JP2017071950A - Seed germination-promoting method, and stabilization method for slope surface layer - Google Patents

Seed germination-promoting method, and stabilization method for slope surface layer Download PDF

Info

Publication number
JP2017071950A
JP2017071950A JP2015199054A JP2015199054A JP2017071950A JP 2017071950 A JP2017071950 A JP 2017071950A JP 2015199054 A JP2015199054 A JP 2015199054A JP 2015199054 A JP2015199054 A JP 2015199054A JP 2017071950 A JP2017071950 A JP 2017071950A
Authority
JP
Japan
Prior art keywords
cotton
seeds
raw bamboo
adhesive
bamboo fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015199054A
Other languages
Japanese (ja)
Other versions
JP6005238B1 (en
Inventor
政美 大坪
Masami Otsubo
政美 大坪
晃 杉本
Akira Sugimoto
晃 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIWA KENSETSU KK
GREEN YUKI SHIZAI KK
HAMADA KOGYO KK
Huso Eng Inc
HUSO ENGINEERING Inc
TAKEMI KENSETSU KK
Original Assignee
EIWA KENSETSU KK
GREEN YUKI SHIZAI KK
HAMADA KOGYO KK
Huso Eng Inc
HUSO ENGINEERING Inc
TAKEMI KENSETSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EIWA KENSETSU KK, GREEN YUKI SHIZAI KK, HAMADA KOGYO KK, Huso Eng Inc, HUSO ENGINEERING Inc, TAKEMI KENSETSU KK filed Critical EIWA KENSETSU KK
Priority to JP2015199054A priority Critical patent/JP6005238B1/en
Application granted granted Critical
Publication of JP6005238B1 publication Critical patent/JP6005238B1/en
Publication of JP2017071950A publication Critical patent/JP2017071950A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cultivation Of Plants (AREA)
  • Pretreatment Of Seeds And Plants (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a stabilization method for a slope surface layer that inhibits collapsing due to freezing and thawing, and a seed germination-promoting method for promoting germination of mixed seeds.SOLUTION: Plant seeds 4 are added and agitated in a cotton-like raw bamboo fiber formed by compressing and pulverizing a raw bamboo tree using a double shaft compression pulverizer, for making a cushioning material free of an adhesive and holding the seeds 4 dispersed rotatably in an entangled cotton-like raw bamboo fiber body. The seeds are planted on a ground surface by installing the cushioning material on the ground surface. The seeds are held rotatably and movably in the entangled cotton-like raw bamboo fiber body, thereby preventing delay or inhibition of germination of the seeds. Flexibility of the cotton-like raw bamboo fiber is maintained over a long period, without being hardly affected by freezing and thawing or deterioration caused by ultraviolet rays.SELECTED DRAWING: Figure 4

Description

本発明は、法面緑化などにおいて播種した種子の発芽を促進させる発芽促進方法、及びそれを利用した法面表層の安定化方法に関する。   The present invention relates to a germination promoting method for promoting germination of seeds sown in slope greening and the like, and a method for stabilizing a slope surface using the seed germination promotion method.

従来、法面緑化の技術として、竹を綿状になるまですり潰した資材を法面に吹き付けることにより、法面において窒素固定菌の繁殖を促し、化学肥料を使用することなく緑化植物の生育を長期間にわたり良好とする法面緑化技術が知られている(特許文献1)。この法面緑化技術では、篩分級で目開き1mmの網目を通過する破砕された粒子又は繊維の割合が60重量%以上となるまで竹材を潰砕してなる綿状竹繊維を含む植生基材を法面に吹き付けて植生基盤層を形成し、植生基盤層を自然放置して植生基盤層に窒素固定菌を繁殖させることにより空気中の窒素固定をさせ、植生基盤層内に固定された窒素成分を窒素肥料として法面植物の生育を行う。   Conventionally, as a technique of slope greening, the material that is crushed bamboo until it becomes cottony is sprayed on the slope to promote the growth of nitrogen-fixing bacteria on the slope and to grow green plants without using chemical fertilizer A slope planting technique that is favorable over a long period of time is known (Patent Document 1). In this slope greening technology, a vegetation base material containing cotton-like bamboo fibers formed by crushing bamboo until the proportion of crushed particles or fibers passing through a 1 mm mesh with sieve classification reaches 60% by weight or more The vegetation basement layer is formed by spraying the surface of the vegetation, and the vegetation basement layer is allowed to stand naturally, and nitrogen-fixing bacteria are propagated in the vegetation basement layer to fix nitrogen in the air. The plant is grown with nitrogen fertilizer as an ingredient.

上記のように綿状竹繊維を用いて、実際に緑化を行う際には、法面に吹き付けられた植生基盤層が、降雨や風により流出することを防止するため、綿状竹繊維に接着剤を混合して吹き付けることによって固定する手法を用いることが一般的であった。   When actually planting using cotton-like bamboo fiber as described above, the vegetation base layer sprayed on the slope is bonded to cotton-like bamboo fiber to prevent it from flowing out due to rain or wind. It is common to use a method of fixing by mixing and spraying the agent.

特開2010−70963号公報JP 2010-70963 A

長沢徹明,梅田安治,「土の耐水食性に及ぼす凍結融解作用の影響」,農業土木学会論文集,1981(94),pp.48-54.Nagasawa Tetsuaki and Umeda Yuji, “Effect of Freezing and Thawing on the Water Corrosion Resistance of Soil”, Proceedings of Agricultural Civil Engineering Society, 1981 (94), pp.48-54.

しかしながら、実際に綿状竹繊維に接着剤を混合して吹き付けた植生基盤層を施工したところ、高山や寒冷地においては、接着剤が比較的短期間に劣化し、植生基盤層が比較的短期間に崩壊するという現象がみられた。これは、降雨や降雪により植生基盤層が水分を含んだ状態で地温が氷点下まで低下すると、水の凍結に伴う体積膨張により、固化した接着剤に亀裂が生じ、氷の融解によりその亀裂に水が侵入する、というサイクルを繰り返す事によって崩壊が促進される、所謂、凍結融解作用によるものと考えられる。この凍結融解作用は、高山帯などに於いて岩石の破砕を促進する周氷河作用の一つ(ソリフラクション等)として知られている。また、寒冷地農業に於いても同様の現象による斜面土壌の侵食問題が報告されている(例えば、非特許文献1)。また、接着剤は紫外線により劣化する性質がある。従って、数ヶ月が経過すると、吹き付け斜面の接着剤は紫外線により劣化し粒状に崩壊する。一旦、固結した接着剤が一旦破壊されると、植生基盤層がぼろぼろに砕けた粒状となり、降雨や風により容易に侵食され、植生基盤層が比較的短期間で崩壊する。   However, when a vegetation base layer was actually sprayed with a mixture of cotton-like bamboo fibers and sprayed, the adhesive deteriorated in a relatively short period of time in Takayama and cold regions, and the vegetation base layer became relatively short. There was a phenomenon of collapse in the meantime. This is because when the ground temperature drops below freezing with the vegetation basement layer containing water due to rainfall or snowfall, the solidified adhesive cracks due to volume expansion accompanying freezing of the water, and the melting of the ice causes water to break into the cracks. It is thought that this is due to a so-called freeze-thaw action, in which disintegration is promoted by repeating the cycle of invasion. This freezing and thawing action is known as one of the periglacial actions (soli fraction, etc.) that promote the crushing of rocks in the alpine zone. In cold region agriculture, the problem of erosion of slope soil due to the same phenomenon has been reported (for example, Non-Patent Document 1). Further, the adhesive has a property of being deteriorated by ultraviolet rays. Therefore, after several months have passed, the adhesive on the sprayed slope is deteriorated by ultraviolet rays and collapses into a granular shape. Once the solidified adhesive is broken, the vegetation base layer becomes a crushed grain, easily eroded by rainfall and wind, and the vegetation base layer collapses in a relatively short period of time.

図21は、従来の吹き付け工法(綿状竹繊維に接着剤を混合して吹き付ける工法)による実際の吹き付け現場の写真である。写真から分かるように、凍結・融解サイクルや紫外線劣化によって吹き付けた植生基盤層の表面層が崩壊して剥がれ落ち、内部の金網が剥き出しとなっている(図21(a))。また、図21(b)(c)のように、斜面下部に崩壊して粒状となった植生基盤が堆積しているのが分かる。   FIG. 21 is a photograph of an actual spraying site by a conventional spraying method (a method of spraying an adhesive mixed with cotton-like bamboo fiber). As can be seen from the photograph, the surface layer of the vegetation base layer sprayed by freezing and thawing cycles and UV deterioration collapses and peels off, and the internal wire mesh is exposed (FIG. 21A). In addition, as shown in FIGS. 21B and 21C, it can be seen that a vegetation base that has collapsed and becomes granular is deposited in the lower part of the slope.

また、綿状竹繊維に接着剤とともに植物の種子を混合して法面に吹き付けて、種子入りの植生基盤層を構成した場合、接着剤の固化により種子が固定されるが、この接着剤による固定によって種子が発芽しにくくなるという問題もある。   In addition, when seeds of plants are mixed with cotton-like bamboo fibers and sprayed on the slope to form a vegetation base layer containing seeds, the seeds are fixed by solidifying the adhesive. There is also a problem that seeds are less likely to germinate due to fixation.

そこで、本発明の目的は、綿状竹繊維を植生基材として使用した植生基盤層を斜面に形成する場合に於いて、凍結融解作用による植生基盤層の崩壊が生じにくい法面表層の安定化方法、及び植生基盤層に種子を混合した場合に、混合された種子を発芽し易くする種子の発芽促進方法を提供することにある。   Therefore, the object of the present invention is to stabilize the slope surface layer in which when the vegetation base layer using cotton-like bamboo fibers as a vegetation base is formed on the slope, the vegetation base layer is less likely to collapse due to freeze-thaw action. It is an object of the present invention to provide a seed germination promotion method that makes it easy to germinate mixed seeds when seeds are mixed in a vegetation base layer.

本発明に係る種子の発芽促進方法は、生竹の稈を二軸圧縮粉砕器により圧縮粉砕して形成した綿状生竹繊維に、植物の種子を添加し攪拌することにより、前記種子が、回転自在な状態で、前記綿状生竹繊維の絡合体内に分散して担持された、接着剤を含まないクッション材を生成し、該クッション材を地表に敷設することで前記種子を地表に植え付けることを特徴とする。   In the seed germination promotion method according to the present invention, the seeds are added to the cotton-like raw bamboo fibers formed by compressing and pulverizing raw bamboo shoots with a biaxial compression pulverizer, and the seeds are stirred. In a freely rotatable state, a cushion material that does not contain an adhesive dispersed and supported in the entangled body of the cotton-like raw bamboo fiber is generated, and the seed is grounded by laying the cushion material on the ground surface. It is characterized by planting.

