JP2015174808A - reformer - Google Patents

reformer Download PDF

Info

Publication number
JP2015174808A
JP2015174808A JP2014053881A JP2014053881A JP2015174808A JP 2015174808 A JP2015174808 A JP 2015174808A JP 2014053881 A JP2014053881 A JP 2014053881A JP 2014053881 A JP2014053881 A JP 2014053881A JP 2015174808 A JP2015174808 A JP 2015174808A
Authority
JP
Japan
Prior art keywords
heating
reforming
temperature distribution
flame hole
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014053881A
Other languages
Japanese (ja)
Other versions
JP6308825B2 (en
Inventor
松本 明
Akira Matsumoto
明 松本
章雄 稲家
Akio Inaya
章雄 稲家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2014053881A priority Critical patent/JP6308825B2/en
Publication of JP2015174808A publication Critical patent/JP2015174808A/en
Application granted granted Critical
Publication of JP6308825B2 publication Critical patent/JP6308825B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reformer that can suppress a decrease in reforming efficiency associated with time lapse.SOLUTION: A reformer is provided with: heating distribution changing means A that can change heating distribution and heats a reforming catalyst layer 6c by a reforming burner 8 along a heating distribution changing direction, which is a direction where both ends 14e, 14e of a partition wall W are arranged side by side; and temperature distribution change detecting means D that detects a temperature distribution change, which is a change of temperature distribution, in a direction along the heating distribution changing direction in the reforming catalyst layer 6c, from proper temperature distribution. Control means C for controlling operation is configured to control the operation of the heating distribution changing means A so that when the temperature distribution change is detected by the temperature distribution change detecting means D, the temperature distribution detected by the temperature distribution change detecting means D approaches the proper temperature distribution.

Description

本発明は、改質触媒が装入された改質部と内部に燃焼空間を形成する燃焼部とが、伝熱可能な隔壁にて区画された状態で配設され、燃焼用燃料を前記燃焼空間内で燃焼させて前記改質部の改質触媒層を加熱する改質用バーナが、前記燃焼部における前記隔壁の壁面に沿う方向で互いに対向する両端部の一方の端部の側から、他方の端部の側に向けて火炎を形成するように備えられ、前記改質部において、前記改質触媒の作用により、炭化水素系の原燃料が改質処理されて、水素ガスを主成分とする改質ガスが生成されるように構成された改質装置に関する。   In the present invention, a reforming section in which a reforming catalyst is charged and a combustion section that forms a combustion space therein are disposed in a state of being partitioned by partition walls capable of transferring heat, and the combustion fuel is burned. A reforming burner that burns in the space and heats the reforming catalyst layer of the reforming section is from one end of the both ends facing each other in the direction along the wall surface of the partition wall in the combustion section, It is provided to form a flame toward the other end, and in the reforming section, a hydrocarbon-based raw fuel is reformed by the action of the reforming catalyst, and hydrogen gas is a main component. The present invention relates to a reformer configured to generate a reformed gas.

かかる改質装置は、水蒸気と混合状態で供給される炭化水素系の原燃料を改質部において改質触媒の触媒作用により改質処理して、水素ガスを主成分とする改質ガスを生成するものであり、生成された改質ガスは、例えば、燃料電池において発電反応用に用いられる。
つまり、改質用バーナにより燃焼用燃料を燃焼空間内で燃焼させることにより、隔壁を介して燃焼部から改質部の改質触媒層に伝熱させて、改質触媒層を原燃料の改質処理が可能なように加熱するように構成されている。
This reformer reforms hydrocarbon-based raw fuel supplied in a mixed state with water vapor by the catalytic action of the reforming catalyst in the reforming section to generate reformed gas mainly composed of hydrogen gas. The generated reformed gas is used for a power generation reaction in a fuel cell, for example.
That is, the combustion fuel is burned in the combustion space by the reforming burner, so that heat is transferred from the combustion section to the reforming catalyst layer of the reforming section through the partition wall, and the reforming catalyst layer is reformed of the raw fuel. It is configured to heat so that quality treatment is possible.

そして、このような改質装置においては、改質用バーナが、燃焼部における隔壁の壁面に沿う方向で互いに対向する両端部の一方の端部の側から、他方の端部の側に向けて火炎を形成するように備えられていることから、燃焼部の両端部が並ぶ方向、即ち、改質用バーナの火炎形成方向に沿う方向での改質触媒層の温度分布に偏りが生じ易いので、原燃料を水素ガスに転換する効率(以下、改質効率と記載する場合がある)を高めるには、改質触媒層における改質用バーナの火炎形成方向に沿う方向での温度分布を小さくすることが望まれる。   In such a reformer, the reforming burner is directed from one end side of both end portions facing each other in the direction along the wall surface of the partition wall to the other end portion side. Since it is provided so as to form a flame, the temperature distribution of the reforming catalyst layer tends to be biased in the direction in which both ends of the combustion section are aligned, that is, in the direction along the flame forming direction of the reforming burner. In order to increase the efficiency of converting raw fuel into hydrogen gas (hereinafter, sometimes referred to as reforming efficiency), the temperature distribution in the direction along the flame formation direction of the reforming burner in the reforming catalyst layer is reduced. It is desirable to do.

そこで、従来では、例えば、燃焼部を円筒状の筒体を用いて構成する場合に、改質用バーナを、その燃焼用燃料の噴出方向を筒体の軸心に対して多少傾斜させた状態で筒体の一端側に設けて、燃焼ガスを旋回させる状態で燃焼空間内を流動させるようにすることにより、改質触媒層における改質用バーナの火炎形成方向に沿う方向での温度分布を小さくするように構成されたものがあった(例えば、特許文献1参照。)。   Therefore, conventionally, for example, when the combustion section is configured using a cylindrical cylinder, the reforming burner is in a state where the injection direction of the combustion fuel is slightly inclined with respect to the axis of the cylinder The temperature distribution in the direction along the flame formation direction of the reforming burner in the reforming catalyst layer is provided on one end side of the cylinder and is made to flow in the combustion space while swirling the combustion gas. Some have been configured to be small (see, for example, Patent Document 1).

特開2006−179365号公報JP 2006-179365 A

ところで、改質触媒は通常は粒状であり、その粒状の改質触媒が改質部に充填されるので、改質部における改質触媒の充填密度分布が時間経過に伴って変化する場合がある。そして、改質部の改質触媒層の充填密度分布が大きくなると、改質触媒層における充填密度が高い部分ほど流体が流動し難いので、改質触媒層を流動する流体(原燃料と水蒸気との混合流体)に偏流が生じることになる。
又、改質触媒の触媒作用は時間経過に伴って劣化すると共に、その劣化速度は改質触媒層の部位により異なるので、改質触媒層における触媒作用の劣化度合いにも分布が生じる。
そして、原燃料の改質反応は吸熱反応であるので、時間経過に伴って、改質部の改質触媒層の充填密度分布が変化して、改質触媒層を流動する流体に偏流が生じたり、改質触媒の劣化が進行して、改質触媒層における触媒作用の劣化度合いに分布が生じると、改質触媒層における改質用バーナの火炎形成方向に沿う方向での温度分布が大きくなるので、改質効率が低下する。
従って、従来の改質装置では、時間経過に伴って、改質触媒層における改質用バーナの火炎形成方向に沿う方向での温度分布が大きくなることに起因して、改質効率が低下するという問題があった。
By the way, the reforming catalyst is usually granular, and the granular reforming catalyst is filled in the reforming section, so the packing density distribution of the reforming catalyst in the reforming section may change with time. . When the packing density distribution of the reforming catalyst layer in the reforming section becomes large, the fluid is less likely to flow in the portion where the packing density in the reforming catalyst layer is higher. Therefore, the fluid flowing through the reforming catalyst layer (raw fuel and steam and The mixed fluid) will drift.
In addition, the catalytic action of the reforming catalyst deteriorates with time, and the deterioration rate varies depending on the site of the reforming catalyst layer, so that the degree of deterioration of the catalytic action in the reforming catalyst layer is also distributed.
Since the reforming reaction of the raw fuel is an endothermic reaction, with the passage of time, the packing density distribution of the reforming catalyst layer in the reforming section changes, and a drift occurs in the fluid flowing in the reforming catalyst layer. If the degradation of the reforming catalyst progresses and a distribution occurs in the degree of degradation of the catalytic action in the reforming catalyst layer, the temperature distribution in the direction along the flame formation direction of the reforming burner in the reforming catalyst layer becomes large. As a result, the reforming efficiency decreases.
Therefore, in the conventional reformer, the reforming efficiency decreases with the passage of time due to the temperature distribution in the direction along the flame formation direction of the reforming burner in the reforming catalyst layer becoming larger. There was a problem.

本発明は、かかる実情に鑑みてなされたものであり、その目的は、時間経過に伴う改質効率の低下を抑制し得る改質装置を提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is to provide a reforming apparatus that can suppress a decrease in reforming efficiency with the passage of time.

本発明に係る改質装置は、改質触媒が装入された改質部と内部に燃焼空間を形成する燃焼部とが、伝熱可能な隔壁にて区画された状態で配設され、
燃焼用燃料を前記燃焼空間内で燃焼させて前記改質部の改質触媒層を加熱する改質用バーナが、前記燃焼部における前記隔壁の壁面に沿う方向で互いに対向する両端部の一方の端部の側から、他方の端部の側に向けて火炎を形成するように備えられ、
前記改質部において、前記改質触媒の作用により、炭化水素系の原燃料が改質処理されて、水素ガスを主成分とする改質ガスが生成されるように構成されたものであって、
第1特徴構成は、前記隔壁の両端部が並ぶ方向である加熱分布変更方向に沿って、前記改質用バーナにより前記改質触媒層を加熱する加熱分布を変更可能な加熱分布変更手段と、
前記改質触媒層における前記加熱分布変更方向に沿う方向での温度分布が適正温度分布から変化した温度分布変化を検知する温度分布変化検知手段とが設けられ、
運転を制御する制御手段が、前記温度分布変化検知手段により前記温度分布変化が検知されると、前記温度分布変化検知手段により検知される温度分布が前記適正温度分布に近づくように前記加熱分布を変更すべく、前記加熱分布変更手段の作動を制御するように構成されている点にある。
The reformer according to the present invention is disposed in a state where a reforming section in which a reforming catalyst is charged and a combustion section that forms a combustion space therein are partitioned by heat transferable partition walls,
A reforming burner that burns combustion fuel in the combustion space and heats the reforming catalyst layer of the reforming unit has one of both end portions facing each other in the direction along the wall surface of the partition wall in the combustion unit. It is equipped to form a flame from the end side toward the other end side,
In the reforming section, a hydrocarbon-based raw fuel is reformed by the action of the reforming catalyst, and a reformed gas containing hydrogen gas as a main component is generated. ,
The first characteristic configuration is a heating distribution changing means capable of changing a heating distribution for heating the reforming catalyst layer by the reforming burner along a heating distribution changing direction in which both ends of the partition walls are arranged,
A temperature distribution change detecting means for detecting a temperature distribution change in which the temperature distribution in the direction along the heating distribution change direction in the reforming catalyst layer has changed from an appropriate temperature distribution; and
When the temperature distribution change is detected by the temperature distribution change detection means, the control means for controlling the operation sets the heating distribution so that the temperature distribution detected by the temperature distribution change detection means approaches the appropriate temperature distribution. In order to change, the operation of the heating distribution changing means is controlled.

上記特徴構成によれば、温度分布変化検知手段により、改質触媒層における加熱分布変更方向に沿う方向(上述の改質用バーナの火炎形成方向に沿う方向に相当する)での温度分布が適正温度分布から変化した温度分布変化が検知されると、制御手段により、温度分布変化検知手段により検知される温度分布が適正温度分布に近づくように加熱分布を変更すべく、加熱分布変更手段の作動が制御される。
つまり、時間経過に伴って、改質触媒層における加熱分布変更方向に沿う方向での温度分布が適正温度分布から変化すると、その温度分布が適正温度分布に近づくように、改質用バーナにより改質触媒層を加熱する加熱分布(以下、単に改質用バーナによる加熱分布と記載する場合がある)が変更される。
従って、時間経過に伴う改質効率の低下を抑制し得る改質装置を提供することができる。
According to the above characteristic configuration, the temperature distribution in the direction along the heating distribution change direction in the reforming catalyst layer (corresponding to the direction along the flame forming direction of the reforming burner) is appropriate by the temperature distribution change detection means. When a temperature distribution change that has changed from the temperature distribution is detected, the control means operates the heating distribution changing means to change the heating distribution so that the temperature distribution detected by the temperature distribution change detecting means approaches the appropriate temperature distribution. Is controlled.
In other words, as the temperature distribution in the direction along the heating distribution change direction in the reforming catalyst layer changes from the appropriate temperature distribution with time, the reforming burner modifies the temperature distribution so that it approaches the appropriate temperature distribution. The heating distribution for heating the porous catalyst layer (hereinafter sometimes simply referred to as the heating distribution by the reforming burner) is changed.
Therefore, it is possible to provide a reformer that can suppress a decrease in reforming efficiency with time.

第2特徴構成は、上記第1特徴構成に加えて、
前記改質用バーナに、前記燃焼用燃料を前記燃焼空間に噴出する炎孔が、前記燃焼用燃料の噴出方向を前記加熱分布変更方向に沿う方向と前記加熱分布変更方向に対して前記隔壁の側に傾斜する方向とに異ならせた形態、又は、存在位置を前記加熱分布変更方向に沿って異ならせた形態で、複数設けられ、
前記複数の炎孔のうちで前記燃焼用燃料を噴出する炎孔を変更自在な燃料噴出形態変更手段が設けられ、
前記加熱分布変更手段が、前記燃料噴出形態変更手段を備えて構成されている点にある。
In addition to the first feature configuration, the second feature configuration is
The reformer burner has a flame hole for injecting the combustion fuel into the combustion space. The injection direction of the combustion fuel is in the direction along the heating distribution change direction and the heating distribution change direction. In a form that is different from the direction inclined to the side, or a form that is different along the heating distribution change direction, a plurality of positions are provided,
A fuel injection form changing means capable of changing a flame hole for injecting the combustion fuel among the plurality of flame holes is provided,
The heating distribution changing means includes the fuel ejection form changing means.

上記特徴構成によれば、燃料噴出形態変更手段により、燃焼用燃料を噴出する炎孔が、燃焼用燃料の噴出方向が異なる炎孔や、加熱分布変更方向での存在位置が異なる炎孔に変更されることにより、改質用バーナによる加熱分布が加熱分布変更方向に沿って変更される。
従って、加熱分布変更方向に沿う方向での改質用バーナによる加熱分布を的確に変更して、改質触媒層における加熱分布変更方向に沿う方向での温度分布を適正温度分布に近づけることができるので、時間経過に伴う改質効率の低下を的確に抑制することができる。
According to the above characteristic configuration, the fuel injection form changing means changes the flame hole for injecting the combustion fuel into a flame hole having a different injection direction of the combustion fuel or a flame hole having a different position in the heating distribution changing direction. Thus, the heating distribution by the reforming burner is changed along the heating distribution changing direction.
Therefore, the heating distribution by the reforming burner in the direction along the heating distribution change direction can be accurately changed, and the temperature distribution in the direction along the heating distribution change direction in the reforming catalyst layer can be brought close to the appropriate temperature distribution. Therefore, it is possible to accurately suppress a reduction in reforming efficiency with time.

第3特徴構成は、上記第2特徴構成に加えて、
前記複数の炎孔として、前記隔壁の壁面における前記両端部の並び方向に直交する方向に沿う炎孔並び方向に沿って列状に並んで、前記燃焼用燃料を前記加熱分布変更方向に沿う方向に噴出する複数の直噴炎孔と、前記炎孔並び方向に沿って列状に並んで、前記燃焼用燃料を前記加熱分布変更方向に対して前記隔壁の側に傾斜する方向に噴出する複数の傾斜噴出炎孔とが設けられ、
前記燃料噴出形態変更手段として、複数の前記直噴炎孔が列状に並ぶ直噴炎孔列、及び、複数の前記傾斜噴出炎孔が列状に並ぶ傾斜噴出炎孔列夫々からの前記燃焼用燃料の噴出を断続可能な燃料噴出切換手段とが設けられている点にある。
The third feature configuration is in addition to the second feature configuration,
The plurality of flame holes are arranged in a line along a flame hole alignment direction along a direction perpendicular to the alignment direction of the both end portions of the wall surface of the partition wall, and the combustion fuel is directed along the heating distribution changing direction. A plurality of direct-injection flame holes, and a plurality of the fuel-injection fuels arranged in a line along the flame-hole arrangement direction and injecting the combustion fuel in a direction inclined toward the partition wall with respect to the heating distribution change direction With an inclined jet flame hole,
As the fuel injection form changing means, the combustion from the direct injection flame hole row in which a plurality of the direct injection flame holes are arranged in a line and the inclined injection flame hole row in which the plurality of the inclined injection flame holes are arranged in a line And a fuel ejection switching means capable of intermittently ejecting the fuel.

上記特徴構成によれば、燃料噴出切換手段により、燃焼用燃料を噴出する炎孔列が、複数の直噴炎孔が列状に並ぶ直噴炎孔列と、複数の傾斜噴出炎孔が列状に並ぶ傾斜噴出炎孔列とに変更されることにより、改質用バーナによる加熱分布が加熱分布変更方向に沿って変更される。
そして、直噴炎孔列及び傾斜噴出炎孔列夫々の炎孔並び方向は、隔壁の壁面における両端部の並び方向に直交する方向であるので、改質触媒層の加熱分布を、隔壁の壁面における両端部の並び方向に直交する方向では極力均等に維持しながら、加熱分布変更方向では的確に変更することができる。
つまり、時間経過に伴って、改質触媒層における加熱分布変更方向に沿う方向での温度分布が適正温度分布から変化すると、改質触媒層における温度分布を、隔壁の壁面における両端部の並び方向に直交する方向では極力均等にしながら、加熱分布変更方向に沿う方向では的確に変更して、適正温度分布に近づけることができる。
従って、時間経過に伴う改質効率の低下を一層抑制することができる。
According to the above characteristic configuration, the flame hole array for injecting the fuel for combustion by the fuel injection switching means includes a direct flame hole array in which a plurality of direct injection flame holes are arranged in a line, and a plurality of inclined ejection flame holes. By changing to the inclined ejection flame hole rows arranged in a line, the heating distribution by the reforming burner is changed along the heating distribution changing direction.
Further, since the flame hole alignment direction of each of the direct flame hole array and the inclined ejection flame hole array is a direction orthogonal to the alignment direction of both end portions of the wall surface of the partition wall, the heating distribution of the reforming catalyst layer is represented by the wall surface of the partition wall. While maintaining as uniform as possible in the direction orthogonal to the direction of arrangement of both end portions in FIG.
That is, when the temperature distribution in the direction along the heating distribution change direction in the reforming catalyst layer changes from the appropriate temperature distribution with time, the temperature distribution in the reforming catalyst layer is changed to the alignment direction of both ends of the wall surface of the partition wall. Can be made as close as possible to the appropriate temperature distribution by making a precise change in the direction along the direction of changing the heating distribution, while making it as uniform as possible in the direction orthogonal to.
Accordingly, it is possible to further suppress the reduction in reforming efficiency with time.

