JP4996883B2 - Consolidation settlement method and loading equipment and work boat used for construction method. - Google Patents

Consolidation settlement method and loading equipment and work boat used for construction method. Download PDF

Info

Publication number
JP4996883B2
JP4996883B2 JP2006166657A JP2006166657A JP4996883B2 JP 4996883 B2 JP4996883 B2 JP 4996883B2 JP 2006166657 A JP2006166657 A JP 2006166657A JP 2006166657 A JP2006166657 A JP 2006166657A JP 4996883 B2 JP4996883 B2 JP 4996883B2
Authority
JP
Japan
Prior art keywords
ground
consolidation
load
pressure
box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006166657A
Other languages
Japanese (ja)
Other versions
JP2007309073A (en
JP2007309073A5 (en
Inventor
正佳 近藤
Original Assignee
正佳 近藤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 正佳 近藤 filed Critical 正佳 近藤
Priority to JP2006166657A priority Critical patent/JP4996883B2/en
Publication of JP2007309073A publication Critical patent/JP2007309073A/en
Publication of JP2007309073A5 publication Critical patent/JP2007309073A5/ja
Application granted granted Critical
Publication of JP4996883B2 publication Critical patent/JP4996883B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

本発明は軟弱粘性土地盤を安定的にしかも急速な圧密促進により密度増加を図る地盤改良技術に関する。The present invention relates to a ground improvement technique for increasing the density of a soft viscous ground stably and rapidly by promoting consolidation.

粘性土地盤の圧密沈下は施設建設に伴い,圧密増加荷重が地盤に載荷されて進行し,圧密沈下と共に地盤の密度が増加し強度が増大する。従来,港湾施設の軟弱地盤対策は,施設建設時の基礎地盤のせん断破壊と施設供用後の圧密沈下が主であった。これらの地盤改良工法は,バーチカルドレーン工法の一種であるサンドドレーン工法とサンドコンパクションパイル工法が主流となっていた。バーチカルドレーン工法は,地盤中に鉛直方向のドレーンを設置して,排水距離を短くして圧密時間を短縮し,圧密沈下を促進させて地盤強化を図る工法である。これに対してサンドコンパクションパイル工法は,締め固めた砂杭を地盤中に多数造成して,地盤の支持力増強、基礎地盤破壊の防止、圧密沈下を抑制する工法である。Consolidation settlement of cohesive ground progresses with the construction of the facilities, and the consolidation increase load is applied to the ground and progresses. With consolidation settlement, the density of the ground increases and the strength increases. Conventionally, soft ground countermeasures for harbor facilities have mainly been shear fracture of the foundation ground during the construction of the facility and consolidation settlement after the facility has been used. These ground improvement methods mainly consisted of the sand drain method and sand compaction pile method, which are a type of vertical drain method. The vertical drain method is a method of installing a drain in the vertical direction in the ground, shortening the drainage distance, shortening the consolidation time, and promoting consolidation settlement by promoting consolidation settlement. On the other hand, the sand compaction pile method is a method in which a large number of compacted sand piles are created in the ground to increase the bearing capacity of the ground, prevent the foundation ground from being destroyed, and suppress the consolidation settlement.

軟弱地盤上の盛土等は,必要な高さまで連続して行うと、基礎地盤がせん断破壊を起こすので、破壊に対する安定を考慮して、数度に分けて地盤の強度増加を確認しながら段階的に施工する。このためバーチカルドレーン工法と併用しても、載荷による圧密沈下工法は工事完了まで長い期間が必要で、急速施工にはならないといった欠点がある。プレロード工法は,施設建設によって載荷される荷重以上に載荷して,目標とする圧密を完了させたのち余分な荷重を除去する。圧密には二次圧密の問題があり,プレロード工法を行っても施設供用後も圧密沈下が長期間だらだらと続く。供用後に施設の沈下対策が容易にとれる護岸,防波堤等はサンドドレーン工法と段階的施工で軟弱地盤対策は可能であるが,容易でなく沈下の継続が好ましくない岸壁等の施設には致命的である。
このような経緯から、サンドコンパクションパイル工法はサンドドレーン工法に比べ工事費は大幅に高くなるが、急速施工として広く用いられるようになった。
しかしながら,先の兵庫県南部地震においては、サンドコンパクションパイル工法で改良された地盤が液状化により破壊し、岸壁等に大きな被害をもたらした。これはサンドコンパクションパイル工法の締め固めにも限界があることを示している。また,軟弱地盤対策は兵庫県南部地震の被害を踏まえ,地震時の液状化対策を伴ったものでなければならない。
If the embankment on soft ground is carried out continuously to the required height, the foundation ground will cause shear failure. Considering the stability against failure, stepwise while confirming the increase in strength of the ground in several degrees. Install to. For this reason, even if it is used together with the vertical drain method, the consolidation settlement method by loading requires a long period until the completion of the construction, and there is a disadvantage that it is not a rapid construction. The preloading method loads more than the load loaded by the facility construction, completes the target consolidation, and then removes the excess load. Consolidation has the problem of secondary consolidation, and even after the preloading method, consolidation settlement continues for a long time after the facility is used. Revetment, breakwater, etc. that can easily take countermeasures for settlement after operation can be used for soft ground by sand drain method and stepwise construction, but it is not easy and is fatal for facilities such as quay where continuation of settlement is not desirable. is there.
For this reason, the sand compaction pile method has been widely used for rapid construction, although the construction cost is significantly higher than the sand drain method.
However, in the previous Hyogoken-Nanbu Earthquake, the ground improved by the sand compaction pile method was destroyed by liquefaction and caused great damage to the quay. This indicates that there is a limit to the compaction of the sand compaction pile method. In addition, soft ground countermeasures must be accompanied by liquefaction countermeasures at the time of the earthquake based on the damage of the Hyogoken-Nanbu Earthquake.

載荷圧密促進工法の一つに真空圧密工法がある。この工法は対象改良地盤表面を密閉状態として,負圧を発生させて大気圧(実用的には、6〜7t/m)を載荷することにより圧密を促進させる工法である。この工法の特長は原理的に盛土荷重とは異なり,地盤内の土に対して、3次元的な圧密荷重として働く機構であるため、一気に載荷しても粘土地盤にせん断破壊を生じさせないような荷重状態で圧密を促進させられる。しかしながら,この真空圧密工法でも二次圧密問題が解決されないのは同じである。One of the loading consolidation promotion methods is the vacuum consolidation method. This construction method is a construction method in which consolidation is promoted by applying the atmospheric pressure (practically 6 to 7 t / m 2 ) by generating a negative pressure with the target improved ground surface sealed. The feature of this method is different from the embankment load in principle, and it is a mechanism that works as a three-dimensional consolidation load against the soil in the ground. Consolidation can be promoted under load. However, this vacuum consolidation method does not solve the secondary consolidation problem.

振動・衝撃により圧密を促進する工法として動圧密工法がある。この工法は対象改良地盤表面に巨大なハンマーを高所から繰り返し落下させ,地盤に与える衝撃力と振動によって地盤を圧密強化するものとされている。しかし,動圧密工法は砂質土の締固め工法から出発した工法であり,細粒分の少ない粘性土に限定される。また飽和粘性土には逆効果が考えられる。これは大きな振幅の振動は,粘土構造を破壊するので圧密を阻害することになる。  There is a dynamic consolidation method as a method of promoting consolidation by vibration and impact. In this method, a huge hammer is repeatedly dropped from a high place on the surface of the target improved ground, and the ground is consolidated and strengthened by impact force and vibration applied to the ground. However, the dynamic consolidation method is a method that started from the compaction method of sandy soil, and is limited to viscous soil with less fine particles. In addition, the reverse effect can be considered for saturated clay. This is because large amplitude vibrations destroy the clay structure and inhibit consolidation.

現在、地球環境保全の観点から環境負荷の削減に向け、建設資源の省資源化が積極的に進められている。サンドコンパクションパイル工法は良質な砂を大量に使用し、パイル打設により生じる原地盤の盛り上がり土を処分する必要があるなど、環境負荷の大きいな工法となっている。これに対してバーチカルドレーン工法を併用する載荷圧密沈下工法は環境負荷の小さな工法であり,この利点を活かした従来にない急速圧密沈下工法が求められている。Currently, from the viewpoint of global environmental conservation, efforts are being made to conserve construction resources to reduce environmental impact. The sand compaction pile method is a method that has a large environmental impact, such as using a large amount of high-quality sand and disposing of the raised soil of the original ground caused by pile driving. On the other hand, the loading consolidation settlement method combined with the vertical drain construction method is a construction method with a small environmental load, and an unprecedented rapid consolidation settlement method utilizing this advantage is required.

