JP2017071901A - Underwater compaction method - Google Patents

Underwater compaction method Download PDF

Info

Publication number
JP2017071901A
JP2017071901A JP2015197721A JP2015197721A JP2017071901A JP 2017071901 A JP2017071901 A JP 2017071901A JP 2015197721 A JP2015197721 A JP 2015197721A JP 2015197721 A JP2015197721 A JP 2015197721A JP 2017071901 A JP2017071901 A JP 2017071901A
Authority
JP
Japan
Prior art keywords
granular material
material layer
underwater
compaction
granular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015197721A
Other languages
Japanese (ja)
Other versions
JP6586342B2 (en
Inventor
直 齊藤
Sunao Saito
直 齊藤
豊 佐々木
Yutaka Sasaki
豊 佐々木
稔 林
Minoru Hayashi
稔 林
久雄 近藤
Hisao Kondo
久雄 近藤
眞郷 和田
Masato Wada
眞郷 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Toray Engineering Co Ltd
Original Assignee
Chugoku Electric Power Co Inc
Toyo Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc, Toyo Construction Co Ltd filed Critical Chugoku Electric Power Co Inc
Priority to JP2015197721A priority Critical patent/JP6586342B2/en
Publication of JP2017071901A publication Critical patent/JP2017071901A/en
Application granted granted Critical
Publication of JP6586342B2 publication Critical patent/JP6586342B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an underwater compaction method which can impart a necessary compaction degree surely over the whole area of a granular material layer formed by dropped granular materials even when a region in the water to which granular materials are dropped is a narrow region such as adjacent to a structure.SOLUTION: Granular materials are dropped to a region in the water to which granular materials are dropped and which is adjacent to a structure, so as to form a granular material layer, and a vibration rod is inserted in a close part adjacent to the structure in the granular material layer and is vibrated so that the granular material layer is compacted. After this, a vibro tamper is pressed to the surface of a general part excluding the close part in the granular material layer and is vibrated so as to compact the granular material layer again.SELECTED DRAWING: Figure 3

Description

本発明は、水中に投下した粒状体を締固める、水中締固め工法に関する。   The present invention relates to an underwater compaction method for compacting a granular material dropped in water.

従来より、水中に砂質材料や捨石等の粒状体を投下し、盛土地盤の造成や埋立・埋戻しを行う場合には、投下した粒状体を締固めて密度を増大させ、硬固な地盤に改良することが知られている。   Conventionally, when sandy material or rubble particles are dropped into the water, and when the embankment is built, landfilled or backfilled, the dropped particles are compacted to increase the density and hard ground. It is known to improve.

例えば特許文献1では、水中に築造する盛土地盤あるいは埋立地盤の支持力を増大させるべく、ワイヤに吊着されるとともに重錘が取り付けられた積載板を自由落下させることにより生じる、自重による静的エネルギーと落下による衝撃エネルギーにて、盛土地盤あるいは埋立地盤を構成する水中の撒き出し層を締固める方法が開示されている。   For example, in Patent Document 1, in order to increase the supporting force of the embankment or landfill board to be built in water, static load caused by its own weight is generated by free-falling a loading board suspended on a wire and attached with a weight. A method is disclosed in which the underwater exposed layer constituting the embankment or landfill is compacted by energy and impact energy from falling.

また、特許文献2では、水中構造物の基礎となるマウンドの耐震性・耐久性を向上させるべく、砂杭造成用中空管の下端に装着したタンパーを、水底地盤に築造した捨石よりなるマウンドに押し当て、中空管の頭部に設置されたバイブロハンマーによりタンパーを振動させて、マウンドの締固めを行う方法が開示されている。   Moreover, in patent document 2, in order to improve the earthquake resistance and durability of the mound which is the foundation of an underwater structure, the mound which consists of the rubble which built the tamper attached to the lower end of the hollow pipe for sand pile construction in the bottom ground And a method of compacting the mound by vibrating the tamper with a vibro hammer installed at the head of the hollow tube.

特開昭63−312412号公報JP-A-63-312412 特開2011−127287号公報JP 2011-127287 A

上述した方法はいずれも、隣接する構造物がない広大な水中領域において、効率よく締固めを行うことが可能な方法である。しかし、粒状体を水中投下する投下領域が、構造物と隣接するような狭隘な領域である場合には、水中投下した粒状体に上記の締固め方法を採用すると、締固めに使用する装置が構造物と接触することのないよう締固め作業を行う必要があり、作業効率に劣る。このため、投下領域のなかでも構造物と隣接する領域は、その他の領域と比較して十分な締固め作業を行えず、必要な締固め度を水中投下した粒状体全体に対して確実に付与することが困難となる。   Any of the above-described methods is a method capable of performing compaction efficiently in a vast underwater region having no adjacent structure. However, when the dropping area where the granular material is dropped in water is a narrow area adjacent to the structure, if the above compaction method is applied to the granular material dropped in water, the apparatus used for compaction is It is necessary to perform compaction work so as not to come into contact with the structure, resulting in poor work efficiency. For this reason, the area adjacent to the structure in the dropping area cannot be sufficiently compacted compared to the other areas, and the necessary degree of compaction is reliably given to the whole granular material dropped in water. Difficult to do.