第4特徴構成は、上記第2特徴構成に加えて、
前記複数の炎孔として、前記隔壁の壁面における前記両端部の並び方向に直交する方向に沿う炎孔並び方向に沿って列状に並んで、前記燃焼用燃料を前記加熱分布変更方向に沿う方向に噴出する複数の炎孔からなる炎孔列が、前記加熱分布変更方向に沿って複数列設けられ、
前記燃料噴出形態変更手段として、前記複数の炎孔列夫々からの前記燃焼用燃料の噴出を断続可能な燃料噴出切換手段が設けられている点にある。
The fourth feature configuration is in addition to the second feature configuration,
The plurality of flame holes are arranged in a line along a flame hole alignment direction along a direction perpendicular to the alignment direction of the both end portions of the wall surface of the partition wall, and the combustion fuel is directed along the heating distribution changing direction. A plurality of flame hole rows composed of a plurality of flame holes to be ejected are provided along the heating distribution change direction,
As the fuel injection mode changing means, there is provided a fuel injection switching means capable of intermittently injecting the combustion fuel from each of the plurality of flame hole arrays.

上記特徴構成によれば、燃料噴出切換手段により、燃焼用燃料を噴出する炎孔列が、加熱分布変更方向に沿う方向での存在位置が異なる炎孔列に変更されることにより、改質用バーナによる加熱分布が加熱分布変更方向に沿って変更される。
そして、各炎孔列の炎孔並び方向は、隔壁の壁面における両端部の並び方向に直交する方向であるので、改質触媒層の加熱分布を、隔壁の壁面における両端部の並び方向に直交する方向では極力均等に維持しながら、加熱分布変更方向では的確に変更することができる。
つまり、時間経過に伴って、改質触媒層における加熱分布変更方向に沿う方向での温度分布が適正温度分布から変化すると、改質触媒層における温度分布を、隔壁の壁面における両端部の並び方向に直交する方向では極力均等にしながら、加熱分布変更方向に沿う方向では的確に変更して、適正温度分布に近づけることができる。
従って、時間経過に伴う改質効率の低下を一層抑制することができる。
According to the above-described feature configuration, the fuel injection switching means changes the flame hole row for injecting the combustion fuel into a flame hole row having a different position in the direction along the heating distribution changing direction, thereby The heating distribution by the burner is changed along the heating distribution changing direction.
Since the flame hole alignment direction of each flame hole row is a direction orthogonal to the alignment direction of both ends of the wall surface of the partition wall, the heating distribution of the reforming catalyst layer is orthogonal to the alignment direction of both end portions of the wall surface of the partition wall. While maintaining as uniform as possible in the direction to perform, it is possible to accurately change in the heating distribution change direction.
That is, when the temperature distribution in the direction along the heating distribution change direction in the reforming catalyst layer changes from the appropriate temperature distribution with time, the temperature distribution in the reforming catalyst layer is changed to the alignment direction of both ends of the wall surface of the partition wall. Can be made as close as possible to the appropriate temperature distribution by making a precise change in the direction along the direction of changing the heating distribution, while making it as uniform as possible in the direction orthogonal to.
Accordingly, it is possible to further suppress the reduction in reforming efficiency with time.

第5特徴構成は、上記第1〜第4特徴構成のいずれか1つに加えて、
前記温度分布変化検知手段が、前記加熱分布変更方向に沿って間隔を開けて並べて設けられて、前記改質触媒層の温度を検出する複数の温度検出手段を備えて構成されている点にある。
In addition to any one of the first to fourth feature configurations described above, the fifth feature configuration is
The temperature distribution change detection means is provided with a plurality of temperature detection means that are arranged side by side along the heating distribution change direction and detect the temperature of the reforming catalyst layer. .

上記特徴構成によれば、加熱分布変更方向に沿って間隔を開けて並べて設けられた複数の温度検出手段夫々により、改質触媒層の温度が検出され、それら複数の温度検出手段夫々の検出温度に基づいて、温度分布変化が検知される。
つまり、加熱分布変更方向に沿って並ぶ複数の温度検出手段により、改質触媒層における加熱分布変更方向に沿う方向での温度分布をきめ細かく検出することができるので、温度分布変化を的確に検知することができる。
このことにより、時間経過に伴って、改質触媒層における加熱分布変更方向に沿う方向での温度分布が適正温度分布から変化すると、その温度分布が適正温度分布に近づくように、的確に、改質用バーナによる加熱分布が加熱分布変更方向に沿って変更される。
従って、時間経過に伴う改質効率の低下を的確に抑制することができる。
According to the above characteristic configuration, the temperature of the reforming catalyst layer is detected by each of the plurality of temperature detection means provided side by side along the heating distribution change direction, and the detected temperature of each of the plurality of temperature detection means. Based on this, a temperature distribution change is detected.
That is, the temperature distribution in the direction along the heating distribution change direction in the reforming catalyst layer can be finely detected by the plurality of temperature detecting means arranged along the heating distribution changing direction, so that the temperature distribution change is accurately detected. be able to.
As a result, when the temperature distribution in the direction along the heating distribution change direction in the reforming catalyst layer changes from the appropriate temperature distribution with the passage of time, the temperature distribution is accurately modified so that the temperature distribution approaches the appropriate temperature distribution. The heating distribution by the quality burner is changed along the heating distribution changing direction.
Accordingly, it is possible to accurately suppress a decrease in reforming efficiency with time.

第6特徴構成は、上記第1〜第4特徴構成のいずれか1つに加えて、
前記温度分布変化検知手段が、前記改質部にて生成された改質ガス中の特定成分の濃度を検出する成分濃度検出手段を備えて、当該成分濃度検出手段にて検出される前記特定成分の濃度が適正範囲から外れることに基づいて、前記温度分布変化を検知するように構成されている点にある。
In addition to any one of the first to fourth feature configurations described above, the sixth feature configuration is
The temperature distribution change detection means includes a component concentration detection means for detecting the concentration of the specific component in the reformed gas generated in the reforming unit, and the specific component detected by the component concentration detection means This is because the temperature distribution change is detected based on the fact that the concentration of the liquid is out of the appropriate range.

上記特徴構成によれば、成分濃度検出手段により、改質部にて生成された改質ガス中の特定成分の濃度が検出され、成分濃度検出手段にて検出される特定成分の濃度が適正範囲から外れることに基づいて、温度分布変化が検知される。
つまり、改質触媒層における加熱分布変更方向に沿う方向での温度分布が適正温度分布から変化すると、改質効率が低下して、改質ガス中の特定成分の濃度が変化するので、改質ガス中の特定成分の濃度の変化に基づいて、温度分布変化を的確に検知することができるのである。
このことにより、時間経過に伴って、改質触媒層における加熱分布変更方向に沿う方向での温度分布が適正温度分布から変化すると、その温度分布が適正温度分布に近づくように、的確に、改質用バーナによる加熱分布が加熱分布変更方向に沿って変更される。
従って、時間経過に伴う改質効率の低下を的確に抑制することができる。
According to the above characteristic configuration, the concentration of the specific component in the reformed gas generated in the reforming unit is detected by the component concentration detection means, and the concentration of the specific component detected by the component concentration detection means is in an appropriate range. On the basis of the deviation from the temperature, a change in temperature distribution is detected.
In other words, if the temperature distribution in the direction along the heating distribution change direction in the reforming catalyst layer changes from the appropriate temperature distribution, the reforming efficiency decreases and the concentration of the specific component in the reformed gas changes. The temperature distribution change can be accurately detected based on the change in the concentration of the specific component in the gas.
As a result, when the temperature distribution in the direction along the heating distribution change direction in the reforming catalyst layer changes from the appropriate temperature distribution with the passage of time, the temperature distribution is accurately modified so that the temperature distribution approaches the appropriate temperature distribution. The heating distribution by the quality burner is changed along the heating distribution changing direction.
Accordingly, it is possible to accurately suppress a decrease in reforming efficiency with time.

第1実施形態に係る改質装置の全体構成を示すブロック図The block diagram which shows the whole structure of the reforming apparatus which concerns on 1st Embodiment. 第1実施形態に係る改質装置の改質用バーナの縦断面図The longitudinal cross-sectional view of the reformer burner of the reformer according to the first embodiment 第1実施形態に係る改質装置の改質用バーナの底面図The bottom view of the reformer burner of the reformer according to the first embodiment 第1実施形態に係る改質用バーナの加熱パターンの変更形態を示す図The figure which shows the change form of the heating pattern of the reforming burner which concerns on 1st Embodiment. 第1実施形態に係る改質用バーナによる加熱分布の変更形態を示す図The figure which shows the change form of the heating distribution by the reforming burner which concerns on 1st Embodiment. 第2実施形態に係る改質装置の全体構成を示すブロック図The block diagram which shows the whole structure of the reforming apparatus which concerns on 2nd Embodiment. 第2実施形態に係る改質装置の改質用バーナの縦断面図Longitudinal sectional view of the reforming burner of the reforming apparatus according to the second embodiment 第2実施形態に係る改質装置の改質用バーナの底面図The bottom view of the reforming burner of the reformer according to the second embodiment 第2実施形態に係る改質用バーナの加熱パターンの変更形態を示す図The figure which shows the change form of the heating pattern of the reforming burner which concerns on 2nd Embodiment. 第2実施形態に係る改質用バーナによる加熱分布の変更形態を示す図The figure which shows the change form of the heating distribution by the reforming burner which concerns on 2nd Embodiment. 改質装置を備えた水素含有ガス生成装置のブロック図Block diagram of a hydrogen-containing gas generator equipped with a reformer 改質装置を備えた水素含有ガス生成装置の縦断面図Vertical section of a hydrogen-containing gas generator equipped with a reformer

以下、図面に基づいて、本発明を燃料電池用の水素含有ガス生成装置Pに備えられた改質装置Rに適用した場合の実施形態を説明する。
〔第1実施形態〕
先ず、第1実施形態を説明する。
図11及び図12に示すように、水素含有ガス生成装置Pは、原燃料供給路31を通して原燃料ブロア32により供給される炭化水素系の原燃料ガス(例えば、13A等の天然ガスベースの都市ガス)を脱硫処理する脱硫部1と、改質用水供給路33を通して改質水ポンプ34により供給される原料水を加熱して水蒸気を生成する水蒸気生成部Jと、脱硫部1で脱硫処理された原燃料ガスを水蒸気生成部Jで生成された水蒸気を用いて改質処理して水素ガスを主成分とする改質ガスを生成する改質装置Rと、その改質装置Rから供給される改質ガス中の一酸化炭素ガスを水蒸気を用いて二酸化炭素ガスに変成処理する変成部4と、その変成部4から供給される改質ガス中の一酸化炭素ガスを選択的に酸化処理する選択酸化部5と、運転を制御する運転制御部C等を備えて構成されて、一酸化炭素濃度の低い水素含有ガスを生成するように構成されている。
Hereinafter, an embodiment in which the present invention is applied to a reformer R provided in a hydrogen-containing gas generator P for a fuel cell will be described with reference to the drawings.
[First Embodiment]
First, the first embodiment will be described.
As shown in FIGS. 11 and 12, the hydrogen-containing gas generator P is a hydrocarbon-based raw fuel gas (for example, a natural gas-based city such as 13A) supplied by the raw fuel blower 32 through the raw fuel supply passage 31. The desulfurization unit 1 for desulfurizing the gas), the steam generation unit J for generating steam by heating the raw water supplied by the reforming water pump 34 through the reforming water supply path 33, and the desulfurization unit 1 A reformer R that reforms the raw fuel gas using the steam generated in the steam generator J to generate a reformed gas mainly composed of hydrogen gas, and the reformer R supplies the reformed gas. The carbon monoxide gas in the reformed gas is converted to carbon dioxide gas using water vapor, and the carbon monoxide gas in the reformed gas supplied from the shift unit 4 is selectively oxidized. Selective oxidation unit 5 and operation control That is configured to include a operation control unit C or the like, and is configured to generate a low hydrogen-containing gas concentration of carbon monoxide.

そして、水素含有ガス生成装置Pにて生成された改質ガスは、発電用の燃料ガスとして燃料ガス流路35を介して燃料電池Gに供給される。
この燃料電池Gは、周知であるので詳細な説明及び図示を省略して簡単に説明すると、例えば、固体高分子膜を電解質層とするセルを複数積層状態に設けた固体高分子型に構成され、各セルの燃料極に水素含有ガス生成装置Pから燃料ガス流路35を介して燃料ガスを供給し、各セルの酸素極に反応用空気ブロア36から空気を供給して、水素と酸素との電気化学反応により発電を行うように構成されている。
The reformed gas generated by the hydrogen-containing gas generation device P is supplied to the fuel cell G through the fuel gas channel 35 as a fuel gas for power generation.
Since this fuel cell G is well known, a detailed description and illustration thereof will be omitted. For example, the fuel cell G is configured in a solid polymer type in which a plurality of cells each having a solid polymer membrane as an electrolyte layer are provided in a stacked state. The fuel gas is supplied from the hydrogen-containing gas generating device P to the fuel electrode of each cell through the fuel gas flow path 35, and the air is supplied from the reaction air blower 36 to the oxygen electrode of each cell, so that hydrogen and oxygen It is comprised so that electric power generation may be performed by the electrochemical reaction.

次に、水素含有ガス生成装置Pの各部について、説明を加える。
改質装置Rは、図1にも示すように、改質触媒6cが装入された改質部6と内部に燃焼空間7sを形成する燃焼部7とが、伝熱可能な隔壁Wにて区画された状態で配設されて構成されている。
燃焼用燃料供給路9を通して燃焼用燃料ブロア10により供給される燃焼用ガス燃料(燃焼用燃料の一例であり、例えば、13A等の都市ガス)を燃焼用空気供給路11を通して燃焼用空気ブロア12により供給される燃焼用空気にて燃焼空間7s内で燃焼させて、改質部6の改質触媒層6cを加熱する改質用バーナ8が、燃焼部7における隔壁Wの壁面に沿う方向で互いに対向する両端部14e,14eの一方の端部14eから他方の端部14eに向けて火炎を形成するように備えられている。
Next, each part of the hydrogen-containing gas generator P will be described.
As shown in FIG. 1, the reformer R includes a partition wall W capable of transferring heat between the reforming unit 6 in which the reforming catalyst 6 c is inserted and the combustion unit 7 that forms a combustion space 7 s therein. It is arranged and configured in a partitioned state.
Combustion gas fuel (which is an example of combustion fuel, for example, a city gas such as 13A) supplied by the combustion fuel blower 10 through the combustion fuel supply passage 9 is passed through the combustion air supply passage 11 to the combustion air blower 12. The reforming burner 8 that heats the reforming catalyst layer 6 c of the reforming unit 6 by burning in the combustion space 7 s with the combustion air supplied by the combustion air in the direction along the wall surface of the partition wall W in the combustion unit 7. It is equipped so that a flame may be formed toward the other end 14e from one end 14e of the opposite ends 14e, 14e.

図1に基づいて、改質装置Rについて説明を加えると、改質装置Rの装置本体13は、夫々円筒状の内筒14と外筒15とを同軸状に配設し、それらの両端を上板16及び底板17にて閉塞し、更に、内筒14の内部に、円筒状の輻射筒18を、他端を底板17から離間させて一端を上板16に固定した状態で、内筒14と同軸状に設けて構成されている。
内筒14と外筒15との間に形成される環状空間に改質触媒6cが充填されて、内筒14、外筒15、上板16及び底板17等により、改質部6が構成される。
又、内筒14内の空間が燃焼空間7sとされて、内筒14、上板16及び底板17等により、燃焼部7が構成され、改質用バーナ8は、上板16に支持された状態で、内筒14と同軸状に設けられる。
そして、内筒14を隔壁Wとして機能させるように構成されている。
Referring to FIG. 1, the reformer R will be described. The reformer R has a main body 13 in which a cylindrical inner cylinder 14 and an outer cylinder 15 are coaxially arranged, and both ends thereof are arranged. The inner cylinder 14 is closed with the upper plate 16 and the bottom plate 17, and further, the cylindrical radiation tube 18 is disposed inside the inner cylinder 14, the other end is separated from the bottom plate 17, and one end is fixed to the upper plate 16. 14 is provided coaxially.
An annular space formed between the inner cylinder 14 and the outer cylinder 15 is filled with the reforming catalyst 6c, and the reformer 6 is configured by the inner cylinder 14, the outer cylinder 15, the upper plate 16, the bottom plate 17, and the like. The
The space in the inner cylinder 14 is a combustion space 7s, and the combustion section 7 is constituted by the inner cylinder 14, the upper plate 16, the bottom plate 17, and the like, and the reforming burner 8 is supported by the upper plate 16. In the state, it is provided coaxially with the inner cylinder 14.
The inner cylinder 14 is configured to function as a partition wall W.

上板16には、外筒15と内筒14との間の環状空間に連通する状態で、原燃料ガス入口19が、内筒14と輻射筒18との間の環状空間に連通する状態で、燃焼ガス出口21が夫々設けられ、底板17には、内筒14と外筒15との間の環状空間に連通する状態で、改質ガス出口20が設けられている。   In the state where the upper plate 16 communicates with the annular space between the outer cylinder 15 and the inner cylinder 14, the raw fuel gas inlet 19 communicates with the annular space between the inner cylinder 14 and the radiation cylinder 18. Each of the combustion gas outlets 21 is provided, and the reformed gas outlet 20 is provided on the bottom plate 17 so as to communicate with the annular space between the inner cylinder 14 and the outer cylinder 15.

燃焼用燃料供給路9と燃焼用空気供給路11とが混合器22に接続され、その混合器22にて、燃焼用燃料供給路9からの燃焼用ガス燃料と燃焼用空気供給路11からの燃焼用空気とが混合されて、その混合ガスが混合ガス供給路23を通して改質用バーナ8に供給されるように構成されている。
又、燃料電池Gの燃料極から水素が残存した状態で排出されるオフガスを導くオフガス路24が混合器22に接続されて、オフガスが、燃焼用燃料として、改質用バーナ8に供給されるように構成されている。
The combustion fuel supply path 9 and the combustion air supply path 11 are connected to a mixer 22, and in the mixer 22, the combustion gas fuel from the combustion fuel supply path 9 and the combustion air supply path 11 are connected. Combustion air is mixed and the mixed gas is supplied to the reforming burner 8 through the mixed gas supply path 23.
Further, an offgas passage 24 for guiding offgas discharged from the fuel electrode of the fuel cell G in a state where hydrogen remains is connected to the mixer 22, and the offgas is supplied to the reforming burner 8 as combustion fuel. It is configured as follows.

