the transformation section, and the selective removal section are arranged in a stacked state in the container thickness direction, the hydrogen-containing gas generation device can be made compact. Can be configured.
On the other hand, the containers constituting the desulfurization section, the transformation section, and the selective removal section are arranged in a stacked state, so that a portion that forms a surface perpendicular to the container thickness direction in each container is accommodated in the container thickness direction. Since warping to the outer side of the space is tightly regulated, it is easy to warp to the inner side of the catalyst housing space.
Therefore, by providing a preheating means and operating at the time of start-up, for the containers constituting the desulfurization section, the conversion section, and the selective removal section, the part forming the surface orthogonal to the container thickness direction in each container contains the catalyst. It is possible to effectively suppress warping to the inner side of the space.
Therefore, it is possible to effectively suppress a decrease in the production capacity of the hydrogen-containing gas with the lapse of operating time, while configuring the hydrogen-containing gas generation device in a compact manner.

第1実施形態に係る水素含有ガス生成装置の全体構成を示すブロック図The block diagram which shows the whole structure of the hydrogen containing gas production | generation apparatus which concerns on 1st Embodiment. 容器状の脱硫部を示す斜視図A perspective view showing a container-like desulfurization section 容器状の脱硫部における厚さ方向に沿う方向での縦断面図Longitudinal sectional view in the direction along the thickness direction in the vessel-shaped desulfurization section 第1実施形態に係る水素含有ガス生成装置の制御動作のフローチャートを示す図The figure which shows the flowchart of control operation | movement of the hydrogen containing gas production | generation apparatus which concerns on 1st Embodiment. 第2実施形態に係る水素含有ガス生成装置の全体構成を示すブロック図The block diagram which shows the whole structure of the hydrogen containing gas production | generation apparatus which concerns on 2nd Embodiment. 脱硫処理触媒が圧壊する状態を説明する容器状の脱硫部の縦断面図Longitudinal sectional view of a container-shaped desulfurization section explaining a state in which the desulfurization treatment catalyst is crushed

以下、図面に基づいて、本発明の実施形態を説明する。
〔第1実施形態〕
先ず、第1実施形態を図面に基づいて説明する。
図1に示すように、水素含有ガス生成装置Pは、容器B(B3)の内部の触媒収容空間Rに粒状の脱硫処理触媒1cが収容されて、供給される炭化水素系の原燃料ガスに対して脱硫処理を施す脱硫部1と、脱硫部1の一部を外部から加熱することで脱硫処理触媒1cを加熱する脱硫部ヒータ21(脱硫部加熱手段の一例)と、触媒収容空間Rに粒状の改質処理触媒2cが収容され且つガス受け入れ可能に脱硫部1に接続されて、脱硫部1から供給される脱硫処理後の原燃料ガス(以下、脱硫原燃料ガスと記載する場合がある)を改質処理して水素ガスを主成分とする改質ガスを生成する改質部2と、運転を制御する運転制御部(運転制御手段の一例)C等を備えて構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[First Embodiment]
First, a first embodiment will be described based on the drawings.
As shown in FIG. 1, the hydrogen-containing gas generation device P contains a granular desulfurization treatment catalyst 1c in the catalyst storage space R inside the container B (B3), and supplies the hydrocarbon-based raw fuel gas supplied thereto. A desulfurization section 1 that performs desulfurization treatment, a desulfurization section heater 21 (an example of a desulfurization section heating means) that heats the desulfurization treatment catalyst 1c by heating a part of the desulfurization section 1 from the outside, and a catalyst housing space R A raw fuel gas after desulfurization treatment (hereinafter referred to as desulfurization raw fuel gas) supplied from the desulfurization unit 1 is stored in the granular reforming catalyst 2c and connected to the desulfurization unit 1 so as to receive gas. ) To generate a reformed gas containing hydrogen gas as a main component, an operation control unit (an example of an operation control means) C for controlling the operation, and the like.

又、水素含有ガス生成装置Pには、改質用水ポンプ30により改質用水供給路31を通して供給される改質用水を加熱して水蒸気を生成する水蒸気生成部J、及び、改質部2の改質処理触媒2cを加熱する改質用バーナ3を備えた燃焼部4が設けられている。   The hydrogen-containing gas generation device P includes a steam generation unit J that generates steam by heating the reforming water supplied through the reforming water supply path 31 by the reforming water pump 30, and the reforming unit 2. A combustion unit 4 including a reforming burner 3 for heating the reforming catalyst 2c is provided.

更に、水素含有ガス生成装置Pには、容器B(B4,B5,B6)の内部の触媒収容空間Rに粒状の変成処理触媒5cが収容され且つガス受け入れ可能に改質部2に接続されて、改質部2から供給される改質ガスに対して、一酸化炭素を二酸化炭素に変成する変成処理を施す変成部5と、変成部5の一部を外部から加熱することで変成処理触媒5cを加熱する変成部ヒータ22(変成部加熱手段の一例)と、容器B(B7)の内部の触媒収容空間Rに粒状の選択酸化処理触媒(選択除去処理触媒の一例)6cが収容され且つガス受け入れ可能に変成部5に接続されて、変成部5から供給される変成処理後の改質ガスに対して、一酸化炭素を選択酸化する選択酸化処理(選択除去処理の一例)を施す選択酸化部(選択除去部の一例)6と、選択酸化部6の一部を外部から加熱することで選択酸化処理触媒6cを加熱する選択酸化部ヒータ23(選択除去部加熱手段の一例)とが設けられている。そして、一酸化炭素ガス濃度の低い(例えば10ppm以下)水素リッチな水素含有ガスを生成するように構成されている。   Further, in the hydrogen-containing gas generating device P, the granular shift treatment catalyst 5c is accommodated in the catalyst accommodating space R inside the container B (B4, B5, B6) and connected to the reforming unit 2 so as to receive gas. The reforming gas supplied from the reforming unit 2 is subjected to a shift process for converting carbon monoxide into carbon dioxide, and a part of the shift unit 5 is heated from outside to convert the catalyst. A shift portion heater 22 (an example of a shift portion heating means) that heats 5c, and a granular selective oxidation treatment catalyst (an example of a selective removal treatment catalyst) 6c are accommodated in a catalyst housing space R inside the container B (B7); Selection for selectively oxidizing carbon dioxide (an example of selective removal processing) for selectively oxidizing carbon monoxide to the reformed reformed gas supplied from the metamorphic section 5 and connected to the metamorphic section 5 so as to accept gas Oxidation part (an example of selective removal part) 6 and selection A selective oxidation section heater 23 (an example of the selective removal portion heating means) for heating the selective oxidation catalyst 6c by heating a portion of the unit 6 from the outside. And it is comprised so that hydrogen-rich hydrogen containing gas with a low carbon monoxide gas density | concentration (for example, 10 ppm or less) may be produced | generated.

水素含有ガス生成装置Pにて生成された水素含有ガスは燃料ガスとして、燃料ガス供給路32を通して燃料電池Gに供給される。
この燃料電池Gは、周知であるので詳細な説明及び図示を省略して簡単に説明すると、例えば、固体高分子膜を電解質層とするセルを複数積層状態に設けた固体高分子型に構成され、各セルの燃料極に水素含有ガス生成装置Pから燃料ガス供給路32を通して燃料ガスを供給し、各セルの酸素極に反応用空気ブロア33により空気を供給して、水素と酸素との電気化学反応により発電を行うように構成されている。
The hydrogen-containing gas generated by the hydrogen-containing gas generation device P is supplied as fuel gas to the fuel cell G through the fuel gas supply path 32.
Since this fuel cell G is well known, a detailed description and illustration thereof will be omitted. For example, the fuel cell G is configured in a solid polymer type in which a plurality of cells each having a solid polymer membrane as an electrolyte layer are provided in a stacked state. The fuel gas is supplied to the fuel electrode of each cell from the hydrogen-containing gas generator P through the fuel gas supply path 32, and the air is supplied to the oxygen electrode of each cell by the reaction air blower 33, so that the electricity between hydrogen and oxygen is supplied. It is configured to generate electricity through a chemical reaction.

図示を省略するが、燃料電池Gから発生する熱を回収すると共に、その回収熱を用いて貯湯槽の湯水を加熱して貯湯槽に貯湯する排熱回収部も設けられて、コージェネレーションシステムに構成されている。   Although not shown, an exhaust heat recovery unit that recovers the heat generated from the fuel cell G and heats the hot water in the hot water storage tank using the recovered heat to store the hot water in the hot water storage tank is also provided in the cogeneration system. It is configured.

脱硫部1には、原燃料ガスが原燃料ガスポンプ34により原燃料ガス供給路35を通して供給され、原燃料ガス供給路35には、燃料電池Gの出力電力を調整すべく、脱硫部1に供給される原燃料ガスの流量を調整する原燃料ガス流量調整弁36が設けられている。   The raw fuel gas is supplied to the desulfurization unit 1 through the raw fuel gas supply path 35 by the raw fuel gas pump 34, and supplied to the desulfurization unit 1 to adjust the output power of the fuel cell G to the raw fuel gas supply path 35. A raw fuel gas flow rate adjusting valve 36 for adjusting the flow rate of the raw fuel gas is provided.

次に、図1に基づいて、水素含有ガス生成装置Pの各部について、説明を加える。
脱硫部1は、脱硫処理触媒1cを所定の脱硫処理温度(例えば200〜300℃の範囲)に昇温させた状態で、原燃料ガス中の硫黄化合物を水素化すると共に、その水素化物を吸着して脱硫する。脱硫処理触媒1cは、触媒作用させる物質をセラミック製等の多孔質粒状体に担持させて構成される。ちなみに、脱硫部1における脱硫反応は発熱反応である。
Next, based on FIG. 1, description will be added about each part of the hydrogen containing gas production | generation apparatus P. FIG.
The desulfurization unit 1 hydrogenates the sulfur compound in the raw fuel gas and adsorbs the hydride in a state where the desulfurization treatment catalyst 1c is heated to a predetermined desulfurization treatment temperature (for example, a range of 200 to 300 ° C.). And desulfurize. The desulfurization treatment catalyst 1c is configured by supporting a catalytic substance on a porous granular material such as ceramic. Incidentally, the desulfurization reaction in the desulfurization part 1 is an exothermic reaction.

改質部2の触媒収容空間Rには、水蒸気生成部Jで生成された水蒸気が混合された状態で、脱硫原燃料ガスが供給される。
そして、改質部2は、改質処理触媒2cを所定の改質処理温度(例えば600〜700℃の範囲)に昇温させた状態で炭化水素系の原燃料ガスを水素ガスと一酸化炭素ガスとを含む改質ガスに改質処理する。例えば、原燃料ガスがメタンガスを主成分とする天然ガスベースの都市ガス(例えば、13A)である場合は、下記の反応式にて、メタンガスを水蒸気と反応させて改質処理する。改質処理触媒2cは、ルテニウム、ニッケル、白金等の触媒作用させる物質をセラミック製等の多孔質粒状体に担持させて構成される。ちなみに、改質部2における改質反応は吸熱反応である。
Desulfurization raw fuel gas is supplied to the catalyst housing space R of the reforming unit 2 in a state where the steam generated by the steam generating unit J is mixed.
The reforming unit 2 then converts the hydrocarbon-based raw fuel gas into hydrogen gas and carbon monoxide in a state in which the reforming catalyst 2c is heated to a predetermined reforming processing temperature (for example, in the range of 600 to 700 ° C.). The reforming process is performed to a reformed gas containing the gas. For example, when the raw fuel gas is a natural gas-based city gas (for example, 13A) mainly composed of methane gas, the reforming process is performed by reacting the methane gas with water vapor according to the following reaction formula. The reforming treatment catalyst 2c is configured by supporting a catalytically acting substance such as ruthenium, nickel, platinum or the like on a porous granular material made of ceramic or the like. Incidentally, the reforming reaction in the reforming unit 2 is an endothermic reaction.

CH4+H2O→CO+3H2 CH 4 + H 2 O → CO + 3H 2

変成部5は、変成処理触媒5cを所定の変成処理温度(例えば180〜250℃の範囲)に昇温させた状態で、下記の反応式にて改質ガス中の一酸化炭素ガスを水蒸気と反応させて、二酸化炭素ガスに変成させる。変成処理触媒5cは、白金、ルテニウム、ロジウム等の触媒作用させる物質をセラミック製等の多孔質粒状体に担持させて構成される。ちなみに、変成部5における変成反応は発熱反応である。   In the state where the shift treatment catalyst 5c is heated to a predetermined shift treatment temperature (for example, in the range of 180 to 250 ° C.), the shift unit 5 converts the carbon monoxide gas in the reformed gas into steam with the following reaction formula. It is reacted and transformed into carbon dioxide gas. The shift treatment catalyst 5c is configured by carrying a catalytic substance such as platinum, ruthenium, rhodium, etc. on a porous granular material such as ceramic. Incidentally, the metamorphic reaction in the metamorphic part 5 is an exothermic reaction.

CO+H2O→CO2+H2 CO + H 2 O → CO 2 + H 2

選択酸化部6は、選択酸化処理触媒6cを所定の選択酸化処理温度(例えば、80〜150℃の範囲)に昇温させた状態で、変成処理後の改質ガス中に残っている一酸化炭素ガスを選択酸化させる。選択酸化処理触媒6cは、白金、ルテニウム、ロジウム等の触媒作用させる物質をセラミック製等の多孔質粒状体に担持させて構成される。ちなみに、選択酸化部6における酸化反応は発熱反応である。   The selective oxidation unit 6 is a monoxide remaining in the reformed gas after the shift treatment in a state where the selective oxidation treatment catalyst 6c is heated to a predetermined selective oxidation treatment temperature (for example, in the range of 80 to 150 ° C.). Carbon gas is selectively oxidized. The selective oxidation treatment catalyst 6c is configured by supporting a catalytic substance such as platinum, ruthenium, rhodium, etc. on a porous granular material made of ceramic or the like. Incidentally, the oxidation reaction in the selective oxidation unit 6 is an exothermic reaction.