本発明は、かかる課題に鑑みなされたものであって、その主な目的は、粒状体を投下する水中の投下領域が、構造物と隣接するような狭隘な領域であっても、投下した粒状体にて形成された粒状体層全域にわたって、必要な締固め度を確実に付与することの可能な、水中締固め工法を提供することである。   The present invention has been made in view of such a problem, and the main object of the present invention is to drop the dropped granular material even if the dropping area in the water where the granular material is dropped is a narrow area adjacent to the structure. It is an object of the present invention to provide an underwater compaction method capable of reliably imparting a necessary degree of compaction over the entire granular material layer formed of a body.

かかる目的を達成するため本発明の水中締固め工法は、水中に投下した粒状体を締固める水中締固め工法であって、構造物と隣接する水中の投下領域に粒状体を投下して、粒状体層を形成する第1の工程と、該粒状体層における前記構造物に近接する近接部に、振動ロッドを挿入するとともに起振させて粒状体層を締固めた後、該粒状体層における前記近接部を除く一般部の表面に、バイブロタンパーを押しあてるとともに起振させ、該粒状体層を再度締固める第2の工程と、を備えることを特徴とする。   In order to achieve such an object, the underwater compaction method of the present invention is an underwater compaction method for compacting a granular material dropped in water. The granular material is dropped into a submerged dropping area adjacent to a structure to form a granular material. In the first step of forming the body layer, and after the vibration rod is inserted and vibrated in the vicinity of the structure in the granular layer near the structure, the granular layer is compacted. And a second step of pressing and vibrating the vibro tamper on the surface of the general part excluding the proximity part to re-consolidate the granular material layer.

また、本発明の水中締固め工法は、第1の工程と第2の工程を繰り返し、複数の前記粒状体層を積層することを特徴とする。   In addition, the underwater compaction method of the present invention is characterized in that the first step and the second step are repeated to laminate a plurality of the granular material layers.

上記の水中締固め工法によれば、粒状体層を、構造物に近接する近接部と当該近接部を除く一般部とに区分けし、構造物に近接する近接部には、狭隘領域の締固めに適した振動ロッドによる締固め工を行う。このため、粒状体層が構造物と隣接する狭隘な水中領域に形成されたものであっても、構造物に損傷させる等の影響を与えることなく安全に締固め作業を行うことが可能となる。   According to the above-described underwater compaction method, the granular material layer is divided into a proximity part close to the structure and a general part excluding the proximity part, and in the proximity part close to the structure, the narrow region is compacted. Perform compaction with a vibrating rod suitable for For this reason, even if the granular material layer is formed in a narrow underwater region adjacent to the structure, it is possible to perform the compacting operation safely without affecting the structure or the like. .

また、粒状体層における構造物に近接する近接部に対して振動ロッドによる締固め工を行った後、粒状体層の一般部にバイブロタンパーによる締固め工を行う。これにより、粒状体層における近接部から粒状体層の内部を振動ロッドにより直接的に締固め、また、粒状体層における一般部から粒状体層の表層をバイブロタンパーにより締固める。これにより、粒状体層には、平面方向だけでなく、表層から内部に至る深さ方向にも振動エネルギーが作用するため、必要な締固め度を確実に付与することが可能となる。   In addition, after a compacting process using a vibrating rod is performed on a proximity part of the granular material layer that is close to the structure, a general part of the granular material layer is compacted using a vibro tamper. Thereby, the inside of the granular material layer is directly compacted by the vibrating rod from the adjacent portion in the granular material layer, and the surface layer of the granular material layer is compacted from the general portion in the granular material layer by the vibro tamper. As a result, vibration energy acts on the granular material layer not only in the plane direction but also in the depth direction from the surface layer to the inside, so that the necessary degree of compaction can be reliably imparted.

本発明の水中締固め工法は、前記振動ロッドおよび前記バイブロタンパー各々を吊持する走行体を、構造物上に配備することを特徴とする。   The underwater compaction method according to the present invention is characterized in that a traveling body for suspending each of the vibrating rod and the vibro tamper is provided on a structure.

上記の水中締固め工法によれば、構造物と隣接する狭隘な水中領域に形成された粒状体層の締固め工を、陸上からの作業にて実施できるため、水中における締固め工の作業効率を大幅に向上することが可能となる。   According to the above-mentioned underwater compaction method, the compaction work of the granular material layer formed in the narrow underwater area adjacent to the structure can be carried out from the land. Can be greatly improved.