装置本体13は、その上板16が上方を向く姿勢で配置される。
そして、燃焼用燃料供給路9からの燃焼用ガス燃料と燃焼用空気供給路11からの燃焼用空気との混合気を改質用バーナ8により燃焼させることにより、燃焼ガスが輻射筒18内を下方に流動した後、底板17に衝突して、内筒14と輻射筒18との間の環状空間を上方に流動して、燃焼ガス出口21から燃焼ガス流路25に排出され、その燃焼ガスの保有熱及び輻射筒18からの輻射熱が隔壁Wである内筒14を伝熱して、改質部6の改質触媒層6cが加熱される。
水蒸気が混合された原燃料ガスが原燃料ガス入口19から改質部6に供給され、改質触媒6cに作用により、水素ガスを主成分とする改質ガスに改質処理される。
ちなみに、メタンガスを主成分とする都市ガス(例えば13A)が原燃料ガスである場合は、改質触媒6cの触媒作用により、例えば600〜700°Cの範囲の改質処理温度の下で、メタンガスと水蒸気とが下記の反応式にて改質反応して、水素ガスと一酸化炭素ガスを含むガスに改質処理される。
The apparatus main body 13 is arranged with the upper plate 16 facing upward.
Then, the reforming burner 8 burns the mixture of the combustion gas fuel from the combustion fuel supply passage 9 and the combustion air from the combustion air supply passage 11 so that the combustion gas flows in the radiation cylinder 18. After flowing downward, it collides with the bottom plate 17, flows upward in the annular space between the inner cylinder 14 and the radiation cylinder 18, is discharged from the combustion gas outlet 21 to the combustion gas flow path 25, and the combustion gas The retained heat and the radiant heat from the radiation cylinder 18 are transferred through the inner cylinder 14 as the partition wall W, and the reforming catalyst layer 6c of the reforming section 6 is heated.
The raw fuel gas mixed with water vapor is supplied from the raw fuel gas inlet 19 to the reforming unit 6 and is reformed into a reformed gas containing hydrogen gas as a main component by the action of the reforming catalyst 6c.
Incidentally, when the city gas (for example, 13A) containing methane gas as a main component is the raw fuel gas, the methane gas is used under the reforming treatment temperature in the range of 600 to 700 ° C. by the catalytic action of the reforming catalyst 6c. And steam undergo a reforming reaction according to the following reaction formula, and reformed to a gas containing hydrogen gas and carbon monoxide gas.

CH4+H2O→CO+3H2 CH 4 + H 2 O → CO + 3H 2

次に、水素含有ガス生成装置Pにおける改質装置R以外の部分の構成について、説明を加える。
図11及び図12に示すように、水蒸気生成部Jは、燃焼部7から排出される改質用バーナ8の燃焼ガスを通流させる加熱用排ガス通流部3と、その加熱用排ガス通流部3による加熱により改質用水を蒸発させて水蒸気を生成する蒸発処理部2とを備えて構成されている。
Next, a description will be given of the configuration of portions other than the reformer R in the hydrogen-containing gas generator P.
As shown in FIGS. 11 and 12, the steam generation unit J includes a heating exhaust gas flow unit 3 that allows the combustion gas of the reforming burner 8 discharged from the combustion unit 7 to flow, and the heating exhaust gas flow channel. And an evaporation processing unit 2 that evaporates the reforming water by heating by the unit 3 to generate water vapor.

更に、この水素含有ガス生成装置Pには、改質部6から排出された高温の改質ガスにより脱硫部1にて脱硫された脱硫後の原燃料ガスを加熱する脱硫後原燃料用熱交換器Ea、その脱硫後原燃料用熱交換器Eaにて熱交換後の改質ガスにより脱硫部1にて脱硫処理する原燃料ガスを加熱する脱硫前原燃料用熱交換器Eb、及び、加熱用排ガス通流部3から排出された燃焼ガスを通流させてその燃焼ガスにより変成部4を冷却する冷却用排ガス通流部37が設けられている。   Furthermore, in this hydrogen-containing gas generating device P, heat exchange for the raw fuel after desulfurization is performed in which the raw fuel gas after desulfurization desulfurized in the desulfurization unit 1 by the high-temperature reformed gas discharged from the reforming unit 6 is heated. Ea, raw heat exchanger Eb before desulfurization for heating raw fuel gas desulfurized in desulfurization section 1 by reformed gas after heat exchange in desulfurized raw fuel heat exchanger Ea, and heating There is provided a cooling exhaust gas flow part 37 for allowing the combustion gas discharged from the exhaust gas flow part 3 to flow and cooling the metamorphic part 4 with the combustion gas.

脱硫後原燃料用熱交換器Eaは、改質部6から排出された改質ガスを通流させる上流側熱交換用通流部38と、脱硫部1にて脱硫処理されて改質部6に供給される脱硫後の原燃料ガスを通流させる脱硫後原燃料通流部39とを熱交換自在に設けて構成され、脱硫前原燃料用熱交換器Ebは、上流側熱交換用通流部38から排出された改質ガスを通流させる下流側熱交換用通流部40と、脱硫部1にて脱硫処理する原燃料ガスを通流させる脱硫前原燃料通流部41とを熱交換自在に設けて構成されている。   After desulfurization, the raw fuel heat exchanger Ea is desulfurized in the desulfurization section 1 by the upstream heat exchange flow section 38 through which the reformed gas discharged from the reforming section 6 flows, and the reforming section 6. The desulfurized raw fuel flow section 39 for allowing the desulfurized raw fuel gas to be supplied to the exhaust gas is provided so as to be capable of exchanging heat, and the undesulfurized raw fuel heat exchanger Eb is provided with an upstream heat exchange flow Heat exchange between the downstream heat exchange flow section 40 through which the reformed gas discharged from the section 38 flows and the raw fuel flow section 41 before desulfurization through which the raw fuel gas desulfurized in the desulfurization section 1 flows. It is provided and configured freely.

図12に示すように、水素含有ガス生成装置Pを構成する各部のうち、改質装置R以外の各部は、流体を処理する処理空間Sを形成する扁平状の複数の容器Bを用いて構成されている。
そして、水素含有ガス生成装置Pは、改質装置R及び複数の容器Bを、改質装置Rを中間に位置させた状態で横方向に沿う容器並び方向に積層状に並べ、それら複数の容器Bを容器並び方向両側から押し付け手段(図示省略)にて押し付けることにより構成されている。
各容器Bは、ステンレス等の耐熱金属製であり、各容器Bには、複数の処理空間Sが、互いに伝熱可能に伝熱板(図示省略)にて区画された状態で、容器並び方向に並べて形成されている。
As shown in FIG. 12, each part other than the reformer R among the parts constituting the hydrogen-containing gas generation device P is configured by using a plurality of flat containers B that form a processing space S for processing a fluid. Has been.
Then, the hydrogen-containing gas generation device P arranges the reformer R and the plurality of containers B in a stacked manner in the container alignment direction along the horizontal direction with the reformer R positioned in the middle. It is configured by pressing B by pressing means (not shown) from both sides of the container arrangement direction.
Each container B is made of a heat-resistant metal such as stainless steel, and in each container B, a plurality of processing spaces S are partitioned by a heat transfer plate (not shown) so as to be able to transfer heat to each other. It is formed side by side.

この実施形態では、水素含有ガス生成装置Pは、5個の容器Bを用いて構成されている。尚、5個の容器Bの区別が明確になるように、便宜上、容器を示す符合Bの後に、図12において左からの並び順を示す符合1,2,3……………5を付す。
ちなみに、改質装置Rは、左端の容器B1と左から2個目の容器B2との間に配設されている。
In this embodiment, the hydrogen-containing gas generator P is configured using five containers B. In addition, in order to make the distinction of the five containers B clear, for the sake of convenience, a reference numeral 1, 2, 3,... .
Incidentally, the reformer R is disposed between the leftmost container B1 and the second container B2 from the left.

図12に示すように、左端の容器B1は、処理空間Sを2室備え、左側の処理空間Sにて加熱用排ガス通流部3が構成され、右側の処理空間Sにて蛇行状の蒸発処理部2が構成されている。つまり、この左端の容器B1により、水蒸気生成部Jが構成されている。
又、この左端の容器B1における蒸発処理部2側の側面に当て付けた状態で、起動時等に蒸発処理部2を補助的に加熱する補助加熱用電気ヒータ42が設けられている。
As shown in FIG. 12, the leftmost container B1 includes two processing spaces S, the exhaust gas flow passage 3 for heating is configured in the left processing space S, and the meandering evaporation is performed in the right processing space S. A processing unit 2 is configured. That is, the water vapor generating part J is configured by the leftmost container B1.
In addition, an auxiliary heating electric heater 42 is provided for auxiliary heating of the evaporation processing unit 2 at the time of start-up or the like while being applied to the side surface of the leftmost container B1 on the evaporation processing unit 2 side.

左から2個目の容器B2は、処理空間Sを2室備え、左側の処理空間Sにて上流側熱交換用通流部38が構成され、右側の処理空間Sにて脱硫後原燃料通流部39が構成されている。つまり、この左から2個目の容器B2にて、脱硫後原燃料用熱交換器Eaが構成されている。この左から2個目の容器B2における脱硫後原燃料通流部39側の側面に当て付けた状態で、起動時等に脱硫後原燃料通流部39を補助的に加熱する補助加熱用電気ヒータ42が設けられている   The second container B2 from the left is provided with two processing spaces S, the upstream processing space S is constituted by the upstream processing space S, and the raw fuel flow after desulfurization is performed in the right processing space S. A flow part 39 is configured. That is, the desulfurized raw fuel heat exchanger Ea is configured by the second container B2 from the left. Auxiliary heating electricity for auxiliary heating of the desulfurized raw fuel flow-through section 39 at the time of start-up or the like in the state of being applied to the side surface of the second desulfurized raw fuel flow section 39 in the second container B2 from the left A heater 42 is provided.

左から3個目の容器B3は、処理空間Sを4室備え、左から3室目、左から2室目、左端の処理空間Sは、記載順に流体が通流可能に隣接するもの同士で連通されている。
そして、左から3室目の処理空間Sにて脱硫前原燃料通流部41が構成され、左から2室目及び左端の処理空間Sの夫々は、原燃料ガスを脱硫処理する脱硫触媒43を充填して脱硫部1に構成され、右端の処理空間Sは、一酸化炭素ガスを水蒸気を用いて二酸化炭素ガスに変成処理する酸化鉄系又は銅亜鉛系の変成触媒44を充填して変成部4に構成されている。
ちなみに、詳細は後述するが、この左から3個目の容器B3にて構成する変成部4を1段目として、変成部4を4段に設けるので、以下、この左から3個目の容器B3にて構成する変成部4を1段目の変成部4と記載する場合がある。
The third container B3 from the left includes four processing spaces S. The third chamber from the left, the second chamber from the left, and the processing space S at the left end are adjacent to each other so that fluid can flow in the order of description. It is communicated.
The raw fuel flow passage 41 before desulfurization is configured in the third processing space S from the left, and each of the second processing chamber and the leftmost processing space S from the left has a desulfurization catalyst 43 for desulfurizing the raw fuel gas. The desulfurization unit 1 is filled and the rightmost processing space S is filled with an iron oxide-based or copper-zinc-based conversion catalyst 44 that converts carbon monoxide gas into carbon dioxide gas using water vapor. 4 is configured.
Incidentally, although details will be described later, since the transformation section 4 constituted by the third container B3 from the left is the first stage and the transformation section 4 is provided in four stages, the third container from the left will be described below. The metamorphic part 4 configured by B3 may be referred to as the first stage metamorphic part 4.

脱硫前原燃料通流部41を構成する左から3室目の処理空間Sと1段目の変成部4を構成する右端の処理空間Sとは、伝熱板(図示省略)を介して伝熱可能に構成され、脱硫前原燃料通流部41を通流する脱硫対象の原燃料ガスと1段目の変成部4を通流する変成処理対象の改質ガスとを熱交換させるように構成されている。
つまり、1段目の変成部4が下流側熱交換用通流部40に兼用されるように構成されて、脱硫前原燃料通流部41と1段目の変成部4にて兼用される下流側熱交換用通流部40とにより、脱硫前原燃料用熱交換器Ebが構成されている。
The third processing space S from the left that constitutes the raw fuel flow passage 41 before desulfurization and the rightmost processing space S that constitutes the first-stage metamorphic portion 4 transfer heat through a heat transfer plate (not shown). The raw fuel gas to be desulfurized flowing through the raw fuel flow passage 41 before desulfurization and the reformed gas to be subjected to shift treatment flowing through the first stage shift section 4 are configured to exchange heat. ing.
In other words, the first-stage shift section 4 is configured to be used also as the downstream heat exchange flow section 40, and is used downstream by the raw fuel flow section 41 before desulfurization and the first-stage shift section 4. A heat exchanger Eb for raw fuel before desulfurization is configured by the side heat exchange flow part 40.

そして、左から2室目の処理空間Sにて構成する脱硫部1を1段目とし、左端の処理空間Sにて構成する脱硫部1を2段目として、脱硫対象の原燃料ガスを、脱硫前原燃料通流部41を通過させて予熱した後、1段目、2段目の順に各脱硫部1を通流させて、脱硫処理するように構成されている。
この左から3個目の容器B3における変成部4側の側面に当て付けた状態で、起動時等に変成部4を補助的に加熱する補助加熱電気ヒータ42が設けられている。
And the desulfurization part 1 comprised in the process space S of the 2nd chamber from the left is made into the 1st step, the desulfurization part 1 comprised in the process space S of the left end is made into the 2nd step, and the raw fuel gas to be desulfurized is After the pre-desulfurization raw fuel flow part 41 is passed and preheated, each desulfurization part 1 is made to flow through in order of the first stage and the second stage for desulfurization treatment.
An auxiliary heating electric heater 42 for assisting heating of the transformation section 4 at the time of start-up or the like is provided in a state of being applied to the side face of the third container B3 from the left side on the transformation section 4 side.

左から4個目の容器B4は、処理空間Sを4室備え、左端の処理空間Sは冷却用排ガス通流部37に構成され、左から2室目、3室目、右端の処理空間Sは、記載順に流体が通流可能に隣接するもの同士で連通されると共に、変成触媒44を充填して、変成部4に構成されている。   The fourth container B4 from the left includes four processing spaces S, and the leftmost processing space S is configured as a cooling exhaust gas flow passage 37. The second processing chamber S3, the third processing chamber S, and the rightmost processing space S from the left. Are adjacent to each other so that fluids can flow in the order of description, and are filled in the shift catalyst 44 to form the shift section 4.

そして、左から2室目の処理空間Sにて構成する変成部4を2段目とし、左から3室目の処理空間Sにて構成する変成部4を3段目とし、右端の処理空間Sにて構成する変成部4を4段目として、左から3個目の容器B3にて構成する1段目の変成部4からこの2段目の変成部4に外部のガス処理流路45にて改質ガスを供給して、改質ガスを2段目、3段目、4段目の順に各変成部4を通流させて、変成処理するように構成されている。
又、この左から4個目の容器B4における4段目の変成部4側の側面に当て付けた状態で、起動時等に変成部4を補助的に加熱する補助加熱用電気ヒータ42が設けられている。
The transformation section 4 configured in the processing space S in the second chamber from the left is the second stage, the transformation section 4 configured in the processing space S in the third chamber from the left is the third stage, and the processing space at the right end. The transformation section 4 configured by S is the fourth stage, and an external gas processing flow path 45 is provided from the first stage transformation section 4 configured by the third container B3 from the left to the second stage transformation section 4. The reformed gas is supplied at, and the reformed gas is caused to flow through each of the transforming sections 4 in the order of the second, third, and fourth stages, and the modification process is performed.
In addition, an auxiliary heating electric heater 42 for assisting heating of the transforming portion 4 at the time of start-up or the like is provided in a state of being applied to the side surface of the fourth stage transforming portion 4 side in the fourth container B4 from the left. It has been.

ちなみに、変成部4では、変成触媒44の触媒作用により、改質部6から供給される改質ガス中の一酸化炭素と水蒸気とを、例えば、150〜400°Cの範囲の変成処理温度の下で変成反応させる。   Incidentally, in the shift unit 4, carbon monoxide and water vapor in the reformed gas supplied from the reforming unit 6 are converted at a shift processing temperature in the range of 150 to 400 ° C. by the catalytic action of the shift catalyst 44. The metamorphic reaction is performed below.

左から5個目、即ち右端の容器B5は、処理空間Sを2室備え、左側の処理空間Sは何にも用いずに伝熱調整用とされ、右側の処理空間Sは、一酸化炭素ガスを選択的に酸化処理する白金、ルテニウム、ロジウム等の貴金属系の選択酸化触媒46を充填して選択酸化部5に構成されている。
ちなみに、選択酸化部5では、選択酸化触媒46の触媒作用により、例えば80〜150°Cの選択酸化処理温度の下で、変成処理後の改質ガス中に残存している一酸化炭素ガスが選択酸化される。
The fifth container from the left, that is, the rightmost container B5, has two processing spaces S, the left processing space S is used for heat transfer adjustment without any use, and the right processing space S is carbon monoxide. The selective oxidation unit 5 is configured by filling a selective oxidation catalyst 46 of a noble metal such as platinum, ruthenium, rhodium or the like that selectively oxidizes gas.
Incidentally, in the selective oxidation unit 5, the carbon monoxide gas remaining in the reformed gas after the shift treatment under the selective oxidation treatment temperature of, for example, 80 to 150 ° C. is caused by the catalytic action of the selective oxidation catalyst 46. Selectively oxidized.

そして、上述の5個の容器Bと改質装置Rが、左端の容器B1の外側、左端の容器B1と改質装置Rとの間、改質装置Rと左から2個目の容器B2との間、左から2個目の容器B2と左から3個目の容器B3との間、及び、左から3個目の容器B3と左から4個目の容器B4との間の夫々に断熱材47が配置された状態で、押し付け手段により容器並び方向両側から押し付けられて、密接状態に並べて設けられ、更に、選択酸化部5を構成する右端の容器B5の側方に、その容器B5に向けて通風するように冷却用送風機48が設けられている。そして、その冷却用送風機48により、選択酸化部5を冷却するように構成されている。   The five containers B and the reformer R described above are arranged outside the leftmost container B1, between the leftmost container B1 and the reformer R, the reformer R and the second container B2 from the left. Between the second container B2 from the left and the third container B3 from the left, and between the third container B3 from the left and the fourth container B4 from the left. In a state where the material 47 is arranged, it is pressed from both sides of the container arranging direction by the pressing means, and is arranged in close contact with each other. Further, on the side of the rightmost container B5 constituting the selective oxidation unit 5, the container B5 A cooling blower 48 is provided so as to ventilate the air. Then, the selective oxidizer 5 is cooled by the cooling fan 48.

次に、各容器Bや改質装置Rに流体を供給したり、各容器Bや改質装置Rから流体を排出するための、各容器Bや改質装置Rに対する流路の接続形態について説明する。尚、各処理空間Sにおいては、流体を上部から供給して下方側に向けて通流させて下部から排出する、あるいは、流体を下部から供給して上方側に向けて通流させて上部から排出するように、流体を上下方向に通流させるので、各流路は、各処理空間Sの上端部又は下端部に接続する。   Next, the connection form of the flow path to each container B or reformer R for supplying fluid to each container B or reformer R or discharging the fluid from each container B or reformer R will be described. To do. In each processing space S, the fluid is supplied from the upper part and flows downward and discharged from the lower part, or the fluid is supplied from the lower part and flows upward and supplied from the upper part. Since the fluid flows in the vertical direction so as to be discharged, each flow path is connected to the upper end portion or the lower end portion of each processing space S.