この構成によれば、接着剤を含まない綿状生竹繊維のクッション材を地表に敷設することで、綿状生竹繊維に混合された種子は綿状生竹繊維の絡合体内に回転や運動が妨げられない状態で担持される。このように種子を回転や運動が妨げられない状態とすることによって、種子の発芽が遅延又は阻害されることが防止される。また、従来工法のように接着剤で固定すると竹繊維の機能が失われ、紫外線により接着剤が劣化するとともに2〜3カ月程度で崩壊も進むが、本発明に於いて地表に敷設されるクッション材は、生竹繊維の絡みのみにより保持された状態となるため、綿状生竹繊維の柔軟性は長期間維持され、紫外線による劣化の影響も殆ど見られない。   According to this configuration, by laying a cushion material of cotton-like raw bamboo fiber that does not contain an adhesive on the ground surface, the seed mixed with the cotton-like raw bamboo fiber is rotated and entangled in the cotton-like raw bamboo fiber entanglement. It is carried in a state where movement is not hindered. By setting the seeds in a state in which rotation and movement are not hindered in this way, seed germination is prevented from being delayed or inhibited. In addition, when fixed with an adhesive as in the conventional construction method, the function of bamboo fiber is lost, and the adhesive deteriorates due to ultraviolet rays, and also collapses in about 2 to 3 months, but the cushion laid on the ground surface in the present invention Since the material is held only by the entanglement of the raw bamboo fiber, the flexibility of the cotton-like raw bamboo fiber is maintained for a long period of time, and the influence of deterioration due to ultraviolet rays is hardly observed.

また、本発明では、竹繊維の材料として生竹を使用する。生竹とは、伐採後乾燥前の状態の竹をいい、表皮が茶色く乾燥した状態(枯れ竹)となる前の竹である。枯れ竹を使用した場合、組織が硬く、粉砕すると十分な繊維状とならず多くが粉状となる。また、繊維の柔軟性も乏しく、十分な絡み状態とはならない。一方で、生竹を材料として使用した場合、個々の単繊維が柔軟性に富み、長さも枯れ竹に比べ長いため、互いに十分に絡み合った綿状の繊維となる。また、一旦、綿状生竹繊維とした後に時間が経過して乾燥しても、柔軟性が維持される。   In the present invention, raw bamboo is used as a material for bamboo fiber. Bamboo bamboo refers to bamboo in a state before logging and before drying, and before the skin becomes brown and dried (dead bamboo). When withered bamboo is used, the structure is hard, and when it is pulverized, it does not become a sufficient fiber, and most of it becomes powder. Further, the flexibility of the fiber is poor, and the entangled state is not sufficient. On the other hand, when raw bamboo is used as a material, each single fiber is rich in flexibility and has a longer length than withered bamboo, so that cotton fibers are sufficiently intertwined with each other. Moreover, even if time passes after making it into cotton-like raw bamboo fiber once, a softness | flexibility is maintained.

本発明に係る法面表層の安定化方法は、生竹の稈を二軸圧縮粉砕器により圧縮粉砕して形成した綿状生竹繊維に、植物の種子を添加し攪拌することにより、前記種子が、回転自在な状態で、前記綿状生竹繊維の絡合体内に分散して担持された、接着剤を含まないクッション材を生成し、
前記クッション材を、法面の地山表面に吹き付けることによりクッション層を形成することで、前記地山表面を被覆することを特徴とする。
The method of stabilizing the slope surface layer according to the present invention comprises adding seeds of plants to cotton-like raw bamboo fibers formed by compressing and crushing raw bamboo shoots with a biaxial compression pulverizer, and stirring the seeds. However, in a freely rotatable state, a cushion material that does not include an adhesive is dispersed and supported in the entangled body of the cotton-like raw bamboo fiber,
A cushion layer is formed by spraying the cushion material onto a natural ground surface on a slope, thereby covering the natural ground surface.

この構成によれば、接着剤を含まない綿状生竹繊維のクッション材を地表に敷設することで、上述の通り種子の発芽が促進される。また、クッション層は生竹から作られた竹繊維で形成され且つ接着剤を含まないため、水分を含んだ状態で凍結した後に融解しても、繊維の弾性によって復元し、凍結融解作用を極めて受けにくい。また、繊維が絡合した状態にあるため、強風においても飛ばされにくく、地山表面を被覆するクッション層は維持される。これにより、高山や寒冷地においても、植物が生長するまでの期間に亘り侵食を受けにくい状態を維持し、法面表層を安定化させることができる。   According to this structure, germination of seeds is promoted as described above by laying the cushion material of cotton-like raw bamboo fiber not containing an adhesive on the ground surface. In addition, since the cushion layer is made of bamboo fiber made from raw bamboo and does not contain an adhesive, even if it is melted after freezing in a moisture-containing state, it is restored by the elasticity of the fiber, and the freeze-thaw action is extremely high. It is hard to receive. Moreover, since the fibers are in an intertwined state, they are not easily blown even in strong winds, and the cushion layer covering the ground surface is maintained. As a result, even in high mountains and cold regions, it is possible to maintain a state where it is difficult to be eroded over a period until the plant grows, and to stabilize the slope surface layer.

また、本発明に係る法面表層の安定化方法において、前記植物の種子は、イネ科又はマメ科植物の種子とすることができる。   In the method for stabilizing a slope surface layer according to the present invention, the seed of the plant may be a seed of a grass family or a legume plant.

マメ科植物は、比較的悪条件の法面でも発芽・生長し、生長後に根粒菌による窒素固定が行われて、他の植物の定着が促進される。   Leguminous plants germinate and grow even under relatively adverse conditions, and after growth, nitrogen fixation by rhizobia is performed, promoting the establishment of other plants.

また、本発明に係る法面表層の安定化方法において、前記綿状生竹繊維は嵩比重が0.1〜0.3g/cmのものを使用するものとすることができる。 In the method for stabilizing the slope surface layer according to the present invention, the cotton-like raw bamboo fiber having a bulk specific gravity of 0.1 to 0.3 g / cm 3 can be used.

また、本発明に係る法面表層の安定化方法において、前記クッション層は、法面の地山表面に0.5〜150mmの厚みで形成するものとすることができる。   Moreover, in the stabilization method of the slope surface layer which concerns on this invention, the said cushion layer shall be formed in thickness of 0.5-150 mm on the natural ground surface of a slope.

本発明によれば、種子を綿状生竹繊維の絡合体内に分散して担持させ、接着剤で固定せずに種子が自由に動けるような状態を維持することで、接着剤で固定する場合に比べて発芽率が高くなり及び発芽速度も早められる。また、綿状生竹繊維の絡合体は、繊維が絡み合ったものであるため、斜面に吹き付けて植生基盤層として敷設した場合に斜面から崩れ落ちることがなく、安定的に斜面に固着させることができる。また、接着剤で固定するものではないため、接着剤の紫外線劣化による崩壊というような問題は生じない。また、綿状竹繊維の柔軟性により、凍結・融解を繰り返すような場所に於いても、凍結・融解による罅割・崩壊というような現象が生じることがないため、長期間に亘って植生基盤層を斜面に安定して設けることができる。   According to the present invention, seeds are dispersed and supported in the entangled body of cotton-like raw bamboo fiber, and fixed with an adhesive by maintaining a state in which the seeds can move freely without being fixed with an adhesive. Compared to the case, the germination rate is increased and the germination rate is also increased. In addition, the entangled body of cotton-like raw bamboo fiber is an intertwined fiber, so when sprayed on the slope and laid as a vegetation base layer, it can be stably fixed to the slope without collapsing from the slope. . Moreover, since it is not what is fixed with an adhesive agent, the problem of the collapse | disintegration by ultraviolet degradation of an adhesive agent does not arise. In addition, due to the flexibility of cotton-like bamboo fiber, there is no phenomenon such as splitting and collapsing due to freezing and thawing even in places where freezing and thawing are repeated. The layer can be stably provided on the slope.

生竹を材料として生成した綿状生竹繊維(左)及び枯れ竹を材料として生成した綿状枯竹繊維(右)の比較写真である。It is a comparison photograph of cotton-like raw bamboo fiber (left) produced from raw bamboo and cotton-like dead bamboo fiber produced from dead bamboo (right). 本実施例におけるクッション層を形成する綿状生竹繊維を電子顕微鏡写真である。It is an electron micrograph of the cotton-like raw bamboo fiber which forms the cushion layer in a present Example. 従来の植生基盤層を生成する接着剤を混合した綿状生竹繊維の電子顕微鏡写真である。It is an electron micrograph of the cotton-like raw bamboo fiber which mixed the adhesive agent which produces the conventional vegetation base layer. 本発明に係る法面表層の安定化方法により形成される法面表層の構造を表す模式図である。It is a schematic diagram showing the structure of the slope surface layer formed by the stabilization method of the slope surface layer which concerns on this invention. 吹付出芽試験の様子を示す図である。It is a figure which shows the mode of a spray budding test. 吹付発芽試験における、各観察日に於いて計数された各試験区の出芽・生存数の変化を示す図である。It is a figure which shows the change of the number of budding and survival of each test division counted in each observation day in a spray germination test. 図6の試験に於いて同時に測定した各試験区の土壌内の水分量の測定結果を示す図である。It is a figure which shows the measurement result of the moisture content in the soil of each test section measured simultaneously in the test of FIG. 接着剤を用いた綿状生竹繊維の植生基盤層と、接着剤を含まない綿状生竹繊維の植生基盤層との吸い上げ吸水試験の結果を表す図である。It is a figure showing the result of the wicking water absorption test of the vegetation base layer of the cotton-like raw bamboo fiber using an adhesive agent, and the vegetation base layer of the cotton-like raw bamboo fiber which does not contain an adhesive agent. 試験で得られる圧縮応力と圧縮歪みとの関係を模式的に示した図である。It is the figure which showed typically the relationship between the compressive stress obtained by a test, and compressive strain. 竹繊維基材の一軸圧縮試験から得られた圧縮応力と圧縮歪みとの関係を示す図である。(吹き付け直後の高い含水比での試験結果)It is a figure which shows the relationship between the compressive stress and the compressive strain which were obtained from the uniaxial compression test of the bamboo fiber base material. (Test results with high water content immediately after spraying) 竹繊維基材の一軸圧縮試験から得られた圧縮応力と圧縮歪みとの関係を示す図である。(吹き付け後53日が経過し供試体の乾燥が進んだ状態での試験結果)It is a figure which shows the relationship between the compressive stress and the compressive strain which were obtained from the uniaxial compression test of the bamboo fiber base material. (Test results in a state where 53 days have elapsed after spraying and the specimen has been dried) 竹繊維基材の一軸圧縮試験から得られた圧縮応力と圧縮歪みとの関係を示す図である。(中程度の含水比状態で凍結・解凍を施した供試体についての試験結果)It is a figure which shows the relationship between the compressive stress and the compressive strain which were obtained from the uniaxial compression test of the bamboo fiber base material. (Test results for specimens that were frozen and thawed at a medium moisture content) 一軸圧縮強さと含水比との関係を図12に示す図である。It is a figure which shows the relationship between uniaxial compressive strength and a water content ratio in FIG. 団粒分析装置の外観図である。It is an external view of a aggregate analysis apparatus. 乾燥竹繊維について分散前と分散後の供試体の団粒分析試験の結果を示す図である。It is a figure which shows the result of the aggregate analysis test of the specimen before dispersion | distribution about dry bamboo fiber. 凍結・解凍後の乾燥竹繊維について分散前と分散後の供試体の団粒分析試験の結果を示す図である。It is a figure which shows the result of the aggregate analysis test of the specimen before dispersion | distribution about the dried bamboo fiber after freezing and thawing | decompression. 種子固定発芽試験における試験方法を説明する図である。It is a figure explaining the test method in a seed fixed germination test. 種子固定発芽試験における種子固定試験区及び種子フリー試験区の種子発芽時の変化の様子を示す経過写真である。It is a progress photograph which shows the mode of the change at the time of seed germination of the seed fixation test group and a seed free test group in a seed fixed germination test. 各試験区の発芽率の時間変化を示す図である。It is a figure which shows the time change of the germination rate of each test section. 発芽時における種子の動きを表す経過写真である。It is a progress photograph showing the movement of the seed at the time of germination. 従来の吹き付け工法(綿状竹繊維に接着剤を混合して吹き付ける工法)による実際の吹き付け現場の写真である。It is the photograph of the actual spraying field by the conventional spraying method (construction method which mixes and sprays an adhesive agent to cotton-like bamboo fiber).