本発明によれば、粒状体層を構造物に近接する近接部と、近接部を除く一般部に区分けし、近接部に対して振動ロッドによる締固め工を行った後、一般部にバイブロタンパーによる締固め工を行うことから、粒状体層が構造物と隣接する狭隘な水中領域に形成されたものであっても、構造物に接触することなく安全に締固め作業を行うことができるだけでなく、粒状体層に対して平面方向だけでなく、表層から内部に至る深さ方向に振動エネルギーを作用させることができ、必要な締固め度を確実に付与することが可能となる。   According to the present invention, the granular material layer is divided into a proximity part close to the structure and a general part excluding the proximity part. Therefore, even if the granular material layer is formed in a narrow underwater area adjacent to the structure, it can be safely compacted without contacting the structure. In addition, vibration energy can be applied to the granular material layer not only in the planar direction but also in the depth direction from the surface layer to the inside, and the necessary degree of compaction can be reliably imparted.

重力式護岸の背面における開放部の概略を示す図である。It is a figure which shows the outline of the open part in the back surface of a gravity type revetment. 開放部に築造される埋戻し層の詳細を示す図である。It is a figure which shows the detail of the backfill layer built in an open part. 埋戻し層の水中部に水中締固め工法を適用した場合の築造方法を示す図(その1)である。It is a figure (the 1) which shows the construction method at the time of applying an underwater compaction construction method to the underwater part of a backfill layer. 埋戻し層の水中部に水中締固め工法を適用した場合の築造方法を示す図(その2)である。It is a figure (the 2) which shows the construction method at the time of applying an underwater compaction construction method to the underwater part of a backfill layer. 埋戻し層の水中部における締固め度を示すグラフである。It is a graph which shows the compaction degree in the underwater part of a backfill layer.

本発明の水中締固め工法は、構造物と隣接する水中の投下領域に、粒状体を投下して形成した粒状体層を締固めるための締固め工法であり、粒状体は、山砂や海砂等の自然砂質材料や石炭灰等からなる人工砂質材料等の砂質材料が好ましいが、必ずしもこれに限定されるものでなく、締固め性能と排水性能に優れた粒状体であれば、いずれを採用することもできる。なお、本実施の形態では、石炭灰からなる人工砂質材料を採用している。   The underwater compaction method of the present invention is a compaction method for compacting a granular material layer formed by dropping granular materials in an underwater dropping area adjacent to a structure. Sandy materials such as natural sandy materials such as sand and artificial sandy materials made of coal ash etc. are preferred, but not necessarily limited to this, as long as it is a granular material with excellent compaction performance and drainage performance Any of them can be adopted. In the present embodiment, an artificial sand material made of coal ash is employed.

また、本実施の形態では、構造物に隣接する水中の投下領域として、護岸背面の埋戻し領域を例に挙げて、水中締固め工法を説明するが、必ずしもこれに限定されるものではない。例えば、接岸施設や防波堤の脇におけるマウンド築造予定領域や、護岸にて周囲を囲われた埋立予定領域等、粒状体を水中に投下しようとする投下領域は、いずれの構造物に隣接するものであってもよい。また、粒状体層にて構築される築造物も、いずれであってもよい。   In the present embodiment, the underwater compaction method will be described by taking a backfill area on the back of the revetment as an example of the underwater drop area adjacent to the structure. However, the present invention is not necessarily limited thereto. For example, the area where a mound is planned to be dropped into the water, such as a mound construction area next to a berthing facility or breakwater, or a planned landfill area surrounded by a seawall, is adjacent to any structure. There may be. Moreover, any structure may be constructed by the granular material layer.

以下に、本実施の形態の水中締固め工法を図1〜図5を用いて説明する。
図1で示すように、水中締固め工法にて埋戻しを実施する開放部1は、捨石マウンド2上に据え付けられたケーソン3と、ケーソン3の背面側に造成された腹付層4とにより重力式護岸5を形成するものであり、重力式護岸5にて外水域から締め切られた内水域には、廃棄物処理場6が設けられている。また、開放部1と腹付層4の内水域側には遮水シート7が敷設されており、廃棄物処理場6にて生じた汚染水における外水域側への漏れ出しを防止している。
Below, the underwater compaction construction method of this Embodiment is demonstrated using FIGS.
As shown in FIG. 1, an open portion 1 that performs backfilling by an underwater compaction method includes a caisson 3 installed on a rubble mound 2 and a belly layer 4 formed on the back side of the caisson 3. A gravity-type revetment 5 is formed, and a waste disposal site 6 is provided in the inner water area closed from the outer water area by the gravity-type revetment 5. Further, a water-impervious sheet 7 is laid on the inner water area side of the open portion 1 and the bellows layer 4 to prevent leakage of contaminated water generated at the waste disposal site 6 to the outer water area side.

このような構成の重力式護岸5は、捨石マウンド2が透水性を有するため、外水域に大きな波浪が生じると、その波圧にて海水が捨石マウンド2および腹付層4を透過して遮水シート7を押圧する。このため、これら透過した海水にて遮水シート7が浮き上がることのないよう、被覆モルタル8にて遮水シート7の押さえつけを行うとともに、開放部1をケーソン3の背面であって腹付層4の上部に設置し、波圧を開放している。   In the gravity-type revetment 5 having such a configuration, the rubble mound 2 has water permeability, so that when a large wave is generated in the outer water area, seawater permeates the rubble mound 2 and the belly layer 4 by the wave pressure and blocks it. The water sheet 7 is pressed. For this reason, the water-impervious sheet 7 is pressed by the covering mortar 8 so that the water-impervious sheet 7 is not lifted by the permeated seawater. It is installed at the top of the and the wave pressure is released.