本発明は前記の問題点を鑑みてなされたもので,環境負荷が小さく経済的で,地震時の液状化の恐れが無い載荷圧密沈下工法を新しい発想からさらに発展させて,軟弱粘性土地盤の急速圧密沈下を安定的に実現し,さらに二次圧密の問題をいかに解決するかを課題としている。また,本発明は基本的には載荷圧密沈下工法であるから,必要に応じてバーチカルドレーン工法,真空圧密工法が併用される。The present invention has been made in view of the above-mentioned problems. The load consolidation settlement method has been further developed from a new concept and has a low environmental impact, is economical, and does not risk liquefaction during an earthquake. The issue is how to achieve rapid consolidation settlement in a stable manner and how to solve the secondary consolidation problem. Further, since the present invention is basically a load consolidation settlement method, a vertical drain method and a vacuum consolidation method are used in combination as necessary.

本発明の急速圧密沈下工法は,粘土の特性である荷電を有した階層的構造を踏まえて研究開発された工法である。The rapid consolidation settlement method of the present invention is a method that has been researched and developed on the basis of a hierarchical structure having a charge, which is a characteristic of clay.
粘土は微細な粘土粒子がさまざまな配列をしてペッド(構造単位の団粒)をつくり,さらにペッドもさまざまな配列をして粘土の階層的構造を形成している。In clay, fine clay particles are arranged in various arrangements to form peds (aggregates of structural units), and peds are also arranged in various arrangements to form a hierarchical structure of clay.
粘土粒子間の間隙をミクロポア,ペッド間の間隙をマクロポアと呼んでいる。The gap between the clay particles is called the micropore, and the gap between the pads is called the macropore.
粘土を構成する粘土粒子は,比表面積が大きく且つ荷電を有していることから,土粒子間に物理化学的な相互作用が働いている。この相互作用は,粘土の構造,粘土の水分保持力,圧密のメカニズムに大きな影響を与えている。Since the clay particles that make up clay have a large specific surface area and are charged, physicochemical interactions are acting between the soil particles. This interaction has a great influence on the structure of clay, water retention of clay, and consolidation mechanism.
粘土の圧密現象は,粘土に圧縮圧力が作用すると,最初,圧縮圧力は間隙水圧によって支えられ過剰間隙水圧が発生する。過剰間隙水圧は粘土の内部から外の排水層に向かって水圧の勾配ができ,主にマクロポアの間隙水が排出されだす。このとき,ペッドはマクロポアを充てんするような形で再配列し圧縮する。As for the consolidation phenomenon of clay, when compression pressure acts on clay, the compression pressure is first supported by the pore water pressure and excessive pore water pressure is generated. Excess pore water pressure creates a gradient of water pressure from the inside of the clay to the outside drainage layer, and macropore pore water is mainly discharged. At this time, the Ped is rearranged and compressed in a way that fills the macropores.
そして,ペッドはペッドどうしの接触面を拡大させながら圧縮圧力に見合うペッド間有効応力を確保していく。すなわち,密度増加に見合った強度増加が発現する。圧密は間隙水の排出抵抗と粘土の骨格構造の変形抵抗による圧縮時間の遅れ現象である。Then, the peds ensure effective stress between the peds that matches the compression pressure while expanding the contact surface between the peds. That is, an increase in strength commensurate with the increase in density appears. Consolidation is a phenomenon in which the compression time is delayed due to the drainage resistance of pore water and the deformation resistance of the skeleton structure of clay.
圧密が進行するためには間隙水の流出駆動力が粘土の水分保持力よりも卓越しなければならない。圧密を促進させるには基本的には二つの方法がある。一つは流出駆動力を増大させる方法で、これによる間隙水の移動を起こす力は一般に載荷による圧力勾配である。プレロード工法はこれの代表的なものである。In order for consolidation to proceed, the outflow driving force of pore water must be superior to the water retention capacity of clay. There are basically two ways to promote consolidation. One is a method of increasing the outflow driving force, and the force causing the movement of pore water by this is generally a pressure gradient caused by loading. The preload method is representative of this.
しかし、粘土の骨格構造の変形抵抗要素が大きくなる二次圧密の領域に入ると圧密の進行は極端に遅くなる。もう一つは新しい発想で、粘土の水分保持力を一時的に低下させる方法である。具体的な粘土の水分保持力の低下方法は,地盤を振動させることで実現できる。粘土の構造が破壊されると水分保持力が低下し,せん断力が低下する。粘土の鋭敏性である。粘土構造の撹乱による水分保持力の低下法は,局部的な圧密促進が見込まれても,粘着力が大幅に低下しているので地盤は増加荷重で塑性変形し基礎地盤の破壊を起こす。特に水が常に供給される環境である海底地盤等においては,粘土構造を破壊する振動は粘土の吸水膨張を招き圧密にとって逆の方向に進み致命的である。However, the progress of consolidation becomes extremely slow when entering the secondary consolidation region where the deformation resistance element of the clay skeleton structure is large. The other is a new idea, which is a method of temporarily reducing the moisture retention of clay. A concrete method for reducing the moisture retention of clay can be realized by vibrating the ground. When the clay structure is destroyed, the moisture retention decreases and the shear force decreases. It is the sensitivity of clay. In the method of reducing the water retention force due to the disturbance of the clay structure, even if local consolidation promotion is expected, the adhesive force is greatly reduced, so the ground is plastically deformed by an increased load and the foundation ground is destroyed. Especially in the submarine ground where water is constantly supplied, the vibration that destroys the clay structure causes the water absorption and expansion of the clay.

本発明の水分保持力の低下法は,粘土構造を破壊せずに圧密時における粘土構造のペッドの再配列を容易とする水分保持力の低下である。すなわち,粘土構造の変化が密度増加の方向に限定する水分保持力の低下法である。この方法は間隙水の排出抵抗と粘土骨格構造の変形抵抗の両方に作用するので,二次圧密領域に入っても活発に圧密が促進される。本発明の水分保持力低下法は,流出駆動力を増大させる方法と組み合わせると,単独では得られない急激な圧密促進が図られる。しかしながら,粘土の構造を破壊しなくとも水分保持力の低下The method for reducing the water retention capacity of the present invention is a decrease in the water retention capacity that facilitates rearrangement of the clay structure pads during consolidation without destroying the clay structure. In other words, it is a method for reducing the water retention capacity in which the change in the clay structure is limited to the direction of increasing density. This method acts on both the drainage resistance of pore water and the deformation resistance of the clay skeleton structure, so that consolidation is actively promoted even when entering the secondary consolidation region. When combined with the method for increasing the outflow driving force, the moisture retention reducing method of the present invention can promote rapid consolidation that cannot be obtained by itself. However, the water retention is reduced without destroying the clay structure. 法は,粘土の軟化(強度低下)を伴う圧密沈下なので,地盤に一気に載荷をした場合,地盤の塑性変形から基礎地盤のせん断破壊を起こす恐れもあるのでこれの対策を講じる必要がある。Since the method is a consolidation settlement accompanied by softening (decrease in strength) of clay, it is necessary to take measures against this because if the ground is loaded at once, there is a risk of shear failure of the foundation ground due to plastic deformation of the ground.