以下、本発明を実施するための形態について、図面を参照しながら説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

(1)使用する植生基材
本実施例において植生基材として使用する綿状生竹繊維は、生竹の稈を二軸圧縮粉砕器により圧縮粉砕して形成されたものである。圧縮粉砕は、特許文献1と同様に、噛合し又は近接して回転する二軸スクリュ押出機の二本のスクリュ間に竹材を通すことによって竹材を圧縮し潰砕するとともに、該両スクリュ終端に設けられた固定歯の歯間から圧縮潰砕された竹材を押し出し、該固定歯の歯板面に接して回転する回転刃によって押し出される圧縮潰砕された竹材を切断することによって、綿状に繊維化したものである。このように二軸スクリュ押出機で圧縮し潰砕し、更に固定歯と回転刃により切断することによって、竹材は細かく潰砕されるとともに、繊維細胞の細胞壁が破壊され、細菌や糸状菌の繁殖に適した状態となる。
(1) Vegetation base material to be used The cotton-like raw bamboo fiber used as a vegetation base material in this example is formed by compressing and grinding raw bamboo cocoons with a biaxial compression pulverizer. In compression pulverization, as in Patent Document 1, the bamboo material is compressed and crushed by passing the bamboo material between two screws of a twin screw extruder that meshes or rotates in close proximity, and at the end of both screws. By extruding the compressed and crushed bamboo material between the teeth of the fixed teeth provided, and cutting the compressed and crushed bamboo material extruded by a rotating blade in contact with the tooth plate surface of the fixed teeth, into a cotton shape It is made into fiber. In this way, by compressing and crushing with a twin screw extruder, and further cutting with a fixed tooth and a rotating blade, the bamboo material is finely crushed and the cell walls of the fiber cells are destroyed, causing the growth of bacteria and filamentous fungi It will be in a state suitable for.

また、使用する竹材として、枯れ竹ではなく生竹を使用する。「生竹」とは、伐採して間もない竹であって、乾燥・硬化して茶色く変色する前の竹をいう。竹は枯れると稈が硬化し脆くなる。従って、枯れ竹を二軸圧縮粉砕器により圧縮粉砕すると、粉状に崩壊し、十分な柔軟性が得られない。一方、硬化する前の生竹は繊維の柔軟性が高く、これを二軸圧縮粉砕器により圧縮粉砕すると柔軟な綿状繊維となる。一旦綿状繊維にすると、時間が経過して乾燥しても柔軟性が維持され、硬化したり粉状に崩壊したりし難くなる。   Moreover, as a bamboo material to be used, raw bamboo is used instead of withered bamboo. “Raw bamboo” refers to bamboo that has just been cut and has not yet turned brown after drying and hardening. Bamboo hardens and becomes brittle when it dies. Therefore, when dead bamboo is compressed and pulverized by a biaxial compression pulverizer, it collapses into a powder and sufficient flexibility cannot be obtained. On the other hand, raw bamboo before curing has high fiber flexibility, and when this is compressed and pulverized by a biaxial compression pulverizer, it becomes a flexible cotton-like fiber. Once made into a cotton-like fiber, the flexibility is maintained even after drying with time, and it becomes difficult to harden or disintegrate into powder.

図1は、生竹を材料として生成した綿状生竹繊維(左)及び枯れ竹を材料として生成した綿状枯竹繊維(右)の比較写真である。図1の左右の綿状竹繊維は、同一条件で同一の粉砕器を用いて生成した。左側の綿状生竹繊維は、伐採して30日以内の生竹を材料として使用し、右側の綿状枯竹繊維は、伐採して180日以上経過した枯れ竹を材料として使用した。左側の綿状生竹繊維は、1本ごとの繊維が長く、内部に空気を多く含んでふわふわした性状を示し、各繊維が複雑に交絡して散け難い性質を示す。一方、右側の綿状枯竹繊維は、1本ごとの繊維が短く、粉状となるまで粉砕されたものが多くみられる。1本ごとの繊維が短いため、粉体状に近くなり、柔軟性に乏しく、各繊維の交絡の度合いも小さく風に飛ばされやすい。   FIG. 1 is a comparative photograph of cotton-like raw bamboo fibers (left) produced from raw bamboo and cotton-like dried bamboo fibers (right) produced from dead bamboo. The left and right cotton-like bamboo fibers in FIG. 1 were produced using the same pulverizer under the same conditions. The left cotton-like raw bamboo fiber was cut from raw bamboo within 30 days, and the right cotton-like dead bamboo fiber was dead bamboo that had been cut for more than 180 days. The cotton-like raw bamboo fiber on the left is long and has a fluffy nature with a lot of air inside, and each fiber is intricately entangled and difficult to disperse. On the other hand, the cotton-like bamboo fiber on the right side is often pulverized until each fiber is short and powdery. Since each of the fibers is short, it becomes close to a powder form, lacks flexibility, and the degree of entanglement of each fiber is small and easily blown by the wind.

尚、生竹から生成される竹繊維の嵩比重を実際に測定したところ、0.1〜0.3g/cmであった。 In addition, when the bulk specific gravity of the bamboo fiber produced | generated from raw bamboo was actually measured, it was 0.1-0.3 g / cm < 3 >.

(2)クッション層
本発明においては、クッション層は、接着剤を含まない綿状生竹繊維に、植物の種子を添加し攪拌することにより、種子が回転自在な状態で綿状生竹繊維の絡合体内に分散して担持された状態となるように形成される。図2は、本実施例におけるクッション層を形成する綿状生竹繊維を電子顕微鏡写真、図3は、従来の植生基盤層を生成する接着剤を混合した綿状生竹繊維の電子顕微鏡写真である。図2,図3の各写真は、電子顕微鏡(SEM)を用いて撮影した。図2において、各写真の倍率は、(a)は200倍、(b)は1000倍、(c)は900倍、(b)は2000倍である。また、図3において、各写真の倍率は、(a)は150倍、(b)は1000倍、(c)は1000倍、(b)は3000倍である。図2,図3のサンプルは、実際に試験的に吹付機によって吹き付けたものを採取して撮影したものである。接着剤の樹脂には、竹繊維との濡れ性のよい、ローンフィックス(商品名:昭和電工株式会社製)を使用した。
(2) Cushion layer In the present invention, the cushion layer is made of cotton-like raw bamboo fibers in a state where the seeds are rotatable by adding and stirring the plant seeds to cotton-like raw bamboo fibers not containing an adhesive. It is formed so as to be dispersed and supported in the entangled body. FIG. 2 is an electron micrograph of the cotton-like raw bamboo fiber forming the cushion layer in this example, and FIG. 3 is an electron micrograph of the cotton-like raw bamboo fiber mixed with an adhesive that forms a conventional vegetation base layer. is there. 2 and 3 were taken using an electron microscope (SEM). In FIG. 2, the magnification of each photograph is 200 times for (a), 1000 times for (b), 900 times for (c), and 2000 times for (b). In FIG. 3, the magnification of each photograph is 150 times for (a), 1000 times for (b), 1000 times for (c), and 3000 times for (b). The samples shown in FIGS. 2 and 3 are actually taken and taken by a sprayer as a test. As the adhesive resin, Loan Fix (trade name: manufactured by Showa Denko KK), which has good wettability with bamboo fibers, was used.

従来の植生基盤層を生成する接着剤を混合した綿状生竹繊維では、各繊維の間に樹脂が膜状に絡まり、繊維間が樹脂で固定されていることが観察される。また、図3(d)のように、各繊維の表面は接着剤により被覆されている。一方、本発明のクッション層を形成する綿状生竹繊維は、竹繊維の1本1本がみてとられる。   In the cotton-like raw bamboo fiber mixed with the adhesive that generates the conventional vegetation base layer, it is observed that the resin is entangled in a film shape between the fibers and the fibers are fixed with the resin. Further, as shown in FIG. 3D, the surface of each fiber is coated with an adhesive. On the other hand, as for the cotton-like raw bamboo fiber which forms the cushion layer of this invention, one piece of bamboo fiber is seen.

図3のように、接着剤で被覆された竹繊維は、バクテリアなどによる分解に対して耐性が高く長寿命化が期待できるが、その一方で透水性は低下すると考えられる。   As shown in FIG. 3, bamboo fiber coated with an adhesive is highly resistant to degradation by bacteria and the like and can be expected to have a long life, but on the other hand, water permeability is considered to decrease.