上述する機能を有する開放部1は、図2(a)の断面図および図2(b)の平面図で示すように、ケーソン3の背面に接して配置される一方の壁構造物91と、遮水シート7を介して被覆モルタル8と接して配置される他方の壁構造物92と、これら壁構造物91、92間に設置した切梁10にて形成された空間に設けられるものである。そして、開放部1は図1で示すように、腹付層4と面する底部に敷設される吸出し防止シート11と、その上部に敷設されるサンドマット12と、さらにその上部に配置される埋戻し層19と、により構成されている。   As shown in the cross-sectional view of FIG. 2A and the plan view of FIG. It is provided in the space formed by the other wall structure 92 arranged in contact with the covering mortar 8 through the water-impervious sheet 7 and the beam 10 installed between these wall structures 91 and 92. . As shown in FIG. 1, the opening portion 1 has a suction prevention sheet 11 laid on the bottom facing the belly layer 4, a sand mat 12 laid on the top thereof, and a buried pad disposed on the top thereof. And a return layer 19.

ここで、開放部1を構成する埋戻し層19は、図2(a)で示すように、上半が気中に位置する気中部192であるとともに、下半が水中に位置する水中部191であることから、この水中に位置する水中部191の築造を、水中締固め工法にて実施する。
以下に、水中締固め工法を採用して、埋戻し層19の水中部191を築造する方法を詳述する。
Here, as shown in FIG. 2A, the backfill layer 19 constituting the open portion 1 is an aerial part 192 in which the upper half is located in the air and the underwater part 191 in which the lower half is located in the water. Therefore, the construction of the underwater portion 191 located in the water is performed by the underwater compaction method.
Hereinafter, a method for constructing the underwater portion 191 of the backfill layer 19 by employing an underwater compaction method will be described in detail.

〈第1の工程〉
まず、図3(a)で示すように、サンドマット12の上面であって、一方の壁構造物91が接するケーソン3と他方の壁構造物92に囲まれた投下領域に粒状体13を投下し、粒状体層14を形成する。
<First step>
First, as shown in FIG. 3 (a), the granular material 13 is dropped on the upper surface of the sand mat 12 and in the dropping region surrounded by the caisson 3 and the other wall structure 92, which are in contact with one wall structure 91. Then, the granular material layer 14 is formed.

本実施の形態では、ケーソン3に配置したクレーン15に装備したグラブバケット16を介して粒状体13を投下したが、投下方法はこれに限定されるものではなくいずれによる方法であってもよい。   In the present embodiment, the granular material 13 is dropped through the grab bucket 16 equipped on the crane 15 arranged in the caisson 3, but the dropping method is not limited to this, and any method may be used.

〈第2の工程〉
次に、図3(b)で示すように、他のクレーン15に枠体171を介して吊持された振動ロッド17を粒状体層14内部に挿入しつつ起振させ、粒状体層14を締固める。このとき、振動ロッド17は、図2(b)の平面図で示す一方の壁構造物91が接するケーソン3に近接する近接部141、および他方の壁構造物92に近接する近接部142の両者それぞれに挿入する。なお、近接部141、142の幅Lは振動ロッド17にて生じる振動エネルギーや粒状体13の性状等に応じて適宜設定すればよい。
<Second step>
Next, as shown in FIG. 3B, the vibrating rod 17 suspended from another crane 15 via a frame 171 is vibrated while being inserted into the granular layer 14, and the granular layer 14 is moved. Compact. At this time, the vibrating rod 17 includes both a proximity portion 141 adjacent to the caisson 3 with which one wall structure 91 is in contact and a proximity portion 142 adjacent to the other wall structure 92 shown in the plan view of FIG. Insert into each. The width L of the proximity portions 141 and 142 may be set as appropriate according to the vibration energy generated in the vibration rod 17, the properties of the granular material 13, and the like.

本実施の形態では、振動ロッド17にコンクリートを締固める際に用いる高周波バイブレーターを採用し、これを図3(b)で示すように枠体171の下端に複数設け、枠体171を介してクレーン15にて吊持させている。そして、枠体171の自重と振動ロッド17の自重および振動により、振動ロッド17を近接部141、142における粒状体層14の内部に挿入する。ただし、振動ロッド17は、必ずしもこれに限定されるものではなく、水中での使用が可能で、振動装置を備えた棒材よりなり、粒状体層14内に挿入して振動エネルギーを付与可能なものであれば、気中の締固め工にて実施される振動棒工法に用いられる装置等、いずれを採用してもよい。   In the present embodiment, a high-frequency vibrator used when compacting the concrete to the vibrating rod 17 is adopted, and a plurality of such high-frequency vibrators are provided at the lower end of the frame body 171 as shown in FIG. 15 is suspended. Then, the vibration rod 17 is inserted into the granular layer 14 in the proximity portions 141 and 142 by the weight of the frame 171 and the weight and vibration of the vibration rod 17. However, the vibration rod 17 is not necessarily limited to this, and can be used in water. The vibration rod 17 is made of a rod provided with a vibration device and can be inserted into the granular material layer 14 to impart vibration energy. As long as it is a thing, you may employ | adopt any, such as the apparatus used for the vibrating rod method implemented by the air compaction work.