本発明は圧密増加荷重のもと急激な圧密促進を安定に確保するために,次の要件を満足させる。
第一の要件は,圧密時において,対象地盤の粘土構造を破壊せずに全体的に安定して粘土の水分保持力を一時的に低下させる必要がある。またこのとき,粘土の軟化は必要最小限に抑える必要がある。この第一の要件の解決手段は,対象地盤が地盤破壊を起こさない範囲でベースとなる一定載荷重(通常の載荷工法における圧密増加荷重)と繰り返し載荷重を平面的に継続して一様に加える。
これにより,ベースとなる一定過剰間隙水圧に繰り返し過剰間隙水圧を加えた過剰間隙水圧の波動を対象地盤内に発生させるものである。
過剰間隙水圧の波動の発生は,本発明の一定載荷重に繰り返し載荷重を加える載荷装置を使用して行う。該載荷装置は載荷重を対象地盤に平面的に一様に伝達する加圧板と繰り返し載荷重の発生装置から構成される。該発生装置は偏心重錘の回転力による発生機構である。ここで,該載荷装置は,起振力により自身が振動を生じないだけの重量と一様な載荷状態とするための大きさの加圧面積,すなわち対象地盤の深さと同程度の幅を有する加圧面積を持ち,対象地盤の表面に接地状態で使用される。このため該載荷装置は,対象地盤に対して振動荷重ではなく繰り返し荷重を加えることになる。また,該発生装置の偏心重錘の回転半径,回転角速度は,可変とすることにより繰り返し載荷重の増減,周期の調整機能を備えた載荷装置が好適である。
第二の要件は,基礎地盤のせん断破壊を積極的に防止して,急激な圧密促進を安定して確保する。すなわち,対象地盤がより大きな過剰間隙水圧に対して地盤破壊を起こさない状態をつくりあげる。この第二の要件の解決手段は,対象地盤の直接載荷される表面地盤を構造体で囲い地盤の塑性変形を拘束する。該構造体は具体的には前記第一要件の加圧板の底部外周に拘束壁を取り付けた加圧函体である。この結果,該加圧函体の外周地盤は基礎地盤のせん断破壊を防止するための押さえ荷重の役目を果たす。
第三の要件は,載荷除荷の容易なプレロードを確保する。一般的にはプレロード材は土砂,岩塊であり載荷除荷の作業は大規模で長い施工期間となる。この第三の要件の解決手段は,大気圧,水圧の活用である。真空圧密工法は,圧密時間では従来の載荷工法と変わりは無いが,載荷除荷の容易な大気圧を利用することに特長がある。本発明の過剰間隙水圧の波動による急速圧密工法に真空圧密工法の載荷除荷の作業を組み込むものである。その方法は,前記加圧函体を利用し,表面地盤を密閉状態として対象地盤を負圧とする。すなわち真空圧密工法を併用して大気圧を載荷する。
The present invention satisfies the following requirements in order to stably secure a rapid consolidation promotion under a consolidation increase load.
The first requirement is that during consolidation, the clay structure of the target ground must be temporarily reduced without temporarily destroying the clay structure of the target ground. At this time, it is necessary to minimize the softening of the clay. The solution to this first requirement is to maintain a uniform constant load (consolidation increase load in the normal loading method) and repeated load uniformly in a plane as long as the target ground does not cause ground failure. Add.
As a result, a wave of excess pore water pressure, which is obtained by repeatedly adding excess pore water pressure to a constant excess pore water pressure as a base, is generated in the target ground.
The generation of the excessive pore water pressure wave is carried out by using the loading device for repeatedly applying a loading load to the constant loading load of the present invention. The loading device includes a pressure plate that uniformly transmits a loading load to the target ground in a planar manner and a repeated loading load generator. The generating device is a generating mechanism based on the rotational force of the eccentric weight. Here, the loading device has a weight that does not generate vibration due to an oscillating force and a pressure area that is large enough to obtain a uniform loading state, that is, a width that is approximately the same as the depth of the target ground. It has a pressurized area and is used in contact with the ground surface. For this reason, the loading device repeatedly applies a load, not a vibration load, to the target ground. In addition, it is preferable to use a loading device having functions of repeatedly increasing / decreasing the loading load and adjusting the cycle by making the rotation radius and rotation angular velocity of the eccentric weight of the generator variable.
The second requirement is to positively prevent the shear failure of the foundation ground and ensure a rapid consolidation promotion. In other words, it creates a state in which the target ground does not cause ground failure due to a larger excess pore water pressure. The solution to the second requirement is to confine plastic deformation of the ground by surrounding the surface ground directly loaded with the target ground with a structure. Specifically, the structure is a pressure box having a restraint wall attached to the outer periphery of the bottom of the pressure plate of the first requirement. As a result, the outer peripheral ground of the pressurizing box serves as a pressing load for preventing the shear failure of the foundation ground.
The third requirement ensures easy preloading of unloading. In general, the preload material is earth and sand and rock mass, and the unloading work is large and requires a long construction period. The solution to this third requirement is the use of atmospheric pressure and water pressure. The vacuum consolidation method is the same as the conventional loading method in terms of consolidation time, but is characterized by the use of atmospheric pressure that makes loading easy. The loading and unloading work of the vacuum consolidation method is incorporated into the rapid consolidation method by the wave of excess pore water pressure of the present invention. In this method, the pressure ground is used, the surface ground is hermetically sealed, and the target ground is negative pressure. That is, the atmospheric pressure is loaded using the vacuum consolidation method together.

第一の解決手段の効果は,粘土構造を破壊することなく,過剰間隙水圧の波動を対象地盤内に一様に発生させ,急速圧密沈下を実現することである。本発明の過剰間隙水圧の波動による圧密沈下工法は,まったく新しい発想による工法である。ここで,粘土構造を破壊しない範囲での過剰間隙水圧の波動は,粘土が圧縮方向に向かうための粘土構造のペッドの再配列を容易にする必要最小限の軟化である。
図1は標準圧密試験と微小振動圧密試験の時間−圧密歪量曲線の比較の一例である。微小振動圧密試験装置は,標準圧密試験装置にピストンバイブレイータ型の振動装置を組み込んだものである。試験試料をセットする圧密リングの下端には排水機能のある銅製の円形多孔板を取り付けてある。微小振動圧密荷重(繰り返し載荷重)は,前記の円形多孔板の繰り返し打撃による。また,これの圧密試験試料は,標準圧密試験装置と同様に塑性変形が拘束された一次元圧密の状態である。微小振動圧密試験方法は標準圧密試験に準拠したものである。前記圧密試験試料は不撹乱の粘土で,荷重段階=5,圧密荷重P5=157KN/m,微小振動圧密荷重P=3KN/mである。この試験の圧密増加荷重はP5/2=78.5KN/m,微小振動圧密荷重はこの圧密増加荷重の3.8%である。ここで重要なことは,図1における前記微小圧密試験試料の状態は,圧密荷重が振動圧密荷重よりも大で一次元圧密の状態であるから,振動荷重を受けても圧密試験試料自体が振動することもせん断歪を発生することも無い。従って粘土構造が破壊されることはない。つまり,一定の圧密増加荷重は一定の過剰間隙水圧に置き換わり,微小振動圧密荷重は繰り返し過剰間隙水圧に置き換わる。すなわち,試験試料の粘土構造は破壊されず,試験試料内には過剰間隙水圧の波動が発生している状態である。図1の微小振動圧密試験の微小振動は,荷重段階=4,P4=78.5KN/mの24時間圧密が終了した状態で1分間実施,そして次の荷重段階=5,P5=157KN/mで30分間実施したものである。
図1の微小振動圧密荷重は圧密増加荷重のわずか3.8%にすぎないのに大幅な圧密促進を示している。例えば微小振動圧密試験は,標準圧密試験の24時間(1,440分)の圧密歪量ε=2.72%を7.6分で達している。この圧密促進の効果は,微小振動圧密荷重を使わなければ圧密増加荷重を2倍程度に上げなければならない。これは圧密促進として,驚異的な効果である。これは二次圧密も取り込んで圧密が進行していることによる。粘性土は圧密により密度が増加し,過剰間隙水圧が有効応力に置き換わる。微小振動圧密荷重を停止すれば,時間と共に水分保持力が回復して粘着力は密度増加に応じて大幅に増大し,二次圧密は停止する。二次圧密問題の解決である。
The effect of the first solution is to generate a wave of excessive pore water pressure uniformly in the target ground without destroying the clay structure and realize rapid consolidation settlement. The consolidation settlement method by the wave of excess pore water pressure of the present invention is a method based on a completely new idea. Here, the wave of excess pore water pressure within a range that does not destroy the clay structure is the minimum necessary softening that facilitates rearrangement of the pad of the clay structure so that the clay moves in the compression direction.
FIG. 1 is an example of a comparison of time-consolidation strain amount curves of a standard consolidation test and a micro-vibration consolidation test. The micro-vibration consolidation tester is a standard consolidation tester incorporating a piston vibrator type vibration device. A copper circular perforated plate having a drainage function is attached to the lower end of the consolidation ring for setting the test sample. The micro-vibration consolidation load (repeated load) is due to repeated impact of the circular perforated plate. In addition, the consolidation test sample is in a one-dimensional consolidation state in which plastic deformation is constrained in the same manner as the standard consolidation test apparatus. The micro vibration consolidation test method conforms to the standard consolidation test. The consolidation test sample is an undisturbed clay, load stage = 5, consolidation load P5 = 157 KN / m 2 , and minute vibration consolidation load P = 3 KN / m 2 . The consolidation increase load in this test is P5 / 2 = 78.5 KN / m 2 , and the minute vibration consolidation load is 3.8% of this consolidation increase load. What is important here is that the state of the micro-consolidation test sample in FIG. 1 is a one-dimensional consolidation state in which the consolidation load is larger than the vibration consolidation load. And no shear strain occurs. Therefore, the clay structure is not destroyed. In other words, a constant consolidation increase load is replaced by a constant excess pore water pressure, and a micro-vibration consolidation load is repeatedly replaced by an excess pore water pressure. In other words, the clay structure of the test sample is not destroyed, and a wave of excess pore water pressure is generated in the test sample. The micro-vibration of the micro-vibration consolidation test of FIG. 1 is carried out for 1 minute after 24 hours of compaction of load stage = 4, P4 = 78.5 KN / m 2 , and the next load stage = 5, P5 = 157 KN / This was carried out at m 2 for 30 minutes.
Although the micro-vibration consolidation load of FIG. 1 is only 3.8% of the consolidation increase load, it shows a significant consolidation promotion. For example, in the micro-vibration consolidation test, the consolidation strain amount ε f = 2.72% in 24 hours (1,440 minutes) of the standard consolidation test is reached in 7.6 minutes. The effect of this consolidation promotion is to increase the consolidation increase load by a factor of about 2 unless a micro-vibration consolidation load is used. This is a tremendous effect as consolidation consolidation. This is due to the fact that secondary consolidation is taken in and consolidation is progressing. The density of cohesive soil increases due to consolidation, and excess pore water pressure replaces effective stress. If the micro-vibration compaction load is stopped, the moisture retention power recovers with time, the adhesive strength increases greatly with increasing density, and the secondary compaction stops. It is a solution to the secondary consolidation problem.