水蒸気生成部Jは、燃焼部4から排出された改質用バーナ3の燃焼ガスを通流させる加熱用排ガス通流部7と、改質用水ポンプ30により改質用水供給路31を通して供給される改質用水を加熱用排ガス通流部7による加熱にて蒸発させる蒸発処理部8とを備えて構成されている。   The steam generation part J is supplied through a reforming water supply path 31 by a heating exhaust gas flow part 7 for passing the combustion gas of the reforming burner 3 discharged from the combustion part 4 and a reforming water pump 30. And an evaporating unit 8 for evaporating the reforming water by heating with the heating exhaust gas flow unit 7.

更に、水素含有ガス生成装置Pには、改質部2から排出された高温の改質ガスにより脱硫部1にて脱硫された脱硫原燃料ガスを加熱する脱硫後原燃料用熱交換器Ea、その脱硫後原燃料用熱交換器Eaにて熱交換後の改質ガスにより脱硫部1にて脱硫処理する原燃料ガスを加熱する脱硫前原燃料用熱交換器Eb、及び、加熱用排ガス通流部7から排出された燃焼ガスを通流させて、その燃焼ガスにより変成部5を冷却する冷却用排ガス通流部9が設けられている。   Furthermore, the hydrogen-containing gas generator P includes a heat exchanger Ea for desulfurized raw fuel that heats the desulfurized raw fuel gas desulfurized in the desulfurization unit 1 by the high-temperature reformed gas discharged from the reforming unit 2. The raw fuel heat exchanger Eb before desulfurization for heating the raw fuel gas to be desulfurized in the desulfurization section 1 by the reformed gas after heat exchange in the raw fuel heat exchanger Ea after desulfurization, and the exhaust gas flow for heating There is provided a cooling exhaust gas flow passage portion 9 for allowing the combustion gas discharged from the portion 7 to flow and cooling the shift portion 5 with the combustion gas.

脱硫後原燃料用熱交換器Eaは、改質部2から排出された改質ガスを通流させる上流側改質ガス通流部10と、改質部2に供給する脱硫原燃料ガスを通流させる脱硫後原燃料通流部11とを熱交換自在に設けて構成され、脱硫前原燃料用熱交換器Ebは、上流側改質ガス通流部10から排出された改質ガスを通流させる下流側改質ガス通流部12と、脱硫部1に供給する原燃料ガスを通流させる脱硫前原燃料通流部13とを熱交換自在に設けて構成されている。   The desulfurized raw fuel heat exchanger Ea includes an upstream reformed gas flow section 10 through which the reformed gas discharged from the reforming section 2 flows, and a desulfurized raw fuel gas supplied to the reformed section 2. The desulfurized raw fuel flow section 11 is made to be able to exchange heat, and the pre-desulfurized raw fuel heat exchanger Eb flows the reformed gas discharged from the upstream reformed gas flow section 10. The downstream reformed gas flow section 12 to be made to flow and the raw fuel gas flow section 13 before desulfurization to flow the raw fuel gas to be supplied to the desulfurization section 1 are provided so as to be able to exchange heat.

この実施形態では、改質部2、燃焼部4等を一体的に組み付けて、改質装置Mが構成されている。
図1に基づいて、改質装置Mについて説明を加える。
改質装置Mは、夫々円筒状の内筒14と外筒15とを同軸状に配設し、それらの両端を上板16及び底板17にて閉塞し、更に、内筒14の内部に、円筒状の輻射筒18を、一端を上板16に固定し、他端を底板17から離間させた状態で、内筒14と同軸状に設けて構成されている。
内筒14と外筒15との間に環状の触媒収容空間Rが形成され、その触媒収容空間Rに改質処理触媒2cが充填されて、内筒14、外筒15、上板16及び底板17等により、改質部2が構成される。
又、改質用バーナ3が、内筒14と同軸状に上板16に支持された状態で、内筒14内の空間を燃焼空間とするように設けられ、内筒14、上板16及び底板17等により、燃焼部4が構成されている。
In this embodiment, the reforming unit M is configured by integrally assembling the reforming unit 2, the combustion unit 4 and the like.
Based on FIG. 1, the reformer M will be described.
In the reformer M, a cylindrical inner cylinder 14 and an outer cylinder 15 are arranged coaxially, and both ends thereof are closed by an upper plate 16 and a bottom plate 17, and further, inside the inner cylinder 14, A cylindrical radiation tube 18 is configured to be coaxial with the inner tube 14 with one end fixed to the upper plate 16 and the other end separated from the bottom plate 17.
An annular catalyst housing space R is formed between the inner cylinder 14 and the outer cylinder 15, and the reforming catalyst 2c is filled in the catalyst housing space R. The inner cylinder 14, the outer cylinder 15, the upper plate 16, and the bottom plate 17 or the like constitutes the reforming unit 2.
The reforming burner 3 is provided so that the space in the inner cylinder 14 is a combustion space while being supported by the upper plate 16 coaxially with the inner cylinder 14, and the inner cylinder 14, the upper plate 16 and Combustion unit 4 is constituted by bottom plate 17 and the like.

改質装置Mは、その上板16が上方を向く姿勢で配置される。
改質用バーナ3には、燃焼用ガス燃料を供給する燃焼用ガス燃料供給路38が接続され、燃焼用ガス燃料ポンプ39が、都市ガス(13A等)を燃焼用ガス燃料として燃焼用ガス燃料供給路38に供給するように設けられている。又、燃料電池Gの燃料極から水素が残存した状態で排出されるオフガスを燃焼用ガス燃料として導くオフガス路40、及び、燃焼用空気ブロア41からの燃焼用空気を導く燃焼用空気供給路42が、混合器43を介して燃焼用ガス燃料供給路38に接続されている。
更に、燃焼用ガス燃料供給路38には、都市ガスの流量を調整する燃焼用ガス燃料流量調整弁44が設けられている。
The reformer M is arranged with the upper plate 16 facing upward.
The reforming burner 3 is connected with a combustion gas fuel supply passage 38 for supplying combustion gas fuel, and the combustion gas fuel pump 39 uses the city gas (13A, etc.) as the combustion gas fuel. It is provided to supply to the supply path 38. Further, an offgas passage 40 that guides offgas discharged from the fuel electrode of the fuel cell G in a state where hydrogen remains as combustion gas fuel, and a combustion air supply passage 42 that guides combustion air from the combustion air blower 41. Is connected to the combustion gas fuel supply passage 38 via the mixer 43.
Further, the combustion gas fuel supply passage 38 is provided with a combustion gas fuel flow rate adjustment valve 44 for adjusting the flow rate of the city gas.

上板16には、水蒸気が混合された脱硫原燃料ガスを通流させるガス処理流路45が、外筒15と内筒14との間の触媒収容空間Rに連通する状態で、並びに、改質用バーナ3の燃焼ガスを通流させる燃焼ガス流路46が、内筒14と輻射筒18との間の環状空間に連通する状態で、夫々、接続されている。
又、上板16には、改質部温度センサ27が、触媒収容空間Rに収容されている改質処理触媒2cの温度を検出するように支持されている。
又、底板17には、改質部2で改質処理された改質ガスを通流させるガス処理流路45が、外筒15と内筒14との間の触媒収容空間Rに連通する状態で接続されている。
In the upper plate 16, a gas processing flow path 45 through which the desulfurized raw fuel gas mixed with water vapor is communicated with the catalyst housing space R between the outer cylinder 15 and the inner cylinder 14 and is modified. Combustion gas passages 46 through which the combustion gas of the quality burner 3 flows are connected in a state where they communicate with the annular space between the inner cylinder 14 and the radiation cylinder 18.
Further, the reformer temperature sensor 27 is supported on the upper plate 16 so as to detect the temperature of the reforming catalyst 2c accommodated in the catalyst accommodating space R.
Further, the gas treatment flow path 45 through which the reformed gas reformed in the reforming unit 2 flows is communicated with the catalyst housing space R between the outer cylinder 15 and the inner cylinder 14 in the bottom plate 17. Connected with.

そして、燃焼用ガス燃料供給路38からの燃焼用ガス燃料と燃焼用空気供給路42からの燃焼用空気とを混合器43で混合させて、その混合気を改質用バーナ3にて燃焼させることにより、燃焼ガスが輻射筒18内を下方に流動した後、底板17に衝突して、内筒14と輻射筒18との間の環状空間を上方に流動して、燃焼ガス流路46に排出され、その燃焼ガスの保有熱及び輻射筒18からの輻射熱が内筒14を伝熱して、改質処理触媒2cが加熱される。
改質処理触媒2cを改質処理が可能な改質処理温度に加熱するに当たって、オフガスだけでは不足する不足分を都市ガスにて補うように、燃焼用ガス燃料流量調整弁44により都市ガスの流量が調整される。
Then, the combustion gas fuel from the combustion gas fuel supply path 38 and the combustion air from the combustion air supply path 42 are mixed by the mixer 43 and the mixture is burned by the reforming burner 3. Thus, after the combustion gas flows downward in the radiation cylinder 18, it collides with the bottom plate 17 and flows upward in the annular space between the inner cylinder 14 and the radiation cylinder 18 and enters the combustion gas flow path 46. The exhausted heat of the combustion gas and the radiant heat from the radiant cylinder 18 are transferred to the inner cylinder 14 to heat the reforming catalyst 2c.
When heating the reforming treatment catalyst 2c to a reforming treatment temperature at which the reforming treatment is possible, the city gas flow rate is adjusted by the combustion gas fuel flow rate adjusting valve 44 so that the shortage of the off gas alone is compensated by the city gas. Is adjusted.

図1〜図3に示すように、水素含有ガス生成装置Pを構成する各部のうち、改質装置M以外の各部は、内部に扁平状の内部空間Sを形成する扁平状の容器Bを用いて構成されている。
そして、水素含有ガス生成装置Pは、改質装置M及び複数の容器Bを、改質装置Mを中間に位置させた状態で容器厚さ方向に積層状態に並べ、それら複数の容器Bを容器並び方向(容器厚さ方向に相当する)両側から押し付け手段(図示省略)にて押し付けることにより構成されている。このように構成された水素含有ガス生成装置Pが、容器並び方向を略水平方向に沿わせた姿勢で設置される。
As shown in FIGS. 1 to 3, among the parts constituting the hydrogen-containing gas generation device P, each part other than the reformer M uses a flat container B that forms a flat internal space S therein. Configured.
The hydrogen-containing gas generation device P arranges the reformer M and the plurality of containers B in a stacked state in the container thickness direction with the reformer M positioned in the middle, and the plurality of containers B are disposed in the container. It is configured by pressing from both sides in the alignment direction (corresponding to the container thickness direction) by pressing means (not shown). The hydrogen-containing gas generation device P configured as described above is installed in a posture in which the container arrangement direction is substantially horizontal.

各容器Bは、ステンレス等の伝熱性を有する耐熱金属製であり、図2及び図3に示すように、厚さ方向視で矩形状の一対の皿形状容器形成部材51の間に、厚さ方向視で矩形状の平板状の区画部材52を位置させた状態で、周辺部が溶接接続されて構成され、内部に二つの偏平な内部空間Sが区画形成されている。
容器Bの区画部材52には、必要に応じて、両側の内部空間Sを連通する連通口53が設けられている
Each container B is made of a heat-resistant metal having heat conductivity such as stainless steel, and has a thickness between a pair of rectangular dish-shaped container forming members 51 as viewed in the thickness direction, as shown in FIGS. In a state where the rectangular flat plate-shaped partition member 52 is positioned in a direction view, the peripheral portion is welded and connected, and two flat internal spaces S are partitioned and formed inside.
The partition member 52 of the container B is provided with a communication port 53 that communicates the internal spaces S on both sides as necessary.

この実施形態では、水素含有ガス生成装置Pは、7個の容器Bを用いて構成されている。尚、7個の容器Bの区別が明確になるように、便宜上、容器を示す符号Bの後に、図1において左からの並び順を示す符号1,2,3……………7を付す。
尚、図2及び図3は、左から3個目の容器B3を示すものであり、詳細は後述するが、この容器B3は、脱硫部1と脱硫前原燃料通流部13を構成するものである。
In this embodiment, the hydrogen-containing gas generation device P is configured using seven containers B. In addition, in order to clarify the distinction of the seven containers B, for the sake of convenience, reference numerals 1, 2, 3,... 7 indicating the arrangement order from the left in FIG. .
2 and 3 show the third container B3 from the left. Although details will be described later, this container B3 constitutes the desulfurization section 1 and the raw fuel flow section 13 before desulfurization. is there.

図1に示すように、左端の容器B1における左側の内部空間Sを有する部分にて加熱用排ガス通流部7が構成され、右側の内部空間Sを有する部分にて蒸発処理部8が構成されている。つまり、この左端の容器B1により、水蒸気生成部Jが構成されている。   As shown in FIG. 1, the exhaust gas flow passage 7 for heating is configured in the portion having the left internal space S in the leftmost container B1, and the evaporation processing unit 8 is configured in the portion having the right internal space S. ing. That is, the water vapor generating part J is configured by the leftmost container B1.