原燃料ガス供給路31が脱硫前原燃料通流部41に接続され、2段目の脱硫部1と脱硫後原燃料通流部39とが、その脱硫後原燃料通流部39と改質部6の原燃料ガス入口19とが、改質部6の改質ガス出口20と上流側熱交換用通流部38とが、その上流側熱交換用通流部38と下流側熱交換用通流部40を兼用する1段目の変成部4とが、その1段目の変成部4と2段目の変成部4とが、4段目の変成部4と選択酸化部5とが、夫々、ガス処理流路45にて接続され、更に、その選択酸化部5と燃料電池Gの燃料ガス供給部とが燃料ガス流路35にて接続されている。   The raw fuel gas supply path 31 is connected to the raw fuel flow section 41 before desulfurization, and the second stage desulfurization section 1 and the raw fuel flow section 39 after desulfurization are the raw fuel flow section 39 and reforming section after desulfurization. 6, the raw fuel gas inlet 19, the reformed gas outlet 20 of the reforming section 6 and the upstream heat exchange flow section 38, and the upstream heat exchange flow section 38 and the downstream heat exchange flow path. The first stage metamorphic section 4 that also serves as the flow section 40, the first stage metamorphic section 4 and the second stage metamorphic section 4, and the fourth stage metamorphic section 4 and the selective oxidation section 5 The selective oxidation unit 5 and the fuel gas supply unit of the fuel cell G are connected to each other through a gas processing channel 45 and a fuel gas channel 35.

2段目の脱硫部1と脱硫後原燃料通流部39とを接続するガス処理流路45には、脱硫後の原燃料ガスに水蒸気を混合させるためのエジェクタ49が設けられている。   An ejector 49 for mixing water vapor into the raw fuel gas after desulfurization is provided in the gas processing flow path 45 that connects the second stage desulfurization unit 1 and the raw fuel flow portion 39 after desulfurization.

又、4段目の変成部4と選択酸化部5とを接続するガス処理流路45には、選択酸化用ブロア50から選択酸化用空気が供給される選択酸化用空気供給路51が接続されて、変成部4にて変成処理された改質ガスに選択酸化用空気を混合させて選択酸化部5に供給するように構成されている。   A selective oxidation air supply path 51 to which selective oxidation air is supplied from a selective oxidation blower 50 is connected to the gas processing flow path 45 that connects the fourth stage shift section 4 and the selective oxidation section 5. Thus, the selective oxidation air is mixed with the reformed gas that has been subjected to the modification treatment in the modification unit 4 and supplied to the selective oxidation unit 5.

燃焼部7の燃焼ガス出口21と加熱用排ガス通流部3とが、その加熱用排ガス通流部3と冷却用排ガス通流部37が、夫々、燃焼ガス流路25にて接続されて、燃焼部7から排出される燃焼ガスを、加熱用排ガス通流部3、冷却用排ガス通流部37の順に通流させて、排出するように構成されている。   The combustion gas outlet 21 of the combustion unit 7 and the heating exhaust gas flow part 3 are connected to the heating exhaust gas flow part 3 and the cooling exhaust gas flow part 37 through the combustion gas flow path 25, respectively. The combustion gas discharged from the combustion section 7 is configured to flow through the heating exhaust gas flow section 3 and the cooling exhaust gas flow section 37 in this order to be discharged.

前述の改質用水供給路33が、蒸発処理部2の下端に接続され、加熱用排ガス通流部3による加熱により蒸発処理部2にて生成された水蒸気を導く水蒸気流路52がエジェクタ43に接続されている。   The reforming water supply path 33 is connected to the lower end of the evaporation processing unit 2, and the water vapor channel 52 that guides the water vapor generated in the evaporation processing unit 2 by heating by the heating exhaust gas flow unit 3 is provided in the ejector 43. It is connected.

つまり、原燃料ガスを1段目、2段目の脱硫部1にて脱硫処理し、その脱硫処理した原燃料ガスに、蒸発処理部2にて生成されて水蒸気流路52を通して供給される水蒸気をエジェクタ49にて混合させ、その水蒸気を混合させた原燃料ガスを改質部6にて改質処理し、その改質ガスを1段目、2段目、3段目、4段目の変成部4にて変成処理し、その変成処理した改質ガスを選択酸化部5にて選択酸化処理して、一酸化炭素濃度の低い水素含有ガスを生成し、その水素含有ガスを燃料ガスとして燃料ガス流路35を通じて燃料電池Gに供給するように構成されている。   That is, the raw fuel gas is desulfurized in the first-stage and second-stage desulfurization sections 1, and the steam that is generated in the evaporation processing section 2 and supplied through the steam flow path 52 to the desulfurized raw fuel gas. Are mixed in the ejector 49, and the raw fuel gas mixed with the water vapor is reformed in the reforming section 6, and the reformed gas is treated in the first, second, third, fourth. A shift treatment is performed in the shift unit 4, and the reformed reformed gas is selectively oxidized in the selective oxidation unit 5 to generate a hydrogen-containing gas having a low carbon monoxide concentration. The hydrogen-containing gas is used as a fuel gas. It is configured to be supplied to the fuel cell G through the fuel gas channel 35.

本発明では、図1及び図2に示すように、隔壁Wとしての内筒14の両端部14e,14eが並ぶ方向である加熱分布変更方向に沿って、改質用バーナ8により改質触媒層6cを加熱する加熱分布を変更可能な加熱分布変更手段Aと、改質触媒層6cにおける加熱分布変更方向に沿う方向での温度分布(以下、改質触媒層温度分布と記載する場合がある)が適正温度分布から変化した温度分布変化を検知する温度分布変化検知手段Dとが設けられている。
そして、運転制御部Cが、温度分布変化検知手段Dにより温度分布変化が検知されると、温度分布変化検知手段Dにより検知される改質触媒層温度分布が適正温度分布に近づくように加熱分布を変更すべく、加熱分布変更手段Aの作動を制御するように構成されている。
In the present invention, as shown in FIGS. 1 and 2, the reforming catalyst layer is formed by the reforming burner 8 along the heating distribution changing direction in which both end portions 14 e and 14 e of the inner cylinder 14 as the partition wall W are aligned. The heating distribution changing means A capable of changing the heating distribution for heating 6c, and the temperature distribution in the direction along the heating distribution changing direction in the reforming catalyst layer 6c (hereinafter sometimes referred to as the reforming catalyst layer temperature distribution). Is provided with temperature distribution change detecting means D for detecting a temperature distribution change that has changed from an appropriate temperature distribution.
When the temperature distribution change detection means D detects the temperature distribution change, the operation control unit C performs the heating distribution so that the reforming catalyst layer temperature distribution detected by the temperature distribution change detection means D approaches the appropriate temperature distribution. Is configured to control the operation of the heating distribution changing means A.

この第1実施形態では、内筒14の両側の開口端が両端部14eに相当し、加熱分布変更方向は、内筒14の軸心方向、即ち、上下方向(図1における上下方向に相当する)に設定されている。
図2及び図3に示すように、改質用バーナ8に、燃焼用ガス燃料(本実施形態では、混合ガス)を燃焼空間7sに噴出する炎孔60が、混合ガスの噴出方向を加熱分布変更方向に沿う方向と加熱分布変更方向に対して隔壁Wとしての内筒14の側に傾斜する方向とに異ならせた形態で、複数設けられている。
又、図1に示すように、複数の炎孔のうちで混合ガスを噴出する炎孔60を変更自在な燃料噴出形態変更手段Vが設けられている。
In the first embodiment, the open ends on both sides of the inner cylinder 14 correspond to both end portions 14e, and the heating distribution changing direction is the axial direction of the inner cylinder 14, that is, the vertical direction (corresponding to the vertical direction in FIG. 1). ) Is set.
As shown in FIGS. 2 and 3, the flame hole 60 for injecting the combustion gas fuel (mixed gas in the present embodiment) into the combustion space 7 s in the reforming burner 8 is heated and distributed in the direction in which the mixed gas is ejected. A plurality is provided in a form different from the direction along the changing direction and the direction inclined toward the inner cylinder 14 as the partition wall W with respect to the heating distribution changing direction.
Moreover, as shown in FIG. 1, the fuel injection form change means V which can change the flame hole 60 which ejects mixed gas among several flame holes is provided.

改質用バーナ8について説明を加えると、図2及び図3に示すように、改質用バーナ8は、複数(この第1実施形態では6個)の直噴炎孔60sが等間隔で環状に並ぶ直噴炎孔列60Sと複数(この第1実施形態では12個)の傾斜噴出炎孔60tが等間隔で環状に並ぶ傾斜噴出炎孔列60Tを同心状に備えた円盤状のノズル部61と、混合ガスを直噴炎孔列60Sに供給するための直噴用流路62を形成する円筒状の内管63と、混合ガスを傾斜噴出炎孔列60Tに供給するための傾斜噴出用流路64を形成する円筒状の外管65等を一体的に組み付けて構成されている。   The reforming burner 8 will be described. As shown in FIGS. 2 and 3, the reforming burner 8 has a plurality of (six in the first embodiment) direct flame holes 60s that are annular at equal intervals. A disc-shaped nozzle portion having concentrically arranged inclined jet flame hole rows 60T arranged in an annular manner at equal intervals, and a plurality of (in this first embodiment, 12) inclined jet flame holes 60t are arranged in a ring shape. 61, a cylindrical inner pipe 63 forming a direct injection flow path 62 for supplying a mixed gas to the direct flame hole row 60S, and an inclined jet for supplying the mixed gas to the inclined jet flame row 60T. A cylindrical outer tube 65 and the like forming the use flow path 64 are integrally assembled.

各直噴炎孔60sは、その孔軸芯がノズル部61の軸心と平行になる状態で、ノズル部61に形成されて、混合ガスを加熱分布変更方向に沿う方向に噴出するように設けられている。
ノズル部61の先端の角部は、加熱分布変更方向に対して内筒14の側に傾斜するテーパ面を形成するように切り欠かれた形状に形成されている。そして、各傾斜噴出炎孔60tは、ノズル部61の先端外周部のテーパ面に開口する状態で、先端側の部分の孔軸芯が加熱分布変更方向に対して内筒14の側に傾斜するように、ノズル部61に形成されて、混合ガスを加熱分布変更方向に対して内筒14の側に傾斜する方向に噴出するように設けられている。
尚、直噴炎孔60s夫々の横断面積を合計した総横断面積と、複数の傾斜噴出炎孔60t夫々の横断面積を合計した総横断面積とは、ほぼ同等になるように構成されている。
Each direct flame hole 60s is formed in the nozzle part 61 in a state where the hole axis is parallel to the axis of the nozzle part 61, and is provided so as to eject the mixed gas in a direction along the heating distribution changing direction. It has been.
A corner portion at the tip of the nozzle portion 61 is formed in a shape that is notched so as to form a tapered surface that is inclined toward the inner cylinder 14 with respect to the heating distribution changing direction. Each inclined ejection flame hole 60t opens to the tapered surface of the outer peripheral portion of the tip of the nozzle portion 61, and the hole axis of the tip side portion is inclined toward the inner cylinder 14 with respect to the heating distribution changing direction. Thus, it is formed in the nozzle part 61 and is provided so as to eject the mixed gas in a direction inclined toward the inner cylinder 14 with respect to the heating distribution changing direction.
The total cross-sectional area obtained by adding up the cross-sectional areas of each of the direct flame holes 60s and the total cross-sectional area of adding up the cross-sectional areas of each of the plurality of inclined jet flame holes 60t are configured to be substantially equal.

内管63及び外管65は、同軸状に配設され、それらの先端にノズル部61が取り付けられ、それらの基端が蓋板66により閉塞されている。そして、内管63の内部に、複数の直噴炎孔60sに連通する直噴用流路62が形成され、内管63と外管65との間に、複数の傾斜噴出炎孔60tに連通する傾斜噴出用流路64が形成される。
又、点火プラグ67が、内管63の軸心を通って、蓋板66、内管63及びノズル部61を貫通する状態で設けられている。
更に、蓋板66には、直噴用流路62に連通する状態で、直噴用受入口68が取り付けられ、外管65における蓋板66により閉じられる側の端部に、傾斜噴出用流路64に連通する状態で、傾斜噴出用受入口69が取り付けられる。
The inner tube 63 and the outer tube 65 are arranged coaxially, the nozzle portion 61 is attached to the tip of the inner tube 63 and the outer tube 65, and the base ends thereof are closed by the lid plate 66. A direct-injection flow path 62 that communicates with the plurality of direct-injection flame holes 60 s is formed inside the inner tube 63, and communicates with the plurality of inclined ejection flame holes 60 t between the inner tube 63 and the outer tube 65. An inclined ejection channel 64 is formed.
A spark plug 67 is provided in a state of passing through the axis of the inner tube 63 and penetrating the cover plate 66, the inner tube 63 and the nozzle portion 61.
Further, a direct injection receiving port 68 is attached to the cover plate 66 in a state of communicating with the direct injection flow path 62, and an inclined jet flow is provided at an end of the outer tube 65 on the side closed by the cover plate 66. An inclined ejection inlet 69 is attached in a state of communicating with the path 64.

つまり、隔壁Wとしての内筒14の壁面における両端部14e,14eの並び方向(内筒14の軸心方向)に直交する方向、即ち、内筒14の周方向に沿う方向が、炎孔並び方向に相当し、複数の炎孔60として、内筒14の周方向に沿う炎孔並び方向に沿って列状に並んで、混合ガス(燃焼用燃料の一例)を加熱分布変更方向に沿う方向に噴出する複数の直噴炎孔60sと、炎孔並び方向に沿って列状に並んで、混合ガスを加熱分布変更方向に対して内筒14の側に傾斜する方向に噴出する複数の傾斜噴出炎孔60tが設けられている。   That is, the direction perpendicular to the arrangement direction of both end portions 14e and 14e (the axial center direction of the inner cylinder 14) on the wall surface of the inner cylinder 14 as the partition wall W, that is, the direction along the circumferential direction of the inner cylinder 14 is the flame hole arrangement. The direction of the mixed gas (an example of combustion fuel) along the heating distribution changing direction is arranged in a line along the flame hole alignment direction along the circumferential direction of the inner cylinder 14 as a plurality of flame holes 60. A plurality of direct-injection flame holes 60 s that are jetted in a row and a plurality of inclinations that are arranged in a line along the flame-hole arrangement direction and jet the mixed gas in a direction inclined toward the inner cylinder 14 with respect to the heating distribution change direction A jet flame hole 60t is provided.

図1に示すように、混合ガス供給路23が、直噴用分岐路23sと傾斜噴出用分岐路23tとに分岐され、直噴用分岐路23sが直噴用受入口68に接続され、傾斜噴出用分岐路23tが傾斜噴出用受入口69に接続されている。
又、直噴用分岐路23sには、その直噴用分岐路23sにおける混合ガスの通流を断続する直噴用断続弁Vsが設けられ、傾斜噴出用分岐路23tには、その傾斜噴出用分岐路23tにおける混合ガスの通流を断続する傾斜噴出用断続弁Vtが設けられている。
As shown in FIG. 1, the mixed gas supply path 23 is branched into a direct injection branch path 23s and an inclined jet branch path 23t, and the direct injection branch path 23s is connected to the direct injection inlet 68 and is inclined. The jet branch 23t is connected to the inclined jet receiving port 69.
The direct injection branch passage 23s is provided with a direct injection intermittent valve Vs for interrupting the flow of the mixed gas in the direct injection branch passage 23s, and the inclined injection branch passage 23t is provided for the inclined injection. An inclined ejection intermittent valve Vt for intermittently flowing the mixed gas in the branch passage 23t is provided.

そして、図4(a)に示すように、直噴用断続弁Vs及び傾斜噴出用断続弁Vtの両方を開く(以下、第1加熱パターンと記載する場合がある)と、混合ガスが直噴用流路62及び傾斜噴出用流路64を通流して、複数の直噴炎孔60sが環状の列状に並ぶ直噴炎孔列60S、及び、複数の傾斜噴出炎孔60tが列状に並ぶ傾斜噴出炎孔列60Tの両方から燃焼空間7sに噴出されることになる。
あるいは、図4(b)に示すように、直噴用断続弁Vsを開き、傾斜噴出用断続弁Vtを閉じる(以下、第2加熱パターンと記載する場合がある)と、混合ガスが直噴用流路62を通流して、直噴炎孔列60Sから燃焼空間7sに噴出されることになる。
あるいは、図4(c)に示すように、直噴用断続弁Vsを閉じ、傾斜噴出用断続弁Vtを開く(以下、第3加熱パターンと記載する場合がある)と、混合ガスが傾斜噴出用流路64を通流して、複数の傾斜噴出炎孔60tが列状に並ぶ傾斜噴出炎孔列60Tから燃焼空間7sに噴出されることになる。
Then, as shown in FIG. 4A, when both the direct injection intermittent valve Vs and the inclined ejection intermittent valve Vt are opened (hereinafter sometimes referred to as a first heating pattern), the mixed gas is directly injected. The direct flow flame hole row 60S in which the plurality of direct injection flame holes 60s are arranged in an annular row and the plurality of inclined jet flame holes 60t are arranged in a row. The gas is ejected from both of the aligned inclined ejection flame hole rows 60T into the combustion space 7s.
Alternatively, as shown in FIG. 4B, when the direct injection intermittent valve Vs is opened and the inclined ejection intermittent valve Vt is closed (hereinafter sometimes referred to as a second heating pattern), the mixed gas is directly injected. It will flow through the flow path 62 and will be ejected from the direct flame hole array 60S to the combustion space 7s.
Alternatively, as shown in FIG. 4 (c), when the direct injection intermittent valve Vs is closed and the inclined injection intermittent valve Vt is opened (hereinafter, sometimes referred to as a third heating pattern), the mixed gas is inclined. The plurality of inclined ejection flame holes 60t are ejected into the combustion space 7s from the inclined ejection flame hole array 60T in which the plurality of inclined ejection flame holes 60t are arranged in a row.

つまり、直噴用断続弁Vsと傾斜噴出用断続弁Vtとにより、直噴炎孔列60S及び傾斜噴出炎孔列60T夫々からの混合ガスの噴出を断続可能な燃料噴出切換手段が構成され、燃料噴出形態変更手段Vが、直噴用断続弁Vsと傾斜噴出用断続弁Vtとにより構成される。   That is, the direct injection intermittent valve Vs and the inclined injection intermittent valve Vt constitute fuel injection switching means capable of intermittently discharging the mixed gas from each of the direct injection flame hole row 60S and the inclined injection flame hole row 60T. The fuel injection form changing means V is constituted by a direct injection intermittent valve Vs and an inclined injection intermittent valve Vt.

図1に示すように、改質部6における加熱分布変更方向の一端側の領域、即ち、改質触媒層6cにおける上部領域Luの温度、加熱分布変更方向の中間の領域、即ち、改質触媒層6cにおける上下方向の中間領域Lmの温度、加熱分布変更方向の他端側の領域、即ち、改質触媒層6cにおける下部領域Lbの温度をそれぞれ検出すべく、上位温度センサTu、中間温度センサTm、下位温度センサTbが内筒14の外周面に近接させた状態で設けられている。   As shown in FIG. 1, the region at one end in the heating distribution changing direction in the reforming unit 6, that is, the temperature of the upper region Lu in the reforming catalyst layer 6c, the middle region in the heating distribution changing direction, that is, the reforming catalyst. In order to detect the temperature of the intermediate region Lm in the vertical direction in the layer 6c and the region on the other end side in the heating distribution change direction, that is, the temperature of the lower region Lb in the reforming catalyst layer 6c, the upper temperature sensor Tu and the intermediate temperature sensor Tm and the lower temperature sensor Tb are provided in a state of being close to the outer peripheral surface of the inner cylinder 14.