(3)施工方法
上記クッション層を法面に施工する場合、上述の綿状生竹繊維に植物種子を混合したものを、吹き付け機により法面に吹き付けることによって行う。吹き付け機による吹き付け工法は、一般に広く行われているものと同様である。クッション層の厚さは、現場の状況(斜面の傾斜角や日照条件,降雨条件)に応じて適宜調整されるが、一般には0.5〜150mm程度とするのがよい。植物種子としては、イネ科(洋芝、エノコログサ属、ウシノケグサ属等)又はマメ科(シロツメグサ,ヤハズエンドウ、ミヤコグサ属等)の植物を使用することができる。図4は、本発明に係る法面表層の安定化方法により形成される法面表層の構造を表す模式図である。本発明の法面表層構造1においては、法面を形成する地山2の表面に、綿状生竹繊維に植物の種子4を添加し攪拌することにより、種子4が回転や運動が妨げられない状態で綿状生竹繊維の絡合体内に分散して担持された接着剤を含まないクッション材を吹き付けて、クッション層3を形成している。ここで、「回転や運動が妨げられない状態」とは、種子の発芽時に種子が運動(図20参照)する際に、その運動が妨げられない状態をいう。
(3) Construction method When the cushion layer is constructed on the slope, the above-described cotton-like raw bamboo fiber mixed with plant seeds is sprayed onto the slope with a spraying machine. The spraying method using a spraying machine is the same as that generally performed widely. The thickness of the cushion layer is appropriately adjusted according to the situation at the site (inclination angle of the slope, sunshine conditions, rainfall conditions), but generally it is preferably about 0.5 to 150 mm. As the plant seed, a plant belonging to the family Gramineae (Yoshiba, Enokorogusa, Ushikokegusa, etc.) or Legumes (White clover, Yakuzu Pea, Miyakogusa, etc.) can be used. FIG. 4 is a schematic view showing the structure of a slope surface layer formed by the method for stabilizing a slope surface layer according to the present invention. In the slope surface structure 1 of the present invention, the seed 4 is prevented from rotating and moving by adding and stirring the plant seed 4 to the cotton-like raw bamboo fiber on the surface of the natural mountain 2 forming the slope. The cushion layer 3 is formed by spraying a cushion material that does not contain an adhesive dispersed and supported in the entangled body of the cotton-like raw bamboo fiber without any contact. Here, the “state in which rotation and movement are not hindered” refers to a state in which the movement is not hindered when the seed moves (see FIG. 20) during germination of the seed.

(4)吹付出芽試験
次に、上述の綿状生竹繊維を用いて、本発明の種子の発芽促進方法による吹付出芽試験を行ったので、その結果を説明する。
(4) Spray germination test Next, the spray germination test by the seed germination promotion method of the present invention was performed using the above-described cottony raw bamboo fiber, and the results will be described.

(4.1)試験方法
吹付出芽試験に於いては、図4と同様に、栽培容器底部に充填した土壌の表面に、吹き付け機によって種子を混合した綿状生竹繊維を吹き付けて試験区を形成し、これを野外に設置して種子の出芽の本数を観察することにより行った。混合する種子の数は、各試験区で同数とし、日照条件等を同一条件とするため、図5に示したように、日当たりのよい野外に並べて設置した。植物の種子としては、イネ科植物として洋芝(ケンタッキーブルーグラス)とマメ科植物としてシロツメクサの種子とを使用した。また、本発明の効果を比較検証するため、試験区に吹き付ける吹付資材として、以下の(a)〜(f)の配合を用いた。尚、接着剤としては、ローンフィックス(商品名:昭和電工株式会社製)を使用した。各接着剤添加量及び各種子種類の試験区は、3つずつ用意した。灌水は、人為的な灌水は行わず、自然降雨による灌水のみとした。経過日数ごとに、出芽・生存している本数を計数して記録した。各観察日に於いて計数するにあたり、枯死した個体は除外した。
(4.1) Test method In the spraying and budding test, as in FIG. 4, cotton-like raw bamboo fibers mixed with seeds were sprayed on the surface of the soil filled in the bottom of the cultivation container to form a test plot. It was formed by observing the number of seed emergence by placing it in the field. The number of seeds to be mixed was set to be the same in each test section, and the sunlight conditions and the like were set to the same conditions. As plant seeds, grass (Kentucky bluegrass) was used as a gramineous plant, and white clover seeds were used as legumes. Moreover, in order to compare and verify the effects of the present invention, the following blends (a) to (f) were used as spray materials sprayed on the test section. As an adhesive, Loan Fix (trade name: manufactured by Showa Denko KK) was used. Three test sections were prepared for each adhesive addition amount and various child types. Irrigation was not performed artificially, but only by natural rainfall. The number of budding and surviving plants was counted and recorded for each elapsed day. In counting on each observation day, dead individuals were excluded.

(a)竹繊維99.5wt%,接着剤0.5wt%,洋芝種子混合
(b)竹繊維99.5wt%,接着剤0.5wt%,マメ科植物種子混合
(c)竹繊維99.0wt%,接着剤1.0wt%,洋芝種子混合
(d)竹繊維99.0wt%,接着剤1.0wt%,マメ科植物種子混合
(e)竹繊維100.0wt%,接着剤0.0wt%,洋芝種子混合
(f)竹繊維100.0wt%,接着剤0.0wt%,マメ科植物種子混合
(A) Bamboo fiber 99.5 wt%, adhesive 0.5 wt%, Yashiba seed mixed (b) Bamboo fiber 99.5 wt%, adhesive 0.5 wt%, legume seed mixed (c) Bamboo fiber 99. 0 wt%, adhesive 1.0 wt%, Yashiba seed mixed (d) bamboo fiber 99.0 wt%, adhesive 1.0 wt%, legume seed mixed (e) bamboo fiber 100.0 wt%, adhesive 0. 0wt%, mixed with turf seeds (f) 100.0wt% bamboo fiber, 0.0wt% adhesive, mixed with legume seeds

(4.2)試験結果
表1に、各観察日に於いて計数された各試験区の出芽・生存数を示す。また、図6に、各観察日に於いて計数された各試験区の出芽・生存数の変化を示す。なお、表1及び図5において示した出芽・生存数の値は、同種子種・同接着剤添加量の3試験区の平均数である。本発明に係る発芽促進方法により形成された試験区は(e),(f)である。(a)〜(d)は従来通りに接着剤を混合した綿状竹繊維の吹き付けによって形成した試験区である。
(4.2) Test results Table 1 shows the number of budding and survival in each test section counted on each observation day. FIG. 6 shows the change in the number of budding and survival in each test group counted on each observation day. In addition, the value of the germination / survival number shown in Table 1 and FIG. 5 is the average number of the three test sections of the same seed type and the same adhesive addition amount. The test plots formed by the germination promotion method according to the present invention are (e) and (f). (A)-(d) is a test section formed by spraying cotton-like bamboo fibers mixed with an adhesive as usual.

試験の結果、マメ科植物では、本発明に関わる試験区(f)では7日目で平均91.7本、14日目で平均132.0本,28日目で平均108.7本,49日目で平均81.3本の発芽が観測された。尚、発芽本数が28日目以降に減少しているのは、容器が限られた大きさであったため、早期に発芽し生長したものが枯死したためである。それに対し、従来法による試験区では、試験区(b)が最も早く発芽し、14日目に平均27.7本、28日目に平均55.7本、49日目に平均34.0本の発芽が観察された。試験区(d)は最も遅く、28日目で平均0.7本、49日目で平均3.0本の発芽が観察された。   As a result of the test, in the leguminous plant, in the test section (f) related to the present invention, the average was 91.7 on the seventh day, the average 132.0 on the 14th day, the average 108.7 on the 28th day, 49 An average of 81.3 germinations were observed on the day. The reason why the number of germinated seeds decreased after the 28th day is that the container was of a limited size, and the germinated seedlings and those that grew early died. On the other hand, in the test plot by the conventional method, the test plot (b) germinates earliestly, averaging 27.7 on the 14th day, average 55.7 on the 28th day, and average 34.0 on the 49th day. Germination was observed. The test plot (d) was the latest, with an average of 0.7 germinations observed on the 28th day and an average of 3.0 germinations on the 49th day.

また、洋芝では、本発明に関わる試験区(e)では14日目で平均0.3本、28日目で平均112.0本、49日目で平均80.0本の発芽が観測された。それに対し、従来法による試験区では、試験区(a)では28日目で平均6.0本、49日目で平均33.0本の発芽が観測された。試験区(c)では49日目で平均12.7本の発芽が観測された。   In Yoshiba, germination of an average of 0.3 on the 14th day, an average of 112.0 on the 28th day, and an average of 80.0 on the 49th day was observed in the test plot (e) related to the present invention. It was. On the other hand, in the test plot according to the conventional method, germination of 6.0 on average on the 28th day and 33.0 average on the 49th day was observed in the test plot (a). In the test plot (c), an average of 12.7 germinations were observed on the 49th day.

以上の結果から、同種の種子で比較すると、本発明に関わる試験区(e),(f)が、従来法による他の試験区に比べて種子の発芽速度が顕著に促進されており、本発明の種子の発芽促進方法による種子の発芽速度の促進効果が確認された。   From the above results, when compared with seeds of the same species, the germination rate of the seeds in the test plots (e) and (f) according to the present invention was significantly accelerated compared to other test plots according to the conventional method. The effect of promoting the germination rate of seeds by the seed germination promotion method of the invention was confirmed.

図7は、図6の試験に於いて同時に測定した各試験区の土壌内の水分量の測定結果を示す図である。図7から、各試験区において土壌内の水分量については、試験区(e),(f)の水分量が試験区(a),(b)及び試験区(c),(d)の水分量に比べて若干大きいものの、あまり大きな差は見られなかった。このことから、本発明に関わる試験区における種子の出芽率が高いという上記結果について、土壌水分量の違いの影響は小さいと考えられる。試験区(a)〜(d)と試験区(e),(f)の大きな差違は、接着剤の有無である。試験区(a)〜(d)では、接着剤により種子が固定されているのに対し、試験区(e),(f)では、種子は綿状生竹繊維内に回転や運動が妨げられない状態で担持されており、この差が種子の発芽促進に大きく関与しているものと推察される。   FIG. 7 is a diagram showing the measurement results of the moisture content in the soil of each test section measured simultaneously in the test of FIG. From FIG. 7, regarding the moisture content in the soil in each test section, the moisture contents of the test sections (e) and (f) are the water contents of the test sections (a) and (b) and the test sections (c) and (d). Although it was slightly larger than the amount, there was not much difference. From this, it is considered that the influence of the difference in soil water content is small for the above result that the seed germination rate in the test plot relating to the present invention is high. A large difference between the test sections (a) to (d) and the test sections (e) and (f) is the presence or absence of an adhesive. In the test plots (a) to (d), the seeds are fixed by an adhesive, whereas in the test plots (e) and (f), the seeds are prevented from rotating and moving in the fluffy bamboo fiber. It is speculated that this difference is greatly involved in the promotion of seed germination.