このように、粒状体層14における近接部141、142各々に対して、狭隘領域の締固めに適した振動ロッド17による締固め工を採用するため、ケーソン3および壁構造物91、92等の構造物に振動ロッド17が接触して損傷する等の影響を与えることなく、安全に締固め作業を行うことが可能となる。   As described above, in order to employ a compacting method using the vibration rod 17 suitable for compacting the narrowed region for each of the adjacent portions 141 and 142 in the granular material layer 14, the caisson 3 and the wall structures 91 and 92, etc. It is possible to perform the compacting operation safely without affecting the structure such as the vibration rod 17 coming into contact with the structure and being damaged.

この後、振動ロッド17を振動させつつ粒状体層14内部から引き抜き、図3(c)で示すようなクレーン15に装備したバイブロタンパー18を、近接部141、142を除く一般部143の表面に押しあてるとともに起振させ、粒状体層14を締固める。   Thereafter, the vibrating rod 17 is vibrated and pulled out from the inside of the granular material layer 14, and the vibrator tamper 18 mounted on the crane 15 as shown in FIG. 3C is placed on the surface of the general portion 143 excluding the proximity portions 141 and 142. The granular material layer 14 is compacted by pressing and vibrating.

本実施の形態では、バイブロタンパー18として、クレーン15にて吊持したH形鋼181と、その下端に設置したタンパー182と、H形鋼181の頭部に設置したバイブロハンマー183とにより構成され、バイブロハンマー183にてタンパー182を振動させるものを使用した。ただし、バイブロタンパー18は、必ずしも上記の構成に限定されるものではなく、水中での使用が可能で、タンパー182に起振装置が備えられていれば、気中の締固め工にて実施されるバイブロタンパー工法に用いられる装置等、いずれを採用してもよい。   In the present embodiment, the vibro tamper 18 includes an H-section steel 181 suspended by the crane 15, a tamper 182 installed at the lower end thereof, and a vibro hammer 183 installed at the head of the H-section steel 181. A vibrator that vibrates the tamper 182 with a vibro hammer 183 was used. However, the vibro tamper 18 is not necessarily limited to the above-described configuration, and can be used in water. If the tamper 182 is provided with a vibration generator, the vibro tamper 18 is carried out by air compaction. Any of the devices used in the vibro tamper method may be adopted.

また、タンパー182は、粒状体層14における一般部143の面積に応じて、その大きさを適宜調整するとよい。   Further, the size of the tamper 182 may be appropriately adjusted according to the area of the general portion 143 in the granular material layer 14.

このように水中締固め工法は、振動ロッド17にて、粒状体層14における近接部141、142における粒状体層14の内部を直接的に締固めた後、バイブロタンパー18にて、粒状体層14における一般部143から粒状体層14の表層を締固めるため、粒状体層14は、平面方向だけでなく、表層から内部に至る深さ方向にも振動エネルギーが作用されることとなり、粒状体層14全体を確実に締固めることが可能となる。   In this way, the underwater compaction method uses the vibrating rod 17 to directly compact the inside of the granular layer 14 in the proximity portions 141 and 142 of the granular layer 14, and then the vibro tamper 18 In order to compact the surface layer of the granular material layer 14 from the general portion 143 in FIG. 14, the granular material layer 14 is subjected not only to the planar direction but also to vibrational energy in the depth direction from the surface layer to the inside. The entire layer 14 can be reliably compacted.

こうして締め固められた粒状体層14の上面に、第4図(a)で示すように新たな粒状体13を投下する第1の工程と、第4図(b)(c)で示すように粒状体層14を締固める第2の工程を繰り返し、締め固められた粒状体層14を気中に達するまで複数積層し、埋戻し層19の水中部191を築造する。   As shown in FIGS. 4 (b) and 4 (c), a first step of dropping a new granular material 13 as shown in FIG. 4 (a) onto the upper surface of the compacted granular material layer 14 in this way. The second step of compacting the granular material layer 14 is repeated, and a plurality of the compacted granular material layers 14 are stacked until reaching the air, and the underwater portion 191 of the backfill layer 19 is built.