改質触媒層温度分布は、上位温度センサTu、中間温度センサTm及び下位温度センサTb夫々の検出温度からなる。
そして、改質装置Rの出荷前に、改質バーナ8を第1加熱パターンで燃焼させたときの、上位温度センサTu、中間温度センサTm及び下位温度センサTb夫々の検出温度からなる改質触媒層温度分布が、適正温度分布として運転制御部Cの記憶部(図示省略)に記憶されている。
尚、改質バーナ8を第1加熱パターンで燃焼させたときに、上位温度センサTu、中間温度センサTm及び下位温度センサTb夫々の検出温度からなる改質触媒層温度分布が極力均等になるように、改質用バーナ7の燃焼部7に対する上下方向での取付位置、及び、傾斜噴出炎孔60tの混合ガス噴出方向が設定されている。
The reforming catalyst layer temperature distribution is composed of detected temperatures of the upper temperature sensor Tu, the intermediate temperature sensor Tm, and the lower temperature sensor Tb.
Then, before the reformer R is shipped, the reforming catalyst comprising the detected temperatures of the upper temperature sensor Tu, the intermediate temperature sensor Tm, and the lower temperature sensor Tb when the reforming burner 8 is burned in the first heating pattern. The layer temperature distribution is stored in the storage unit (not shown) of the operation control unit C as an appropriate temperature distribution.
When the reforming burner 8 is burned in the first heating pattern, the reforming catalyst layer temperature distribution including the detected temperatures of the upper temperature sensor Tu, the intermediate temperature sensor Tm, and the lower temperature sensor Tb is made as uniform as possible. Further, the mounting position of the reforming burner 7 in the vertical direction with respect to the combustion part 7 and the mixed gas ejection direction of the inclined ejection flame hole 60t are set.

又、上位温度センサTu、中間温度センサTm及び下位温度センサTb夫々の検出温度に基づいて温度分布変化を検知する温度分布変化検知部Cdが、運転制御部Cを用いて構成されている。
具体的には、温度分布変化検知部Cdは、上位温度センサTuの検出温度が適正温度分布における温度よりも設定温度以上低くなると、改質部6における上部領域Luの温度が低下した温度分布変化を検知し、下位温度センサTbの検出温度が適正温度分布における温度よりも設定温度以上低くなると、改質部6における下部領域Lbの温度が低下した温度分布変化を検知する。
つまり、上位温度センサTu、中間温度センサTm及び下位温度センサTb、並びに、温度分布変化検知部Cdにより、温度分布変化検知手段Dが構成される。
Further, a temperature distribution change detection unit Cd that detects a temperature distribution change based on the detected temperatures of the upper temperature sensor Tu, the intermediate temperature sensor Tm, and the lower temperature sensor Tb is configured using the operation control unit C.
Specifically, the temperature distribution change detection unit Cd detects the temperature distribution change in which the temperature of the upper region Lu in the reforming unit 6 has decreased when the temperature detected by the upper temperature sensor Tu is lower than the temperature in the appropriate temperature distribution by a set temperature or more. When the detected temperature of the lower temperature sensor Tb is lower than the temperature in the appropriate temperature distribution by the set temperature or more, a temperature distribution change in which the temperature of the lower region Lb in the reforming unit 6 is detected is detected.
That is, the temperature distribution change detection means D is configured by the upper temperature sensor Tu, the intermediate temperature sensor Tm, the lower temperature sensor Tb, and the temperature distribution change detection unit Cd.

次に、改質用バーナ8による加熱分布変更方向での改質触媒層6cの加熱分布の変更形態について、説明する。
図4(a)に示すように、直噴用断続弁Vs及び傾斜噴出用断続弁Vtの両方を開いて、改質部6の改質触媒層6cを加熱する加熱パターン(以下、改質触媒層加熱パターンと記載する場合がある)を第1加熱パターンにすると、図5に示すように、加熱分布変更方向(上下方向)での加熱分布(即ち、加熱度合いの分布)は、上部領域Luの加熱度合い、中間領域Lmの加熱度合い、下部領域Lbの加熱度合いが、それぞれ、「中」、「高」、「中」となる加熱分布となる。
あるいは、図4(b)に示すように、直噴用断続弁Vsを開き、傾斜噴出用断続弁Vtを閉じて、改質触媒層加熱パターンを第2加熱パターンにすると、図5に示すように、加熱分布変更方向での加熱分布は、上部領域Luの加熱度合い、中間領域Lmの加熱度合い、下部領域Lbの加熱度合いが、それぞれ、「低」、「中」、「高」となる加熱分布となる。
あるいは、図4(c)に示すように、直噴用断続弁Vsを閉じ、傾斜噴出用断続弁Vtを開いて、改質触媒層加熱パターンを第3加熱パターンにすると、図5に示すように、加熱分布変更方向での加熱分布は、上部領域Luの加熱度合い、中間領域Lmの加熱度合い、下部領域Lbの加熱度合いが、それぞれ、「高」、「中」、「低」となる加熱分布となる。
つまり、第1加熱パターンにすると、改質用バーナ8による加熱分布変更方向での改質触媒層6cの加熱分布が最も均等になる。
Next, a description will be given of how the heating distribution of the reforming catalyst layer 6c is changed in the heating distribution changing direction by the reforming burner 8. FIG.
As shown in FIG. 4A, a heating pattern for heating the reforming catalyst layer 6c of the reforming section 6 by opening both the direct injection intermittent valve Vs and the inclined ejection intermittent valve Vt (hereinafter referred to as a reforming catalyst). When the first heating pattern is used as the first heating pattern, the heating distribution in the heating distribution changing direction (vertical direction) (that is, the distribution of the heating degree) is the upper region Lu as shown in FIG. , The heating degree of the intermediate region Lm, and the heating degree of the lower region Lb are heating distributions of “medium”, “high”, and “medium”, respectively.
Alternatively, as shown in FIG. 4B, when the direct injection intermittent valve Vs is opened, the inclined ejection intermittent valve Vt is closed, and the reforming catalyst layer heating pattern is changed to the second heating pattern, as shown in FIG. Furthermore, the heating distribution in the heating distribution changing direction is such that the heating degree of the upper region Lu, the heating degree of the intermediate region Lm, and the heating degree of the lower region Lb are “low”, “medium”, and “high”, respectively. Distribution.
Alternatively, as shown in FIG. 4C, when the direct injection intermittent valve Vs is closed, the inclined ejection intermittent valve Vt is opened, and the reforming catalyst layer heating pattern is changed to the third heating pattern, as shown in FIG. Furthermore, the heating distribution in the heating distribution changing direction is such that the heating degree of the upper region Lu, the heating degree of the intermediate region Lm, and the heating degree of the lower region Lb are “high”, “medium”, and “low”, respectively. Distribution.
That is, when the first heating pattern is used, the heating distribution of the reforming catalyst layer 6c in the direction of changing the heating distribution by the reforming burner 8 becomes the most uniform.

次に、図1、図11及び図12を参照にして、運転制御部Cの制御動作について、簡単に説明する。
運転制御部Cは、マイクロコンピュータ等を用いて構成され、所定の制御プログラムを実行することにより、改質装置Rを備えた水素含有ガス生成装置P、及び、燃料電池G等の運転を制御するように構成されている。
運転制御部Cは、燃料電池Gの発電出力に応じた量の水素含有ガスを生成して燃料電池Gに供給する通常運転では、燃料電池Gの発電出力に応じて、原燃料ガスの供給量、改質用水の供給量を夫々調整すべく、原燃料ブロア32、改質用水ポンプ34を制御する。
並びに、運転制御部Cは、通常運転では、直噴用断続弁Vs及び傾斜噴出用断続弁Vtの両方を開いて、改質触媒層加熱パターンを第1加熱パターンとし、並びに、中間温度センサTmの検出温度が所定の改質処理用の設定温度になるように、改質用バーナ8への燃焼用ガス燃料の供給量を調整すべく、燃焼用燃料ブロア10を制御すると共に、改質用バーナ8へ供給される燃焼用空気の供給量を改質用バーナ8への燃焼用ガス燃料の供給量に応じた量に調整すべく、燃焼用空気ブロア12を制御する。
Next, a control operation of the operation control unit C will be briefly described with reference to FIGS.
The operation control unit C is configured using a microcomputer or the like, and controls operations of the hydrogen-containing gas generation device P including the reformer R, the fuel cell G, and the like by executing a predetermined control program. It is configured as follows.
In normal operation in which the operation control unit C generates a hydrogen-containing gas in an amount corresponding to the power generation output of the fuel cell G and supplies the hydrogen-containing gas to the fuel cell G, the supply amount of the raw fuel gas according to the power generation output of the fuel cell G The raw fuel blower 32 and the reforming water pump 34 are controlled to adjust the supply amount of the reforming water.
In normal operation, the operation control unit C opens both the direct injection intermittent valve Vs and the inclined injection intermittent valve Vt, sets the reforming catalyst layer heating pattern as the first heating pattern, and the intermediate temperature sensor Tm. The combustion fuel blower 10 is controlled and the reforming fuel blower 10 is controlled so as to adjust the supply amount of the combustion gas fuel to the reforming burner 8 so that the detected temperature becomes the predetermined reforming setting temperature. The combustion air blower 12 is controlled to adjust the supply amount of the combustion air supplied to the burner 8 to an amount corresponding to the supply amount of the combustion gas fuel to the reforming burner 8.

燃料電池Gの発電出力に応じて、オフガス路24を通して改質用バーナ8に供給される燃焼用ガス燃料としてのオフガスの供給量が分かり、燃焼用燃料ブロア10の制御情報に基づいて、燃焼用燃料ブロア10により供給される燃焼用ガス燃料の供給量が分かる。
そこで、改質用バーナ8に供給されるオフガスの供給量、及び、燃焼用燃料ブロア10による燃焼用ガス燃料の供給量に応じて、それらを完全燃焼させるための燃焼用空気の量を求めるための燃焼用空気量導出情報がマップ情報等により予め設定されて、運転制御部Cの記憶部に記憶されている。
そして、運転制御部Cは、燃焼用空気量導出情報に基づいて、改質用バーナ8に供給されるオフガスの供給量、及び、燃焼用燃料ブロア10による燃焼用ガス燃料の供給量に応じた燃焼用空気の供給量を求めて、求めた供給量の燃焼用空気を供給すべく、燃焼用空気ブロア12を制御する。
According to the power generation output of the fuel cell G, the supply amount of off-gas as combustion gas fuel supplied to the reforming burner 8 through the off-gas passage 24 is known, and based on the control information of the combustion fuel blower 10, The supply amount of the combustion gas fuel supplied by the fuel blower 10 is known.
Therefore, according to the supply amount of off gas supplied to the reforming burner 8 and the supply amount of combustion gas fuel by the combustion fuel blower 10, the amount of combustion air for completely burning them is obtained. The combustion air amount derivation information is preset by map information or the like and stored in the storage unit of the operation control unit C.
Then, the operation control unit C corresponds to the supply amount of the off gas supplied to the reforming burner 8 and the supply amount of the combustion gas fuel by the combustion fuel blower 10 based on the combustion air amount derivation information. The combustion air blower 12 is controlled so as to determine the supply amount of the combustion air and supply the calculated supply amount of combustion air.

温度分布変化検知部Cdは、通常運転中、上位温度センサTu、中間温度センサTm及び下位温度センサTb夫々の検出温度を監視し、上位温度センサTuの検出温度が適正温度分布における温度よりも設定温度以上低くなると、改質部6の上部領域Luの温度が低下した温度分布変化を検知し、下位温度センサTbの検出温度が適正温度分布における温度よりも設定温度以上低くなると、改質部6の下部領域Lbの温度が低下した温度分布変化を検知する。
運転制御部Cは、温度分布変化検知部Cdにより、改質部6の下部領域Lbの温度が低下した温度分布変化が検知されると、直噴用断続弁Vsを開き、傾斜噴出用断続弁Vtを閉じて、改質触媒層加熱パターンを第2加熱パターンに変更する。
すると、改質部6の改質触媒層6cを加熱する加熱パターンは、下部領域Lbの加熱度合いが高い加熱パターンになるので、改質部6の下部領域Lbの温度が低下した温度分布が改善されて、適正温度分布に近づく。
The temperature distribution change detection unit Cd monitors the detected temperatures of the upper temperature sensor Tu, the intermediate temperature sensor Tm, and the lower temperature sensor Tb during normal operation, and the detected temperature of the upper temperature sensor Tu is set higher than the temperature in the appropriate temperature distribution. When the temperature is lower than the temperature, the temperature distribution change in which the temperature of the upper region Lu of the reforming unit 6 is decreased is detected. When the temperature detected by the lower temperature sensor Tb is lower than the temperature in the appropriate temperature distribution, the reforming unit 6 is detected. The temperature distribution change in which the temperature of the lower region Lb is decreased is detected.
When the temperature distribution change detection unit Cd detects a temperature distribution change in which the temperature of the lower region Lb of the reforming unit 6 is decreased, the operation control unit C opens the direct injection intermittent valve Vs, and the inclined ejection intermittent valve. Vt is closed and the reforming catalyst layer heating pattern is changed to the second heating pattern.
Then, since the heating pattern for heating the reforming catalyst layer 6c of the reforming unit 6 is a heating pattern in which the lower region Lb is heated to a high degree, the temperature distribution in which the temperature of the lower region Lb of the reforming unit 6 is reduced is improved. It approaches the appropriate temperature distribution.

又、運転制御部Cは、温度分布変化検知部Cdにより、改質部6の上部領域Luの温度が低下した温度分布変化が検知されると、直噴用断続弁Vsを閉じ、傾斜噴出用断続弁Vtを開いて、改質触媒層加熱パターンを第3加熱パターンに変更する。
すると、改質部6の改質触媒層6cを加熱する加熱パターンは、上部領域Luの加熱度合いが高い加熱パターンになるので、改質部6の上部領域Luの温度が低下した温度分布が改善されて、適正温度分布に近づく。
Further, when the temperature distribution change detection unit Cd detects a temperature distribution change in which the temperature of the upper region Lu of the reforming unit 6 is decreased, the operation control unit C closes the direct injection intermittent valve Vs and performs the inclined jetting. The intermittent valve Vt is opened, and the reforming catalyst layer heating pattern is changed to the third heating pattern.
Then, since the heating pattern for heating the reforming catalyst layer 6c of the reforming unit 6 is a heating pattern in which the heating degree of the upper region Lu is high, the temperature distribution in which the temperature of the upper region Lu of the reforming unit 6 is reduced is improved. It approaches the appropriate temperature distribution.

〔第2実施形態〕
以下、本発明の第2実施形態を説明するが、この第2実施形態は、改質用バーナ8による加熱分布を変更するための構成の別実施形態を説明するものであり、その他の水素含有ガス生成装置Pの構成は上記の第1実施形態と同様である。従って、第1実施形態と同じ構成要素や同じ作用を有する構成要素については、重複説明を避けるために、同じ符号を付すことにより説明を省略し、主として、改質用バーナ8について説明する。
[Second Embodiment]
Hereinafter, a second embodiment of the present invention will be described. This second embodiment describes another embodiment of a configuration for changing the heating distribution by the reforming burner 8, and includes other hydrogen-containing components. The configuration of the gas generator P is the same as that of the first embodiment. Accordingly, the same constituent elements as those in the first embodiment and the constituent elements having the same action are denoted by the same reference numerals in order to avoid duplicate description, and the reforming burner 8 will be mainly described.

図6〜図8に示すように、この第2実施形態では、改質用バーナ8は、複数(この第2実施形態では6個)の前方炎孔60fが等間隔で環状に並ぶ前方炎孔列60Fを備えた円盤状の前方ノズル部71と、その前方ノズル71よりも加熱分布変更方向で後方(上方)に位置して、複数(この第2実施形態では8個)の中間炎孔60mが等間隔で環状に並ぶ中間炎孔列60Mを備えたリング状の中間ノズル部72と、その中間ノズル部72よりも加熱分布変更方向で後方(上方)に位置して、複数(この第2実施形態では12個)の後方炎孔60rが等間隔で環状に並ぶ後方炎孔列60Rを備えたリング状の後方ノズル部73とを備えて構成されている。   As shown in FIGS. 6 to 8, in this second embodiment, the reforming burner 8 has a plurality of (six in this second embodiment) front flame holes 60 f arranged in a ring at regular intervals. A disc-shaped front nozzle portion 71 provided with a row 60F, and a plurality (eight in this second embodiment) of intermediate flame holes 60m located rearward (upward) in the heating distribution changing direction from the front nozzle 71. Ring-shaped intermediate nozzle part 72 provided with intermediate flame hole rows 60M arranged in a ring at equal intervals, and a plurality (this second) is positioned rearward (upward) in the heating distribution changing direction with respect to the intermediate nozzle part 72. In the embodiment, 12) rear flame holes 60r are configured to include a ring-shaped rear nozzle portion 73 provided with a rear flame hole row 60R arranged in an annular shape at equal intervals.

更に、改質用バーナ8は、混合ガスを前方炎孔列60Fに供給する前方炎孔用流路74を形成する円筒状の内管75、混合ガスを中間炎孔列60Mに供給する中間炎孔用流路76を内管75とにより形成する中管77、及び、混合ガスを後方炎孔列60Rに供給する後方炎孔用流路78を中管77とにより形成する外管79を備えている。   Further, the reforming burner 8 includes a cylindrical inner pipe 75 forming a front flame hole flow path 74 for supplying the mixed gas to the front flame hole array 60F, and an intermediate flame for supplying the mixed gas to the intermediate flame hole array 60M. An intermediate pipe 77 that forms the hole flow path 76 with the inner pipe 75, and an outer pipe 79 that forms the rear flame hole flow path 78 that supplies the mixed gas to the rear flame hole row 60 </ b> R with the intermediate pipe 77. ing.

図7に示すように、各前方炎孔60fは、孔軸芯が前方ノズル部71の軸心と平行になる状態で、前方ノズル部71に形成され、各中間炎孔60mは、孔軸芯が中間ノズル部72の軸心と平行になる状態で、中間ノズル部72に形成され、各後方炎孔60rは、孔軸芯が後方ノズル部73の軸心と平行になる状態で、後方ノズル部73に形成されて、各前方炎孔60f、各中間炎孔60m及び各後方炎孔60r共に、混合ガスを加熱分布変更方向に沿う方向に噴出するように設けられている。
尚、複数の前方炎孔60f夫々の横断面積を合計した総横断面積と、複数の中間炎孔60m夫々の横断面積を合計した総横断面積と、複数の後方炎孔60r夫々の横断面積を合計した総横断面積とは、ほぼ同等になるように構成されている。
As shown in FIG. 7, each front flame hole 60f is formed in the front nozzle part 71 in a state where the hole axis is parallel to the axis of the front nozzle part 71, and each intermediate flame hole 60m has a hole axis. Are formed in the intermediate nozzle portion 72 in a state parallel to the axial center of the intermediate nozzle portion 72, and each rear flame hole 60r has a rear nozzle in a state in which the hole axis is parallel to the axial center of the rear nozzle portion 73. Each of the front flame holes 60f, the intermediate flame holes 60m, and the rear flame holes 60r is formed in the portion 73 so as to eject the mixed gas in a direction along the heating distribution changing direction.
It should be noted that the total cross-sectional area obtained by summing the cross-sectional areas of each of the plurality of front flame holes 60f, the total cross-sectional area obtained by summing the cross-sectional areas of each of the plurality of intermediate flame holes 60m, and the cross-sectional area of each of the plurality of rear flame holes 60r. The total cross-sectional area is configured to be approximately equal.