(5)含水量の比較
次に、従来の接着剤を用いた綿状生竹繊維の植生基盤層と、本発明に係る発芽促進方法で使用する植生基盤層との保水性の比較を定量的に行ったので、その結果について説明する。
(5) Comparison of water content Next, quantitative comparison of water retention between the vegetation base layer of cottony raw bamboo fiber using a conventional adhesive and the vegetation base layer used in the germination promotion method according to the present invention is quantitative. The results will be described.

図8は、接着剤を用いた綿状生竹繊維の植生基盤層と、接着剤を含まない綿状生竹繊維の植生基盤層との吸い上げ吸水試験の結果を表す図である。実験は、まず、植生基盤層を構成する材料を、内径40mm、高さ10mmの円筒形容器に充填して、サンプルを作成した。最初に各サンプルの乾燥重量を測定し、次いで、図8(a)に示すように、各サンプルを水で満たされたトレイ内に下端が水面下に浸かるように立てて設置した。吸水中はトレイ内の水位が変化しないように、常にトレイが満水となるように常時水の補給を行った。約24時間放置して十分に吸水させた後に、各サンプルを取り出して、軸方向の長さ2.5cmごとに輪切りにし、各部分(図8(a)の各サンプル区間)の質量を測定した。質量の測定結果から、各サンプル区間における含水比を、次式によって求めた。   FIG. 8 is a diagram showing the results of a water absorption test of a vegetation base layer of cotton-like raw bamboo fiber using an adhesive and a vegetation base layer of cotton-like raw bamboo fiber that does not contain an adhesive. In the experiment, first, the material constituting the vegetation base layer was filled into a cylindrical container having an inner diameter of 40 mm and a height of 10 mm to prepare a sample. First, the dry weight of each sample was measured, and then, as shown in FIG. 8A, each sample was placed upright in a tray filled with water so that the lower end was immersed below the water surface. During water absorption, water was constantly replenished so that the tray was always full so that the water level in the tray did not change. After allowing the sample to stand for about 24 hours and sufficiently absorb water, each sample was taken out and cut into pieces every 2.5 cm in the axial direction, and the mass of each part (each sample section in FIG. 8A) was measured. . From the measurement result of mass, the water content ratio in each sample section was obtained by the following equation.

測定の結果を図8(b)に示す。各サンプルの乾燥質量は、接着剤を添加した綿状生竹繊維の植生基盤層Aが16.6g、接着剤を含まない綿状生竹繊維の植生基盤層Bが15.6gであった。実験の結果、植生基盤層Aはサンプル区間8.75cmまで揚水され、植生基盤層Bはサンプル区間11.25cmまで揚水された。各サンプル区間に於いて、植生基盤層Bのほうが植生基盤層Aに比べて、平均で約90mass%程度含水量が多かった。このことから、接着剤を添加しない植生基盤層Bのほうが、接着剤を添加した植生基盤層Aに比べて保水力が高く、また、毛管現象によって底部の水を吸い上げる揚水力も高いことが分かる。   The measurement results are shown in FIG. The dry mass of each sample was 16.6 g of the vegetation base layer A of the cotton-like raw bamboo fiber to which the adhesive was added, and 15.6 g of the vegetation base layer B of the cotton-like raw bamboo fiber not containing the adhesive. As a result of the experiment, the vegetation base layer A was pumped up to a sample section of 8.75 cm, and the vegetation base layer B was pumped up to a sample section of 11.25 cm. In each sample section, the vegetation base layer B had a water content of about 90 mass% on average in comparison with the vegetation base layer A. From this, it can be seen that the vegetation base layer B to which no adhesive is added has a higher water retention capacity than the vegetation base layer A to which the adhesive is added, and also has a higher pumping power to suck up water at the bottom by capillary action.

(6)変形・強度試験
(6.1)一軸圧縮試験とは
通常、一軸圧縮試験は、土の剪断強さを得るために行われる。図9は、試験で得られる圧縮応力と圧縮歪みとの関係を模式的に示したものである。乱さない土の圧縮応力はある圧縮歪みでピーク値を示し、この値が一軸圧縮強さである。一方で、練り返し土のような場合、圧縮応力は単調に増加しピーク値を示さない。従って、斯かる場合には、圧縮歪みが15%に達したときの圧縮応力を一軸圧縮強さとみなす。
(6) Deformation / strength test (6.1) What is a uniaxial compression test? A uniaxial compression test is usually performed to obtain the shear strength of soil. FIG. 9 schematically shows the relationship between compressive stress and compressive strain obtained in the test. The compressive stress of undisturbed soil shows a peak value at a certain compressive strain, and this value is the uniaxial compressive strength. On the other hand, in the case of ground clay, the compressive stress increases monotonously and does not show a peak value. Therefore, in such a case, the compressive stress when the compressive strain reaches 15% is regarded as uniaxial compressive strength.

(6.2)試験方法
水と混合した2種類の竹繊維(接着剤添加と無添加)を内径3.5cm,高さ7cmの円筒容器に吹付け、円筒容器の枠を外して一軸圧縮試験用の試料を準備した。これらの試料を異なる期間(0,10,56日)空気中に放置し、乾燥の程度を変化させた。また、凍結・解凍の影響を調べるため、乾燥が進んだ試料(53日放置)に霧吹きで水分を加え、それを凍結・解凍した。このようにして作成した試料を使って一軸圧縮試験を行った。試験は、一種類の試料について3個の供試体を使って3連で行った。
(6.2) Test method Two types of bamboo fiber mixed with water (with and without adhesive) are sprayed onto a cylindrical container with an inner diameter of 3.5 cm and a height of 7 cm, the frame of the cylindrical container is removed, and a uniaxial compression test is performed. A sample was prepared. These samples were left in the air for different periods (0, 10, 56 days) to change the degree of drying. Further, in order to examine the influence of freezing / thawing, moisture was added to the sample that had been dried (left for 53 days) by spraying, and it was frozen / thawed. A uniaxial compression test was performed using the sample thus prepared. The test was performed in triplicate using three specimens for one type of sample.

(6.3)試験結果
図10から図12に、竹繊維基材の一軸圧縮試験から得られた圧縮応力と圧縮歪みとの関係を示す。図10は吹き付け直後の高い含水比での試験結果、図11は吹き付け後53日が経過し供試体の乾燥が進んだ状態での試験結果、図12は中程度の含水比状態で凍結・解凍を施した供試体についての試験結果である。
(6.3) Test Results FIGS. 10 to 12 show the relationship between the compressive stress and the compressive strain obtained from the uniaxial compression test of the bamboo fiber base material. FIG. 10 shows a test result at a high water content ratio immediately after spraying, FIG. 11 shows a test result in a state where 53 days have passed after spraying and drying of the specimen has progressed, and FIG. 12 shows freezing / thawing in a medium water content state. It is a test result about the test piece which gave.

接着剤添加の有無、含水比の程度、凍結・解凍の有無にかかわらず、圧縮応力はピークを示さず、供試体が破壊に至ることはなかった。これは、竹繊維基材が本来持っている靱性(壊れにくい性質)と展延性(壊れずに変形する性質)が、接着剤の添加、凍結・解凍後も維持されていることを示している。竹繊維の靱性と展延性は、単体の竹繊維の引っ張り強さが大きい(圧縮されても破壊されにくい)こと、それが絡み合うことでさらに引っ張り強さが高まることに起因している。   Regardless of whether or not the adhesive was added, the degree of water content, and whether or not freezing / thawing was performed, the compressive stress did not show a peak, and the specimen did not break. This indicates that the toughness (proper property that is not easily broken) and spreadability (property that can be deformed without breaking) of the bamboo fiber base material are maintained even after addition of adhesive, freezing and thawing. . The toughness and spreadability of bamboo fiber is due to the fact that the single bamboo fiber has a high tensile strength (it is difficult to break even when compressed), and the tensile strength is further increased by entanglement.

各供試体の一軸圧縮強さについては、圧縮歪みが15%に達したときの圧縮応力を、一軸圧縮強さに相当するものと見なした。こうして得られた一軸圧縮強さと含水比との関係を図13に示す。図中には、吹きつけによる供試体作成後の経過日数も併記している。吹き付け直後(0日)の含水比は、接着剤添加供試体の場合265〜272wt%、接着剤無添加供試体の場合319〜330wt%であった。接着剤の添加により含水比が低下したのは、接着剤の密度が竹繊維の密度よりも大きいため、及び接着剤の撥水効果のためであると考えられる。吹き付け直後の一軸圧縮強さは、接着剤無添加供試体の場合については11〜15kPa、接着剤添加供試体の場合については8〜9kPaであった。吹き付け後10日が経過すると、接着剤無添加供試体の場合の含水比は269〜272wt%に低下し、それに応じて一軸圧縮強さは14〜19kPaに増加した。一方、接着剤添加供試体の含水比は179wt%に低下したにも関わらず、一軸圧縮強さは殆ど変化しなかった。吹き付け後56日が経過すると、接着剤無添加供試体及び接着剤添加供試体の含水比は、それぞれ19〜32wt%,21〜26wt%まで減少し、両者に殆ど差は見られなかった。それに対し、一軸圧縮強さは、接着剤無添加供試体のほうが接着剤添加供試体よりも大きな値を示した。   Regarding the uniaxial compressive strength of each specimen, the compressive stress when the compressive strain reached 15% was considered to correspond to the uniaxial compressive strength. FIG. 13 shows the relationship between the uniaxial compressive strength thus obtained and the water content ratio. The figure also shows the number of days that have elapsed since the specimen was created by spraying. The moisture content immediately after spraying (0 day) was 265 to 272 wt% in the case of the adhesive-added specimen and 319 to 330 wt% in the case of the adhesive-free specimen. It is considered that the water content ratio was decreased by the addition of the adhesive because the density of the adhesive was higher than that of the bamboo fiber and because of the water repellent effect of the adhesive. The uniaxial compressive strength immediately after spraying was 11 to 15 kPa in the case of the adhesive-free specimen, and 8 to 9 kPa in the case of the adhesive-added specimen. When 10 days passed after spraying, the water content ratio in the case of the specimen without additive was decreased to 269 to 272 wt%, and the uniaxial compressive strength was increased to 14 to 19 kPa accordingly. On the other hand, the uniaxial compressive strength hardly changed although the moisture content of the adhesive-added specimen decreased to 179 wt%. When 56 days passed after spraying, the water content ratios of the adhesive-free specimen and the adhesive-added specimen decreased to 19 to 32 wt% and 21 to 26 wt%, respectively, and there was almost no difference between the two. On the other hand, the uniaxial compressive strength showed a larger value in the specimen without an adhesive than in the specimen with an adhesive.