左から2個目の容器B2における左側の内部空間Sを有する部分により、上流側改質ガス通流部10が構成され、右側の内部空間Sを有する部分により、脱硫後原燃料通流部11が構成されている。つまり、この左から2個目の容器B2にて、脱硫後原燃料用熱交換器Eaが構成されている。   The upstream reformed gas flow passage 10 is configured by the portion having the left internal space S in the second container B2 from the left, and the raw fuel flow passage 11 after desulfurization is formed by the portion having the right internal space S. Is configured. That is, the desulfurized raw fuel heat exchanger Ea is configured by the second container B2 from the left.

図2及び図3にも示すように、左から3個目の容器B3における左側の内部空間Sを触媒収容空間Rとし、その触媒収容空間Rに脱硫処理触媒1cを収容して、左側の内部空間Sを有する部分により脱硫部1が構成され、右側の内部空間Sを有する部分により、脱硫前原燃料通流部13が構成されている。
脱硫部ヒータ21は、厚さ方向視が矩形状で、プレート状の電気ヒータにて構成され、この脱硫部ヒータ21が、左から3個目の容器B3における左側面、即ち、脱硫部1の側面を形成する皿形状容器形成部材51に当て付けて設けられている。
図2及び図3に示すように、脱硫部1の側面を形成する皿形状容器形成部材51には、脱硫部ヒータ21を入れ込むための凹部51dが設けられ、脱硫部ヒータ21は、この凹部51dに入れ込まれた状態で、皿形状容器形成部材51に当て付けて設けられている。
As shown in FIGS. 2 and 3, the left inner space S of the third container B3 from the left is used as a catalyst housing space R, and the desulfurization treatment catalyst 1c is housed in the catalyst housing space R so that the left inner space S The desulfurization part 1 is comprised by the part which has the space S, and the raw fuel flow part 13 before desulfurization is comprised by the part which has the internal space S of the right side.
The desulfurization section heater 21 is a plate-shaped electric heater having a rectangular shape in the thickness direction. This desulfurization section heater 21 is the left side of the third container B3 from the left, that is, the desulfurization section 1. It is provided in contact with the dish-shaped container forming member 51 that forms the side surface.
As shown in FIGS. 2 and 3, the dish-shaped container forming member 51 that forms the side surface of the desulfurization unit 1 is provided with a recess 51 d for inserting the desulfurization unit heater 21. In a state of being inserted into 51d, it is applied to the dish-shaped container forming member 51.

この脱硫部1を構成する容器B3には、脱硫部温度センサ24が、触媒収容空間Rに収容されている脱硫処理触媒1cの温度を検出するように支持されている。   A desulfurization part temperature sensor 24 is supported in the container B3 constituting the desulfurization part 1 so as to detect the temperature of the desulfurization treatment catalyst 1c accommodated in the catalyst accommodation space R.

左から4個目の容器B4における左側の内部空間Sを有する部分により、下流側改質ガス通流部12が構成され、右側の内部空間Sを触媒収容空間Rとし、その触媒収容空間Rに変成処理触媒5cを収容して、右側の内部空間Sを有する部分により変成部5が構成されている。
左から5個目の容器B5における左側の内部空間Sを触媒収容空間Rとし、その触媒収容空間Rに変成処理触媒5cを収容して、左側の内部空間Sを有する部分により変成部5が構成され、右側の内部空間Sを有する部分により、冷却用排ガス通流部9が構成されている。
The portion having the left internal space S in the fourth container B4 from the left constitutes the downstream reformed gas flow section 12, and the right internal space S is defined as the catalyst storage space R. The shift portion 5 is configured by the portion having the right internal space S that accommodates the shift treatment catalyst 5c.
The left inner space S in the fifth container B5 from the left is defined as a catalyst housing space R, the shift treatment catalyst 5c is housed in the catalyst housing space R, and the shift section 5 is configured by a portion having the left inner space S. The portion having the right internal space S constitutes the cooling exhaust gas flow portion 9.

左から6個目の容器B6における左右の内部空間Sをいずれも触媒収容空間Rとし、各触媒収容空間Rに変成処理触媒5cを収容して、左から6個目の容器B6により変成部5が構成されている。
つまり、左から4個目の容器B4にて構成される変成部5、左から5個目の容器B5にて構成される変成部5、左から6個目の容器B6にて構成される変成部5を、夫々、1段目、2段目、3段目として、順に改質ガスを通流させるように構成されて、変成部5が3段に設けられている。
The left and right internal spaces S in the sixth container B6 from the left are defined as catalyst housing spaces R, the shift treatment catalyst 5c is housed in each catalyst housing space R, and the shift section 5 is accommodated by the sixth container B6 from the left. Is configured.
That is, the metamorphosis part 5 comprised of the fourth container B4 from the left, the metamorphosis part 5 comprised of the fifth container B5 from the left, and the metamorphosis comprised of the sixth container B6 from the left The parts 5 are configured as a first stage, a second stage, and a third stage, respectively, so that the reformed gas is allowed to flow in order, and the transformation section 5 is provided in three stages.

変成部5を構成する左から6個目の容器B6には、変成部温度センサ25が、触媒収容空間Rに収容されている変成処理触媒5cの温度を検出するように支持されている。   In the sixth container B6 from the left constituting the shift unit 5, the shift unit temperature sensor 25 is supported so as to detect the temperature of the shift process catalyst 5c stored in the catalyst storage space R.

変成部ヒータ22も、厚さ方向視が矩形状で、プレート状の電気ヒータにて構成され、この変成部ヒータ22が、左から4個目の容器B4と5個目の容器B5との間に、両側の変成部5の側面を形成する皿形状容器形成部材51に当て付けて設けられ、更に、同様の変成部ヒータ22が、左から6個目の容器B6における右側の側面、即ち、変成部5の側面を形成する皿形状容器形成部材51に当て付けて設けられている。
図示を省略するが、変成部ヒータ22を当て付ける皿形状容器形成部材51にも、脱硫部ヒータ21を当て付ける皿形状容器形成部材51と同様の凹部51dが設けられ、変成部ヒータ22は、この凹部51dに入れ込まれた状態で、皿形状容器形成部材51に当て付けて設けられている。
The transformer heater 22 is also a plate-shaped electric heater having a rectangular shape in the thickness direction, and this transformer heater 22 is located between the fourth container B4 and the fifth container B5 from the left. Are provided in contact with the dish-shaped container forming member 51 that forms the side surfaces of the transformation parts 5 on both sides, and the same transformation part heater 22 is provided on the right side surface of the sixth container B6 from the left, that is, It is provided in contact with a dish-shaped container forming member 51 that forms the side surface of the transformation section 5.
Although not shown in the figure, the dish-shaped container forming member 51 to which the shift section heater 22 is applied is also provided with a recess 51d similar to the dish-shaped container forming member 51 to which the desulfurization section heater 21 is applied. In a state of being inserted into the recess 51d, the plate-shaped container forming member 51 is provided so as to be applied.

左から7個目、即ち右端の容器B7における左側の内部空間Sを有する部分は、何にも用いずに伝熱調整用とされ、右側の内部空間Sを触媒収容空間Rとし、その触媒収容空間Rに選択酸化処理触媒6cを収容して、右側の内部空間Sを有する部分により選択酸化部
6が構成されている。
The seventh portion from the left, that is, the portion having the left inner space S in the rightmost container B7 is used for heat transfer adjustment without being used for anything, and the right inner space S is used as the catalyst housing space R, and the catalyst housing. The selective oxidation treatment catalyst 6c is accommodated in the space R, and the selective oxidation unit 6 is configured by a portion having the right internal space S.

選択酸化部6を構成する右端の容器B7には、選択酸化部温度センサ26が、触媒収容空間Rに収容されている選択酸化処理触媒6cの温度を検出するように支持されている。   The selective oxidation unit temperature sensor 26 is supported in the rightmost container B7 constituting the selective oxidation unit 6 so as to detect the temperature of the selective oxidation treatment catalyst 6c accommodated in the catalyst accommodation space R.

選択酸化部ヒータ23も、厚さ方向視が矩形状で、プレート状の電気ヒータにて構成され、この選択酸化部ヒータ23が、左から7個目の容器B7における右側面、即ち、選択酸化部6の側面を形成する皿形状容器形成部材51に当て付けた状態で設けられている。
図示を省略するが、選択酸化部ヒータ23を当て付ける皿形状容器形成部材51にも、脱硫部ヒータ21を当て付ける皿形状容器形成部材51と同様の凹部51dが設けられ、選択酸化部ヒータ23は、この凹部51dに入れ込まれた状態で、皿形状容器形成部材51に当て付けて設けられている。
The selective oxidation unit heater 23 is also a plate-shaped electric heater having a rectangular shape in the thickness direction. This selective oxidation unit heater 23 is the right side surface of the seventh container B7 from the left, that is, the selective oxidation unit. It is provided in a state of being applied to the dish-shaped container forming member 51 that forms the side surface of the portion 6.
Although not shown, the dish-shaped container forming member 51 to which the selective oxidation unit heater 23 is applied is also provided with a recess 51d similar to the dish-shaped container forming member 51 to which the desulfurization unit heater 21 is applied. Is provided in contact with the dish-shaped container forming member 51 in a state of being inserted into the recess 51d.

そして、図1に示すように、上述の7個の容器Bと改質装置Mが、左端の容器B1と左から2個目の容器B2との間に改質装置Mを位置させると共に、左端の容器B1と改質装置Mとの間、改質装置Mと左から2個目の容器B2との間、左から2個目の容器B2と左から3個目の容器B3との間の夫々に断熱材47が配置された状態で、押し付け手段により容器並び方向両側から押し付けられて、密接状態に並べて設けられている。更に、選択酸化部6を構成する右端の容器B7の側方に、その容器B7に向けて通風するように冷却用ファン48が設けられている。   As shown in FIG. 1, the seven containers B and the reformer M described above position the reformer M between the leftmost container B1 and the second container B2 from the left, Between the container B1 and the reformer M, between the reformer M and the second container B2 from the left, between the second container B2 from the left and the third container B3 from the left. In a state in which the heat insulating material 47 is disposed, the pressing means is pressed from both sides in the container arranging direction and arranged in close contact. Further, a cooling fan 48 is provided on the side of the rightmost container B7 constituting the selective oxidation unit 6 so as to ventilate the container B7.

上述のような配置形態で7個の容器Bと改質装置Mを配置するに当たっては、改質部2を改質処理温度に維持するように、改質用バーナ3の燃焼量を調整し、且つ、選択酸化部6を選択酸化処理温度に維持するように、冷却用ファン48の通風量を調節して冷却能力を調節することにより、脱硫部1及び変成部5がそれぞれの処理温度になるように、隣接するもの同士の伝熱状態が予め設定されている。   In arranging the seven containers B and the reformer M in the arrangement form as described above, the combustion amount of the reforming burner 3 is adjusted so as to maintain the reforming unit 2 at the reforming treatment temperature, In addition, the desulfurization unit 1 and the shift unit 5 are at the respective processing temperatures by adjusting the cooling capacity by adjusting the air flow rate of the cooling fan 48 so that the selective oxidation unit 6 is maintained at the selective oxidation treatment temperature. As described above, the heat transfer state between adjacent ones is set in advance.

次に、図1に基づいて、各容器Bに流体を供給したり、各容器Bから流体を排出するための、各容器Bに対する流路の接続形態について説明する。尚、各容器B内の内部空間Sにおいては、流体を上部から供給して下方側に向けて通流させて下部から排出する、あるいは、流体を下部から供給して上方側に向けて通流させて上部から排出するように、流体を上下方向に通流させるので、各流路は、各容器Bの内部空間Sの上端部又は下端部に接続される。   Next, the connection form of the flow path to each container B for supplying the fluid to each container B and discharging the fluid from each container B will be described with reference to FIG. In the internal space S in each container B, the fluid is supplied from the upper part and flows downward and discharged from the lower part, or the fluid is supplied from the lower part and flows upward. Since the fluid flows in the vertical direction so as to be discharged from the upper portion, each flow path is connected to the upper end portion or the lower end portion of the internal space S of each container B.

原燃料ガス供給路35が脱硫前原燃料通流部13に接続され、脱硫部1と脱硫後原燃料通流部11とが、その脱硫後原燃料通流部11と改質部2とが、その改質部2と上流側改質ガス通流部10とが、その上流側改質ガス通流部10と下流側改質ガス通流部12とが、1段目の変成部5と2段目の変成部5とが、2段目の変成部5と3段目の変成部5とが、3段目の変成部5と選択酸化部6とが、夫々、ガス処理流路45にて接続され、更に、その選択酸化部6と燃料電池Gとが燃料ガス供給路32にて接続されている。   The raw fuel gas supply path 35 is connected to the raw fuel flow section 13 before desulfurization, the desulfurization section 1 and the raw fuel flow section 11 after desulfurization, the raw fuel flow section 11 and reforming section 2 after desulfurization, The reforming section 2 and the upstream reformed gas flowing section 10 are connected to the upstream reformed gas flowing section 10 and the downstream reformed gas flowing section 12, respectively. The second stage transformation section 5, the third stage transformation section 5, the third stage transformation section 5, and the selective oxidation section 6 are respectively connected to the gas processing flow path 45. Further, the selective oxidation unit 6 and the fuel cell G are connected by a fuel gas supply path 32.