内管75の先端に前方ノズル部71が同軸状で取り付けられ、中間ノズル部72が、内管75における前方ノズル部71よりも後方側(上方)に同軸状で外嵌状に取り付けられ、その中間ノズル部72に、中管77が、内管75の外周部に同軸状に配設された状態で接続されている。
又、後方ノズル部73が、中管77における中間ノズル部72よりも後方側(上方)に同軸状で外嵌状に取り付けられ、その後方ノズル部73に、外管79が、中管77の外周部に同軸状に配設された状態で接続されている。
更に、内管75、中管77及び外管79の基端が、蓋板80により一括に閉塞されている。
A front nozzle portion 71 is coaxially attached to the tip of the inner tube 75, and an intermediate nozzle portion 72 is coaxially attached to the rear side (upward) of the front nozzle portion 71 in the inner tube 75 in an outer fitting shape. An intermediate tube 77 is connected to the intermediate nozzle portion 72 in a state of being coaxially disposed on the outer peripheral portion of the inner tube 75.
A rear nozzle portion 73 is coaxially and externally attached to the rear side (upward) of the intermediate nozzle portion 72 in the middle tube 77, and an outer tube 79 is attached to the rear nozzle portion 73 of the middle tube 77. It is connected to the outer periphery in a state of being coaxially disposed.
Further, the base ends of the inner tube 75, the middle tube 77 and the outer tube 79 are collectively closed by the lid plate 80.

そして、内管75の内部に、複数の前方炎孔60fに連通する前方炎孔用流路74が形成され、内管75と中管77との間に、複数の中間炎孔60mに連通する中間炎孔用流路76が形成され、中管77と外管79との間に、複数の後方炎孔60rに連通する後方炎孔用流路78が形成される。
又、前方用点火プラグ81が、内管75の軸心を通って、蓋板80、内管75及び前方ノズル部71を貫通する状態で設けられ、後方用点火プラグ82が、後方ノズル部73の前方に突出させた状態で、外筒79の外周面に当接させた状態で設けられている。
更に、蓋板80には、前方炎孔用流路74に連通する状態で、前方炎孔用受入口83が取り付けられ、中間炎孔用流路76に連通する状態で、中間炎孔用受入口84が取り付けられ、後方炎孔用流路78に連通する状態で、後方炎孔用受入口85が取り付けられている。
A forward flame hole flow path 74 communicating with the plurality of front flame holes 60 f is formed inside the inner pipe 75, and communicated with the plurality of intermediate flame holes 60 m between the inner pipe 75 and the middle pipe 77. An intermediate flame hole channel 76 is formed, and a rear flame hole channel 78 communicating with the plurality of rear flame holes 60 r is formed between the middle tube 77 and the outer tube 79.
A front ignition plug 81 is provided in a state of passing through the axis of the inner tube 75 and penetrating the cover plate 80, the inner tube 75 and the front nozzle portion 71, and a rear ignition plug 82 is provided in the rear nozzle portion 73. It is provided in a state where it is brought into contact with the outer peripheral surface of the outer cylinder 79 in a state of protruding forward.
Further, the lid plate 80 is provided with a front flame hole receiving port 83 in a state communicating with the front flame hole channel 74, and in a state communicating with the intermediate flame hole channel 76. In the state where the inlet 84 is attached and communicates with the rear flame hole channel 78, the rear flame hole inlet 85 is attached.

つまり、複数の炎孔60として、内筒14の周方向に沿う炎孔並び方向に沿って列状に並んで、混合ガス(燃焼用燃料の一例)を加熱分布変更方向に沿う方向に噴出する複数の炎孔60(即ち、複数の前方炎孔60f、複数の中間炎孔60m、複数の後方炎孔60rからなる前方炎孔列80F、中間炎孔列80M、後方炎孔列80Rが、加熱分布変更方向に沿って設けられている。
尚、前方炎孔列80F又は中間炎孔列80Mには、前方用点火プラグ81により点火し、後方炎孔列80Rには、後方用点火プラグ82により点火する。
That is, as a plurality of flame holes 60, the mixed gas (an example of combustion fuel) is ejected in a direction along the heating distribution changing direction, arranged in a line along the flame hole arrangement direction along the circumferential direction of the inner cylinder 14. A plurality of flame holes 60 (ie, a plurality of front flame holes 60f, a plurality of intermediate flame holes 60m, a front flame hole row 80F including a plurality of rear flame holes 60r, an intermediate flame hole row 80M, and a rear flame hole row 80R are heated. It is provided along the distribution change direction.
The front flame hole row 80F or the intermediate flame hole row 80M is ignited by the front ignition plug 81, and the rear flame hole row 80R is ignited by the rear ignition plug 82.

図6に示すように、混合ガス供給路23が、前方炎孔用分岐路23fと、中間炎孔用分岐路23mと、後方炎孔用分岐路23rとに分岐され、前方炎孔用分岐路23fが前方炎孔用受入口83に接続され、中間炎孔用分岐路23mが中間炎孔用受入口84に接続され、後方炎孔用分岐路23rが後方炎孔用受入口85に接続されている。
又、前方炎孔用分岐路23fには、その前方炎孔用分岐路23fにおける混合ガスの通流を断続する前方炎孔用断続弁Vf設けられ、中間炎孔用分岐路23mには、その中間炎孔用分岐路23mにおける混合ガスの通流を断続する中間炎孔用断続弁Vmが設けられ、後方炎孔用分岐路23rには、その後方炎孔用分岐路23rにおける混合ガスの通流を断続する後方炎孔用断続弁Vrが設けられている。
As shown in FIG. 6, the mixed gas supply path 23 is branched into a front flame hole branch path 23f, an intermediate flame hole branch path 23m, and a rear flame hole branch path 23r. 23 f is connected to the front flame hole inlet 83, the intermediate flame hole branch 23 m is connected to the intermediate flame hole inlet 84, and the rear flame hole branch 23 r is connected to the rear flame hole inlet 85. ing.
Further, the front flame hole branch 23f is provided with a front flame hole interrupting valve Vf for interrupting the flow of the mixed gas in the front flame hole branch 23f. An intermediate flame hole interrupting valve Vm is provided for interrupting the flow of the mixed gas in the intermediate flame hole branch 23m. The rear flame hole branch 23r is connected to the mixed gas in the rear flame hole branch 23r. A rear flame hole interrupting valve Vr for interrupting the flow is provided.

そして、図9(a)に示すように、前方炎孔用断続弁Vf、中間炎孔用断続弁Vm、後方炎孔用断続弁Vrの全てを開く(以下、第1加熱パターンと記載する場合がある)と、混合ガスが前方炎孔用流路74、中間炎孔用流路76、後方炎孔用流路78を通流して、前方炎孔列60F、中間炎孔列60M、後方炎孔列60Rから燃焼空間7sに噴出されることになる。
図9(b)に示すように、前方炎孔用断続弁Vf、中間炎孔用断続弁Vmを開き、後方炎孔用断続弁Vrを閉じる(以下、第2加熱パターンと記載する場合がある)と、混合ガスが前方炎孔用流路74、中間炎孔用流路76を通流して、前方炎孔列60F、中間炎孔列60Mから燃焼空間7sに噴出されることになる。
図9(c)に示すように、前方炎孔用断続弁Vfを開き、中間炎孔用断続弁Vm、後方炎孔用断続弁Vrを閉じる(以下、第3加熱パターンと記載する場合がある)と、混合ガスが前方炎孔用流路74のみを通流して、前方炎孔列60Fのみから燃焼空間7sに噴出されることになる。
Then, as shown in FIG. 9A, all of the forward flame hole intermittent valve Vf, the intermediate flame hole intermittent valve Vm, and the rear flame hole intermittent valve Vr are opened (hereinafter referred to as a first heating pattern). The mixed gas flows through the front flame hole channel 74, the intermediate flame hole channel 76, and the rear flame hole channel 78, so that the front flame hole row 60F, the intermediate flame hole row 60M, and the rear flame. It will be ejected from the hole row 60R to the combustion space 7s.
As shown in FIG. 9B, the forward flame hole intermittent valve Vf and the intermediate flame hole intermittent valve Vm are opened, and the rear flame hole intermittent valve Vr is closed (hereinafter referred to as a second heating pattern in some cases). ), The mixed gas flows through the front flame hole channel 74 and the intermediate flame hole channel 76, and is ejected from the front flame hole row 60F and the intermediate flame hole row 60M into the combustion space 7s.
As shown in FIG. 9 (c), the front flame hole intermittent valve Vf is opened, and the intermediate flame hole intermittent valve Vm and the rear flame hole intermittent valve Vr are closed (hereinafter sometimes referred to as a third heating pattern). ), The mixed gas flows only through the front flame hole channel 74 and is ejected from only the front flame hole row 60F into the combustion space 7s.

図9(d)に示すように、前方炎孔用断続弁Vfを閉じ、中間炎孔用断続弁Vm、後方炎孔用断続弁Vrを開く(以下、第4加熱パターンと記載する場合がある)と、混合ガスが中間炎孔用流路76、後方炎孔用流路78を通流して、中間炎孔列60M、後方炎孔列60Rから燃焼空間7sに噴出されることになる。
図9(e)に示すように、前方炎孔用断続弁Vf、中間炎孔用断続弁Vmを閉じ、後方炎孔用断続弁Vrを開く(以下、第5加熱パターンと記載する場合がある)と、混合ガスが後方炎孔用流路78のみを通流して、後方炎孔列60Rのみから燃焼空間7sに噴出されることになる。
As shown in FIG. 9 (d), the front flame hole intermittent valve Vf is closed, and the intermediate flame hole intermittent valve Vm and the rear flame hole intermittent valve Vr are opened (hereinafter sometimes referred to as a fourth heating pattern). ), The mixed gas flows through the intermediate flame hole channel 76 and the rear flame hole channel 78, and is ejected from the intermediate flame hole row 60M and the rear flame hole row 60R into the combustion space 7s.
As shown in FIG. 9 (e), the front flame hole intermittent valve Vf and the intermediate flame hole intermittent valve Vm are closed and the rear flame hole intermittent valve Vr is opened (hereinafter may be referred to as a fifth heating pattern). ), The mixed gas flows only through the rear flame hole channel 78 and is ejected from only the rear flame hole row 60R into the combustion space 7s.

つまり、前方炎孔用断続弁Vf、中間炎孔用断続弁Vm及び後方炎孔用断続弁Vrにより、前方炎孔列60F、中間炎孔列60M及び後方炎孔列60R夫々からの混合ガスの噴出を断続可能な燃料噴出切換手段が構成され、燃料噴出形態変更手段Vが、前方炎孔用断続弁Vf、中間炎孔用断続弁Vm及び後方炎孔用断続弁Vrにより構成される。   That is, the mixed gas from each of the front flame hole row 60F, the intermediate flame hole row 60M, and the rear flame hole row 60R is caused by the front flame hole interruption valve Vf, the intermediate flame hole interruption valve Vm, and the rear flame hole interruption valve Vr. The fuel injection switching means capable of intermittently injecting the fuel is constituted, and the fuel injection form changing means V is constituted by the forward flame hole intermittent valve Vf, the intermediate flame hole intermittent valve Vm, and the rear flame hole intermittent valve Vr.

図6に示すように、上記の第1実施形態と同様に、上位温度センサTu、中間温度センサTm、下位温度センサTbが内筒14の外周面に近接させた状態で設けられ、改質触媒層温度分布は、上位温度センサTu、中間温度センサTm及び下位温度センサTb夫々の検出温度からなる。
そして、改質装置Rの出荷前に、改質用バーナ8を第1加熱パターンで燃焼させたときの、上位温度センサTu、中間温度センサTm及び下位温度センサTb夫々の検出温度からなる改質触媒層温度分布が、適正温度分布として運転制御部Cの記憶部(図示省略)に記憶されている。
尚、改質用バーナ8を第1加熱パターンで燃焼させたときに、上位温度センサTu、中間温度センサTm及び下位温度センサTb夫々の検出温度からなる改質触媒層温度分布が極力均等になるように、改質用バーナ7の燃焼部7に対する上下方向での取付位置、並びに、改質用バーナ7における前方ノズル部71、中間ノズル部72及び後方ノズル部73夫々の上下方向での取付位置が設定されている。
As shown in FIG. 6, as in the first embodiment, the upper temperature sensor Tu, the intermediate temperature sensor Tm, and the lower temperature sensor Tb are provided in a state of being close to the outer peripheral surface of the inner cylinder 14, and the reforming catalyst The layer temperature distribution is composed of detected temperatures of the upper temperature sensor Tu, the intermediate temperature sensor Tm, and the lower temperature sensor Tb.
Then, before the reformer R is shipped, the reformer composed of the detected temperatures of the upper temperature sensor Tu, the intermediate temperature sensor Tm, and the lower temperature sensor Tb when the reforming burner 8 is burned in the first heating pattern. The catalyst layer temperature distribution is stored in the storage unit (not shown) of the operation control unit C as an appropriate temperature distribution.
When the reforming burner 8 is burned in the first heating pattern, the reforming catalyst layer temperature distribution including the detected temperatures of the upper temperature sensor Tu, the intermediate temperature sensor Tm, and the lower temperature sensor Tb becomes as uniform as possible. As described above, the mounting position of the reforming burner 7 in the vertical direction with respect to the combustion section 7 and the mounting positions of the front nozzle section 71, the intermediate nozzle section 72, and the rear nozzle section 73 in the reforming burner 7 in the vertical direction. Is set.

又、上記の第1実施形態と同様に、上位温度センサTu、中間温度センサTm及び下位温度センサTb夫々の検出温度に基づいて温度分布変化を検知する温度分布変化検知部Cdが、運転制御部Cを用いて構成され、上位温度センサTu、中間温度センサTm及び下位温度センサTb、並びに、温度分布変化検知部Cdにより、温度分布変化検知手段Dが構成される。   Similarly to the first embodiment, the temperature distribution change detection unit Cd that detects the temperature distribution change based on the detected temperatures of the upper temperature sensor Tu, the intermediate temperature sensor Tm, and the lower temperature sensor Tb includes an operation control unit. The temperature distribution change detection means D is configured by the upper temperature sensor Tu, the intermediate temperature sensor Tm, the lower temperature sensor Tb, and the temperature distribution change detection unit Cd.

次に、改質用バーナ8による加熱分布変更方向での改質触媒層6cの加熱分布の変更形態について、説明する。
図9(a)に示すように、前方炎孔用断続弁Vf、中間炎孔用断続弁Vm、後方炎孔用断続弁Vrの全てを開いて、改質触媒層加熱パターンを第1加熱パターンにすると、図10に示すように、加熱分布変更方向(上下方向)での加熱分布(即ち、加熱度合いの分布)は、上部領域Luの加熱度合い、中間領域Lmの加熱度合い、下部領域Lbの加熱度合いが、それぞれ、「高」、「高」、「高」となる加熱分布となる。
図9(b)に示すように、前方炎孔用断続弁Vf、中間炎孔用断続弁Vmを開き、後方炎孔用断続弁Vrを閉じて、改質触媒層加熱パターンを第2加熱パターンにすると、図10に示すように、加熱分布変更方向での加熱分布は、上部領域Luの加熱度合い、中間領域Lmの加熱度合い、下部領域Lbの加熱度合いが、それぞれ、「低」、「高」、「高」となる加熱分布となる。
Next, a description will be given of how the heating distribution of the reforming catalyst layer 6c is changed in the heating distribution changing direction by the reforming burner 8. FIG.
As shown in FIG. 9A, all of the forward flame hole intermittent valve Vf, the intermediate flame hole intermittent valve Vm, and the rear flame hole intermittent valve Vr are opened, and the reforming catalyst layer heating pattern is changed to the first heating pattern. Then, as shown in FIG. 10, the heating distribution (that is, the distribution of the heating degree) in the heating distribution changing direction (up and down direction) includes the heating degree of the upper region Lu, the heating degree of the intermediate region Lm, and the lower region Lb. The heating distributions are “high”, “high”, and “high”, respectively.
As shown in FIG. 9B, the forward flame hole intermittent valve Vf and the intermediate flame hole intermittent valve Vm are opened, the rear flame hole intermittent valve Vr is closed, and the reforming catalyst layer heating pattern is changed to the second heating pattern. Then, as shown in FIG. 10, the heating distribution in the heating distribution changing direction is such that the heating degree of the upper region Lu, the heating degree of the intermediate region Lm, and the heating degree of the lower region Lb are “low” and “high”, respectively. ”And“ High ”.

図9(c)に示すように、前方炎孔用断続弁Vfを開き、中間炎孔用断続弁Vm、後方炎孔用断続弁Vrを閉じて、改質触媒層加熱パターンを第3加熱パターンにすると、図10に示すように、加熱分布変更方向での加熱分布は、上部領域Luの加熱度合い、中間領域Lmの加熱度合い、下部領域Lbの加熱度合いが、それぞれ、「低、「低」、「高」となる加熱分布となる。
図9(d)に示すように、前方炎孔用断続弁Vfを閉じ、中間炎孔用断続弁Vm、後方炎孔用断続弁Vrを開いて、改質触媒層加熱パターンを第4加熱パターンにすると、図10に示すように、加熱分布変更方向での加熱分布は、上部領域Luの加熱度合い、中間領域Lmの加熱度合い、下部領域Lbの加熱度合いが、それぞれ、「高、「高」、「低」となる加熱分布となる。
図9(e)に示すように、前方炎孔用断続弁Vf、中間炎孔用断続弁Vmを閉じ、後方炎孔用断続弁Vrを開いて、改質触媒層加熱パターンを第5加熱パターンにすると、図10に示すように、加熱分布変更方向での加熱分布は、上部領域Luの加熱度合い、中間領域Lmの加熱度合い、下部領域Lbの加熱度合いが、それぞれ、「高、「低」、「低」となる加熱分布となる。
つまり、第1加熱パターンにすると、改質用バーナ8による加熱分布変更方向での改質触媒層6cの加熱分布が最も均等になる。
As shown in FIG. 9C, the forward flame hole intermittent valve Vf is opened, the intermediate flame hole intermittent valve Vm and the rear flame hole intermittent valve Vr are closed, and the reforming catalyst layer heating pattern is changed to the third heating pattern. Then, as shown in FIG. 10, the heating distribution in the heating distribution changing direction is such that the heating degree of the upper region Lu, the heating degree of the intermediate region Lm, and the heating degree of the lower region Lb are “low” and “low”, respectively. The heating distribution becomes “high”.
As shown in FIG. 9D, the forward flame hole intermittent valve Vf is closed, the intermediate flame hole intermittent valve Vm and the rear flame hole intermittent valve Vr are opened, and the reforming catalyst layer heating pattern is changed to the fourth heating pattern. Then, as shown in FIG. 10, the heating distribution in the heating distribution changing direction is such that the heating degree of the upper region Lu, the heating degree of the intermediate region Lm, and the heating degree of the lower region Lb are “high” and “high”, respectively. The heating distribution becomes “low”.
As shown in FIG. 9 (e), the forward flame hole intermittent valve Vf and the intermediate flame hole intermittent valve Vm are closed, the rear flame hole intermittent valve Vr is opened, and the reforming catalyst layer heating pattern is changed to the fifth heating pattern. Then, as shown in FIG. 10, the heating distribution in the heating distribution changing direction is such that the heating degree of the upper region Lu, the heating degree of the intermediate region Lm, and the heating degree of the lower region Lb are “high” and “low”, respectively. The heating distribution becomes “low”.
That is, when the first heating pattern is used, the heating distribution of the reforming catalyst layer 6c in the direction of changing the heating distribution by the reforming burner 8 becomes the most uniform.