本発明の載荷装置は,微小振動圧密試験装置の状態を実際の現場で再現するものである。しかし,前記の圧密試験のような完全な一次元圧密の再現は非常に困難である。従って本発明では,対象地盤にまず基礎地盤の破壊を起こさない範囲内で,一定載荷重及び繰り返し載荷重を加える。本発明の載荷装置は,載荷時これ自体が振動することは無く,常に対象地盤に接した状態で実施され,衝撃荷重を排除したものである。また,基礎地盤が破壊しない範囲の過剰間隙水圧の波動の大きさであるから,対象地盤内には,基礎地盤の破壊に至るせん断すべりは生じることは無い。従って対象地盤内には,過剰間隙水圧だけが伝播される状態である。このような状態は,粘土構造の変化が密度増加の方向に限定する水分保持力の低下状態で,粘土の軟化は必要最小限の状態ある。これにより急速圧密は安定して進行する
本発明の過剰間隙水圧の波動による圧密工法は、地盤の安定と圧密促進が両立して,効果が最大となる最適値がある。圧密の進行は,過剰間隙水圧が大きい方が速い,しかし地盤は不安定になり地盤破壊の危険がそれだけ大きくなる。
プレロード工法は,載荷による過剰間隙水圧を大きくするには安定上限界がある。従って地盤の安定の範囲内における過剰間隙水圧の総和を固定とした場合,一定過剰間隙水圧と繰り返し過剰間隙水圧の最適割合の組み合わせが存在する。繰り返し過剰間隙水圧をゼロとしてすべてを一定過剰間隙水圧とした場合は,従来の載荷工法と同じである。繰り返し過剰間隙水圧は,圧密促進に驚異的な効果を与え,これが大きいほど圧密促進効果が大きい傾向にある。今,一定過剰間隙水圧の一部を徐々に繰り返し過剰間隙水圧に置き換えていく。しかし繰り返し過剰間隙水圧は,粘土の軟化を伴う。ある過剰間隙水圧の割合で地盤破壊の危険が生じる。この時の限界値が過剰間隙水圧の最適割合値である。
本発明の圧密工法が,粘土構造のペッドの再配列を容易にする必要最小限の軟化とする所以である。また,過剰間隙水圧の波動の周期は,圧密促進に大きな影響を与える。地盤にとっての最適周期は一般に短い周期が効果的であるが,粘土の種類,地盤状態によって違いがある。
本発明の圧密沈下工法は,粘土の荷電及び階層的構造特性に基づき,地盤の安定及び圧密促進に最も適合する一定載荷重と繰り返し載荷重の最適割合,さらには繰り返し載荷重の周期を最適周期となるように調整し,これらの組み合わせ載荷重を対象地盤に加え,最適過剰間隙水圧の波動を対象地盤内に発生させ,急速圧密沈下の効果を最大限に発揮させるものである。
The loading device of the present invention reproduces the state of the micro-vibration consolidation testing device at an actual site. However, it is very difficult to reproduce complete one-dimensional consolidation as in the consolidation test described above. Accordingly, in the present invention, a constant load and a repeated load are applied to the target ground within a range in which the foundation ground is not destroyed. The loading device of the present invention does not vibrate itself when loaded, and is always in contact with the target ground, eliminating the impact load. In addition, since the wave size of the excess pore water pressure is such that the foundation ground does not break, there will be no shear slip in the target ground leading to the foundation ground breaking. Therefore, only the excess pore water pressure is propagated in the target ground. Such a state is a state in which the moisture retention is reduced, which is limited to the direction of increase in density of the clay structure, and the softening of the clay is the minimum necessary state. Thereby, the rapid consolidation proceeds stably .
The consolidation method based on the wave of excess pore water pressure of the present invention has an optimum value that maximizes the effect while achieving both stability of the ground and consolidation promotion. Consolidation progresses faster when the excess pore water pressure is larger, but the ground becomes unstable and the risk of ground failure increases accordingly.
The preload method has a stability limit to increase the excess pore water pressure due to loading. Therefore, when the total sum of excess pore water pressure within the stability range of the ground is fixed, there exists a combination of the optimum ratio of constant excess pore water pressure and repeated excess pore water pressure. Repeated excess pore water pressure is zero and everything is constant excess pore water pressure, which is the same as the conventional loading method. Repeated excess pore water pressure has a surprising effect on consolidation promotion, and the greater this, the greater the consolidation promotion effect. Now, a part of the constant excess pore water pressure is gradually and repeatedly replaced with the excess pore water pressure. However, repeated excess pore water pressure is accompanied by softening of the clay. There is a risk of ground failure at a certain excess pore pressure rate. The limit value at this time is the optimum ratio value of the excess pore water pressure.
The consolidation method of the present invention is the reason why the minimum softening is required to facilitate rearrangement of the clay-structured pads. In addition, the wave period of excess pore water pressure has a significant effect on consolidation promotion. The optimum period for the ground is generally effective for short periods, but there are differences depending on the type of clay and the ground condition.
The consolidation settlement method of the present invention is based on the charge and hierarchical structure characteristics of the clay, and the optimum load ratio and constant load ratio that best suits the stability and consolidation of the ground, and the cycle of the repeated load is the optimum cycle. These combined loadings are applied to the target ground, and the wave of the optimal excess pore water pressure is generated in the target ground to maximize the effect of rapid consolidation settlement.

第二の解決手段の効果は,対象地盤に地盤破壊を起こさない過剰間隙水圧の範囲を広げることである。具体的効果としては,前記加圧函体の内部の対象地盤は,圧密試験の圧密リング内の試験試料と同様に一次元圧密状態である。該加圧函体の構造的機能は微小振動圧密試験装置の底板を外して載荷板と圧密リングを一体化し,繰り返し載荷重を載荷板に加えたものに相当する。従って該加圧函体の底面から下の対象地盤が基礎地盤と見なすことができる。この基礎地盤が過剰間隙水圧の波動に耐えて地盤破壊を起こさなければ良い。該加圧函体の外周地盤は基礎地盤のせん断破壊を防止するための押さえ荷重の役目を果たす。従って必要な押さえ荷重は,該加圧函体の拘束壁の高さによって確保できる。また圧密沈下の促進により,該加圧函体は沈下する。これにより基礎地盤の位置も低下し,相対的に前記外周地盤の押さえ荷重が増大する。従って,過剰間隙水圧の波動は,当初は小さめのものとして徐々に上げていくのが合理的である。The effect of the second solution is to widen the range of excess pore water pressure that does not cause ground failure in the target ground. As a specific effect, the target ground inside the pressurizing box is in a one-dimensional consolidated state, like the test sample in the consolidation ring of the consolidation test. The structural function of the pressurizing box corresponds to that obtained by removing the bottom plate of the micro-vibration consolidation test apparatus, integrating the loading plate and the consolidation ring, and repeatedly applying a loading load to the loading plate. Therefore, the target ground below the bottom surface of the pressurizing box can be regarded as the foundation ground. It is good if this foundation ground does not withstand the excessive pore water pressure wave and cause ground destruction. The outer peripheral ground of the pressurizing box serves as a pressing load for preventing shear fracture of the foundation ground. Therefore, the necessary pressing load can be ensured by the height of the restraining wall of the pressurizing box. In addition, the pressurization box sinks due to the consolidation settlement. Thereby, the position of the foundation ground is also lowered, and the holding load of the outer peripheral ground is relatively increased. Therefore, it is reasonable to gradually increase the excess pore water pressure wave as a small one.