以上の結果から、吹き付け後、同じ日数が経過した時点での、接着剤の有無による竹繊維基材の一軸圧縮強さを比較すると、接着剤添加の機材が低い値を示すことが明らかとなった。   From the above results, when the uniaxial compressive strength of the bamboo fiber base material with and without the adhesive is compared at the time when the same number of days have passed after spraying, it is clear that the equipment with the adhesive added shows a low value. It was.

次に、凍結・解凍が一軸圧縮強さへ及ぼす影響について述べる。供試体の作成は以下の通りである。まず、吹き付け後56日が経過した乾燥供試体に、スプレーで水を吹きかけて湿潤状態にし、引き続き供試体を凍結して、その後自然解凍した。供試体の含水比は、接着剤無添加供試体で148〜176wt%、接着剤添加供試体で93〜103wt%であった。また、一軸圧縮強さは、それぞれ、23〜29kPa,16〜21kPaであった。これらのデータは、接着剤無添加及び接着剤添加の何れの場合も相関曲線上に位置している。このことは、凍結・解凍が、竹繊維機材の一軸圧縮強さの低下を引き起こさないことを示している。   Next, the effect of freezing / thawing on uniaxial compressive strength will be described. The specimens are created as follows. First, the dried specimen that had passed 56 days after spraying was sprayed with water to make it wet, and then the specimen was frozen and then naturally thawed. The water content ratio of the specimens was 148 to 176 wt% for the specimens without an adhesive and 93 to 103 wt% for the specimens with an adhesive. Moreover, the uniaxial compressive strength was 23-29 kPa and 16-21 kPa, respectively. These data are located on the correlation curve in both cases of no addition of adhesive and addition of adhesive. This indicates that freezing / thawing does not cause a decrease in the uniaxial compressive strength of bamboo fiber equipment.

(7)団粒分析試験による侵食性の評価
(7.1)団粒とは
土壌は、粘土,シルト,砂などの様々な大きさの粒子から構成されている。其々の粒子が単体で存在するとき、それは1次粒子と呼ばれる。通常、砂は一次粒子として存在するが、粘土やシルトの1次粒子は集合して2次粒子(団粒)を形成している。団粒の形成には、1次粒子を結合するための鉄,アルミニウム,ケイ素などの酸化物が重要な役割を果たしている。
(7) Evaluation of erodibility by aggregate analysis test (7.1) What is aggregate? Soil is composed of particles of various sizes such as clay, silt and sand. When each particle exists alone, it is called a primary particle. Usually, sand exists as primary particles, but primary particles of clay and silt aggregate to form secondary particles (aggregates). For the formation of aggregates, oxides such as iron, aluminum and silicon for binding primary particles play an important role.

(7.2)団粒の大きさの算定
風乾した土壌を水に入れると、弗化(スレーキング)により団粒相互の結応力が失われ、間隙空気の力により団粒は崩壊する。これに外力を作用させると団粒は小さくなるが、最終的にある大きさに落ち着く。このように安定した状態の団粒は耐水性団粒と呼ばれる。外力を作用させるために団粒分析装置が用いられ、団粒分析試験の結果を基に団粒の大きさが算定される。
(7.2) Calculation of the size of aggregates When air-dried soil is put into water, the binding stress between aggregates is lost due to fluorination (slacking), and aggregates collapse due to the force of interstitial air. When an external force is applied to this, the aggregate becomes smaller, but eventually settles to a certain size. Such stable aggregates are called water-resistant aggregates. In order to apply an external force, a nodule analyzer is used, and the size of the nodule is calculated based on the result of the nodule analysis test.

(7.3)団粒と浸食の関係
団粒は、土壌構造の安定性、間隙の大きさや形に関係し、土壌の保水性、透水性、通気性に影響を及ぼす。団粒が発達した土壌は、透水性や通気性に優れているため、土壌表面を流れる水量は少なくなり、土壌浸食は抑制される。従って、団粒分析の結果は、土壌浸食の指標として用いることができる。
(7.3) Relationship between aggregates and erosion Aggregates are related to the stability of soil structure and the size and shape of gaps, and affect the water retention, water permeability and air permeability of soil. Since the soil in which aggregates are developed is excellent in water permeability and air permeability, the amount of water flowing on the soil surface is reduced, and soil erosion is suppressed. Therefore, the result of aggregate analysis can be used as an index of soil erosion.

(7.4)竹繊維を土壌とみなす
竹繊維は土壌ではないが、竹繊維の吹付基盤(クッション層)を土壌と見なし、竹繊維の集合体(団粒)の大きさを団粒分析試験により算定した。以下、竹繊維については「集合体」という用語を用いる。
(7.4) Bamboo fiber is regarded as soil Bamboo fiber is not soil, but the sprayed base (cushion layer) of bamboo fiber is regarded as soil, and the aggregate size (aggregate) of bamboo fibers is aggregated analysis test Calculated by Hereinafter, the term “aggregate” is used for bamboo fiber.

(7.5)団粒分析試験の方法
図14に団粒分析装置を示す。装置の下部は水槽(直径190mm、深さ370mm)と組篩からなる。組篩の目の大きさは、上から2.0,1.0,0.5,0.25,0.1mmである。試験法は以下の通りである。
(i)水槽に水を満たし、5個の篩を水槽内の水中で組み立てる。これは空気が篩の間に入るのを防ぐためである。
(ii)竹繊維試料約20gを最上部の篩(2.0mm)に薄く広げて1日放置する。
(iii)アームを1分間に32回、3.8cmのストロークで3時間上下運動させて、試料の篩い分けを行う。
(iv)各篩に残った試料を集めて、110℃で炉乾燥した後、その質量を測定する。
(7.5) Method of aggregate analysis test FIG. 14 shows an aggregate analysis apparatus. The lower part of the device consists of a water tank (diameter 190 mm, depth 370 mm) and a combination screen. The size of the mesh sieve is 2.0, 1.0, 0.5, 0.25, 0.1 mm from the top. The test method is as follows.
(I) Fill the water tank with water and assemble five sieves in the water in the water tank. This is to prevent air from entering between the sieves.
(Ii) About 20 g of bamboo fiber sample is spread thinly on the top sieve (2.0 mm) and left for 1 day.
(Iii) The sample is sieved by moving the arm up and down 32 times per minute for 3 hours with a stroke of 3.8 cm.
(Iv) Collect the sample remaining on each sieve, oven dry at 110 ° C., and measure its mass.

(7.6)試料の種類と調整
団粒分析のための竹繊維試料は、吹き付けにより作成した一軸圧縮試験用の円柱供試体を使用した。団粒分析の供試体としては、以下の2種類を使用した:
(a)吹き付けにより作成した円柱供試体を風乾したもの。
(b)湿潤状体の円柱供試体を凍結・解凍した後に風乾したもの。
上記(a)(b)の試料を砕き、各試料についてそのままの状態で使うもの(分散前の供試体)と試料を水中で分散したもの(分散後の供試体)を準備した。分散前の供試体は、大きな竹繊維の集合体からなる。集合体は、竹繊維の絡みにより維持されていると考えられる。一方、分散後の供試体は、水を満たした瓶に試料を入れ、それに30分間振盪による衝撃を与えて作成したものである。竹繊維の集合体は離散して、小さくなっている。
このようにして準備した分散前及び分散後の供試体を(6.5)の要領で団粒分析を行った。
(7.6) Sample type and adjustment As a bamboo fiber sample for aggregate analysis, a cylindrical specimen for a uniaxial compression test prepared by spraying was used. The following two types of specimens were used for aggregate analysis:
(A) An air-dried cylindrical specimen prepared by spraying.
(B) A wet cylindrical specimen was frozen and thawed and then air-dried.
Samples (a) and (b) above were crushed, and samples used as they were for each sample (specimen before dispersion) and samples dispersed in water (specimen after dispersion) were prepared. The specimen before dispersion consists of an aggregate of large bamboo fibers. The aggregate is thought to be maintained by the entanglement of bamboo fibers. On the other hand, the specimen after dispersion was prepared by putting a sample in a bottle filled with water and giving an impact by shaking for 30 minutes. Bamboo fiber aggregates are discrete and small.
Aggregate analysis was performed on the specimen prepared before and after dispersion in the manner described in (6.5).

(7.7)団粒分析試験の結果
図15に、乾燥竹繊維について分散前と分散後の供試体の団粒分析試験の結果を示す。横軸は集合体の大きさ(粒径)を表す。プロットした点の粒径(0.1,0.25,0.5,1.0,2.0mm)は篩の目の大きさである。0.1は、0.1mm以上0.25mm未満の粒径、0.25は0.25mm以上1.0mm未満の粒径、1.0は1.0mm以上2.0mm未満の粒径、2.0は2.0mm以上の粒径に相当する。縦軸は篩に残った試料の残留率を表しており、各篩に残った試料の質量を全質量で除して求めた。
(7.7) Results of Aggregate Analysis Test FIG. 15 shows the results of the aggregate analysis test of the specimens before and after dispersion on the dried bamboo fiber. The horizontal axis represents the size (particle size) of the aggregate. The particle size (0.1, 0.25, 0.5, 1.0, 2.0 mm) of the plotted points is the size of the sieve mesh. 0.1 is a particle size of 0.1 mm or more and less than 0.25 mm, 0.25 is a particle size of 0.25 mm or more and less than 1.0 mm, 1.0 is a particle size of 1.0 mm or more and less than 2.0 mm, 2 0.0 corresponds to a particle size of 2.0 mm or more. The vertical axis represents the residual rate of the sample remaining on the sieve, and was obtained by dividing the mass of the specimen remaining on each sieve by the total mass.

図15において、接着剤無添加の場合、分散前には粒径2.0mm(2.0mm以上の大きさ)の集合体が96wt%を占めており、其れより小さな集合体は殆ど存在しなかった。然し、供試体を振盪して分散処理を施すことにより、粒径2.0mmの集合体の残留率は96wt%から44wt%にまで大きく減少した。一方、粒径1.0,0.5,0.25,0.1mmの集合体の残留率は、分散処理前に0wt%であったものが、分散処理後には10−15wt%にまで増加した。これは、大きな集合体が振盪により崩壊し、小さな集合体に変わったことを意味する。このことを竹繊維の吹き付け基盤の雨水侵食と関連して考えると、雨水が基盤に衝撃を与えると竹繊維の集合体は崩壊して小さな集合体となり、基盤は侵食を受け易くなる。   In FIG. 15, in the case where no adhesive is added, an aggregate having a particle size of 2.0 mm (size of 2.0 mm or more) accounts for 96 wt% before dispersion, and there are almost no aggregates smaller than that. There wasn't. However, the residual ratio of the aggregate having a particle size of 2.0 mm was greatly reduced from 96 wt% to 44 wt% by shaking the specimen and applying the dispersion treatment. On the other hand, the residual ratio of aggregates having particle sizes of 1.0, 0.5, 0.25, and 0.1 mm was 0 wt% before the dispersion treatment, but increased to 10-15 wt% after the dispersion treatment. did. This means that the large aggregate collapsed by shaking and turned into a small aggregate. Considering this in relation to rainwater erosion of the bamboo fiber spray base, when the rainwater impacts the base, the bamboo fiber aggregate collapses into a small aggregate and the base is susceptible to erosion.