3段目の変成部5と選択酸化部6とを接続するガス処理流路45と改質用水供給路31とにわたって、原料水予熱用熱交換器49が設けられている。
又、脱硫部1と脱硫後原燃料通流部11とを接続するガス処理流路45には、脱硫原燃料ガスに水蒸気を混合させるためのエジェクタ29が設けられている。
A raw material water preheating heat exchanger 49 is provided across the gas processing flow path 45 and the reforming water supply path 31 connecting the third stage shift section 5 and the selective oxidation section 6.
In addition, an ejector 29 for mixing water vapor into the desulfurized raw fuel gas is provided in the gas processing flow path 45 that connects the desulfurized portion 1 and the raw fuel flow-through portion 11 after desulfurization.

燃焼部4と加熱用排ガス通流部7とが、その加熱用排ガス通流部7と冷却用排ガス通流部9が、夫々、燃焼ガス流路46にて接続されて、燃焼部4から排出される燃焼ガスを、加熱用排ガス通流部7、冷却用排ガス通流部9の順に通流させて排出するように構成されている。   The combustion part 4 and the heating exhaust gas flow part 7 are connected to the heating exhaust gas flow part 7 and the cooling exhaust gas flow part 9 via the combustion gas flow path 46, respectively, and discharged from the combustion part 4. The combustion gas to be discharged is configured to flow through the heating exhaust gas flow portion 7 and the cooling exhaust gas flow portion 9 in this order to be discharged.

前述の改質用水供給路31が、蒸発処理部8の下端に接続され、加熱用排ガス通流部7による加熱により蒸発処理部8にて生成された水蒸気を導く水蒸気流路50がエジェクタ29に接続されている。   The reforming water supply path 31 is connected to the lower end of the evaporation processing unit 8, and the water vapor channel 50 that guides the water vapor generated in the evaporation processing unit 8 by heating by the heating exhaust gas flow unit 7 is provided in the ejector 29. It is connected.

つまり、原燃料ガス供給路35を通して供給される原燃料ガスを脱硫部1にて脱硫処理し、その脱硫原燃料ガスに、蒸発処理部8にて生成されて水蒸気路50を通して供給される水蒸気をエジェクタ29にて混合させ、その水蒸気を混合させた脱硫原燃料ガスを改質部2にて改質処理し、その改質ガスを1段目、2段目、3段目の変成部5にて変成処理し、その変成処理した改質ガスを選択酸化部6にて選択酸化処理して、一酸化炭素濃度の低い水素含有ガスを生成し、その水素含有ガスを燃料ガスとして燃料ガス供給路32を通じて燃料電池Gに供給するように構成されている。   That is, the raw fuel gas supplied through the raw fuel gas supply path 35 is desulfurized in the desulfurization unit 1, and the steam generated in the evaporation processing unit 8 and supplied through the water vapor path 50 is supplied to the desulfurized raw fuel gas. The desulfurized raw fuel gas mixed with the ejector 29 and mixed with the water vapor is reformed in the reforming unit 2, and the reformed gas is supplied to the first, second, and third stage transformation units 5. Then, the reformed reformed gas is selectively oxidized in the selective oxidation unit 6 to generate a hydrogen-containing gas having a low carbon monoxide concentration, and the hydrogen-containing gas is used as a fuel gas to supply a fuel gas. The fuel cell G is supplied to the fuel cell G through 32.

次に、運転制御部Cの制御動作について説明する。
図1に示すように、運転制御部Cには、時系列的な熱消費データ及び時系列的な電力消費データを管理して、その管理データに基づいて、燃料電池Gの運転条件を設定する学習部Cpが備えられて、運転制御部Cは、学習部Cpにて設定された運転条件で燃料電池Gを運転するように、水素含有ガスを生成すべく、水素含有ガス生成装置Pの運転を制御するように構成されている。
ちなみに、学習部Cpは、燃料電池Gの運転条件として、例えば、電力負荷に追従して発電する電力負荷追従運転を実行するとして、燃料電池Gの運転時間帯を設定するが、このように時系列的な熱消費データ及び時系列的な電力消費データに基づいて燃料電池Gの運転条件を設定する機能、所謂、学習機能としては、周知の種々の手法を用いることが可能であるので、詳細な説明を省略する。
Next, the control operation of the operation control unit C will be described.
As shown in FIG. 1, the operation control unit C manages time-series heat consumption data and time-series power consumption data, and sets the operation condition of the fuel cell G based on the management data. The learning unit Cp is provided, and the operation control unit C operates the hydrogen-containing gas generation device P to generate the hydrogen-containing gas so as to operate the fuel cell G under the operation conditions set by the learning unit Cp. Is configured to control.
Incidentally, the learning unit Cp sets the operation time zone of the fuel cell G as the operation condition of the fuel cell G, for example, by executing the power load follow-up operation for generating power following the power load. As a function for setting the operating condition of the fuel cell G based on the series heat consumption data and the time series power consumption data, a so-called learning function, various known methods can be used. The detailed explanation is omitted.

運転制御部Cは、脱硫部1への原燃料ガスの供給を開始して改質部2にて改質処理を開始する前において、運転開始指令が指令されると、脱硫処理触媒1cを起動時脱硫部温度に昇温させるべく脱硫部ヒータ21を制御し、改質処理触媒2cを起動時改質部温度に昇温させるべく、改質用バーナ3の燃焼量を調整する起動時昇温処理を実行した後、脱硫部1へ原燃料ガスを供給して水素含有ガスを生成する通常運転を実行し、運転停止指令が指令されると、脱硫部1への原燃料ガスの供給を停止する停止処理を実行して、水素含有ガス生成装置Pの運転を停止する。
この実施形態では、変成部5及び選択酸化部6が設けられているので、運転制御部Cは、起動時昇温処理では、変成処理触媒5cを起動時変成部温度に昇温させるべく変成部ヒータ22を制御し、且つ、選択酸化処理触媒6cを起動時選択酸化部温度(起動時選択除去部温度の一例)に昇温させるべく選択酸化部ヒータ23を制御するように構成されている。
The operation control unit C starts the desulfurization treatment catalyst 1c when an operation start command is issued before starting the supply of the raw fuel gas to the desulfurization unit 1 and starting the reforming process in the reforming unit 2. The temperature of the desulfurization section heater 21 is controlled to raise the temperature to the time desulfurization section temperature, and the temperature increase at startup is performed to adjust the combustion amount of the reforming burner 3 to raise the temperature of the reforming catalyst 2c to the temperature of the reforming section at startup. After performing the process, the normal operation of supplying the raw fuel gas to the desulfurization unit 1 to generate the hydrogen-containing gas is executed, and when the operation stop command is instructed, the supply of the raw fuel gas to the desulfurization unit 1 is stopped. The stop process which performs is performed, and the driving | operation of the hydrogen containing gas production | generation apparatus P is stopped.
In this embodiment, since the shift unit 5 and the selective oxidation unit 6 are provided, the operation control unit C in the start-up temperature rising process, the shift unit to raise the temperature of the shift process catalyst 5c to the start-up shift unit temperature. The selective oxidation unit heater 23 is controlled so as to control the heater 22 and raise the selective oxidation treatment catalyst 6c to the startup selective oxidation unit temperature (an example of the startup selective removal unit temperature).

ここで、起動時改質部温度は、上記の改質処理温度(例えば600〜700℃の範囲)か、その改質処理温度よりも多少低い温度に設定される。
同様に、起動時脱硫部温度は、上記の脱硫処理温度(例えば200〜300℃の範囲)か、その脱硫処理温度よりも多少低い温度に、起動時変成部温度は、上記の変成処理温度(例えば180〜250℃の範囲)か、その変成処理温度よりも多少低い温度に、起動時選択酸化部温度は、上記の選択酸化処理温度(例えば、80〜150℃の範囲)か、その選択酸化処理温度よりも多少低い温度に、夫々、設定される。
つまり、起動時昇温処理を実行すると、脱硫部1での脱硫処理、改質部2での改質処理、変成部5での変成処理及び選択酸化部6での選択酸化処理が可能、又は、略可能な状態となるので、起動時昇温処理を実行すると、脱硫部1へ原燃料ガスを供給して水素含有ガスを生成する通常運転を開始することが可能となる。
Here, the reforming part temperature at start-up is set to the above reforming process temperature (for example, in the range of 600 to 700 ° C.) or a temperature slightly lower than the reforming process temperature.
Similarly, the start-up desulfurization section temperature is the above-mentioned desulfurization treatment temperature (for example, in the range of 200 to 300 ° C.) or a temperature slightly lower than the desulfurization treatment temperature. For example, the startup selective oxidation temperature is set to the above selective oxidation treatment temperature (for example, in the range of 80 to 150 ° C.) or to the selective oxidation at a temperature slightly lower than the transformation treatment temperature. The temperature is set to be slightly lower than the processing temperature.
That is, when the start-up temperature raising process is executed, a desulfurization process in the desulfurization unit 1, a reforming process in the reforming unit 2, a modification process in the shift unit 5 and a selective oxidation process in the selective oxidation unit 6 are possible, or Therefore, when the temperature increase process at startup is executed, it is possible to start normal operation for supplying the raw fuel gas to the desulfurization unit 1 to generate the hydrogen-containing gas.

本発明では、脱硫部1の触媒収容空間Rに収容されている脱硫処理触媒1cの圧壊を抑制するために、図1に示すように、脱硫処理触媒1cを起動時脱硫部温度よりも低い脱硫部予備加熱温度に加熱する予備加熱手段Hが設けられ、運転制御部Cが、予備加熱手段Hを作動させて、脱硫処理触媒1cを脱硫部予備加熱温度に加熱した後、起動時昇温処理を実行するように構成されている。
この第1実施形態では、脱硫部1に供給される原燃料ガスを脱硫部予備加熱温度よりも高く且つ起動時脱硫部温度よりも低い原燃料ガス予備加熱温度に加熱する原燃料ガスヒータ60(原燃料ガス加熱手段の一例)と、脱硫処理触媒1cが脱硫部予備加熱温度に加熱されるまで、原燃料ガスヒータ60にて加熱された原燃料ガスを脱硫部1へ供給する予備加熱制御手段61とが設けられている。
そして、予備加熱手段Hが、原燃料ガスヒータ60と予備加熱制御手段61とを備えて構成されている。尚、予備加熱制御手段61は、運転制御部Cを用いて構成されている。
ここで、脱硫部予備加熱温度としては、脱硫処理触媒1cの圧壊を十分に抑制できるように、脱硫部1を構成する容器B3の局所的な反りを十分に抑制できる温度、例えば100℃以上(この第1実施形態では、100℃)に設定され、原燃料ガス予備加熱温度としては、例えば200℃以下(この第1実施形態では、200℃)の温度に設定される。
In the present invention, in order to suppress the crushing of the desulfurization treatment catalyst 1c accommodated in the catalyst accommodation space R of the desulfurization section 1, as shown in FIG. Preheating means H for heating to the part preheating temperature is provided, and after the operation control part C operates the preheating means H to heat the desulfurization treatment catalyst 1c to the desulfurization part preheating temperature, the temperature raising process at the start-up Is configured to run.
In this first embodiment, a raw fuel gas heater 60 (raw material) that heats the raw fuel gas supplied to the desulfurization unit 1 to a raw fuel gas preheating temperature that is higher than the desulfurization unit preheating temperature and lower than the startup desulfurization unit temperature. An example of fuel gas heating means), and preheating control means 61 for supplying the raw fuel gas heated by the raw fuel gas heater 60 to the desulfurization section 1 until the desulfurization treatment catalyst 1c is heated to the desulfurization section preheating temperature. Is provided.
The preheating unit H includes a raw fuel gas heater 60 and a preheating control unit 61. The preliminary heating control means 61 is configured using the operation control unit C.
Here, as a desulfurization part preheating temperature, the temperature which can fully suppress the local curvature of the container B3 which comprises the desulfurization part 1 so that collapse of the desulfurization process catalyst 1c can fully be suppressed, for example, 100 degreeC or more ( In the first embodiment, the temperature is set to 100 ° C., and the raw fuel gas preheating temperature is set to, for example, a temperature of 200 ° C. or less (200 ° C. in the first embodiment).

原燃料ガスヒータ60は、電気ヒータにて構成されて、原燃料ガス供給路35を通流する原燃料ガスを加熱するように設けられている。
又、原燃料ガス供給路35には、原燃料ガスヒータ60にて加熱された原燃料ガスの温度を検出する原燃料ガス予備加熱温度センサ62が設けられている。
The raw fuel gas heater 60 is composed of an electric heater and is provided so as to heat the raw fuel gas flowing through the raw fuel gas supply path 35.
The raw fuel gas supply path 35 is provided with a raw fuel gas preheating temperature sensor 62 that detects the temperature of the raw fuel gas heated by the raw fuel gas heater 60.