第三の解決手段の効果は,総合的急速圧密にある。本発明の圧密工法の特長である過剰間隙水圧の波動による急激な圧密時間短縮に,真空圧密工法の特長である載荷除荷の容易な大気圧を組み込む。対象地盤の地表面を密閉状態とする方法は,前記加圧函体の利用である。該加圧函体は,対象地盤表面に振動打設され地表面の密閉状態を確保するのは容易である。総合的急速圧密工法の完成である。真空圧密工法の大気圧載荷は,3次元的な圧密荷重として働くため、基礎地盤のせん断破壊防止の押さえ荷重はこの大気圧載荷分を除外して良い。
また,真空圧密工法は,海底地盤の場合は水深に応じた水圧も取り込むことができる利点がある。本発明の前記の総合的急速圧密工法は,驚異的な急速圧密工法なるが故に軟弱地盤の改良のみならずその応用は広い。例えば航路の水深確保における,浚渫に依らない海底面沈下に依る増深。河川港湾の浚渫の伴わない覆砂による底質改良などである。
The effect of the third solution is comprehensive rapid consolidation. Incorporates the atmospheric pressure that is easy to unload, which is the feature of the vacuum consolidation method, in order to shorten the compaction time due to the wave of excess pore water pressure, which is the feature of the consolidation method of the present invention. A method of making the ground surface of the target ground hermetically sealed is the use of the pressure box. The pressurizing box is vibrated on the target ground surface, and it is easy to ensure a sealed state of the ground surface. Completion of comprehensive rapid consolidation method. Since the atmospheric pressure loading of the vacuum consolidation method works as a three-dimensional consolidation load, the holding load for preventing the shear failure of the foundation ground may exclude this atmospheric pressure loading.
In addition, the vacuum consolidation method has the advantage that water pressure corresponding to the water depth can be taken in the case of submarine ground. The above-mentioned comprehensive rapid consolidation method of the present invention is an amazing rapid consolidation method, and therefore has a wide range of applications as well as improvement of soft ground. For example, deepening due to seabed subsidence that does not depend on dredging in securing the water depth of the channel. For example, improvement of bottom sediment by covering sand without dredging at river ports.

図2は本発明の総合的急速圧密沈下工法を海底地盤で実施するための最良の形態となる機構についての説明用の図である。ここで,図2(a)は,本発明の工法にバーチカルドレーン工法,真空圧密工法を併用した総合的急速圧密工法の実施例の縦断面図である。ただし,図において既知の工法における設備等の図化は必要最小限とした。図2(b)は,対象地盤の過剰間隙水圧の波動となる一定載荷重と繰り返し載荷重の各載荷重xと深度yの関係図である。
図2(a)は本発明の一定載荷重に繰り返し載荷重を加える載荷装置構造体Yが水深Hωの海底地盤に据付けられた状態である。載荷装置構造体Yは加圧函体1と繰り返し荷重発生装置2と加圧タワー3から構成され,構造的に一体型のものである。また,該加圧函体1は,加圧板1−1と拘束壁1−2から構成されている。ここで,真空ポンプ7を稼動させて加圧函体1の内部,そして鉛直ドレーン10を通して対象地盤全体を負圧(−Us)とする。さらに繰り返し荷重発生装置2を稼動させる。図2(a)の載荷状況は,該加圧函体1の加圧板1−1には鉛直載荷重として大気圧(Us)と水圧(Hωγω)そして繰り

Figure 0004996883
用している。図2(a)のA1,A2地盤が改良対象地盤で,A1地盤が加圧函体1で塑性変形が拘束されている地盤,A2,B2地盤が基礎地盤である。Cは水中である。地盤中の点線で示した曲線は,基礎地盤が載荷重に耐えかねて地盤破壊する時の一般的なせん断滑り面14を示したものである。この時,加圧函体1の外周のB1地盤が基礎地盤の破壊を防止する押さえ荷重の役目をする。対象載荷重は水圧(Hωγω)の載荷重によるせん断滑りである。図2(b)はこの時の各々の載荷重を図化したものである。ここでの一定載荷重は大気圧と水圧の和(Us+Hωγω)である。ただし,水圧は地表面の載荷圧であるから載荷の面積に応じて深部の応力は低減している。本発明の圧密工法は,前記一定載荷重と繰り返し載荷重が組み合わされる。この時,載荷重の組み合わせ割合を最適割合,繰り返し載荷重の周期を最適周期とする。このよ
Figure 0004996883
波動となるように設定して対象地盤全体に伝播させるのが好適である。FIG. 2 is a diagram for explaining a mechanism which is the best mode for carrying out the comprehensive rapid consolidation settlement method of the present invention on the seabed ground. Here, FIG. 2A is a longitudinal sectional view of an embodiment of a comprehensive rapid consolidation method in which the vertical drain method and the vacuum consolidation method are used in combination with the method of the present invention. However, the diagram of equipment, etc. in the known construction method in the figure is the minimum necessary. FIG. 2 (b) is a relationship diagram between each load x and depth y of a constant load and a repetitive load that are the waves of excess pore water pressure of the target ground.
FIG. 2A shows a state in which the loading device structure Y that repeatedly applies a loading load to the constant loading load of the present invention is installed on the seabed ground at a water depth . The loading device structure Y is composed of a pressurizing box 1, a repetitive load generating device 2, and a pressurizing tower 3, and is structurally integrated. The pressurizing box 1 is composed of a pressurizing plate 1-1 and a constraining wall 1-2. Here, the vacuum pump 7 is operated, and the entire target ground is set to a negative pressure (−Us) through the inside of the pressurizing box 1 and through the vertical drain 10. Further, the load generator 2 is operated repeatedly. 2A, the pressure plate 1-1 of the pressurization box 1 has a vertical load of atmospheric pressure (Us), water pressure (Hωγω), and a load.
Figure 0004996883
I use it. The A1, A2 ground in FIG. 2A is the ground to be improved, the A1 ground is the ground in which plastic deformation is constrained by the pressure box 1, and the A2, B2 ground is the basic ground. C is underwater. A curve indicated by a dotted line in the ground indicates a general shear sliding surface 14 when the foundation ground fails to withstand the load and the ground breaks down. At this time, the B1 ground on the outer periphery of the pressurizing box 1 serves as a holding load for preventing the foundation ground from being destroyed. The target load is a shear slip due to a load of water pressure (Hωγω). FIG. 2 (b) illustrates the respective loading loads at this time. The constant load here is the sum of atmospheric pressure and water pressure (Us + Hωγω). However, since the water pressure is the loading pressure on the ground surface, the stress in the deep part is reduced according to the loading area. In the consolidation method of the present invention, the constant load and the repeated load are combined. At this time, the combination ratio of the loading load is the optimum ratio, and the cycle of repeated loading is the optimum period. This
Figure 0004996883
It is preferable to set it to be a wave and propagate it to the entire target ground.

以下,本発明の圧密沈下工法で,海底地盤を海上施工で地盤改良する実施例を図3〜図8に基づいて説明する。Hereinafter, an embodiment in which the seabed ground is improved by offshore construction by the consolidation settlement method of the present invention will be described with reference to FIGS.