次に、運転制御部Cの制御動作について、簡単に説明する。
運転制御部Cは、第1実施形態と同様に通常運転を実行し、その通常運転では、前方炎孔用断続弁Vf、中間炎孔用断続弁Vm、後方炎孔用断続弁Vrの全てを開いて、改質触媒層加熱パターンを第1加熱パターンとし、中間温度センサTmの検出温度が所定の改質処理用の設定温度になるように、改質用バーナ8への燃焼用ガス燃料の供給量を調整すべく、燃焼用燃料ブロア10を制御すると共に、改質用バーナ8へ供給される燃焼用空気の供給量を改質用バーナ8への燃焼用ガス燃料の供給量に応じた量に調整すべく、燃焼用空気ブロア12を制御する。
Next, the control operation of the operation control unit C will be briefly described.
The operation control unit C executes normal operation in the same manner as in the first embodiment. In the normal operation, the front flame hole intermittent valve Vf, the intermediate flame hole intermittent valve Vm, and the rear flame hole intermittent valve Vr are all operated. Open the reforming catalyst layer heating pattern as the first heating pattern, and set the combustion gas fuel to the reforming burner 8 so that the temperature detected by the intermediate temperature sensor Tm becomes the predetermined temperature for reforming. In order to adjust the supply amount, the combustion fuel blower 10 is controlled, and the supply amount of the combustion air supplied to the reforming burner 8 corresponds to the supply amount of the combustion gas fuel to the reforming burner 8. The combustion air blower 12 is controlled to adjust the amount.

温度分布変化検知部Cdは、通常運転中、上位温度センサTu、中間温度センサTm及び下位温度センサTb夫々の検出温度を監視し、上位温度センサTuの検出温度が適正温度分布における温度よりも設定温度以上低くなると、改質部6の上部領域Luの温度が低下した温度分布変化を検知し、下位温度センサTbの検出温度が適正温度分布における温度よりも設定温度以上低くなると、改質部6の下部領域Lbの温度が低下した温度分布変化を検知する。
運転制御部Cは、温度分布変化検知部Cdにより、改質部6の下部領域Lbの温度が低下した温度分布変化が検知されると、前方炎孔用断続弁Vf、中間炎孔用断続弁Vm、後方炎孔用断続弁Vrの全てを開いている状態から、後方炎孔用断続弁Vrを閉じて、改質触媒層加熱パターンを第2加熱パターンに変更する。
この第2加熱パターンでは、中間領域Lm及び下部領域Lbの加熱度合いが比較的高いので、改質部6の下部領域Lbの温度が低下した温度分布が改善されて、適正温度分布に近づく。
The temperature distribution change detection unit Cd monitors the detected temperatures of the upper temperature sensor Tu, the intermediate temperature sensor Tm, and the lower temperature sensor Tb during normal operation, and the detected temperature of the upper temperature sensor Tu is set higher than the temperature in the appropriate temperature distribution. When the temperature is lower than the temperature, the temperature distribution change in which the temperature of the upper region Lu of the reforming unit 6 is decreased is detected. When the temperature detected by the lower temperature sensor Tb is lower than the temperature in the appropriate temperature distribution, the reforming unit 6 is detected. The temperature distribution change in which the temperature of the lower region Lb is decreased is detected.
When the temperature distribution change detection unit Cd detects a temperature distribution change in which the temperature of the lower region Lb of the reforming unit 6 is decreased, the operation control unit C detects the forward flame hole intermittent valve Vf and the intermediate flame hole intermittent valve. From the state where Vm and the rear flame hole intermittent valve Vr are all open, the rear flame hole intermittent valve Vr is closed and the reforming catalyst layer heating pattern is changed to the second heating pattern.
In the second heating pattern, since the heating degree of the intermediate region Lm and the lower region Lb is relatively high, the temperature distribution in which the temperature of the lower region Lb of the reforming unit 6 is reduced is improved and approaches the appropriate temperature distribution.

そのように前方炎孔用断続弁Vf、中間炎孔用断続弁Vmを開き、後方炎孔用断続弁Vrを閉じて、改質触媒層加熱パターンを第2加熱パターンにしても、温度分布変化検知部Cdにより、改質部6の下部領域Lbの温度が低下した温度分布変化が検知されると、運転制御部Cは、更に中間炎孔用断続弁Vmを閉じて、改質触媒層加熱パターンを第3加熱パターンに変更する。
この第3加熱パターンでは、下部領域Lbの加熱度合いが高くなって、下部領域Lbが集中的に加熱されるので、改質部6の下部領域Lbの温度が低下した温度分布が更に改善されて、適正温度分布に近づく。
Thus, even if the forward flame hole intermittent valve Vf and the intermediate flame hole intermittent valve Vm are opened, the rear flame hole intermittent valve Vr is closed, and the reforming catalyst layer heating pattern is changed to the second heating pattern, the temperature distribution changes. When the detection unit Cd detects a change in temperature distribution in which the temperature of the lower region Lb of the reforming unit 6 has decreased, the operation control unit C further closes the intermediate flame hole intermittent valve Vm to heat the reforming catalyst layer. The pattern is changed to the third heating pattern.
In this third heating pattern, the heating degree of the lower region Lb is increased, and the lower region Lb is intensively heated, so that the temperature distribution in which the temperature of the lower region Lb of the reforming unit 6 is further reduced is further improved. Approaching the proper temperature distribution.

又、運転制御部Cは、温度分布変化検知部Cdにより、改質部6の上部領域Luの温度が低下した温度分布変化が検知されると、前方炎孔用断続弁Vf、中間炎孔用断続弁Vm、後方炎孔用断続弁Vrの全てを開いている状態から、前方炎孔用断続弁Vfを閉じて、改質触媒層加熱パターンを第4加熱パターンに変更する。
この第4加熱パターンでは、上部領域Lu及び中間領域Lmの加熱度合いが比較的高いので、改質部6の上部領域Luの温度が低下した温度分布が改善されて、適正温度分布に近づく。
Further, when the temperature distribution change detection unit Cd detects a temperature distribution change in which the temperature of the upper region Lu of the reforming unit 6 is decreased, the operation control unit C detects the forward flame hole intermittent valve Vf and the intermediate flame hole. From the state where all of the intermittent valve Vm and the rear flame hole intermittent valve Vr are open, the forward flame hole intermittent valve Vf is closed and the reforming catalyst layer heating pattern is changed to the fourth heating pattern.
In the fourth heating pattern, since the heating degree of the upper region Lu and the intermediate region Lm is relatively high, the temperature distribution in which the temperature of the upper region Lu of the reforming unit 6 is reduced is improved and approaches the appropriate temperature distribution.

そのように前方炎孔用断続弁Vfを閉じ、中間炎孔用断続弁Vm、後方炎孔用断続弁Vrを開いて、改質触媒層加熱パターンを第4加熱パターンにしても、温度分布変化検知部Cdにより、改質部6の上部領域Luの温度が低下した温度分布変化が検知されると、運転制御部Cは、更に中間炎孔用断続弁Vmを閉じて、改質触媒層加熱パターンを第5加熱パターンに変更する。
この第5加熱パターンでは、上部領域Luの加熱度合いが高くなって、上部領域Luが集中的に加熱されるので、改質部6の上部領域Luの温度が低下した温度分布が改善されて、適正温度分布に近づく。
In this way, the front flame hole intermittent valve Vf is closed, the intermediate flame hole intermittent valve Vm and the rear flame hole intermittent valve Vr are opened, and the reforming catalyst layer heating pattern is changed to the fourth heating pattern. When the detection unit Cd detects a temperature distribution change in which the temperature of the upper region Lu of the reforming unit 6 is decreased, the operation control unit C further closes the intermediate flame hole intermittent valve Vm to heat the reforming catalyst layer. The pattern is changed to the fifth heating pattern.
In the fifth heating pattern, the degree of heating of the upper region Lu is increased and the upper region Lu is heated intensively, so that the temperature distribution in which the temperature of the upper region Lu of the reforming unit 6 is reduced is improved, It approaches the appropriate temperature distribution.

更に、上述のように、運転制御部Cが改質触媒層加熱パターンを第2又は第3加熱パターンにしているときに、温度分布変化検知部Cdにより、改質部6の上部領域Luの温度が低下した温度分布変化が検知されると、運転制御部Cは、上位温度センサTu、中間温度センサTm及び下位温度センサTb夫々の検出温度からなる改質触媒層温度分布が適正温度分布に近づくように、改質触媒層加熱パターンを第1、第4又は第5加熱パターンのいずれかに変更する。
又、上述のように、運転制御部Cが改質触媒層加熱パターンを第4又は第5加熱パターンにしているときに、温度分布変化検知部Cdにより、改質部6の下部領域Lbの温度が低下した温度分布変化が検知されると、運転制御部Cは、上位温度センサTu、中間温度センサTm及び下位温度センサTb夫々の検出温度からなる改質触媒層温度分布が適正温度分布に近づくように、改質触媒層加熱パターンを第1、第2は第3加熱パターンのいずれかに変更する。
Further, as described above, when the operation control unit C sets the reforming catalyst layer heating pattern to the second or third heating pattern, the temperature distribution change detection unit Cd detects the temperature of the upper region Lu of the reforming unit 6. When the temperature distribution change with the decrease is detected, the operation control unit C determines that the reforming catalyst layer temperature distribution including the detected temperatures of the upper temperature sensor Tu, the intermediate temperature sensor Tm, and the lower temperature sensor Tb approaches the appropriate temperature distribution. Thus, the reforming catalyst layer heating pattern is changed to one of the first, fourth, or fifth heating pattern.
As described above, when the operation control unit C sets the reforming catalyst layer heating pattern to the fourth or fifth heating pattern, the temperature distribution change detection unit Cd detects the temperature of the lower region Lb of the reforming unit 6. When the temperature distribution change with the decrease is detected, the operation control unit C determines that the reforming catalyst layer temperature distribution including the detected temperatures of the upper temperature sensor Tu, the intermediate temperature sensor Tm, and the lower temperature sensor Tb approaches the appropriate temperature distribution. Thus, the reforming catalyst layer heating pattern is changed to one of the first and second heating patterns.

〔別実施形態〕
次に別実施形態を説明する。
(イ) 上記の第2実施形態において、温度分布変化検知部Cdにより検知する温度分布変化として、上位温度センサTuの検出温度が適正温度分布における温度よりも設定温度以上高くなると、改質部6の上部領域Luの温度が上昇した温度分布変化を検知し、下位温度センサTbの検出温度が適正温度分布における温度よりも設定温度以上高くなると、改質部6の下部領域Lbの温度が上昇した温度分布変化を検知するようにしても良い。
この場合、運転制御部Cを構成するに、改質部6の上部領域Luの温度が上昇した温度分布変化が検知されると、改質触媒層温度分布が適正温度分布に近づくように、改質触媒層加熱パターンを第2又は第3加熱パターンに変更し、改質部6の下部領域Lbの温度が上昇した温度分布変化が検知されると、改質触媒層温度分布が適正温度分布に近づくように、改質触媒層加熱パターンを第4又は第5加熱パターンに変更するように構成する。
[Another embodiment]
Next, another embodiment will be described.
(A) In the second embodiment, when the temperature detected by the upper temperature sensor Tu becomes higher than the temperature in the appropriate temperature distribution as the temperature distribution change detected by the temperature distribution change detection unit Cd, the reforming unit 6 When the temperature distribution change in which the temperature of the upper region Lu of the temperature rises is detected and the temperature detected by the lower temperature sensor Tb becomes higher than the temperature in the appropriate temperature distribution by the set temperature or more, the temperature of the lower region Lb of the reforming unit 6 increases. You may make it detect a temperature distribution change.
In this case, when configuring the operation control unit C, when a temperature distribution change in which the temperature of the upper region Lu of the reforming unit 6 is increased is detected, the reforming catalyst layer temperature distribution is modified so as to approach the appropriate temperature distribution. If the temperature distribution change in which the temperature of the lower region Lb of the reforming unit 6 is increased is detected by changing the heating catalyst layer heating pattern to the second or third heating pattern, the reforming catalyst layer temperature distribution becomes an appropriate temperature distribution. The reforming catalyst layer heating pattern is changed to the fourth or fifth heating pattern so as to approach.

(ロ) 上記の第2実施形態において、改質触媒層加熱パターンとして、前方炎孔用断続弁Vf、後方炎孔用断続弁Vrを開き、中間炎孔用断続弁Vmを閉じて、混合ガスが前方炎孔用流路74、後方炎孔用流路78を通流して、前方炎孔列60F、後方炎孔列60Rから燃焼空間7sに噴出される加熱パターンを追加しても良い。この場合は、加熱分布変更方向での加熱分布は、上部領域Luの加熱度合い、中間領域Lmの加熱度合い、下部領域Lbの加熱度合いが、それぞれ、「高」、「低」、「高」となる加熱分布となる。 (B) In the second embodiment, as the reforming catalyst layer heating pattern, the front flame hole intermittent valve Vf and the rear flame hole intermittent valve Vr are opened, the intermediate flame hole intermittent valve Vm is closed, and the mixed gas However, a heating pattern that flows through the front flame hole channel 74 and the rear flame hole channel 78 and is ejected from the front flame hole row 60F and the rear flame hole row 60R into the combustion space 7s may be added. In this case, the heating distribution in the heating distribution changing direction is such that the heating degree of the upper region Lu, the heating degree of the intermediate region Lm, and the heating degree of the lower region Lb are “high”, “low”, and “high”, respectively. It becomes the heating distribution which becomes.

(ハ) 改質用バーナ8に複数の炎孔60を配置する形態は、上記の第1及び第2の各実施形態において説明した配置形態に限定されるものではない。
例えば、複数の直噴炎孔60sが列状に並ぶ直噴炎孔列60S、及び、複数の傾斜噴出炎孔60tが列状に並ぶ傾斜噴出炎孔列60Tを設ける場合、傾斜噴出炎孔列60Tとして、傾斜噴出炎孔60tにおける隔壁Wの側に傾斜する角度が夫々異なる複数の傾斜噴出炎孔列60Tを設けても良い。
又、炎孔列加熱分布変更方向に沿って複数列設ける場合、燃焼用燃料の噴出方向が加熱分布変更方向に沿う方向の炎孔からなる炎孔列と、燃焼用燃料の噴出方向が加熱分布変更方向に対して隔壁Wの側の傾斜する方向の炎孔からなる炎孔列とを混在させて設けても良い。
(C) The form in which the plurality of flame holes 60 are arranged in the reforming burner 8 is not limited to the arrangement form described in each of the first and second embodiments.
For example, when providing a direct injection flame hole row 60S in which a plurality of direct injection flame holes 60s are arranged in a row and an inclined injection flame hole row 60T in which a plurality of inclined injection flame holes 60t are arranged in a row, an inclined injection flame hole row is provided. As 60T, a plurality of inclined ejection flame hole rows 60T having different inclination angles toward the partition wall W in the inclined ejection flame holes 60t may be provided.
When a plurality of rows are provided along the flame hole heating distribution change direction, a flame hole row consisting of flame holes whose combustion fuel injection direction is along the heating distribution change direction, and the fuel injection direction is a heating distribution. A flame hole array composed of flame holes in a direction inclined toward the partition wall W with respect to the changing direction may be provided in a mixed manner.

(ニ) 温度分布変化検知手段Dの具体構成は、上記の第1及び第2の各実施形態において説明した構成、即ち、上位温度センサTu、中間温度センサTm及び下位温度センサTb、並びに、温度分布変化検知部Cdからなる構成に限定されるものではない。
例えば、図1及び図6において仮想線(一点鎖線)にて示すように、改質部6の改質ガス出口20に接続されたガス処理流路45に、改質部6にて生成された改質ガス中のメタンガスの濃度を検出するメタン濃度センサM(成分濃度検出手段の一例)を設ける。この場合は、メタン濃度センサMにて検出されるメタンガスの濃度が、改質触媒層温度分布に対応するものとなる。つまり、改質触媒層温度分布が高くなるほど、改質効率が低下して、改質ガス中のメタンガスの濃度が上昇するので、メタン濃度センサMにて検出されるメタンガスの濃度が高くなるほど、改質触媒層温度分布が大きくなることに対応する。
そして、温度分布変化検知手段Dを構成するに、メタン濃度センサMを備えて、そのメタン濃度センサMにて検出されるメタンガスの濃度が適正範囲よりも高くなることに基づいて、温度分布変化を検知するように構成しても良い。
この温度分布変化検知手段Dの構成を上記の第1実施形態に適用する場合は、メタン濃度センサMにて検出されるメタンガスの濃度が適正範囲よりも高くなると、メタン濃度センサMにてメタンガスの濃度を検出しながら、改質触媒層加熱パターンを第2加熱パターン、第3加熱パターンに順次変更して、メタン濃度センサMにて検出されるメタンガスの濃度が最も低い加熱パターンを改質触媒層加熱パターンに設定する。
(D) The specific configuration of the temperature distribution change detection means D is the configuration described in the first and second embodiments, that is, the upper temperature sensor Tu, the intermediate temperature sensor Tm, the lower temperature sensor Tb, and the temperature. The configuration is not limited to the configuration including the distribution change detection unit Cd.
For example, as shown by a virtual line (dashed line) in FIGS. 1 and 6, the gas is generated in the reforming unit 6 in the gas processing flow path 45 connected to the reformed gas outlet 20 of the reforming unit 6. A methane concentration sensor M (an example of component concentration detection means) that detects the concentration of methane gas in the reformed gas is provided. In this case, the concentration of methane gas detected by the methane concentration sensor M corresponds to the reforming catalyst layer temperature distribution. That is, the higher the reforming catalyst layer temperature distribution, the lower the reforming efficiency and the higher the concentration of methane gas in the reformed gas. Therefore, the higher the concentration of methane gas detected by the methane concentration sensor M, the higher the reforming catalyst layer temperature distribution. This corresponds to an increase in the temperature distribution of the catalyst bed.
The temperature distribution change detection means D is configured to include a methane concentration sensor M, and the temperature distribution change is detected based on the fact that the concentration of methane gas detected by the methane concentration sensor M is higher than the appropriate range. You may comprise so that it may detect.
When the configuration of the temperature distribution change detection means D is applied to the first embodiment, when the methane gas concentration detected by the methane concentration sensor M is higher than the appropriate range, the methane concentration sensor M While detecting the concentration, the reforming catalyst layer heating pattern is sequentially changed to the second heating pattern and the third heating pattern, and the heating pattern with the lowest methane gas concentration detected by the methane concentration sensor M is selected as the reforming catalyst layer. Set to heating pattern.