水中締固め方法にて築造された埋戻し層19における水中部191の上部には、気中部192が築造されることとなる。これら気中部192は、水中部191の上面に粒状体13を投下してブルドーザーで敷均し、振動ローラにて転圧締固めて、図2(a)で示すような転圧締め固めされた粒状体層20を構築し、これを所望の厚さになるまで積層すればよい。   An aerial part 192 is built above the underwater part 191 in the backfill layer 19 built by the underwater compaction method. These aerial parts 192 were dropped and compacted with a bulldozer by dropping the granular material 13 on the upper surface of the underwater part 191, and compacted with a vibrating roller, and compacted by compaction as shown in FIG. 2 (a). What is necessary is just to build the granular material layer 20, and to laminate | stack this until it becomes desired thickness.

上述する方法にて築造した埋戻し層19の水中部191における締固め度を、図5に示す。なお、水中部191の高さ範囲は、管理用基準面から0.6m〜−4.9mの高さ範囲であり、締固め度の算定には、大規模な盛土工事等において締固め管理をする際に広く用いられているRI計器による土の密度試験を採用した。   FIG. 5 shows the degree of compaction in the underwater portion 191 of the backfill layer 19 built by the method described above. In addition, the height range of the underwater part 191 is 0.6m to -4.9m from the management reference plane. For the calculation of the degree of compaction, compaction management should be performed in large-scale embankment work, etc. The soil density test using the RI instrument widely used was used.

図5(a)で示す粒状体層14の一般部143の締固め度をみると、一般部143および近接部141、142ともにバイブロタンパー18で締め固めた比較例では、94〜100%程度に分布していた締固め度が、本実施の形態における水中締固め方法では96〜106%に達しており、近接部141、142から粒状体層14の内部を振動ロッド17にて十分締め固めたことにより、一般部143の締固め度も向上している。   The degree of compaction of the general part 143 of the granular material layer 14 shown in FIG. 5A is about 94 to 100% in the comparative example in which both the general part 143 and the proximity parts 141 and 142 are compacted with the vibro tamper 18. The distributed compaction degree reached 96 to 106% in the underwater compaction method in the present embodiment, and the inside of the granular material layer 14 was sufficiently compacted by the vibrating rod 17 from the proximity portions 141 and 142. As a result, the degree of compaction of the general part 143 is also improved.

また、図5(b)で示す粒状体層14の近接部141の締固め度をみると、一般部143および近接部141、142ともにバイブロタンパー18で締め固めた比較例では、締固め度が92〜97%程度の分布にとどまっているが、本実施の形態における水中締固め方法では95〜104%に分布するまで向上しており、近接部141が振動ロッド17にて十分締め固められていることがわかる。   Further, when the degree of compaction of the proximity portion 141 of the granular material layer 14 shown in FIG. 5B is seen, in the comparative example in which both the general portion 143 and the proximity portions 141 and 142 are compacted by the vibro tamper 18, the degree of compaction is high. Although the distribution is only about 92 to 97%, the underwater compaction method in the present embodiment is improved to 95 to 104%, and the proximity portion 141 is sufficiently compacted by the vibration rod 17. I understand that.

このように、埋戻し層19は、締固め度95%以上の液状化に対して強い土構造物となるため、外水域からの波圧が捨石マウンド2内を通過し、開放部1の内で大きな圧力変動が生じても、液状化現象を抑止することが可能となる。   Thus, since the backfill layer 19 becomes a soil structure that is strong against liquefaction with a compaction degree of 95% or more, the wave pressure from the outside water area passes through the rubble mound 2, and the inside of the open portion 1. Even if a large pressure fluctuation occurs, the liquefaction phenomenon can be suppressed.

上述する水中締固め方法によれば、粒状体層14を図2(a)の平面図で示すような、ケーソン3および壁構造物91、92等の構造物に近接する近接部141、142と、一般部143とに区分けし、近接部141、142に対して振動ロッド17による締固め工を行った後、一般部143に対してバイブロタンパー18による締固め工を行う。これにより、粒状体層14が狭隘な水中領域に形成されたものであっても、構造物を損傷する等の影響を与えることなく安全に締固め作業を行うことができるだけでなく、粒状体層14に対して平面方向だけでなく、表層から内部に至る深さ方向に振動エネルギーを作用させることができ、必要な締固め度を確実に付与することが可能となる。   According to the above-described underwater compaction method, the proximity of the granular material layer 14 close to the caisson 3 and the structures such as the wall structures 91 and 92 as shown in the plan view of FIG. After dividing into the general part 143 and performing the compaction work with the vibrating rod 17 on the proximity parts 141 and 142, the general part 143 is compacted with the vibro tamper 18. Thereby, even if the granular material layer 14 is formed in a narrow underwater region, not only can the structure be safely compacted without affecting the structure, etc., the granular material layer The vibration energy can be applied not only to the plane direction but also to the depth direction extending from the surface layer to the inside, so that a necessary degree of compaction can be reliably imparted.