図3は本発明の総合的急速圧密沈下工法を海底地盤での実施における,前段階の鉛直ドレーン10とサンドマット11の施工完了状態と本工法に使用する作業船の作業開始前の縦断面図である。
本発明の工法に使用される作業船の主構造は,前載荷装置構造体Yと浮構造体Zを構成する台船4とガイドタワー5から構成されている。載荷装置構造体

Figure 0004996883
は,台船4の中心部に切り欠き空間6を設け,この切り欠き空間の外周鉛直上空に伸びる前記ガイドタワー5を固定し,構造的に一体型のものである。該作業船は,載荷装置構造体Yの加圧タワー3を浮構造体Zの台船4の切り欠き空間6とガイドタワー5に組み入れて,加圧函体1を台船4の底面に装備し,且つ加圧函体1は台船4の下の水中を昇降する機能を備え,且つ加圧函体1を海底地盤に据付けた密閉状態において,加圧函体1の内部圧を減圧,加圧する機能を備えた作業船である。図3において,加圧函体1の細部構造は,1−1は加圧板,1−2は拘束壁,1−3は剛性フィルター,1−4は負圧時の水平帯状集水空間である。また,7は真空ポンプ,8はコンプレッサー,9は加圧函体1の内部の圧気滞留層,10は鉛直ドレーン,11は水平ドレーンのサンドマットである。圧気滞留層9は載荷装置構造体Yの浮力として使われる。FIG. 3 is a longitudinal sectional view of the construction of the vertical drain 10 and the sand mat 11 at the previous stage and the work ship used for the construction method before the start of the operation in the case of the comprehensive rapid consolidation settlement method of the present invention on the seabed ground. It is.
The main structure of the working ship used in the method of the present invention is composed of Theissen 4 and the guide tower 5 constituting the front Symbol loading device structure Y and floating structure Z. Loading device structure
Figure 0004996883
Is provided with a notch space 6 at the center of the carriage 4 and fixed with the guide tower 5 extending vertically above the outer periphery of the notch space. The work ship incorporates the pressure tower 3 of the loading device structure Y into the notch space 6 and the guide tower 5 of the carrier 4 of the floating structure Z and equips the bottom of the carrier 4 with the pressure box 1. In addition, the pressurizing box 1 has a function of moving up and down in the water under the carriage 4 and, in a sealed state where the pressurizing box 1 is installed on the seabed ground, the internal pressure of the pressurizing box 1 is reduced. It is a work ship with a function to pressurize. In FIG. 3, the detailed structure of the pressurizing box 1 is that 1-1 is a pressurizing plate, 1-2 is a constraining wall, 1-3 is a rigid filter, and 1-4 is a horizontal belt-like water collecting space at negative pressure. . Further, 7 is a vacuum pump, 8 is a compressor, 9 is a pressurized air retaining layer inside the pressurizing box 1, 10 is a vertical drain, and 11 is a sand mat of a horizontal drain. The pressurized air retention layer 9 is used as the buoyancy of the loading device structure Y.

図4は図3のX1−X1線の位置における本発明の作業船の水平断面図である。FIG. 4 is a horizontal sectional view of the work boat of the present invention at the position of the X1-X1 line of FIG.

図5は作業船の加圧函体1の圧気滞留層9を抜いて,載荷装置構造体Yを対象海底地盤の所定の位置に降下させて据付けたところの縦断面図ある。加圧函体1の拘束壁1−2の打設は,繰り返し荷重の発生装置2を稼動させて行われる。FIG. 5 is a longitudinal cross-sectional view of the pressurized ship 1 of the work ship, in which the pressurized air retention layer 9 is removed and the loading device structure Y is lowered to a predetermined position on the target seabed ground and installed. Placing the restraining wall 1-2 of the pressurizing box 1 is performed by operating the load generating device 2 repeatedly.

図6は図5のX2−X2線の位置における本発明の作業船の水平断面図である。FIG. 6 is a horizontal sectional view of the work boat of the present invention at the position of line X2-X2 in FIG.

図7は図2で説明した真空圧密工法を併用して圧密が急速に進行している状況を示す縦断面図である。真空ポンプ7を稼動させて加圧函体1の内部,そして鉛直ドレーン10を通して対象地盤全体を負圧とする。さらに繰り返し荷重発生装置2を稼動させ,対象地盤全体に最適過剰間隙水圧の波動を発生させる。
対象地盤の間隙水の排出は,鉛直ドレーン10,サンドマット11,剛性フィルター1−3,水平帯状集水空間1−4,真空ポンプ7を経由して排出される。
真空ポンプ7の電源ケーブルや排水管は,加圧タワー3の支柱管の内部に配線,配管するのが好適である。
FIG. 7 is a longitudinal sectional view showing a state in which consolidation is rapidly progressing by using the vacuum consolidation method described in FIG. The vacuum pump 7 is operated, and the entire target ground is set to a negative pressure through the inside of the pressurizing box 1 and through the vertical drain 10. Furthermore, the load generator 2 is operated repeatedly, and the wave of the optimal excess pore water pressure is generated in the entire target ground.
The pore water is discharged from the target ground through the vertical drain 10, the sand mat 11, the rigid filter 1-3, the horizontal belt-shaped water collection space 1-4, and the vacuum pump 7.
The power cable and drain pipe of the vacuum pump 7 are preferably wired and piped inside the support pipe of the pressurizing tower 3.

図8は所定の圧密沈下が完了し,載荷装置構造体Yを地盤から引き抜き上昇作業の状況を示す縦断面図である。今,作業船の加圧函体1の内部にコンプレッサー8で圧気を送り,圧気滞留層9を形成し浮力を上げているところである。
拘束壁1−2はと地盤の付着は繰り返し荷重発生装置2を稼動させて縁を切ることを併行する。そして載荷装置構造体Yの加圧函体1を浮構造体Zの台船4の底面に装着する。必要な地盤改良は,該作業船で図3図5図7図8の作業サイクルを実施して進める。また,コンプレッサー8の配管は加圧タワー3の支柱管の内部に配管するのが好適である。
FIG. 8 is a longitudinal cross-sectional view showing a situation in which the predetermined consolidation settlement is completed and the loading device structure Y is pulled out from the ground and lifted. Now, pressurized air is sent to the inside of the pressurizing box 1 of the work ship by a compressor 8 to form a pressurized air retention layer 9 and increase buoyancy.
The constraining wall 1-2 is repeatedly attached to the ground by repeatedly operating the load generator 2 and cutting the edge. Then, the pressurizing box 1 of the loading device structure Y is mounted on the bottom surface of the carriage 4 of the floating structure Z. Necessary ground improvement is carried out by carrying out the work cycles shown in FIGS. 3, 5, 7 and 8 on the work boat. Further, it is preferable that the compressor 8 is piped inside the column pipe of the pressurizing tower 3.

本発明の圧密沈下工法を活用した河川,港湾の浚渫の伴わない水質処理,覆砂による底質改良の実施例を図9に基づいて説明する。
河川港湾の汚染された底質の対策工法は,掘削除去処理と原位置処理に大別される。覆砂は原位置処理で,この他に固化処理等がある。原位置処理は,橋脚,護岸沿いなど掘削処理が難しい場合に検討される。但し,原位置処理は覆砂材,固化材等で河積を縮小するので,河積に余裕が有る場合に限定される。また,固化処理工法は,覆砂工法に較べ対策工事費は大幅に高くなるが環境に有利とされている。
An embodiment of water quality treatment without dredging in rivers and harbors utilizing the consolidation settlement method of the present invention and bottom sediment improvement by sand covering will be described with reference to FIG.
Countermeasures for contaminated bottom sediments in river ports are broadly divided into excavation removal and in situ treatment. Sand-capping is in-situ processing, and there are solidification processing. In-situ processing is considered when excavation processing is difficult, such as along piers and along revetments. However, since in-situ processing reduces the river volume with sand-capping material, solidified material, etc., it is limited to cases where there is room in the river volume. In addition, the solidification method is advantageous for the environment although the construction cost for countermeasures is significantly higher than that of the sand-capping method.

図9は,底質改良対象位置にサンドマット11を敷設し,本発明の急速圧密沈下工法に使用する作業船を水底に据付けた状況を示す縦断面図である。図9において,は陸地盤,Gは護岸,12は水質浄化槽である。また,汚染地盤は表層であるから,鉛直ドレーン10は使用していない。本発明の作業船の載荷装置構造体Yで,対象汚染地盤全体に最適過剰間隙水圧の波動を発生させ,圧密を促進させる。対象汚染地盤の間隙水(汚染溶出水)の排出経路は,サンドマット11,剛性フィルター1−3,水平帯状集水空間1−4,真空ポンプ7,加圧タワー3の支柱管内部の排水管を経由して水質浄化槽12に集められる。
水質浄化槽12で水質処理をして環境基準値を満たした水質で放流する。対象汚染地盤の必要な圧密沈下が完了したならば,作業船の載荷装置構造体Yを浮上させ,サンドマット11の上に良質な砂を覆砂する。流れが有る場合は,覆砂の上に抑えの砕石等で覆う。
本発明の圧密沈下工法を活用した底質改良の特長は次のとおりである。(1)覆砂の厚さは急速圧密沈下で確保するので河積の制限に拘束されない。(2)施工時載荷装置構造体Yの加圧函体1で遮へいされるので汚染拡散の恐れがない。(3)底質改良後の汚染溶出水の恐れがない。(4)護岸沿いの場合は,密度増加の地盤改良になり護岸の安定向上になる。(5)本発明の水質処理プラス覆砂工法は,環境に配慮したものであり,その上で他の工法の掘削除去処理,原位置固化処理工法に較べ対策工事費は大幅に安くなる。
FIG. 9 is a longitudinal sectional view showing a situation in which a sand mat 11 is laid at the bottom quality improvement target position and a work ship used for the rapid consolidation settlement method of the present invention is installed on the bottom of the water. In FIG. 9, E is the land, G is the revetment, and 12 is the water purification tank. Moreover, since the contaminated ground is a surface layer, the vertical drain 10 is not used. With the loading device structure Y of the working ship of the present invention, the wave of the optimum excess pore water pressure is generated in the entire target contaminated ground, and consolidation is promoted. The discharge path of pore water (contaminated elution water) in the target contaminated ground is as follows: sand mat 11, rigid filter 1-3, horizontal strip water collection space 1-4, vacuum pump 7, drain pipe inside the column of pressurizing tower 3 And collected in the water purification tank 12.
Water is treated in the water septic tank 12 and discharged with water quality that satisfies the environmental standard value. When the necessary consolidation settlement of the target contaminated ground is completed, the loading device structure Y of the work ship is lifted, and good quality sand is covered on the sand mat 11. If there is a flow, cover the sand with a crushed stone.
The features of bottom sediment improvement utilizing the consolidation settlement method of the present invention are as follows. (1) Since the thickness of the sand cover is secured by rapid consolidation settlement, it is not constrained by the restriction of the river volume. (2) Since it is shielded by the pressurizing box 1 of the loading device structure Y at the time of construction, there is no fear of contamination diffusion. (3) There is no fear of contaminated elution water after bottom sediment improvement. (4) In the case of along the revetment, the ground will be improved by increasing the density, and the stability of the revetment will be improved. (5) The water quality treatment plus sand-capping method of the present invention is environmentally friendly, and the construction cost for countermeasures is significantly lower than that of other methods of excavation and removal and in-situ solidification treatment.