又、この温度分布変化検知手段Dの構成を上記の第2実施形態に適用する場合は、メタン濃度センサMにて検出されるメタンガスの濃度が適正範囲よりも高くなると、メタン濃度センサMにてメタンガスの濃度を検出しながら、改質触媒層加熱パターンを第2、第3、第4、第5の各加熱パターンに順次変更して、メタン濃度センサMにて検出されるメタンガスの濃度が最も低い加熱パターンを改質触媒層加熱パターンに設定する。   In addition, when the configuration of the temperature distribution change detection means D is applied to the second embodiment, when the concentration of methane gas detected by the methane concentration sensor M becomes higher than the appropriate range, the methane concentration sensor M While detecting the methane gas concentration, the reforming catalyst layer heating pattern is sequentially changed to the second, third, fourth, and fifth heating patterns, and the methane gas concentration detected by the methane concentration sensor M is the highest. A low heating pattern is set as the reforming catalyst layer heating pattern.

温度分布変化検知手段Dを構成する成分濃度検出手段の具体例としては、上述のメタン濃度センサMに限定されるものではなく、例えば、改質ガス中の水素ガスの濃度を検出する水素濃度センサを用いることができる。
この場合は、水素濃度センサにて検出される水素ガスの濃度が適正範囲よりも低くなることに基づいて、温度分布変化を検知するように構成する。
A specific example of the component concentration detection means constituting the temperature distribution change detection means D is not limited to the methane concentration sensor M described above. For example, a hydrogen concentration sensor that detects the concentration of hydrogen gas in the reformed gas. Can be used.
In this case, the temperature distribution change is detected based on the fact that the concentration of hydrogen gas detected by the hydrogen concentration sensor becomes lower than the appropriate range.

(ホ) 改質装置Rの具体構成は、上記の第1及び第2の各実施形態において説明した構成に限定されるものではない。例えば、改質装置Rを、上記の第1実施形態と同様の処理空間Sを2室備えた容器Bを用いて構成しても良い。つまり、容器Bの一方の処理空間Sを用いて改質部6を構成し、他方の処理空間Sを用いて燃焼部7を構成することになる。
又、改質用バーナ8の具体構成(形状等)も、上記の第1及び第2の各実施形態において説明した構成に限定されるものではなく、改質装置Rの構成に応じて構成することができる。
例えば、改質装置Rを上述の如き容器Bを用いて構成する場合、隔壁Wは平面状になるので、改質用バーナ8に複数の炎孔60からなる炎孔列を設ける場合、隔壁Wの壁面における両端部の並び方向に直交する方向に沿う炎孔並び方向は、直線状となる。
(E) The specific configuration of the reformer R is not limited to the configurations described in the first and second embodiments. For example, the reformer R may be configured using a container B having two processing spaces S similar to those in the first embodiment. That is, the reforming unit 6 is configured using one processing space S of the container B, and the combustion unit 7 is configured using the other processing space S.
Further, the specific configuration (shape, etc.) of the reforming burner 8 is not limited to the configuration described in the first and second embodiments, and is configured according to the configuration of the reforming apparatus R. be able to.
For example, when the reformer R is configured using the container B as described above, the partition wall W is planar. Therefore, when the reformer burner 8 is provided with a flame hole array composed of a plurality of flame holes 60, the partition wall W The flame hole alignment direction along the direction orthogonal to the alignment direction of both ends of the wall surface of the wall surface is linear.

(ヘ) 上記の第1及び第2の各実施形態では、改質用バーナ8に、燃焼用ガス燃料(燃焼用燃料ブロア10からの燃焼用ガス燃料及びオフガス)と燃焼用空気ブロア12からの燃焼用空気とが混合された混合ガスを供給するように構成した。これに代えて、改質用バーナ8に、燃焼用ガス燃料と燃焼用空気が別々に供給されるように構成しても良い。 (F) In each of the first and second embodiments, the reforming burner 8 is supplied with the combustion gas fuel (combustion gas fuel and off-gas from the combustion fuel blower 10) and the combustion air blower 12. A mixed gas mixed with combustion air was supplied. Instead of this, the reforming burner 8 may be configured to be supplied with combustion gas fuel and combustion air separately.

以上説明したように、時間経過に伴う改質効率の低下を抑制し得る改質装置を提供することができる。   As described above, it is possible to provide a reforming apparatus that can suppress a decrease in reforming efficiency over time.

6 改質部
6c 改質触媒、改質触媒層
7 燃焼部
7s 燃焼空間
8 改質用バーナ
14e 端部
60 炎孔
60f 前方炎孔(炎孔)
60m 中間炎孔(炎孔)
60r 後方炎孔(炎孔)
60s 直噴炎孔
60t 傾斜噴出炎孔
60F 前方炎孔列(炎孔列)
60M 中間炎孔列(炎孔列)
60R 後方炎孔列(炎孔列)
60S 直噴炎孔列
60T 傾斜噴出炎孔列
A 加熱分布変更手段
C 運転制御部(制御手段)
D 温度分布変化検知手段
M メタン濃度センサ(成分濃度検出手段)
R 改質装置
Tb 下位温度センサ(温度検出手段)
Tm 中間温度センサ(温度検出手段)
Tu 上位温度センサ(温度検出手段)
V 燃料噴出形態変更手段
Vs,Vt 燃料噴出切換手段
Vf,Vm,Vr 燃料噴出切換手段
W 隔壁
6 reforming part 6c reforming catalyst, reforming catalyst layer 7 combustion part 7s combustion space 8 reforming burner 14e end part 60 flame hole 60f front flame hole (flame hole)
60m Intermediate flame hole (flame hole)
60r rear flame hole (flame hole)
60s Direct flame hole 60t Inclined flame hole 60F Front flame hole row (flame hole row)
60M Intermediate flame hole array (flame hole array)
60R rear flame hole row (flame hole row)
60S Direct flame hole row 60T Inclined jet flame hole row A Heating distribution changing means C Operation control unit (control means)
D Temperature distribution change detection means M Methane concentration sensor (component concentration detection means)
R reformer Tb Lower temperature sensor (temperature detection means)
Tm Intermediate temperature sensor (temperature detection means)
Tu upper temperature sensor (temperature detection means)
V Fuel injection mode changing means Vs, Vt Fuel injection switching means Vf, Vm, Vr Fuel injection switching means W

Claims (6)

改質触媒が装入された改質部と内部に燃焼空間を形成する燃焼部とが、伝熱可能な隔壁にて区画された状態で配設され、
燃焼用燃料を前記燃焼空間内で燃焼させて前記改質部の改質触媒層を加熱する改質用バーナが、前記燃焼部における前記隔壁の壁面に沿う方向で互いに対向する両端部の一方の端部の側から、他方の端部の側に向けて火炎を形成するように備えられ、
前記改質部において、前記改質触媒の作用により、炭化水素系の原燃料が改質処理されて、水素ガスを主成分とする改質ガスが生成されるように構成された改質装置であって、
前記隔壁の両端部が並ぶ方向である加熱分布変更方向に沿って、前記改質用バーナにより前記改質触媒層を加熱する加熱分布を変更可能な加熱分布変更手段と、
前記改質触媒層における前記加熱分布変更方向に沿う方向での温度分布が適正温度分布から変化した温度分布変化を検知する温度分布変化検知手段とが設けられ、
運転を制御する制御手段が、前記温度分布変化検知手段により前記温度分布変化が検知されると、前記温度分布変化検知手段により検知される温度分布が前記適正温度分布に近づくように前記加熱分布を変更すべく、前記加熱分布変更手段の作動を制御するように構成されている改質装置。
The reforming section in which the reforming catalyst is charged and the combustion section that forms a combustion space therein are arranged in a state of being partitioned by heat transferable partition walls,
A reforming burner that burns combustion fuel in the combustion space and heats the reforming catalyst layer of the reforming unit has one of both end portions facing each other in the direction along the wall surface of the partition wall in the combustion unit. It is equipped to form a flame from the end side toward the other end side,
A reformer configured to reform a hydrocarbon-based raw fuel by the action of the reforming catalyst and generate a reformed gas mainly composed of hydrogen gas in the reforming unit; There,
A heating distribution changing means capable of changing a heating distribution for heating the reforming catalyst layer by the reforming burner along a heating distribution changing direction in which both ends of the partition walls are arranged;
A temperature distribution change detecting means for detecting a temperature distribution change in which the temperature distribution in the direction along the heating distribution change direction in the reforming catalyst layer has changed from an appropriate temperature distribution; and
When the temperature distribution change is detected by the temperature distribution change detection means, the control means for controlling the operation sets the heating distribution so that the temperature distribution detected by the temperature distribution change detection means approaches the appropriate temperature distribution. A reformer configured to control the operation of the heating distribution changing means to be changed.
前記改質用バーナに、前記燃焼用燃料を前記燃焼空間に噴出する炎孔が、前記燃焼用燃料の噴出方向を前記加熱分布変更方向に沿う方向と前記加熱分布変更方向に対して前記隔壁の側に傾斜する方向とに異ならせた形態、又は、存在位置を前記加熱分布変更方向に沿って異ならせた形態で、複数設けられ、
前記複数の炎孔のうちで前記燃焼用燃料を噴出する炎孔を変更自在な燃料噴出形態変更手段が設けられ、
前記加熱分布変更手段が、前記燃料噴出形態変更手段を備えて構成されている請求項1に記載の改質装置。
The reformer burner has a flame hole for injecting the combustion fuel into the combustion space. The injection direction of the combustion fuel is in the direction along the heating distribution change direction and the heating distribution change direction. In a form that is different from the direction inclined to the side, or a form that is different along the heating distribution change direction, a plurality of positions are provided,
A fuel injection form changing means capable of changing a flame hole for injecting the combustion fuel among the plurality of flame holes is provided,
The reforming apparatus according to claim 1, wherein the heating distribution changing means includes the fuel ejection form changing means.
前記複数の炎孔として、前記隔壁の壁面における前記両端部の並び方向に直交する方向に沿う炎孔並び方向に沿って列状に並んで、前記燃焼用燃料を前記加熱分布変更方向に沿う方向に噴出する複数の直噴炎孔と、前記炎孔並び方向に沿って列状に並んで、前記燃焼用燃料を前記加熱分布変更方向に対して前記隔壁の側に傾斜する方向に噴出する複数の傾斜噴出炎孔とが設けられ、
前記燃料噴出形態変更手段として、複数の前記直噴炎孔が列状に並ぶ直噴炎孔列、及び、複数の前記傾斜噴出炎孔が列状に並ぶ傾斜噴出炎孔列夫々からの前記燃焼用燃料の噴出を断続可能な燃料噴出切換手段とが設けられている請求項2に記載の改質装置。
The plurality of flame holes are arranged in a line along a flame hole alignment direction along a direction perpendicular to the alignment direction of the both end portions of the wall surface of the partition wall, and the combustion fuel is directed along the heating distribution changing direction. A plurality of direct-injection flame holes, and a plurality of the fuel-injection fuels arranged in a line along the flame-hole arrangement direction and injecting the combustion fuel in a direction inclined toward the partition wall with respect to the heating distribution change direction With an inclined jet flame hole,
As the fuel injection form changing means, the combustion from the direct injection flame hole row in which a plurality of the direct injection flame holes are arranged in a line and the inclined injection flame hole row in which the plurality of the inclined injection flame holes are arranged in a line The reformer according to claim 2, further comprising a fuel ejection switching means capable of intermittently ejecting the fuel.
前記複数の炎孔として、前記隔壁の壁面における前記両端部の並び方向に直交する方向に沿う炎孔並び方向に沿って列状に並んで、前記燃焼用燃料を前記加熱分布変更方向に沿う方向に噴出する複数の炎孔からなる炎孔列が、前記加熱分布変更方向に沿って複数列設けられ、
前記燃料噴出形態変更手段として、前記複数の炎孔列夫々からの前記燃焼用燃料の噴出を断続可能な燃料噴出切換手段が設けられている請求項2に記載の改質装置。
The plurality of flame holes are arranged in a line along a flame hole alignment direction along a direction perpendicular to the alignment direction of the both end portions of the wall surface of the partition wall, and the combustion fuel is directed along the heating distribution changing direction. A plurality of flame hole rows composed of a plurality of flame holes to be ejected are provided along the heating distribution change direction,
The reformer according to claim 2, wherein fuel injection switching means capable of intermittently injecting the combustion fuel from each of the plurality of flame hole arrays is provided as the fuel injection form changing means.
前記温度分布変化検知手段が、前記加熱分布変更方向に沿って間隔を開けて並べて設けられて、前記改質触媒層の温度を検出する複数の温度検出手段を備えて構成されている請求項1〜4のいずれか1項に記載の改質装置。   2. The temperature distribution change detection means is provided with a plurality of temperature detection means that are arranged side by side along the heating distribution change direction and that detect the temperature of the reforming catalyst layer. The reformer of any one of -4. 前記温度分布変化検知手段が、前記改質部にて生成された改質ガス中の特定成分の濃度を検出する成分濃度検出手段を備えて、当該成分濃度検出手段にて検出される前記特定成分の濃度が適正範囲から外れることに基づいて、前記温度分布変化を検知するように構成されている請求項1〜4のいずれか1項に記載の改質装置。   The temperature distribution change detection means includes a component concentration detection means for detecting the concentration of the specific component in the reformed gas generated in the reforming unit, and the specific component detected by the component concentration detection means The reforming apparatus according to any one of claims 1 to 4, wherein the reforming device is configured to detect the temperature distribution change based on the fact that the concentration of the gas deviates from an appropriate range.
JP2014053881A 2014-03-17 2014-03-17 Reformer Active JP6308825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014053881A JP6308825B2 (en) 2014-03-17 2014-03-17 Reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014053881A JP6308825B2 (en) 2014-03-17 2014-03-17 Reformer

Publications (2)

Publication Number Publication Date
JP2015174808A true JP2015174808A (en) 2015-10-05
JP6308825B2 JP6308825B2 (en) 2018-04-11

Family

ID=54254313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014053881A Active JP6308825B2 (en) 2014-03-17 2014-03-17 Reformer

Country Status (1)

Country Link
JP (1) JP6308825B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017077999A (en) * 2015-10-21 2017-04-27 大阪瓦斯株式会社 Hydrogen-containing gas producing apparatus
JP2018162197A (en) * 2017-03-27 2018-10-18 東京瓦斯株式会社 Hydrogen manufacturing device
US11117110B2 (en) * 2016-02-04 2021-09-14 Technip France Method for reducing temperature spread in reformer

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248230A (en) * 1984-05-25 1985-12-07 Babcock Hitachi Kk Catalytic combustion type reactor
US5098282A (en) * 1990-09-07 1992-03-24 John Zink Company Methods and apparatus for burning fuel with low NOx formation
JPH09145022A (en) * 1995-11-20 1997-06-06 Osaka Gas Co Ltd Glass melting furnace gas burner
JP2002162007A (en) * 2000-11-20 2002-06-07 Tokyo Gas Co Ltd Burner
JP2003176102A (en) * 2001-12-06 2003-06-24 Toyota Motor Corp Control for fuel reforming reaction by which methane is produced
US20040060301A1 (en) * 2002-09-27 2004-04-01 Chen Alexander G. Multi-point staging strategy for low emission and stable combustion
JP2006179365A (en) * 2004-12-24 2006-07-06 Matsushita Electric Works Ltd Reformer for fuel cell
US20110250549A1 (en) * 2008-11-13 2011-10-13 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method For Lighting The Burners In A Reforming Furnace
KR101360586B1 (en) * 2012-11-06 2014-02-24 현대하이스코 주식회사 Multi-tube burner for fuel reformer and fuel reformer using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248230A (en) * 1984-05-25 1985-12-07 Babcock Hitachi Kk Catalytic combustion type reactor
US5098282A (en) * 1990-09-07 1992-03-24 John Zink Company Methods and apparatus for burning fuel with low NOx formation
JPH09145022A (en) * 1995-11-20 1997-06-06 Osaka Gas Co Ltd Glass melting furnace gas burner
JP2002162007A (en) * 2000-11-20 2002-06-07 Tokyo Gas Co Ltd Burner
JP2003176102A (en) * 2001-12-06 2003-06-24 Toyota Motor Corp Control for fuel reforming reaction by which methane is produced
US20040060301A1 (en) * 2002-09-27 2004-04-01 Chen Alexander G. Multi-point staging strategy for low emission and stable combustion
JP2006179365A (en) * 2004-12-24 2006-07-06 Matsushita Electric Works Ltd Reformer for fuel cell
US20110250549A1 (en) * 2008-11-13 2011-10-13 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method For Lighting The Burners In A Reforming Furnace
KR101360586B1 (en) * 2012-11-06 2014-02-24 현대하이스코 주식회사 Multi-tube burner for fuel reformer and fuel reformer using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017077999A (en) * 2015-10-21 2017-04-27 大阪瓦斯株式会社 Hydrogen-containing gas producing apparatus
US11117110B2 (en) * 2016-02-04 2021-09-14 Technip France Method for reducing temperature spread in reformer
JP2018162197A (en) * 2017-03-27 2018-10-18 東京瓦斯株式会社 Hydrogen manufacturing device

Also Published As

Publication number Publication date
JP6308825B2 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
US10122027B2 (en) High-temperature operating fuel-cell module
US10320016B2 (en) High-temperature fuel cell system
CN101489917B (en) Hydrogen production apparatus and fuel cell system comprising the same
JP6308825B2 (en) Reformer
JP5057938B2 (en) Hydrogen generator and fuel cell system provided with the same
JP4614515B2 (en) Fuel cell reformer
JP4527130B2 (en) Reformer
KR20090012590A (en) A catalytic reactor for formation of the hydrogen
JP4904867B2 (en) Fuel processor
JP2018104232A (en) Hydrogen production apparatus
JP2009274886A (en) Combustion apparatus for reforming apparatus, reforming apparatus, and fuel cell system
JP3966831B2 (en) Heating burner for reformer
JP4847772B2 (en) Hydrogen-containing gas generator
JP2007261871A (en) Hydrogen-containing gas producing apparatus
KR101880553B1 (en) Fuel Reformer With Enhanced Partial Load Efficiency
JP6450202B2 (en) Fuel cell module
JP6278767B2 (en) Diagnostic method for reformer and diagnostic device for reformer
JP7299802B2 (en) Combustor and fuel cell module
JP5111040B2 (en) Fuel cell reformer
JP4431455B2 (en) Reformer
JP2007265946A (en) Burner for reformer for fuel cell
JP2005255458A (en) Hydrogen production apparatus and fuel cell system
KR20080036839A (en) Reformer of fuel cell system and method for controlling the same
KR101765194B1 (en) Cylindrical burner for supplying thermal energy to steam reforming reactor for solid oxide fuel cells
JP2004006111A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180313

R150 Certificate of patent or registration of utility model

Ref document number: 6308825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150