また、ケーソン3に配置したクレーン15からの陸上作業にて、粒状体層14に対する締固め工を実施できるため、作業効率を大幅に向上することが可能となる。なお、本実施の形態では、振動ロッド17およびバイブロタンパー18各々を吊持する走行体に、クレーン15を採用したが、これに限定されるものではなく、振動ロッド17およびバイブロタンパー18を吊持可能な作業車両であれば、走行体にいずれを採用してもよい。   Moreover, since the compaction work with respect to the granular material layer 14 can be implemented by the land work from the crane 15 arrange | positioned in the caisson 3, it becomes possible to improve work efficiency significantly. In the present embodiment, the crane 15 is employed as the traveling body for suspending the vibrating rod 17 and the vibratory tamper 18, but the present invention is not limited to this, and the vibrating rod 17 and the vibratory tamper 18 are suspended. Any work vehicle may be employed as long as it is a work vehicle that can be used.

本発明の水中締固め方法は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能であることはいうまでもない。   It goes without saying that the underwater compaction method of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

1 開放部
2 捨石マウンド
3 ケーソン
4 腹付層
5 重力式護岸
6 廃棄物処理場
7 遮水シート
8 被覆モルタル
91 壁構造物
92 壁構造物
10 切梁
11 吸出し防止シート
12 サンドマット
13 粒状体
14 粒状体層
141 近接部
142 近接部
143 一般部
15 クレーン
16 グラブバケット
17 振動ロッド
171 枠体
18 バイブロタンパー
181 H型鋼
182 タンパー
183 バイブロハンマー
19 埋戻し層
191 水中部
192 気中部
20 粒状体層
DESCRIPTION OF SYMBOLS 1 Opening part 2 Rubble mound 3 Caisson 4 Lined bed 5 Gravity type revetment 6 Waste disposal site 7 Water shielding sheet 8 Covering mortar 91 Wall structure 92 Wall structure 10 Beam 11 Suction prevention sheet 12 Sand mat 13 Granule Granular layer 141 Proximity part 142 Proximity part 143 General part 15 Crane 16 Grab bucket 17 Vibrating rod 171 Frame 18 Vibro tamper 181 H-shaped steel 182 Tamper 183 Vibro hammer 19 Backfill layer 191 Underwater part 192 Air part 20 Granular layer

Claims (3)

水中に投下した粒状体を締固める水中締固め工法であって、
構造物に隣接する水中の投下領域に粒状体を投下して、粒状体層を形成する第1の工程と、
該粒状体層における前記構造物に近接する近接部に、振動ロッドを挿入するとともに起振させて粒状体層を締固めた後、該粒状体層における前記近接部を除く一般部の表面に、バイブロタンパーを押しあてるとともに起振させ、該粒状体層を再度締固める第2の工程と、を備えることを特徴とする水中締固め工法。
An underwater compaction method for compacting granular materials dropped in water,
A first step of dropping a granular material in an underwater dropping region adjacent to the structure to form a granular material layer;
After compacting the granular material layer by inserting a vibrating rod in the proximity portion of the granular material layer close to the structure and vibrating the rod, on the surface of the general portion excluding the proximity portion in the granular material layer, And a second step of pressing and vibrating the vibro tamper to reconsolidate the granular material layer.
請求項1に記載の水中締固め工法において、
第1の工程と第2の工程を繰り返し、複数の前記粒状体層を積層することを特徴とする水中締固め工法。
In the underwater compaction method according to claim 1,
An underwater compaction method characterized by repeating the first step and the second step and laminating a plurality of the granular material layers.
請求項1または2に記載の水中締固め工法において、
前記振動ロッドおよび前記バイブロタンパー各々を吊持する走行体を、前記構造物上に配備することを特徴とする水中締固め工法。
In the underwater compaction method according to claim 1 or 2,
An underwater compaction method characterized in that a traveling body for suspending each of the vibrating rod and the vibro tamper is disposed on the structure.
JP2015197721A 2015-10-05 2015-10-05 Underwater compaction method Active JP6586342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015197721A JP6586342B2 (en) 2015-10-05 2015-10-05 Underwater compaction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015197721A JP6586342B2 (en) 2015-10-05 2015-10-05 Underwater compaction method

Publications (2)

Publication Number Publication Date
JP2017071901A true JP2017071901A (en) 2017-04-13
JP6586342B2 JP6586342B2 (en) 2019-10-02

Family

ID=58538143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015197721A Active JP6586342B2 (en) 2015-10-05 2015-10-05 Underwater compaction method

Country Status (1)

Country Link
JP (1) JP6586342B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107237333A (en) * 2017-07-29 2017-10-10 淮北庆荣高光建筑科技有限公司 A kind of construction backfill rammed earth auxiliary uses pre-buried rod