本発明の総合的急速圧密沈下工法で,埋立地における旧海底地盤を陸上施工で地盤改良する実施例を図10に基づいて説明する。
図10は,対象地盤に鉛直ドレーン10とサンドマット11を施工し,さらに本発明の載荷装置構造体Yを据付けた状況を示す縦断面図である。該載荷装置構造体Yは加圧函体1と繰り返し荷重発生装置2から構成されている。陸上使用であるから加圧タワー3は無い。図10において,D,Eは埋立地盤,F,Gは旧海底地盤,圧密対象地盤はF,H地盤である。本発明の載荷装置構造体Yで,対象地盤全体に最適過剰間隙水圧の波動を発生させると圧密は促進する。
対象地盤の一定載荷重は,土被り厚の載荷重と大気圧(Us)である。繰り返し載荷重は図2で説明したとおりである。
図10において,13は載荷装置構造体Yを吊り上げ,移動する時に使用するフックである。載荷装置構造体Yを移動する時,リフト機能のある走行車4台が使用される。本発明の総合的急速圧密沈下工法の特長は,基本的に陸上海上とも同様である。
An embodiment in which the old seabed ground in a landfill is improved by land construction by the comprehensive rapid consolidation settlement method of the present invention will be described with reference to FIG.
FIG. 10 is a longitudinal sectional view showing a situation in which the vertical drain 10 and the sand mat 11 are constructed on the target ground, and the loading device structure Y of the present invention is installed. The loading device structure Y includes a pressurizing box 1 and a repeated load generator 2. There is no pressurized tower 3 because it is used on land. In FIG. 10, D and E are landfills, F and G are old submarine grounds, and the consolidation target grounds are F and H grounds. In the loading device structure Y of the present invention, when the wave of the optimum excess pore water pressure is generated in the entire target ground, consolidation is promoted.
The constant load of the target ground is the load of the earth covering thickness and the atmospheric pressure (Us). The repeated loading is as described in FIG.
In FIG. 10, 13 is a hook used when lifting and moving the loading device structure Y. When moving the loading device structure Y, four traveling vehicles having a lift function are used. The features of the comprehensive rapid consolidation settlement method of the present invention are basically the same as those on land and sea.

標準圧密試験と微小振動圧密試験の時間−圧密歪量曲線図である。It is a time-consolidation distortion amount curve figure of a standard consolidation test and a micro vibration consolidation test. 本発明の総合的急速圧密沈下工法の海底地盤での最良形態となる機構の説明図で,図2(a)は,本発明の実施例の縦断面図である。図2(b)は,一定載荷重と繰り返し載荷重の各載荷重xと深度yの関係図である。FIG. 2 (a) is a longitudinal sectional view of an embodiment of the present invention. FIG. 2 (a) is an explanatory view of a mechanism that is the best mode in the seabed ground of the comprehensive rapid consolidation settlement method of the present invention. FIG. 2B is a relationship diagram between the respective loading loads x and the depth y of the constant loading load and the repeated loading load. 本発明の工法に使用する作業船の作業開始前の縦断面図である。It is a longitudinal cross-sectional view before the work start of the work ship used for the construction method of this invention. 図3のX1−X1線の位置における本発明の作業船の水平断面図である。It is a horizontal sectional view of the work ship of the present invention at the position of line X1-X1 in FIG. 本発明の作業船の載荷装置構造体Yを所定の海底地盤の位置に据付けた状況での縦断面図である。It is a longitudinal cross-sectional view in the condition which installed the loading apparatus structure Y of the working ship of this invention in the position of the predetermined submarine ground. 図5のX2−X2線の位置における本発明の作業船の水平断面図である。It is a horizontal sectional view of the work ship of the present invention at the position of line X2-X2 in FIG. 本発明の工法による圧密が急速に進行している状況を示す縦断面図である。It is a longitudinal cross-sectional view which shows the condition where consolidation by the construction method of this invention is progressing rapidly. 所定の圧密沈下が完了し,載荷装置構造体Yを地盤から引き抜き上昇作業の状況を示す縦断面図である。It is a longitudinal cross-sectional view which shows the condition of the completion | finish operation | work which draws out the loading apparatus structure Y from the ground after predetermined consolidation settlement is completed. 底質改良において,本発明の作業船を対象位置の水底に据付けた状況を示す縦断面図である。In bottom quality improvement, it is a longitudinal cross-sectional view which shows the condition which installed the work ship of this invention in the water bottom of the object position. 陸上施工において,本発明の載荷装置構造体Yを所定の位置に据付けた状況を示す縦断面図である。It is a longitudinal cross-sectional view which shows the condition which installed the loading apparatus structure Y of this invention in the predetermined position in land construction.

Y 載荷装置構造体,Z 浮構造体,
1 加圧函体,2 繰り返し荷重発生装置,3 加圧タワー,4 台船,5 ガイドタワー,7 真空ポンプ,8 コンプレッサー,10 鉛直ドレーン,11 サンドマット,
A(A1,A2) 改良対象地盤,B1 基礎地盤の抑え荷重,
C 水中,
Y loading device structure, Z floating structure,
DESCRIPTION OF SYMBOLS 1 Pressurization box, 2 Repeat load generator, 3 Pressurization tower, 4 Cargo ship, 5 Guide tower, 7 Vacuum pump, 8 Compressor, 10 Vertical drain, 11 Sandmat,
A ( A1, A2 ) Improvement target ground, B1 foundation ground holding load,
C underwater,

Claims (4)