又、原燃料ガスヒータ60にて加熱された原燃料ガスを、選択酸化部6を通過させた後に取り出して、改質用バーナ3に燃焼用燃料として供給するリサイクル路63が設けられている。
リサイクル路63は、予熱ガス切換用三方弁64を介して、燃料ガス供給路32に接続されて、並びに、混合器43を介して燃焼用ガス燃料供給路38に接続されている。予熱ガス切換用三方弁64は、燃料ガス供給路32における当該予熱ガス切換用三方弁64よりも上流側と当該予熱ガス切換用三方弁64よりも下流側とを連通状態にする通常流路状態、及び、燃料ガス供給路32における当該予熱ガス切換用三方弁64よりも上流側とリサイクル路62とを連通状態にするリサイクル流路状態に択一的に切り換え可能に構成されている。
つまり、原燃料ガスヒータ60にて原燃料ガス予備加熱温度に加熱された原燃料ガスを、脱硫部1、改質部2、3段の変成部5、選択酸化部6を順に通過させた後に取り出して、改質用バーナ3に燃焼用燃料として供給するように構成されている。
Further, a recycle path 63 is provided in which the raw fuel gas heated by the raw fuel gas heater 60 is taken out after passing through the selective oxidation unit 6 and is supplied to the reforming burner 3 as combustion fuel.
The recycle path 63 is connected to the fuel gas supply path 32 via the preheating gas switching three-way valve 64, and is connected to the combustion gas fuel supply path 38 via the mixer 43. The preheating gas switching three-way valve 64 is in a normal flow path state in which the upstream side of the preheating gas switching three-way valve 64 in the fuel gas supply passage 32 and the downstream side of the preheating gas switching three-way valve 64 are in communication with each other. In addition, the fuel gas supply path 32 is configured to be selectively switchable to a recycle flow path state in which the upstream side of the preheating gas switching three-way valve 64 and the recycle path 62 are in communication with each other.
That is, the raw fuel gas heated to the raw fuel gas preheating temperature by the raw fuel gas heater 60 is taken out after passing through the desulfurization section 1, the reforming section 2, the three-stage shift section 5 and the selective oxidation section 6 in this order. Thus, the reformer burner 3 is configured to be supplied as a combustion fuel.

又、この第1実施形態では、運転開始指令が指令されたときに、脱硫処理触媒1cの温度が脱硫部予備加熱温度よりも多少低い所定の温度に設定される予備加熱回避温度以上の場合は、予備加熱手段Hを作動させることなく、起動時昇温処理を実行するように構成されている。ちなみに、予備加熱回避温度は、脱硫部予備加熱温度よりも、例えば、5℃程度低い温度に設定される。   Further, in the first embodiment, when the operation start command is issued, when the temperature of the desulfurization treatment catalyst 1c is equal to or higher than the preheating avoidance temperature set to a predetermined temperature that is slightly lower than the desulfurization section preheating temperature. The start-up temperature raising process is executed without operating the preheating means H. Incidentally, the preheating avoidance temperature is set to a temperature lower by about 5 ° C., for example, than the desulfurization part preheating temperature.

予備加熱手段Hを作動させて、脱硫処理触媒1cを脱硫部予備加熱温度に加熱する処理(以下、予備加熱処理と記載する場合がある)の所要時間である予備加熱処理時間、及び、予備加熱処理を実行した後の起動時昇温処理の所要時間である起動時昇温処理時間は、予め分かっている。そこで、学習部Cpにて設定された運転条件で燃料電池Gが運転される学習運転の実行中は、学習部Cpにて設定された燃料電池Gの運転時間帯の開始時点から、少なくとも予備加熱処理時間と起動時昇温処理時間とを加えた時間を遡った時点に達することに基づいて、運転開始指令が指令され、当該運転時間帯の終了時点に達することに基づいて、運転停止指令が指令されるように構成されている。
又、図示を省略するが、運転制御部Cに対して、手動操作で運転開始指令及び運転停止指令を指令する運転スイッチも設けられている。つまり、この運転スイッチにより、学習運転を休止して、人為操作で運転開始指令を指令することも可能となっている。
The preheating means H is actuated, and the preheating treatment time, which is the time required for the treatment for heating the desulfurization treatment catalyst 1c to the desulfurization section preheating temperature (hereinafter sometimes referred to as preheating treatment), and preheating The startup temperature increase process time, which is the time required for the startup temperature increase process after the process is executed, is known in advance. Therefore, during the execution of the learning operation in which the fuel cell G is operated under the operation condition set in the learning unit Cp, at least the preliminary heating is performed from the start of the operation time zone of the fuel cell G set in the learning unit Cp. An operation start command is instructed based on reaching a time point that is the sum of the processing time and the temperature increase processing time at startup, and an operation stop command is issued based on reaching the end point of the operation time zone. It is configured to be commanded.
Although not shown, an operation switch for instructing an operation start command and an operation stop command to the operation control unit C by manual operation is also provided. That is, it is possible to pause the learning operation by using this operation switch and to issue an operation start command by human operation.

運転制御部Cの制御動作について、説明を加える。
図4のフローチャートに示すように、運転制御部Cは、運転開始指令が指令されると、脱硫部温度センサ24の検出温度を読み込んで、その検出温度が所定の予備加熱回避温度よりも低い場合は、予備加熱処理を実行した後、起動時昇温処理を実行し、その検出温度が予備加熱回避温度以上の場合は、予備加熱処理を実行することなく、直ちに、起動時昇温処理を実行する(ステップ#1〜4)。
起動時昇温処理が終了すると、運転停止指令が指令されるまで、通常運転を実行し、運転停止指令が指令されると、停止処理を実行して運転を停止する(ステップ#5〜7)。
The control operation of the operation control unit C will be described.
As shown in the flowchart of FIG. 4, when the operation start command is instructed, the operation control unit C reads the detected temperature of the desulfurization unit temperature sensor 24 and the detected temperature is lower than a predetermined preheating avoidance temperature. After starting the preheating process, perform the start-up temperature rise process. If the detected temperature is equal to or higher than the preheat avoidance temperature, immediately execute the start-up temperature rise process without executing the preheat process. (Steps # 1 to # 4).
When the temperature raising process at start-up is completed, normal operation is executed until an operation stop command is issued. When the operation stop command is issued, stop operation is executed to stop the operation (steps # 5 to 7). .

運転制御部Cは、予備加熱処理では、予熱ガス切換用三方弁64をリサイクル流路状態に切り換えた後、原燃料ガスポンプ34及び燃焼用空気ブロア41を作動させて改質用バーナ3を燃焼させると共に、原燃料ガスヒータ60を作動させ、並びに、原燃料ガスの流量を所定の予備加熱用流量に調整するように、原燃料ガス流量調整弁36を制御すると共に、原燃料ガス予備加熱温度センサ62の検出温度が原燃料ガス予備加熱温度になるように、原燃料ガスヒータ60の加熱量(供給電力)を調整する。   In the preheating process, the operation control unit C switches the preheating gas switching three-way valve 64 to the recycle flow path state, and then operates the raw fuel gas pump 34 and the combustion air blower 41 to burn the reforming burner 3. At the same time, the raw fuel gas heater 60 is operated, and the raw fuel gas flow rate adjusting valve 36 is controlled so that the flow rate of the raw fuel gas is adjusted to a predetermined preheating flow rate, and the raw fuel gas preheating temperature sensor 62 is controlled. The heating amount (supply power) of the raw fuel gas heater 60 is adjusted so that the detected temperature becomes the raw fuel gas preheating temperature.

又、運転制御部Cは、予備加熱処理中、改質部温度センサ27の検出温度がカーボン析出防止温度(例えば、300℃)に近づくと、その検出温度がカーボン析出防止温度よりも高くならないように、原燃料ガスの流量を予備加熱用流量よりも少なくすべく、原燃料ガス流量調整弁36を制御する。   Further, when the temperature detected by the reforming unit temperature sensor 27 approaches the carbon deposition preventing temperature (for example, 300 ° C.) during the preheating process, the operation control unit C prevents the detected temperature from becoming higher than the carbon deposition preventing temperature. In addition, the raw fuel gas flow rate adjustment valve 36 is controlled so that the flow rate of the raw fuel gas is less than the preheating flow rate.

そして、運転制御部Cは、脱硫部温度センサ24の検出温度が脱硫部予備加熱温度になると、原燃料ガスポンプ34及び原燃料ガスヒータ60を停止すると共に、予熱ガス切換用三方弁63を通常流路状態に切り換えて、予備加熱処理を終了して、起動時昇温処理を実行する。   Then, when the temperature detected by the desulfurization section temperature sensor 24 reaches the desulfurization section preheating temperature, the operation control section C stops the raw fuel gas pump 34 and the raw fuel gas heater 60, and passes the preheating gas switching three-way valve 63 through the normal flow path. Switch to the state, finish the preheating process, and execute the temperature raising process at startup.

運転制御部Cは、起動時昇温処理では、燃焼用ガス燃料ポンプ39及び燃焼用空気ブロア41を作動させて、改質用バーナ3を燃焼させると共に、改質部温度センサ27の検出温度が起動時改質部温度になるように、改質用バーナ3の燃焼量を調整すべく燃焼用ガス燃料流量調整弁44を制御し、並びに、脱硫部温度センサ24の検出温度が起動時脱硫部温度になるように、脱硫部ヒータ21の加熱量(供給電力)を調整し、且つ、変成部温度センサ25の検出温度が起動時変成部温度になるように変成部ヒータ22の加熱量(供給電力)を調整し、且つ、選択酸化部温度センサ26の検出温度が起動時選択酸化部温度になるように選択酸化部ヒータ23の加熱量(供給電力)を調整する。尚、改質用バーナ3への燃焼用空気の流量が、改質用バーナ3の燃焼量に見合った流量になるように調整されるが、そのような燃焼用空気流量の調整手法は周知であるので、説明を省略する。   In the start-up temperature raising process, the operation control unit C operates the combustion gas fuel pump 39 and the combustion air blower 41 to burn the reforming burner 3 and the temperature detected by the reforming unit temperature sensor 27 is high. The combustion gas fuel flow rate adjusting valve 44 is controlled so as to adjust the combustion amount of the reforming burner 3 so as to be the reforming section temperature at the start, and the temperature detected by the desulfurization section temperature sensor 24 is the start desulfurization section. The heating amount (supply power) of the desulfurization unit heater 21 is adjusted so that the temperature becomes the temperature, and the heating amount (supply) of the transformation unit heater 22 is set so that the detection temperature of the transformation unit temperature sensor 25 becomes the startup transformation unit temperature. Power) and the heating amount (supplied power) of the selective oxidation unit heater 23 is adjusted so that the temperature detected by the selective oxidation unit temperature sensor 26 becomes the selective oxidation unit temperature at startup. Although the flow rate of the combustion air to the reforming burner 3 is adjusted so as to match the combustion amount of the reforming burner 3, such a method for adjusting the combustion air flow rate is well known. Since there is, explanation is omitted.

運転制御部Cは、改質部温度センサ27の検出温度が起動時改質部温度になり、且つ、脱硫部温度センサ24の検出温度が起動時脱硫部温度になり、且つ、変成部温度センサ25の検出温度が起動時変成部温度になり、且つ、選択酸化部温度センサ26の検出温度が起動時選択酸化部温度になると、脱硫部ヒータ21、変成部ヒータ22及び選択酸化部ヒータ23を停止させて、起動時昇温処理を終了する。   In the operation control unit C, the temperature detected by the reforming unit temperature sensor 27 becomes the reforming unit temperature at startup, the temperature detected by the desulfurization unit temperature sensor 24 becomes the startup desulfurization unit temperature, and the transformation unit temperature sensor When the detected temperature 25 becomes the start-time metamorphic portion temperature and the detection temperature of the selective oxidation portion temperature sensor 26 becomes the start-time selective oxidation portion temperature, the desulfurization portion heater 21, the shift portion heater 22, and the selective oxidation portion heater 23 are turned on. Stop and end the temperature increase process at startup.

運転制御部Cは、起動時昇温処理を終了すると、原燃料ガスポンプ34、改質用水ポンプ30及び冷却用ファン48を作動させて、通常運転を開始する。
この通常運転では、運転制御部Cは、改質部温度センサ27の検出温度を改質処理温度に維持するように、改質用バーナ3の燃焼量を調整すべく燃焼用ガス燃料流量調整弁44を制御すると共に、選択酸化部温度センサ26の検出温度を選択酸化処理温度に維持するように、冷却用ファン48の通風量を調節し、並びに、電力負荷に追従して燃料電池Gの出力電力を出力電力調整範囲で調整すべく、脱硫部1に供給される原燃料ガスの流量を調整するように、原燃料ガス流量調整弁36を制御する。尚、蒸発処理部8に供給される改質用水の流量が、脱硫部1に供給される原燃料ガスの流量に見合った流量になるように調整されるが、そのような改質用水の流量の調整手法は、周知の各種手法を用いることができるので、説明を省略する。
When the start-up temperature raising process is completed, the operation control unit C operates the raw fuel gas pump 34, the reforming water pump 30, and the cooling fan 48 to start normal operation.
In this normal operation, the operation control unit C is configured to adjust the combustion amount of the reforming burner 3 so as to maintain the temperature detected by the reforming unit temperature sensor 27 at the reforming processing temperature. 44, and the air flow rate of the cooling fan 48 is adjusted so that the temperature detected by the selective oxidation unit temperature sensor 26 is maintained at the selective oxidation temperature, and the output of the fuel cell G follows the power load. The raw fuel gas flow rate adjustment valve 36 is controlled so as to adjust the flow rate of the raw fuel gas supplied to the desulfurization unit 1 in order to adjust the electric power within the output power adjustment range. The flow rate of the reforming water supplied to the evaporation processing unit 8 is adjusted so as to correspond to the flow rate of the raw fuel gas supplied to the desulfurization unit 1. Since various known methods can be used as the adjustment method, description thereof is omitted.

運転制御部Cは、停止処理では、改質用バーナ3の消火、冷却用ファン48の停止、原燃料ガスポンプ34の停止による原燃料ガスの供給停止、改質用水ポンプ30の停止による改質用水の供給停止等の各処理を所定の手順で行って、通常運転を終了する。   In the stop process, the operation control unit C extinguishes the reforming burner 3, stops the cooling fan 48, stops supplying raw fuel gas by stopping the raw fuel gas pump 34, and reforming water by stopping the reforming water pump 30. Each process such as supply stop is performed according to a predetermined procedure, and the normal operation is terminated.