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4338043A (en) * 1977-12-23 1982-07-06 Commissariat A L'energie Atomique Method for depositing material on the ocean bed and apparatus for performing the same
JPS58185631U (en) * 1982-05-31 1983-12-09 五洋建設株式会社 Underwater rubble foundation compaction and leveling equipment
JPS6018149U (en) * 1983-07-12 1985-02-07 清水建設株式会社 Underwater concrete placement equipment under deep water
JPH01271515A (en) * 1988-04-25 1989-10-30 Sumitomo Metal Ind Ltd Aseismic reinforcing construction for structure
JPH0420610A (en) * 1990-05-16 1992-01-24 Kokudo Sogo Kensetsu Kk Detection of draft amount of hull in equalizing method for compaction of sea bottom mounted using sand-pile driving boat
JPH05148833A (en) * 1991-11-26 1993-06-15 Hazama Gumi Ltd Compaction by vibration
JPH11323872A (en) * 1998-05-14 1999-11-26 Toyo Constr Co Ltd Remodeling method of sheet pile type quay
JP3083842U (en) * 2001-08-02 2002-02-15 株式会社 佐賀組 Leveling equipment for underground stone mounds
JP2008188528A (en) * 2007-02-05 2008-08-21 Penta Ocean Construction Co Ltd Construction method of water shielding structure of sea surface waste disposal site
JP2011127287A (en) * 2009-12-15 2011-06-30 Aomi Construction Co Ltd Construction method and apparatus for compacting subaqueous mound
JP2014145157A (en) * 2013-01-28 2014-08-14 Penta Ocean Construction Co Ltd Vibration compaction method of sand layer and management method of the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4338043A (en) * 1977-12-23 1982-07-06 Commissariat A L'energie Atomique Method for depositing material on the ocean bed and apparatus for performing the same
JPS58185631U (en) * 1982-05-31 1983-12-09 五洋建設株式会社 Underwater rubble foundation compaction and leveling equipment
JPS6018149U (en) * 1983-07-12 1985-02-07 清水建設株式会社 Underwater concrete placement equipment under deep water
JPH01271515A (en) * 1988-04-25 1989-10-30 Sumitomo Metal Ind Ltd Aseismic reinforcing construction for structure
JPH0420610A (en) * 1990-05-16 1992-01-24 Kokudo Sogo Kensetsu Kk Detection of draft amount of hull in equalizing method for compaction of sea bottom mounted using sand-pile driving boat
JPH05148833A (en) * 1991-11-26 1993-06-15 Hazama Gumi Ltd Compaction by vibration
JPH11323872A (en) * 1998-05-14 1999-11-26 Toyo Constr Co Ltd Remodeling method of sheet pile type quay
JP3083842U (en) * 2001-08-02 2002-02-15 株式会社 佐賀組 Leveling equipment for underground stone mounds
JP2008188528A (en) * 2007-02-05 2008-08-21 Penta Ocean Construction Co Ltd Construction method of water shielding structure of sea surface waste disposal site
JP2011127287A (en) * 2009-12-15 2011-06-30 Aomi Construction Co Ltd Construction method and apparatus for compacting subaqueous mound
JP2014145157A (en) * 2013-01-28 2014-08-14 Penta Ocean Construction Co Ltd Vibration compaction method of sand layer and management method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107237333A (en) * 2017-07-29 2017-10-10 淮北庆荣高光建筑科技有限公司 A kind of construction backfill rammed earth auxiliary uses pre-buried rod

Also Published As

Publication number Publication date
JP6586342B2 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
CA2250989C (en) Apparatus and method for liquefaction remediation of liquefiable soils
US5800090A (en) Apparatus and method for liquefaction remediation of liquefiable soils
CN105064372B (en) A kind of foundation ditch Cast-in-situ Piles in Sand-filling shakes densification process
Jonker Vibratory pile driving hammers for pile installations and soil improvement projects
CN103233444A (en) Underwater riprap foundation bed and side slope erosion resisting structure and construction method thereof
JP4996883B2 (en) Consolidation settlement method and loading equipment and work boat used for construction method.
US4112692A (en) Soil compaction system
JP2006336434A (en) Floatation-settlement preventing method for structure
JP6586342B2 (en) Underwater compaction method
JP2007309073A5 (en)
JP2003261930A (en) Consolidation improvement method for water bottom soft ground
Massarsch et al. Underwater resonance compaction of sand fill
CN109205984B (en) Method and device for rapidly recycling high-water-content engineering sludge
JP2014001619A (en) Structure and method for reducing liquefaction damage of structure
Nassaji et al. Effect of granular bed on behaviour of stone column improved ground
JP4055184B2 (en) Volume reduction method for water-bottom soft ground
KR20030042594A (en) Ground Compaction Method Using The Hydraulic Impact Pile Hammer Installed Foot
Van Impe et al. Soil improvement experiences in Belgium: part II. Vibrocompaction and stone columns
JPS63233113A (en) Compaction work of ground
JP2002309566A (en) Method for improving water permeability of ground
JP5863915B1 (en) Liquefaction countermeasure structure on site
Towhata et al. Mitigation of liquefaction-induced damage
RU132810U1 (en) PILED FOUNDATION WITH INTERMEDIATE SAND PILLOW
Adalier et al. Stone column remediation of liquefiable silty marine foundation deposits
Degen et al. Offshore Stone Columns-Equipment, Quality Control and Outlook for Future Applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190909

R150 Certificate of patent or registration of utility model

Ref document number: 6586342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250