接着剤添加の場合も、無添加の場合と同様に、粒径2.0mmの集合体の残留率は、分散前の95wt%から分散後の38wt%に大幅に減少し、1.0mm以下の粒径の集合体は、分散前の0wt%から分散後の4−20wt%に増加したが、大きな集合体の減少と小さな集合体の増加の割合は、接着剤無添加の場合より顕著であることが分かった。このことは、接着剤を添加することで、竹繊維の集合体は崩壊しやすくなることを示している。従って、現場に於いて接着剤を添加した基盤は、添加していない基盤に比べて侵食を受けやすくなることが予想される。   In the case of addition of an adhesive, as in the case of no addition, the residual ratio of the aggregate having a particle size of 2.0 mm is greatly reduced from 95 wt% before dispersion to 38 wt% after dispersion, and is 1.0 mm or less. The aggregate of the particle size increased from 0 wt% before dispersion to 4-20 wt% after dispersion, but the rate of decrease in large aggregates and increase in small aggregates is more pronounced than when no adhesive was added. I understood that. This has shown that the aggregate | assembly of a bamboo fiber becomes easy to collapse by adding an adhesive agent. Therefore, it is expected that the base with the adhesive added at the site is more susceptible to erosion than the base without the addition.

図16は、凍結・解凍後に乾燥した竹繊維試料についての団粒分析結果を示している。接着剤無添加の場合、粒径2.0mm(2.0mm以上の大きさ)の集合体は95wt%を占めているが、分散により61wt%に減少した。この減少量は、凍結・解凍を受けていない乾燥竹繊維試料の場合(図15参照)に比べて少なく、これは凍結・解凍が分散による竹繊維集合体の崩壊を抑制することを示唆している。当初、凍結・解凍は集合体の崩壊を促進すると予想していたが、これとは逆の結果となった。   FIG. 16 shows a result of aggregate analysis for a bamboo fiber sample dried after freezing and thawing. When no adhesive was added, aggregates having a particle size of 2.0 mm (size of 2.0 mm or more) accounted for 95 wt%, but decreased to 61 wt% due to dispersion. This amount of decrease is small compared to the case of dry bamboo fiber samples that have not undergone freezing / thawing (see FIG. 15), suggesting that freezing / thawing suppresses the collapse of bamboo fiber aggregates due to dispersion. Yes. Initially, freezing and thawing were expected to accelerate the collapse of the aggregate, but the opposite was true.

また、接着剤を添加すると、粒径2.0mmの集合体は38wt%に減少し、粒径1.0mm以下の集合体は増加した。この傾向は図15の乾燥竹繊維試料の場合と同じである。従って、接着剤の添加により竹繊維基盤の侵食性が高まることが予測される。   When the adhesive was added, the aggregate having a particle size of 2.0 mm was reduced to 38 wt%, and the aggregate having a particle size of 1.0 mm or less was increased. This tendency is the same as that of the dry bamboo fiber sample of FIG. Therefore, it is predicted that the erodibility of the bamboo fiber base is increased by the addition of the adhesive.

(8)種子固定の影響に関する調査
種子が接着剤で固定された場合、種子の発芽にどのような影響が生じるのかを調査した結果を説明する。
(8) Investigation on the effects of seed fixation The effects of investigation on the germination of seeds when seeds are fixed with an adhesive will be described.

(8.1)種子固定発芽試験の方法
試験方法としては、接着剤で種子を固定して種子の回転を抑えた試験区(種子固定試験区)と、種子を固定せずに自由に回転・移動することができるようにした試験区(種子フリー試験区)とを用意し、両者の試験区における種子の発芽の様子をインターバル・レコーダにより定位置から一定間隔で撮影することにより記録した。種子の固定は、図17(a)に示したように、金網に種子の片面を接着剤(木工用ボンド)により接着することにより行った。両試験区の日照条件、温度条件、灌水条件を等しくするため、図17(b)に示したように、シャーレ内に吸水性の不織布(下層)及び脱脂綿(上層)を敷設し、脱脂綿の上面を2分して半分を種子固定試験区(左側)、半分を種子フリー試験区(右半分)とした。種子固定試験区では、図17(a)のように片面に種子を接着した金網を、種子が接着された側を下面として脱脂綿上に載置した。また、灌水時に種子が移動することを防止するため、シャーレ内への灌水は、図17(b)に示すように、ビーカーからシャーレ内の不織布の下面まで灌水用の不織布を延設し、ビーカー内の水を浸透圧によりシャーレ内へ給水する浸透圧灌水により行い、脱脂綿が常時湿潤した状態を維持するようにした。試験に使用する種子としては、市販の洋芝(ケンタッキーブルーグラス)の種子を使用した。また、種子数は両試験区で同数とした。
(8.1) Seed-fixed germination test method Test methods include a test group (seed-fixed test group) in which seeds are fixed with an adhesive to suppress the rotation of the seeds, and a seed can be freely rotated without fixing seeds. A test plot (seed-free test plot) that was allowed to move was prepared, and the state of seed germination in both test plots was recorded by photographing at regular intervals from a fixed position with an interval recorder. As shown in FIG. 17A, the seeds were fixed by adhering one side of the seeds to a wire mesh with an adhesive (bond for woodworking). In order to equalize the sunshine conditions, temperature conditions, and irrigation conditions in both test sections, as shown in FIG. 17 (b), an absorbent nonwoven fabric (lower layer) and absorbent cotton (upper layer) are laid in the petri dish, and the upper surface of the absorbent cotton Was divided into two, and half was designated as a seed-fixed test group (left side) and half as a seed-free test group (right half). In the seed fixation test section, as shown in FIG. 17 (a), a wire net having a seed adhered on one side was placed on absorbent cotton with the side to which the seed was adhered as the lower surface. In order to prevent seeds from moving during irrigation, irrigation into the petri dish is performed by extending a non-woven fabric for irrigation from the beaker to the lower surface of the non-woven fabric in the petri dish, as shown in FIG. This was performed by osmotic irrigation in which water was fed into the petri dish by osmotic pressure so that the absorbent cotton was kept wet all the time. As seeds to be used for the test, commercially available turf (Kentucky bluegrass) seeds were used. The number of seeds was the same in both test groups.

(8.2)種子固定発芽試験の結果
図18に、種子固定発芽試験における種子固定試験区及び種子フリー試験区の種子発芽時の変化の様子を示す。図19に、各試験区の発芽率の時間変化を示す。接着剤による種子固定により、種子の発芽が阻害されることは、図18の写真より一見して明らかである。実験の結果、実験開始から216時間経過後に於いて、種子フリー試験区の発芽率は約70%であったのに対し、種子固定試験区の発芽率は約10%であった。従って、接着剤による種子固定によって約60%程度発芽率が低下した。図20は、発芽時における種子の動きを表す図である。発芽時に於いて、種子内部から芽が出る前に種子が開くように動く。接着剤で固定した場合の発芽率低下の要因として、この種子の開き運動が阻害されることが一要因であると推測される。
(8.2) Results of Seed Fixed Germination Test FIG. 18 shows changes during seed germination in the seed fixed test group and the seed free test group in the seed fixed germination test. In FIG. 19, the time change of the germination rate of each test section is shown. It is apparent from the photograph in FIG. 18 that seed germination is inhibited by seed fixation with an adhesive. As a result of the experiment, after 216 hours from the start of the experiment, the germination rate of the seed-free test group was about 70%, whereas the germination rate of the seed-fixed test group was about 10%. Therefore, the germination rate decreased by about 60% by seed fixation with an adhesive. FIG. 20 is a diagram illustrating seed movement during germination. At the time of germination, it moves so that the seed opens before buds come out from inside the seed. It is presumed that one factor is that the seed opening movement is inhibited as a factor in reducing the germination rate when fixed with an adhesive.

なお、マメ科植物についても同様の実験を実施した。マメ科植物の場合、イネ科植物のように発芽時において種子の回転運動は見られない。しかしながら、灌水を行うとマメ科植物の種子は膨張し、発芽時には種子の表皮が裂開して発芽する。この膨張の際に、種子の表皮が接着剤で固定されていると、発芽前に種子の表皮が裂開して胚芽が表皮内から飛び出し、乾燥・枯死するケースが多数見られた。このように、マメ科植物の場合においても、種子を接着剤で固定することによる発芽率の低下が生じる。   The same experiment was conducted on legumes. In the case of legumes, seed rotation is not observed during germination, as in the case of gramineous plants. However, when irrigated, the legume seeds expand, and at the time of germination, the epidermis of the seeds is cleaved and germinated. During the expansion, if the seed epidermis was fixed with an adhesive, the seed epidermis was cleaved before germination, and the germs jumped out of the epidermis and dried and withered. Thus, even in the case of legumes, the germination rate is reduced by fixing the seed with an adhesive.

本発明に係る種子の発芽促進方法は、生竹の稈を二軸圧縮粉砕器により圧縮粉砕して形成した綿状生竹繊維に、植物の種子を添加し攪拌することにより、前記種子が、回転自在な状態で、前記綿状生竹繊維の絡合体内に分散して担持された、接着剤を含まない前記綿状生竹繊維及び前記種子のみで構成されるクッション材を生成し、該クッション材を地表に敷設することで前記種子を地表に植え付けることを特徴とする。
In the seed germination promotion method according to the present invention, the seeds are added to the cotton-like raw bamboo fibers formed by compressing and pulverizing raw bamboo shoots with a biaxial compression pulverizer, and the seeds are stirred. In a freely rotatable state, a cushion material composed of only the cotton-like raw bamboo fiber without seeds and the seeds dispersed and supported in the entangled body of the cotton-like raw bamboo fiber is produced, The seed is planted on the ground surface by laying a cushion material on the ground surface.