この第1実施形態の水素含有ガス生成装置Pでは、予備加熱処理において、原燃料ガスヒータ60により原燃料ガス予備加熱温度に加熱された原燃料ガスが、脱硫部1、改質部2、3段の変成部4、選択酸化部6を順に通流した後、リサイクル路63を通して改質用バーナ3に供給されて、その改質用バーナ3で燃焼する。
原燃料ガスヒータ60により加熱された原燃料ガスの通流により、脱硫部1の触媒収容空間Rに収容されている脱硫処理触媒1c、変成部5の触媒収容空間Rに収容されている変成処理触媒5c、選択酸化部6の触媒収容空間Rに収容されている選択酸化触媒6cは、夫々、広範囲にわたって均一に加熱されるので、脱硫部1を構成する容器B(B3)、変成部5を構成する容器B(B4,5,6)、及び、選択酸化部6を構成する容器B(B7)夫々について、熱膨張を広範囲に且つ均等に行きわたらせることができる。
In the hydrogen-containing gas generation device P of the first embodiment, in the preheating process, the raw fuel gas heated to the raw fuel gas preheating temperature by the raw fuel gas heater 60 is converted into the desulfurization unit 1, the reforming unit 2, and the third stage. After passing through the transformation section 4 and the selective oxidation section 6 in this order, the reforming section 4 and the selective oxidation section 6 are supplied to the reforming burner 3 through the recycling path 63 and burned by the reforming burner 3.
The desulfurization treatment catalyst 1c accommodated in the catalyst accommodation space R of the desulfurization section 1 and the shift treatment catalyst accommodated in the catalyst accommodation space R of the shift section 5 by the flow of the raw fuel gas heated by the raw fuel gas heater 60 5c, the selective oxidation catalyst 6c accommodated in the catalyst accommodating space R of the selective oxidation unit 6 is heated uniformly over a wide range, so that the vessel B (B3) constituting the desulfurization unit 1 and the transformation unit 5 are configured. For each of the containers B (B4, 5, 6) and the containers B (B7) constituting the selective oxidation unit 6, thermal expansion can be spread over a wide range and evenly.

そして、そのように夫々の容器Bの熱膨張を広範囲に且つ均等に行きわたらせた状態で、脱硫部ヒータ21、変成部ヒータ22、選択酸化部ヒータ23を作動させて、脱硫処理触媒1cを起動時脱硫部温度に昇温させ、変成処理触媒5cを起動時変成部温度に昇温させ、選択酸化処理触媒6cを起動時選択酸化部温度に昇温させるので、脱硫部1を構成する容器(B3)、変成部5を構成する容器B(B4,5,6)、及び、選択酸化部6を構成する容器B(B7)夫々が局所的に加熱されるにしても、それらの容器Bについて、局所的な反りを効果的に抑制することができる。
従って、改質部2で生成された改質ガスに対して変成処理及び選択除去処理が施されて、一酸化炭素ガスが低減されるので、一酸化炭素濃度がより一層低い水素含有ガスが生成される。そして、そのように一酸化炭素濃度がより一層低い水素含有ガスの生成が可能な水素含有ガス生成装置において、起動時における脱硫処理触媒1c、変成処理触媒5c及び選択酸化処理触媒6cの圧壊を抑制して、脱硫処理能力、変成処理能力及び選択除去処理能力の低下を抑制することができるので、運転時間の経過に伴う水素含有ガスの生成能力低下を抑制することができる。
In such a state that the thermal expansion of each container B is spread over a wide range and evenly, the desulfurization section heater 21, the shift section heater 22, and the selective oxidation section heater 23 are operated to start the desulfurization treatment catalyst 1c. The temperature of the desulfurization section 1 is raised, the shift catalyst 5c is heated to the start-up shift section temperature, and the selective oxidation catalyst 6c is raised to the start-up selective oxidation section temperature. B3) Even if each of the containers B (B4, 5, 6) constituting the metamorphic section 5 and the containers B (B7) constituting the selective oxidation section 6 are locally heated, the containers B , Local warping can be effectively suppressed.
Therefore, the reforming process and the selective removal process are performed on the reformed gas generated in the reforming unit 2 to reduce the carbon monoxide gas, so that a hydrogen-containing gas having a much lower carbon monoxide concentration is generated. Is done. In such a hydrogen-containing gas generator that can generate a hydrogen-containing gas having a lower carbon monoxide concentration, the desulfurization treatment catalyst 1c, the shift treatment catalyst 5c, and the selective oxidation treatment catalyst 6c are prevented from being collapsed at the time of startup. And since the fall of a desulfurization process capability, a shift process capability, and a selective removal process capability can be suppressed, the production capability fall of the hydrogen containing gas accompanying progress of operation time can be suppressed.

又、予備加熱処理の実行中は、改質処理触媒2cの温度がカーボン析出防止温度よりも高くならないように管理されるので、水蒸気が含まれていないドライな原燃料ガスを改質処理触媒1cに通流させるにしても、炭素の析出を防止することができる。
又、水素含有ガス生成装置Pの停止後の経過時間が短い場合等、脱硫処理触媒1cの温度が予備加熱回避温度以上の場合は、予備加熱処理を実行しないで直ちに起動時昇温処理を実行しても、脱硫部1、変成部5、選択酸化部6夫々を構成する容器Bの局所的な反りが十分に抑制される。そのような場合は、予備加熱処理の実行が回避されるので、不必要に予備加熱処理が実行されて、起動時間が長くなるのを回避することができる。
Further, during the preheating process, since the temperature of the reforming catalyst 2c is controlled so as not to be higher than the carbon deposition preventing temperature, dry raw fuel gas not containing water vapor is converted into the reforming catalyst 1c. Even if it is made to flow through, deposition of carbon can be prevented.
In addition, when the temperature of the desulfurization treatment catalyst 1c is equal to or higher than the preheating avoidance temperature, such as when the elapsed time after the shutdown of the hydrogen-containing gas generation device P is short, the preheating treatment is not performed and the start-up temperature raising processing is immediately performed. Even so, the local warping of the container B constituting each of the desulfurization unit 1, the transformation unit 5, and the selective oxidation unit 6 is sufficiently suppressed. In such a case, since the preheating process is avoided, it is possible to avoid the preheating process being performed unnecessarily and the start-up time being lengthened.

〔第2実施形態〕
以下、本発明の第2実施形態を説明するが、この第2実施形態は予備加熱手段Hの別の実施形態を説明するものであり、予備加熱手段H以外の構成は上記の第1実施形態と同様である。従って、重複説明を避けるために、第1実施形態と同じ構成要素や同じ作用を有する構成要素については、同じ符号を付すことにより説明を省略して、主として、予備加熱手段Hについて説明する。
[Second Embodiment]
Hereinafter, the second embodiment of the present invention will be described. This second embodiment will explain another embodiment of the preheating means H, and the configuration other than the preheating means H will be described in the first embodiment. It is the same. Therefore, in order to avoid redundant description, the same constituent elements as those in the first embodiment and the constituent elements having the same functions are denoted by the same reference numerals, and the description thereof is omitted, and the preheating means H will be mainly described.

この第2実施形態では、運転制御部Cが、脱硫部1への原燃料ガスの供給が停止されて改質部2での改質処理が停止される運転停止中、脱硫処理触媒1cを脱硫部予備加熱温度に維持するように脱硫部ヒータ21を制御する待機加熱処理を実行するように構成されて、図5に示すように、予備加熱手段Hが、脱硫部ヒータ21と運転制御部Cとを備えて構成されている。
又、変成部5及び選択酸化部6が設けられているので、運転制御部Cが、待機加熱処理において、変成処理触媒5cを起動時変成部温度よりも低い変成部予備加熱温度に維持するように変成部ヒータ22を制御し、且つ、選択除去処理触媒6cを起動時選択除去部温度よりも低い選択酸化部予備加熱温度に維持するように選択酸化部ヒータ23を制御するように構成されている。
つまり、予備加熱手段Hが、脱硫部ヒータ21及び運転制御部Cに加えて、変成部ヒータ22及び選択酸化部ヒータ23も備えて構成されている。
In the second embodiment, the operation control unit C desulfurizes the desulfurization treatment catalyst 1c during the operation stop in which the supply of the raw fuel gas to the desulfurization unit 1 is stopped and the reforming process in the reforming unit 2 is stopped. As shown in FIG. 5, the preheating means H includes a desulfurization section heater 21 and an operation control section C. The standby heating process is performed to control the desulfurization section heater 21 so as to maintain the partial preheating temperature. And is configured.
In addition, since the shift unit 5 and the selective oxidation unit 6 are provided, the operation control unit C may maintain the shift process catalyst 5c at the shift unit preheating temperature lower than the start-up shift unit temperature in the standby heating process. And the selective oxidation unit heater 23 is controlled so as to maintain the selective removal treatment catalyst 6c at a selective oxidation unit preheating temperature lower than the selective removal unit temperature at startup. Yes.
That is, the preheating means H is configured to include a shift heater 22 and a selective oxidation heater 23 in addition to the desulfurization heater 21 and the operation controller C.

ここで、脱硫部予備加熱温度は、例えば、上記の第1実施形態における脱硫部予備加熱温度と同温度に設定され、変成部予備加熱温度は、例えば100℃以上の所定の温度に設定され、選択酸化部予備加熱温度は、例えば50℃以上の所定の温度に設定される。   Here, the desulfurization part preheating temperature is set, for example, to the same temperature as the desulfurization part preheating temperature in the first embodiment, and the transformation part preheating temperature is set to a predetermined temperature of, for example, 100 ° C. or more, The selective oxidation part preheating temperature is set to a predetermined temperature of, for example, 50 ° C. or higher.

図5に示すように、この第2実施形態では、次に燃料電池Gの運転を開始する運転開始日時を手動操作で設定する運転予約部65が設けられている。
そして、運転制御部Cが、原燃料ガスポンプ34の停止による原燃料ガスの供給停止等の停止処理を実行して、通常運転を終了した運転停止時点から、運転予約部65にて設定された運転開始日時までの運転停止期間が、予め設定された所定の設定期間よりも長いときは、待機加熱処理の実行を停止する。ここで、設定期間は、例えば1週間程度に設定される。
As shown in FIG. 5, in the second embodiment, an operation reservation unit 65 that manually sets the operation start date and time for starting the operation of the fuel cell G is provided.
Then, the operation control unit C executes stop processing such as supply stop of the raw fuel gas by stopping the raw fuel gas pump 34, and the operation set by the operation reservation unit 65 from the operation stop time when the normal operation is finished. When the operation stop period until the start date and time is longer than a predetermined setting period set in advance, the standby heating process is stopped. Here, the setting period is set to about one week, for example.

つまり、燃料電池Gの運転が開始される時点は、脱硫部1への原燃料ガスの供給が開始されて改質処理が開始される時点に相当するので、運転制御部Cが、脱硫部1への原燃料ガスの供給が停止された運転停止時点から、次に脱硫部1への原燃料ガスの供給が開始されて改質処理が開始されるまでの運転停止期間が、所定の設定期間よりも長いときは、待機加熱処理の実行を停止するように構成されていることになる。   That is, since the time when the operation of the fuel cell G is started corresponds to the time when the supply of the raw fuel gas to the desulfurization unit 1 is started and the reforming process is started, the operation control unit C is operated by the desulfurization unit 1. The operation stop period from when the supply of raw fuel gas to the desulfurization unit 1 is stopped after the stop of the supply of raw fuel gas to the desulfurization unit 1 until the reforming process is started is a predetermined set period. If it is longer than that, the standby heating process is stopped.

運転制御部Cによる待機加熱処理の制御動作について、説明を加える。
運転制御部Cは、停止処理を実行した後は、待機加熱処理を実行し、その待機加熱処理では、脱硫部温度センサ24、変成部温度センサ25及び選択酸化部温度センサ26夫々の検出温度を監視して、脱硫部温度センサ24の検出温度を脱硫部予備加熱温度に維持するように脱硫部ヒータ21を制御し、変成部温度センサ25の検出温度を変成部予備加熱温度に維持するように変成部ヒータ22を制御し、且つ、選択酸化部温度センサ26の検出温度を選択酸化部予備加熱温度に維持するように選択酸化部ヒータ23を制御する。
又、運転制御部Cは、運転停止時点から運転予約部65にて設定された運転開始日時までの運転停止期間が、設定期間よりも長いときは、待機加熱処理の実行を停止する。
The control operation of the standby heating process by the operation control unit C will be described.
After executing the stop process, the operation control unit C performs a standby heating process. In the standby heating process, the operation temperature of the desulfurization unit temperature sensor 24, the shift unit temperature sensor 25, and the selective oxidation unit temperature sensor 26 is detected. The desulfurization section heater 21 is controlled so that the temperature detected by the desulfurization section temperature sensor 24 is maintained at the desulfurization section preheating temperature, and the detection temperature of the shift section temperature sensor 25 is maintained at the shift section preheating temperature. The shift converter heater 22 is controlled, and the selective oxidation section heater 23 is controlled so as to maintain the temperature detected by the selective oxidation section temperature sensor 26 at the selective oxidation section preheating temperature.
Further, the operation control unit C stops the standby heating process when the operation stop period from the operation stop time to the operation start date and time set by the operation reservation unit 65 is longer than the set period.

脱硫処理触媒1cを脱硫部予備加熱温度に維持するように脱硫部ヒータ21を制御する制御形態としては、例えば、脱硫部温度センサ24の検出温度が脱硫部予備加熱温度に対して所定の制御幅Δt(例えば1〜2℃)低くなると、脱硫部ヒータ21を作動させ、脱硫部温度センサ24の検出温度が脱硫部予備加熱温度に対して制御幅Δt高くなると、脱硫部ヒータ21を停止させる制御形態を採用することができる。
変成処理触媒5cを変成部予備加熱温度に維持するように変成部ヒータ22を制御する制御形態、及び、選択酸化処理触媒6cを選択酸化部予備加熱温度に維持するように選択酸化部ヒータ23を制御する制御形態も、上述の脱硫部ヒータ21の制御形態と同様の制御形態を採用することができる。
As a control mode for controlling the desulfurization section heater 21 so as to maintain the desulfurization treatment catalyst 1c at the desulfurization section preheating temperature, for example, the detection temperature of the desulfurization section temperature sensor 24 is a predetermined control range with respect to the desulfurization section preheating temperature. When the temperature decreases by Δt (for example, 1 to 2 ° C.), the desulfurization section heater 21 is operated, and when the detected temperature of the desulfurization section temperature sensor 24 becomes higher than the desulfurization section preheating temperature by the control width Δt, A form can be adopted.
A control mode for controlling the shift heater 22 so as to maintain the shift catalyst 5c at the shift preheating temperature, and a selective oxidation heater 23 to maintain the selective oxidation catalyst 6c at the selective oxidation preheat temperature. As the control mode to be controlled, a control mode similar to the control mode of the desulfurization section heater 21 described above can be adopted.

この第2実施形態の水素含有ガス生成装置Pでは、運転停止中は、待機加熱処理が実行されて、脱硫部1の触媒収容空間Rに収容されている脱硫処理触媒1cの温度が脱硫部予備加熱温度に維持され、変成部5の触媒収容空間Rに収容されている変成処理触媒5cの温度が変成部予備加熱温度に維持され、選択酸化部6の触媒収容空間Rに収容されている選択酸化触媒6cの温度が選択酸化部予備加熱温度に維持される。すると、運転停止中も、脱硫部1を構成する容器B(B3)、変成部5を構成する容器B(B4,5,6)、及び、選択酸化部6を構成する容器B(B7)夫々について、熱膨張が均等に全体にわたっている状態が維持される。   In the hydrogen-containing gas generation device P of the second embodiment, the standby heating process is executed during the operation stop, and the temperature of the desulfurization treatment catalyst 1c accommodated in the catalyst accommodation space R of the desulfurization part 1 is set as the desulfurization part preliminary. The temperature of the shift treatment catalyst 5c that is maintained at the heating temperature and is accommodated in the catalyst housing space R of the shift section 5 is maintained at the shift section preheating temperature and is selected in the catalyst storage space R of the selective oxidation section 6 The temperature of the oxidation catalyst 6c is maintained at the selective oxidation part preheating temperature. Then, even when the operation is stopped, the container B (B3) constituting the desulfurization unit 1, the container B (B4, 5, 6) constituting the transformation unit 5, and the container B (B7) constituting the selective oxidation unit 6 respectively. Is maintained in a state where the thermal expansion is evenly distributed over the whole.

そして、起動時昇温処理では、脱硫部1を構成する容器B(B3)、変成部5を構成する容器B(B4,5,6)、及び、選択酸化部6を構成する容器B(B7)夫々の熱膨張が均等に全体にわたっている状態で、脱硫部ヒータ21、変成部ヒータ22、選択酸化部ヒータ23を夫々作動させて、脱硫処理触媒1cを起動時脱硫部温度に昇温させ、変成処理触媒5cを起動時変成部温度に昇温させ、選択酸化処理触媒6cを起動時選択酸化部温度に昇温させるので、夫々の容器Bが局所的に加熱されるにしても、夫々の容器Bについて、局所的な反りを効果的に抑制することができる。   In the start-up temperature raising process, the container B (B3) constituting the desulfurization unit 1, the container B (B4, 5, 6) constituting the transformation unit 5, and the container B (B7 constituting the selective oxidation unit 6). ) In a state where the respective thermal expansions are evenly distributed over the entire area, the desulfurization section heater 21, the shift section heater 22, and the selective oxidation section heater 23 are operated to raise the temperature of the desulfurization treatment catalyst 1c to the desulfurization section temperature at startup, Since the temperature of the shift treatment catalyst 5c is raised to the start-up shift portion temperature and the selective oxidation treatment catalyst 6c is raised to the start-up selective oxidation portion temperature, each container B is heated locally. About the container B, a local curvature can be suppressed effectively.

又、運転停止時点から運転予約部65にて設定された運転開始日時までの運転停止期間が所定の設定期間(例えば1週間)よりも長いときは、待機加熱処理の実行が停止されるので、エネルギーの過度な消費を防止することができる。   In addition, when the operation stop period from the operation stop time to the operation start date and time set in the operation reservation unit 65 is longer than a predetermined setting period (for example, one week), the standby heating process is stopped. Excessive energy consumption can be prevented.

〔別実施形態〕
(A)リサイクル路63を設けるに、上記の第1実施形態では、原燃料ガスヒータ60にて加熱された原燃料ガスを選択酸化部6を通過させた後に取り出すように設けたが、変成部5(3段目の変成部5)を通過させた後、選択酸化部6に供給される前に取り出すように設けても良い。この場合、リサイクル路63は、3段目の変成部5と選択酸化部6とを接続するガス処理流路45に対して、三方弁等の流路切換機構を介して接続する。
[Another embodiment]
(A) In the first embodiment, the recycle path 63 is provided so that the raw fuel gas heated by the raw fuel gas heater 60 is taken out after passing through the selective oxidation unit 6. It may be provided so as to be taken out before being supplied to the selective oxidation unit 6 after passing through the (third stage transformation unit 5). In this case, the recycle path 63 is connected to the gas processing flow path 45 that connects the third stage shift section 5 and the selective oxidation section 6 via a flow path switching mechanism such as a three-way valve.

(B)原燃料ガス加熱手段の具体例としては、上記の第1実施形態において例示した原燃料ガスヒータ60の如く、電気ヒータを熱源とした構成に限定されるものではなく、例えば、ガスバーナを熱源とした構成を適用することができる。 (B) A specific example of the raw fuel gas heating means is not limited to the configuration in which the electric heater is a heat source, such as the raw fuel gas heater 60 illustrated in the first embodiment. For example, a gas burner is used as the heat source. The configuration described above can be applied.

(C)上記の第2実施形態において、待機加熱処理の実行休止を指令する手動操作式の待機加熱処理休止スイッチを設けても良い。この場合、運転制御部Cは、待機加熱処理休止スイッチにて待機加熱処理の実行休止が指令されているときは、待機加熱処理を実行しないように構成する。 (C) In said 2nd Embodiment, you may provide the manual operation type | mold standby heating process stop switch which instruct | indicates execution stop of standby heating process. In this case, the operation control unit C is configured not to execute the standby heating process when the standby heating process execution switch is instructed by the standby heating process stop switch.

(D)上記の第2実施形態では、改質処理が実行されて通常運転が実行されているときに、運転停止指令に基づいて改質処理が停止された後の運転停止中に、待機加熱処理が実行されるように構成したが、水素含有ガス生成装置Pが設置されて、初めて改質処理が行われる前の運転停止中にも、待機加熱処理が実行されるように構成しても良い。
この場合は、脱硫部1、変成部5及び選択酸化部6夫々を構成する容器Bの熱膨張が全体に行きわたる程度にまで、待機加熱処理が継続されるように構成する。
又、運転制御部Cを構成するに、運転スイッチにより初めて運転開始指令が指令されたときは、直ちに待機加熱処理を実行した後、起動時昇温処理を実行するように構成する。
(D) In the second embodiment, when the reforming process is performed and the normal operation is performed, the standby heating is performed during the operation stop after the reforming process is stopped based on the operation stop command. Although the process is configured to be executed, the standby heating process may be performed even when the hydrogen-containing gas generation device P is installed and the operation is stopped before the reforming process is performed for the first time. good.
In this case, the standby heat treatment is continued until the thermal expansion of the container B constituting each of the desulfurization unit 1, the transformation unit 5 and the selective oxidation unit 6 reaches the whole.
Further, the operation control unit C is configured such that when the operation start command is instructed for the first time by the operation switch, the standby heating process is immediately executed and then the startup temperature raising process is executed.

(E)選択除去処理部の具体的な例として、上記の第1及び第2の各実施形態では、改質ガス中の一酸化炭素ガスを選択酸化して除去する選択酸化部6を設けたが、これに代えて、触媒収容空間Rに選択メタン化触媒を収容して、改質ガス中の一酸化炭素ガスを選択的にメタン化して除去する選択メタン化処理部を設けても良い。 (E) As a specific example of the selective removal processing unit, in each of the first and second embodiments, the selective oxidation unit 6 that selectively oxidizes and removes the carbon monoxide gas in the reformed gas is provided. However, instead of this, a selective methanation treatment unit that accommodates the selective methanation catalyst in the catalyst housing space R and selectively methanates and removes the carbon monoxide gas in the reformed gas may be provided.

(F)改質装置Mの具体構成は、上記の第1及び第2の各実施形態において説明した構成に限定されるものではない。例えば、改質装置Mを、上記の各実施形態と同様の扁平状の内部空間Sを2室備えた扁平状の容器Bを用いて構成しても良い。つまり、扁平状の容器Bにおける一方の内部空間Sを有する部分を用いて扁平状の改質部2を構成し、他方の内部空間Sを有する部分を用いて扁平状の燃焼部7を構成することになる。 (F) The specific configuration of the reformer M is not limited to the configuration described in each of the first and second embodiments. For example, the reformer M may be configured by using a flat container B having two flat internal spaces S similar to those in the above embodiments. That is, the flat reforming portion 2 is configured using a portion having one internal space S in the flat container B, and the flat combustion portion 7 is configured using a portion having the other internal space S. It will be.

(G)本発明に係る水素含有ガス生成装置の用途は、上記の第1及び第2の各実施形態で例示した燃料電池用に限定されるものではなく、水素精製(濃縮)装置用等、種々の用途の水素含有ガス生成装置に適用することができる。 (G) The use of the hydrogen-containing gas generation device according to the present invention is not limited to the fuel cell exemplified in the first and second embodiments, but for a hydrogen purification (concentration) device, etc. The present invention can be applied to a hydrogen-containing gas generator for various uses.

尚、上記の実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、又、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。   Note that the configuration disclosed in the above embodiment (including another embodiment, the same applies hereinafter) can be applied in combination with the configuration disclosed in the other embodiment as long as no contradiction occurs. The embodiments disclosed in this specification are exemplifications, and the embodiments of the present invention are not limited thereto, and can be appropriately modified without departing from the object of the present invention.

以上説明したように、運転時間の経過に伴う水素含有ガスの生成能力低下を抑制し得る水素含有ガス生成装置を提供することができる。   As described above, it is possible to provide a hydrogen-containing gas generation device that can suppress a decrease in the hydrogen-containing gas generation capability with the passage of operating time.

1 脱硫部
1c 脱硫処理触媒
2 改質部
2c 改質処理触媒
3 改質用バーナ
5 変成部
5c 変成処理触媒
6 選択酸化部(選択除去部)
6c 選択酸化処理触媒(選択除去処理触媒)
21 脱硫部ヒータ(脱硫部加熱手段)
22 変成部ヒータ(変成部加熱手段)
23 選択酸化部ヒータ(選択除去部加熱手段)
60 原燃料ガスヒータ(原燃料ガス加熱手段)
61 予備加熱制御手段
63 リサイクル路
B 容器
C 運転制御部(運転制御手段)
H 予備加熱手段
R 触媒収容空間
DESCRIPTION OF SYMBOLS 1 Desulfurization part 1c Desulfurization process catalyst 2 Reforming part 2c Reforming process catalyst 3 Reforming burner 5 Transformation part 5c Transformation process catalyst 6 Selective oxidation part (selective removal part)
6c Selective oxidation catalyst (selective removal catalyst)
21 Desulfurization section heater (desulfurization section heating means)
22 Transformer heater (transformer heating means)
23 Selective oxidation unit heater (selective removal unit heating means)
60 Raw fuel gas heater (raw fuel gas heating means)
61 Preheating control means 63 Recycling path B Container C Operation control part (operation control means)
H Preheating means R Catalyst accommodating space

Claims (8)