本発明に係る法面表層の安定化方法は、生竹の稈を二軸圧縮粉砕器により圧縮粉砕して形成した綿状生竹繊維に、植物の種子を添加し攪拌することにより、前記種子が、回転自在な状態で、前記綿状生竹繊維の絡合体内に分散して担持された、接着剤を含まない前記綿状生竹繊維及び前記種子のみで構成されるクッション材を生成し、
前記クッション材を、法面の地山表面に吹き付けることによりクッション層を形成することで、前記地山表面を被覆することを特徴とする。

The method of stabilizing the slope surface layer according to the present invention comprises adding seeds of plants to cotton-like raw bamboo fibers formed by compressing and crushing raw bamboo shoots with a biaxial compression pulverizer, and stirring the seeds. However, in a freely rotatable state, a cushion material composed only of the cotton-like raw bamboo fiber and the seeds , which is dispersed and supported in the entangled body of the cotton-like raw bamboo fiber and does not contain an adhesive, is produced. ,
A cushion layer is formed by spraying the cushion material onto a natural ground surface on a slope, thereby covering the natural ground surface.

本発明に係る種子の発芽促進方法は、生竹の稈を二軸圧縮粉砕器により圧縮粉砕して形成した綿状生竹繊維に、植物の種子を添加し攪拌することにより、前記種子が、回転自在な状態で、前記綿状生竹繊維の絡合体内に分散して担持された、接着剤及び肥料を含まない前記綿状生竹繊維及び前記種子のみで構成されるクッション材を生成し、該クッション材を地表に敷設することで前記種子を地表に植え付けることを特徴とする。
In the seed germination promotion method according to the present invention, the seeds are added to the cotton-like raw bamboo fibers formed by compressing and pulverizing raw bamboo shoots with a biaxial compression pulverizer, and the seeds are stirred. In a rotatable state, a cushion material composed only of the cotton-like raw bamboo fiber and the seeds, which is dispersed and supported in the entangled body of the cotton-like raw bamboo fiber and does not contain an adhesive and a fertilizer , is produced. The seed is planted on the ground surface by laying the cushion material on the ground surface.

本発明に係る法面表層の安定化方法は、生竹の稈を二軸圧縮粉砕器により圧縮粉砕して形成した綿状生竹繊維に、植物の種子を添加し攪拌することにより、前記種子が、回転自在な状態で、前記綿状生竹繊維の絡合体内に分散して担持された、接着剤及び肥料を含まない前記綿状生竹繊維及び前記種子のみで構成されるクッション材を生成し、
前記クッション材を、法面の地山表面に吹き付けることによりクッション層を形成することで、前記地山表面を被覆することを特徴とする。

The method of stabilizing the slope surface layer according to the present invention comprises adding seeds of plants to cotton-like raw bamboo fibers formed by compressing and crushing raw bamboo shoots with a biaxial compression pulverizer, and stirring the seeds. A cushioning material composed of only the cotton-like raw bamboo fiber and the seeds, which are dispersed and supported in the entangled body of the cotton-like raw bamboo fiber and are free of adhesive and fertilizer in a rotatable state. Generate
A cushion layer is formed by spraying the cushion material onto a natural ground surface on a slope, thereby covering the natural ground surface.

Claims (5)

生竹の稈を二軸圧縮粉砕器により圧縮粉砕して形成した綿状生竹繊維に、植物の種子を添加し攪拌することにより、前記種子が、回転自在な状態で、前記綿状生竹繊維の絡合体内に分散して担持された、接着剤を含まないクッション材を生成し、該クッション材を地表に敷設することで前記種子を地表に植え付ける、種子の発芽促進方法。   By adding and stirring plant seeds to cotton-like raw bamboo fibers formed by compressing and crushing raw bamboo shoots with a biaxial compression pulverizer, the seeds can be rotated and the cotton-like raw bamboo A seed germination promoting method, wherein a cushion material that is dispersed and supported in a fiber entangled body and does not contain an adhesive is generated, and the seed is planted on the ground surface by laying the cushion material on the ground surface. 生竹の稈を二軸圧縮粉砕器により圧縮粉砕して形成した綿状生竹繊維に、植物の種子を添加し攪拌することにより、前記種子が、回転自在な状態で、前記綿状生竹繊維の絡合体内に分散して担持された、接着剤を含まないクッション材を生成し、
前記クッション材を、法面の地山表面に吹き付けることによりクッション層を形成することで、前記地山表面を被覆する、法面表層の安定化方法。
By adding and stirring plant seeds to cotton-like raw bamboo fibers formed by compressing and crushing raw bamboo shoots with a biaxial compression pulverizer, the seeds can be rotated and the cotton-like raw bamboo Produce a cushion material that is dispersed and supported in the fiber entanglement and does not contain adhesives.
A method for stabilizing a slope surface layer, which covers the ground surface by forming a cushion layer by spraying the cushion material onto the slope surface.
前記植物の種子は、イネ科又はマメ科植物の種子であることを特徴とする請求項2記載の法面表層の安定化方法。   The method according to claim 2, wherein the seed of the plant is a seed of a grass family or a legume plant. 前記綿状生竹繊維は、嵩比重が0.1〜0.3g/cmであることを特徴とする請求項2又は3の何れか一記載の法面表層の安定化方法。 The method for stabilizing a slope surface layer according to any one of claims 2 and 3 , wherein the cotton-like raw bamboo fiber has a bulk specific gravity of 0.1 to 0.3 g / cm 3 . 前記クッション層は、法面の地山表面に0.5〜150mmの厚みで形成することを特徴とする請求項2乃至4の何れか一記載の法面表層の安定化方法。   The method for stabilizing a slope surface layer according to any one of claims 2 to 4, wherein the cushion layer is formed on the slope surface of the slope with a thickness of 0.5 to 150 mm.
JP2015199054A 2015-10-07 2015-10-07 Seed germination promotion method and slope surface stabilization method Active JP6005238B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015199054A JP6005238B1 (en) 2015-10-07 2015-10-07 Seed germination promotion method and slope surface stabilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015199054A JP6005238B1 (en) 2015-10-07 2015-10-07 Seed germination promotion method and slope surface stabilization method

Publications (2)

Publication Number Publication Date
JP6005238B1 JP6005238B1 (en) 2016-10-12
JP2017071950A true JP2017071950A (en) 2017-04-13

Family

ID=57123172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015199054A Active JP6005238B1 (en) 2015-10-07 2015-10-07 Seed germination promotion method and slope surface stabilization method

Country Status (1)

Country Link
JP (1) JP6005238B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04330227A (en) * 1991-05-01 1992-11-18 Nisshoku Corp Blasting material for greening and greening method
JP2001152456A (en) * 1999-11-29 2001-06-05 Create Aoki:Kk Soil-surface covering material, execution method there for, civil-engineerintg structure, and manufacturing method there for
JP2004089183A (en) * 2002-07-08 2004-03-25 Japan Found Eng Co Ltd Reinforcement material for slope-greening base and method for greening the slope using the same
US20040237388A1 (en) * 2002-01-30 2004-12-02 Ezgreen Associates, Llc Artificial seedbeds and method for making same
JP2010070963A (en) * 2008-09-17 2010-04-02 Green Yuki Shizai:Kk Method of inducting atmospheric nitrogen fixation bacteria, vegetation base material, and slope seeding and planting structure
JP2011250729A (en) * 2010-06-01 2011-12-15 Hokkaido Univ Slope greening method
JP2014131519A (en) * 2014-04-17 2014-07-17 Takahiko Kitajima Planting culture medium material and vegetable cultivation method using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04330227A (en) * 1991-05-01 1992-11-18 Nisshoku Corp Blasting material for greening and greening method
JP2001152456A (en) * 1999-11-29 2001-06-05 Create Aoki:Kk Soil-surface covering material, execution method there for, civil-engineerintg structure, and manufacturing method there for
US20040237388A1 (en) * 2002-01-30 2004-12-02 Ezgreen Associates, Llc Artificial seedbeds and method for making same
JP2004089183A (en) * 2002-07-08 2004-03-25 Japan Found Eng Co Ltd Reinforcement material for slope-greening base and method for greening the slope using the same
JP2010070963A (en) * 2008-09-17 2010-04-02 Green Yuki Shizai:Kk Method of inducting atmospheric nitrogen fixation bacteria, vegetation base material, and slope seeding and planting structure
JP2011250729A (en) * 2010-06-01 2011-12-15 Hokkaido Univ Slope greening method
JP2014131519A (en) * 2014-04-17 2014-07-17 Takahiko Kitajima Planting culture medium material and vegetable cultivation method using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
大坪政美、杉本晃、古野勝久、辻博基、東孝寛: "竹繊維を利用した法面緑化基盤材の耐浸食性", 九州大学大学院農学研究院学芸雑誌, vol. 第69巻,第2号, JPN6015052878, 29 August 2014 (2014-08-29), JP, pages 47 - 54, ISSN: 0003228023 *
大豆生田萌、田中普章、高橋輝昌、池田昌義、沓澤武: "「膨軟化竹チップを用いた植生基材の化学的性質の変化」", 日本緑化工学会誌, vol. 第37巻,第1号, JPN6015052880, 14 March 2012 (2012-03-14), pages 147 - 150, ISSN: 0003318547 *

Also Published As

Publication number Publication date
JP6005238B1 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
JP4824644B2 (en) Solid sand method for vegetation greening
EP3236742B1 (en) Turf based sports grounds
JP6005238B1 (en) Seed germination promotion method and slope surface stabilization method
JP4351719B2 (en) Ground covering method and ground covering method
JP5785036B2 (en) Soil-solidifying agent and soil-solidifying method
JP6332744B2 (en) Dust control material and dust control method
CN102153403A (en) High-order pellet plant growth matrix
JP2002084873A (en) Soil substitute
JPH07327484A (en) Material for greening
JP3183854B2 (en) Slope protection composition and slope protection method
JP3400926B2 (en) Greening base material and its manufacturing method
KR101318715B1 (en) Porous Polymer Planting Block Using Unsaturated Polyester Resin as a binder
JP3665196B2 (en) Plant growth base and materials
KR100588289B1 (en) Greening method of cutting surface the ground
KR910007196B1 (en) Manufacture method of afforestation mat in slope
JPH0257885B2 (en)
JPS642738B2 (en)
KR20120088411A (en) Planting Block Manufacturing Method Using Porous Polymer Concrete
JPH05272142A (en) Concrete product for cultivation and its manufacture
JP7383857B2 (en) Soil improvement materials and mixed soil used at baseball fields and softball fields
JPS6221937B2 (en)
JP2004512041A (en) Artificial surfaces for the growth of grass and other plants forming lawns
JPH10248376A (en) Earthing for cell seedling rearing
JP2022155882A (en) mulching material
JP2006101857A (en) Artificial soil mat

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160906

R150 Certificate of patent or registration of utility model

Ref document number: 6005238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150