容器の内部の触媒収容空間に脱硫処理触媒が収容されて、供給される原燃料ガスに対して脱硫処理を施す容器状の脱硫部と、前記脱硫部の一部を外部から加熱することで前記脱硫処理触媒を加熱する脱硫部加熱手段と、改質処理触媒が収容され且つガス受け入れ可能に前記脱硫部に接続されて、前記脱硫部から供給される脱硫処理後の原燃料ガスを改質処理して水素ガスを主成分とする改質ガスを生成する改質部と、運転を制御する運転制御手段とが設けられ、
前記運転制御手段が、前記脱硫部への原燃料ガスの供給を開始して前記改質部にて改質処理を開始する前に、前記脱硫処理触媒を起動時脱硫部温度に昇温させるべく前記脱硫部加熱手段を制御する起動時昇温処理を実行するように構成された水素含有ガス生成装置であって、
前記脱硫処理触媒を前記起動時脱硫部温度よりも低い脱硫部予備加熱温度に加熱する予備加熱手段が設けられ、
前記運転制御手段が、前記予備加熱手段を作動させて、前記脱硫処理触媒を前記脱硫部予備加熱温度に加熱した後、前記起動時昇温処理を実行するように構成されている水素含有ガス生成装置。
A desulfurization treatment catalyst is housed in the catalyst housing space inside the container, and a container-shaped desulfurization section that performs desulfurization treatment on the supplied raw fuel gas, and a part of the desulfurization section is heated from the outside, thereby A desulfurization part heating means for heating the desulfurization process catalyst and a reforming process catalyst are accommodated and connected to the desulfurization part so as to receive gas, and the raw fuel gas after the desulfurization process supplied from the desulfurization part is reformed And a reforming section for generating a reformed gas containing hydrogen gas as a main component, and an operation control means for controlling the operation.
Before the operation control means starts supplying the raw fuel gas to the desulfurization section and starts the reforming process in the reforming section, the operation control means should raise the temperature of the desulfurization treatment catalyst to the desulfurization section temperature at start-up. A hydrogen-containing gas generation device configured to perform a startup temperature increase process for controlling the desulfurization unit heating means,
Preheating means for heating the desulfurization treatment catalyst to a desulfurization part preheating temperature lower than the desulfurization part temperature at the start-up is provided,
The operation control means operates the preheating means to heat the desulfurization treatment catalyst to the desulfurization part preheating temperature, and then performs the start-up temperature raising process. apparatus.
前記予備加熱手段が、前記脱硫部に供給される原燃料ガスを前記起動時脱硫部温度よりも低い原燃料ガス予備加熱温度に加熱する原燃料ガス加熱手段と、前記脱硫処理触媒が前記脱硫部予備加熱温度に加熱されるまで、前記原燃料ガス加熱手段にて加熱された原燃料ガスを前記脱硫部へ供給する予備加熱制御手段とを備えて構成されている請求項1に記載の水素含有ガス生成装置。   The preheating means heats the raw fuel gas supplied to the desulfurization section to a raw fuel gas preheating temperature lower than the start-up desulfurization section temperature, and the desulfurization treatment catalyst serves as the desulfurization section. The hydrogen-containing component according to claim 1, further comprising a preheating control unit that supplies the raw fuel gas heated by the raw fuel gas heating unit to the desulfurization unit until the raw fuel gas is heated to a preheating temperature. Gas generator. 容器の内部の触媒収容空間に変成処理触媒が収容され且つガス受け入れ可能に前記改質部に接続されて、前記改質部から供給される改質ガスに対して、一酸化炭素を二酸化炭素に変成する変成処理を施す容器状の変成部と、前記変成部の一部を外部から加熱することで前記変成処理触媒を加熱する変成部加熱手段と、容器の内部の触媒収容空間に選択除去処理触媒が収容され且つガス受け入れ可能に前記変成部に接続されて、前記変成部から供給される変成処理後の改質ガスに対して、一酸化炭素を選択除去する選択除去処理を施す容器状の選択除去部と、前記選択除去部の一部を外部から加熱することで前記選択除去処理触媒を加熱する選択除去部加熱手段とが設けられ、
前記運転制御手段が、
前記起動時昇温処理において、前記変成処理触媒を起動時変成部温度に昇温させるべく前記変成部加熱手段を制御し、且つ、前記選択除去処理触媒を起動時選択除去部温度に昇温させるべく前記選択除去部加熱手段を制御するように構成されている請求項2に記載の水素含有ガス生成装置。
A conversion treatment catalyst is accommodated in the catalyst accommodating space inside the container and is connected to the reforming unit so as to receive gas, and carbon monoxide is converted into carbon dioxide with respect to the reformed gas supplied from the reforming unit. A container-shaped metamorphic section for performing a metamorphic process, a metamorphic section heating means for heating the metamorphic catalyst by heating a part of the metamorphic section from the outside, and a selective removal process in a catalyst housing space inside the container A container-shaped container that is connected to the shift section so as to receive a gas and is capable of receiving gas, and that performs a selective removal process for selectively removing carbon monoxide from the reformed reformed gas supplied from the shift section. A selective removal unit, and a selective removal unit heating means for heating the selective removal treatment catalyst by heating a part of the selective removal unit from the outside,
The operation control means is
In the start-up temperature increase process, the shift unit heating means is controlled to increase the temperature of the shift process catalyst to the start-up shift unit temperature, and the selective removal process catalyst is heated to the start-up selective removal unit temperature. Therefore, the hydrogen-containing gas generating device according to claim 2, which is configured to control the selective removing unit heating means.
前記改質処理触媒を起動時改質部温度に加熱する改質用バーナと、
前記原燃料ガス加熱手段にて加熱された原燃料ガスを、少なくとも前記変成部を通過させた後に取り出して、前記改質用バーナに燃焼用燃料として供給するリサイクル路が設けられている請求項3に記載の水素含有ガス生成装置。
A reforming burner for heating the reforming catalyst to a reforming section temperature at start-up;
4. A recycling path is provided in which the raw fuel gas heated by the raw fuel gas heating means is taken out after passing through at least the shift section and is supplied to the reforming burner as combustion fuel. 2. A hydrogen-containing gas generating device according to 1.
前記運転制御手段が、前記脱硫部への原燃料ガスの供給が停止されて前記改質部での改質処理が停止される運転停止中、前記脱硫処理触媒を前記脱硫部予備加熱温度に維持するように前記脱硫部加熱手段を制御する待機加熱処理を実行するように構成され、
前記予備加熱手段が、前記脱硫部加熱手段と前記運転制御手段とを備えて構成されている請求項1に記載の水素含有ガス生成装置。
The operation control means maintains the desulfurization treatment catalyst at the preheating temperature of the desulfurization unit during an operation stop where the supply of the raw fuel gas to the desulfurization unit is stopped and the reforming process in the reforming unit is stopped. Configured to perform standby heating processing to control the desulfurization unit heating means,
The hydrogen-containing gas generating apparatus according to claim 1, wherein the preheating unit includes the desulfurization unit heating unit and the operation control unit.
前記運転制御手段が、前記脱硫部への原燃料ガスの供給が停止された運転停止時点から、次に前記脱硫部への原燃料ガスの供給が開始されて改質処理が開始されるまでの運転停止期間が、所定の設定期間よりも長いときは、前記待機加熱処理の実行を停止するように構成されている請求項5に記載の水素含有ガス生成装置。   From the time when the operation control means stops the supply of the raw fuel gas to the desulfurization section, the supply of the raw fuel gas to the desulfurization section is started and the reforming process is started. The hydrogen-containing gas generation device according to claim 5, configured to stop the execution of the standby heating process when the operation stop period is longer than a predetermined set period. 容器の内部の触媒収容空間に変成処理触媒が収容され且つガス受け入れ可能に前記改質部に接続されて、前記改質部から供給される改質ガスに対して、一酸化炭素を二酸化炭素に変成する変成処理を施す容器状の変成部と、前記変成部の一部を外部から加熱することで前記変成処理触媒を加熱する変成部加熱手段と、容器の内部の触媒収容空間に選択除去処理触媒が収容され且つガス受け入れ可能に前記変成部に接続されて、前記変成部から供給される変成処理後の改質ガスに対して、一酸化炭素を選択除去する選択除去処理を施す容器状の選択除去部と、前記選択除去部の一部を外部から加熱することで前記選択除去処理触媒を加熱する選択除去部加熱手段とが設けられ、
前記運転制御手段が、
前記起動時昇温処理において、前記変成処理触媒を起動時変成部温度に昇温させるべく前記変成部加熱手段を制御し、且つ、前記選択除去処理触媒を起動時選択除去部温度に昇温させるべく前記選択除去部加熱手段を制御するように構成され、並びに、
前記待機加熱処理において、前記変成処理触媒を前記起動時変成部温度よりも低い変成部予備加熱温度に維持すべく前記変成部加熱手段を制御し、且つ、前記選択除去処理触媒を前記起動時選択除去部温度よりも低い選択除去部予備加熱温度に維持すべく前記選択除去部加熱手段を制御するように構成されている請求項5又は6に記載の水素含有ガス生成装置。
A conversion treatment catalyst is accommodated in the catalyst accommodating space inside the container and is connected to the reforming unit so as to receive gas, and carbon monoxide is converted into carbon dioxide with respect to the reformed gas supplied from the reforming unit. A container-shaped metamorphic section for performing a metamorphic process, a metamorphic section heating means for heating the metamorphic catalyst by heating a part of the metamorphic section from the outside, and a selective removal process in a catalyst housing space inside the container A container-shaped container that is connected to the shift section so as to receive a gas and is capable of receiving gas, and that performs a selective removal process for selectively removing carbon monoxide from the reformed reformed gas supplied from the shift section. A selective removal unit, and a selective removal unit heating means for heating the selective removal treatment catalyst by heating a part of the selective removal unit from the outside,
The operation control means is
In the start-up temperature increase process, the shift unit heating means is controlled to increase the temperature of the shift process catalyst to the start-up shift unit temperature, and the selective removal process catalyst is heated to the start-up selective removal unit temperature. And configured to control the selective removing unit heating means, and
In the standby heating process, the shift unit heating unit is controlled to maintain the shift process catalyst at a shift unit preheating temperature lower than the start-up shift unit temperature, and the selective removal process catalyst is selected at the start-up time. The hydrogen-containing gas generation device according to claim 5 or 6, wherein the selective removal unit heating means is controlled to maintain the selective removal unit preheating temperature lower than the removal unit temperature.
前記脱硫部、前記変成部及び前記選択除去部夫々の前記触媒収容空間が、扁平状の各別の容器内に形成され、
前記脱硫部、前記変成部及び前記選択除去部夫々の前記触媒収容空間を夫々形成する複数の前記容器が、容器厚さ方向に積層状態に並べられている請求項3、4、7のいずれか1項に記載の水素含有ガス生成装置。
The catalyst accommodating spaces of the desulfurization unit, the transformation unit, and the selective removal unit are formed in separate flat containers,
The plurality of containers that respectively form the catalyst housing spaces of the desulfurization unit, the shift conversion unit, and the selective removal unit are arranged in a stacked state in the container thickness direction. 2. The hydrogen-containing gas generator according to item 1.
JP2015207392A 2015-10-21 2015-10-21 Hydrogen-containing gas generator Active JP6521832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015207392A JP6521832B2 (en) 2015-10-21 2015-10-21 Hydrogen-containing gas generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015207392A JP6521832B2 (en) 2015-10-21 2015-10-21 Hydrogen-containing gas generator

Publications (2)

Publication Number Publication Date
JP2017077999A true JP2017077999A (en) 2017-04-27
JP6521832B2 JP6521832B2 (en) 2019-05-29

Family

ID=58665773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015207392A Active JP6521832B2 (en) 2015-10-21 2015-10-21 Hydrogen-containing gas generator

Country Status (1)

Country Link
JP (1) JP6521832B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992316A (en) * 1995-09-26 1997-04-04 Fuji Electric Co Ltd Method of raising temperature of fuel cell power generating device
JPH09245825A (en) * 1996-03-14 1997-09-19 Fuji Electric Co Ltd Fuel cell power generating device
JP2005044572A (en) * 2003-07-25 2005-02-17 Kansai Electric Power Co Inc:The Hybrid type fuel cell system
JP2008120913A (en) * 2006-11-13 2008-05-29 Corona Corp Desulfurization system
JP2015174808A (en) * 2014-03-17 2015-10-05 大阪瓦斯株式会社 reformer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992316A (en) * 1995-09-26 1997-04-04 Fuji Electric Co Ltd Method of raising temperature of fuel cell power generating device
JPH09245825A (en) * 1996-03-14 1997-09-19 Fuji Electric Co Ltd Fuel cell power generating device
JP2005044572A (en) * 2003-07-25 2005-02-17 Kansai Electric Power Co Inc:The Hybrid type fuel cell system
JP2008120913A (en) * 2006-11-13 2008-05-29 Corona Corp Desulfurization system
JP2015174808A (en) * 2014-03-17 2015-10-05 大阪瓦斯株式会社 reformer

Also Published As

Publication number Publication date
JP6521832B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
US7838161B2 (en) Reformer and fuel cell system using the same
JP5643712B2 (en) Fuel cell module
JP2002104807A (en) Operating method of fuel processor conbining partial oxidation with steam reforming
KR20090079517A (en) Fuel Cell and Control Method Thereof
EP1883130B1 (en) Heat management of carbon monoxide remover and reformer for fuel cell
JP5324752B2 (en) Hydrogen-containing gas generator
JP4429032B2 (en) Method for operating hydrogen-containing gas generator and hydrogen-containing gas generator
JP4531320B2 (en) Operation control method for hydrogen-containing gas generator
JP6521832B2 (en) Hydrogen-containing gas generator
JP4624382B2 (en) Operation control method for hydrogen-containing gas generator
JP7223925B2 (en) Hydrogen generator and its operation method
JPH11149931A (en) Starting method of reforming equipment for fuel cell
JP6523133B2 (en) Hydrogen-containing gas generator
JP5249622B2 (en) Method for starting hydrogen-containing gas generator
JP4872760B2 (en) Operation control method and apparatus for fuel processor
JP5274003B2 (en) Fuel cell system
JP4484585B2 (en) Reformer
JP2007261871A (en) Hydrogen-containing gas producing apparatus
JPH10324501A (en) Carbon monoxide remover and method for starting carbon monoxide remover
JP4835273B2 (en) Hydrogen generator and fuel cell system
JP6381458B2 (en) Method for removing finely divided catalyst for gas processing apparatus
JP2004164868A (en) Hot water storage method in co-generation system, and its device
WO2012029322A1 (en) Hydrogen generation device and fuel cell system equipped with same
EP2006945A1 (en) Method for starting up a fuel cell assembly
KR101219809B1 (en) Start-up method of reforming device for fuel cell using auxiliary heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190423

R150 Certificate of patent or registration of utility model

Ref document number: 6521832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150