軟弱地盤の載荷による圧密沈下工法において、加圧板と繰り返し載荷重の発生装置から構成される載荷装置を対象地盤の表面に直接接地させて、加圧板自身は振動させないで鉛直方向の一定載荷重と繰り返し載荷重を継続して載荷することにより、対象地盤内に一定過剰間隙水圧に繰り返し過剰間隙水圧を加えた過剰間隙水圧の波動を発生させて急速に圧密沈下を促進させる圧密沈下工法。 In the consolidation settlement method due to the loading of soft ground, a loading device composed of a pressure plate and a repeated load generation device is directly grounded to the surface of the target ground, and the pressure plate itself does not vibrate and has a constant vertical load. Consolidation settlement method that rapidly accelerates consolidation settlement by generating waves of excess pore water pressure by repeatedly applying excess pore water pressure to a constant excess pore water pressure by continuously loading repeated loading loads. 請求項1に記載の圧密沈下工法において、前記加圧板に地盤の塑性変形を拘束する拘束壁をその底部外周に取り付けた加圧函体とし、加圧函体を対象地盤表面に打設して地表面を密閉状態とし、続いて、密閉状態の対象地盤を負圧にして大気圧、さらには水圧を載荷して一定載荷重を確保すると共に繰返し載荷重は一定載荷重よりも充分小さい荷重とすることで加圧函体自身の振動をおさえて過剰間隙水圧の波動を発生させることを特徴とする急速に圧密沈下を促進させる圧密沈下工法。 2. The consolidation settlement method according to claim 1, wherein a constraining wall that restrains plastic deformation of the ground is attached to the pressurizing plate, and a pressurizing box is placed on the surface of the target ground. The ground surface is sealed, and then the target ground in the sealed state is made negative to load atmospheric pressure and further water pressure to ensure a constant load and the repeated load is a load sufficiently smaller than the constant load. This is a consolidation settlement method that accelerates consolidation settlement rapidly, which suppresses the vibration of the pressurized box itself and generates waves of excess pore water pressure . 請求項2に記載の圧密沈下工法において使用される、軟弱地盤が海底地盤のときに使用される作業船において、該作業船の主構造は底部外周に拘束壁、内部の天端空間に水平帯状集水空間,剛性フィルターが設けられた加圧函体,繰り返し荷重発生装置,加圧タワーが一体構成された載荷装置構造体、および台船,ガイドタワーが一体構成された浮構造体からなり、前記台船はこれの中心部に切り欠き空間を設け、この切り欠き空間の外周に前記ガイドタワーを固定、そして、前記載荷装置構造体は前記加圧函体の中心部上面に前記繰り返し荷重発生装置を装備した前記加圧タワーが固定されたものとし、加圧函体と一体の加圧タワーを前記台船のガイドタワーに組み入れ、該加圧函体を前記台船の底面に装備し、且つ該加圧函体は前記台船下の水中を昇降する機能を備え、且つ該加圧函体を海底地盤に据付けた密閉状態において、該加圧函体の内部圧を減圧,加圧する機能を備えたことを特徴とする作業船。 3. A work ship used in the consolidation settlement method according to claim 2, wherein the main structure of the work ship is a confined wall on the outer periphery of the bottom and a horizontal belt in the top edge space. It consists of a water collection space, a pressurization box with a rigid filter, a repetitive load generator, a loader structure in which a pressurization tower is integrated, and a floating structure in which a carriage and a guide tower are integrated. The carriage has a notch space at the center thereof, the guide tower is fixed to the outer periphery of the notch space, and the load device structure described above generates the repeated load on the upper surface of the center of the pressurizing box. The pressure tower equipped with a device is fixed, a pressure tower integrated with a pressure box is incorporated into the guide tower of the base boat, and the pressure box is equipped on the bottom surface of the base boat, And the pressurization box is the trolley A function of lowering the water, and the pressurized圧函body in a closed state in which installed in seabed, depressurize the interior pressure of the pressurized圧函body, work boats, characterized in that a function of pressurizing. 請求項3に記載の作業船を使用して港湾等の浚渫の伴わない底質改良を実施する底質改良工法において、前記作業船の載荷装置構造体を対象海底面あるいは河床に繰返し荷重発生装置を作動させて加圧函体の拘束壁を土中に打設し加圧函体内部の気密状態を確保、続いて真空ポンプを稼働させて加圧函体内部および加圧函体下方の対象地盤を負圧にして一定載荷重を載荷、続いて繰返し荷重発生装置を再作動させて過剰間隙水圧の波動を発生させ、急速圧密沈下を促進して計画水深を確保、併行して加圧函体の帯状水平集水空間に集水する圧密沈下に伴う対象汚染地盤の汚染溶質水である間隙水をポンプアップにより水質浄化槽に集積、次に環境基準値を満たす水処理をして放流、次に作業船の載荷装置構造体を浮上させ、圧密沈下で増深した深さを利用して地盤表面に砂、石等で被覆することを特徴とする底質改良工法。 4. A bottom sediment improvement method for implementing bottom sediment improvement without dredging in a port or the like using the work ship according to claim 3, wherein the load ship structure of the work ship is repeatedly applied to a target seabed or river bed. To secure the airtight state inside the pressurization box by placing the restraining wall of the pressurization box in the soil, and then operate the vacuum pump to target the inside of the pressurization box and below the pressurization box A constant load is applied with negative pressure on the ground, and then the load generator is repeatedly actuated to generate waves of excess pore water pressure. The pore water, which is the contaminated solute water of the target contaminated ground due to the consolidation settlement that collects in the horizontal belt-like water collection space of the body, is collected in the water purification tank by pumping up, and then discharged after being treated with water that meets the environmental standard value The work vessel loading device structure was levitated on the surface and deepened by consolidation settlement. Sediment improved method, characterized in that by using a depth to cover the ground surface sand, stone or the like.
JP2006166657A 2006-05-19 2006-05-19 Consolidation settlement method and loading equipment and work boat used for construction method. Expired - Fee Related JP4996883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006166657A JP4996883B2 (en) 2006-05-19 2006-05-19 Consolidation settlement method and loading equipment and work boat used for construction method.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006166657A JP4996883B2 (en) 2006-05-19 2006-05-19 Consolidation settlement method and loading equipment and work boat used for construction method.

Publications (3)

Publication Number Publication Date
JP2007309073A JP2007309073A (en) 2007-11-29
JP2007309073A5 JP2007309073A5 (en) 2009-09-24
JP4996883B2 true JP4996883B2 (en) 2012-08-08

Family

ID=38842182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006166657A Expired - Fee Related JP4996883B2 (en) 2006-05-19 2006-05-19 Consolidation settlement method and loading equipment and work boat used for construction method.

Country Status (1)

Country Link
JP (1) JP4996883B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109708940A (en) * 2019-01-25 2019-05-03 长业建设集团有限公司 A kind of native cutting ring rammer of bolt type stream modeling

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080371A (en) * 2009-11-27 2011-06-01 三一电气有限责任公司 Support leg and mobile offshore work platform
CN101806056B (en) * 2010-04-28 2011-07-20 郭艳景 Soft-soil foundation treatment method for controlling secondary consolidation settlement
JP6158555B2 (en) * 2013-03-29 2017-07-05 清水建設株式会社 Ground improvement method
WO2017159692A1 (en) * 2016-03-18 2017-09-21 正佳 近藤 Vacuum consolidation and dredging method, tower-like airtight preloading caisson, and dedicated work ship
WO2019187169A1 (en) * 2018-03-27 2019-10-03 正佳 近藤 Vacuum consolidation dredging method, tower air-tight loading caisson, and dedicated work ship

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4862210A (en) * 1971-12-04 1973-08-30
JPS5814890B2 (en) * 1978-02-09 1983-03-23 五洋建設株式会社 Pressure equipment used in deep ground improvement method using repeated loading
JPS56119023A (en) * 1980-02-27 1981-09-18 Kimitaka Kondo Oscillation consolidation method
JPS58134435U (en) * 1982-03-04 1983-09-09 日本海工株式会社 Ground drainage work boat
JPH11350467A (en) * 1998-06-10 1999-12-21 Sanei Engineering Kk Improving method for underwater ground and its device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109708940A (en) * 2019-01-25 2019-05-03 长业建设集团有限公司 A kind of native cutting ring rammer of bolt type stream modeling
CN109708940B (en) * 2019-01-25 2021-07-23 长业建设集团有限公司 Bolt type flow plastic soil cutting ring compactor

Also Published As

Publication number Publication date
JP2007309073A (en) 2007-11-29

Similar Documents

Publication Publication Date Title
JP4996883B2 (en) Consolidation settlement method and loading equipment and work boat used for construction method.
Greenwood et al. Specialist ground treatment by vibratory and dynamic methods
JP6582361B2 (en) Vacuum-consolidated dredging method, tower-type airtight loading box and dedicated work ship.
JP2007309073A5 (en)
KR20090015025A (en) Soil improvement method
CN101560760A (en) Construction method for fast concreting and dredging and filling ultra-fine earth foundation
JP3486572B2 (en) Ground reinforcement composite method
JP2009287374A (en) Residual settlement countermeasure construction method for cohesive soil ground, loading device structure used in construction method, and vertical draining material
JP2023534788A (en) Rapid consolidation and compaction methods for soil improvement of various layers of intermediate geological material within soils and soil sediments
Barksdale et al. Design, construction and testing of sand compaction piles
Massarsch et al. Underwater resonance compaction of sand fill
CN113494074B (en) Building foundation treatment method for area with liquefied soil bearing stratum
JP2016196791A (en) Seabed cutting/banking system and method, and loading box body and work ship used therewith
CN214783873U (en) Rigid-flexible composite pile structure for eliminating stratum negative frictional resistance
West The role of ground improvement in foundation engineering
CN111172997B (en) Foundation pit prefabricated enclosure damping pile and method for constructing foundation pit enclosure wall
JP2001011847A (en) Mounting load increasing and decreasing method
JP6586342B2 (en) Underwater compaction method
CN109205984B (en) Method and device for rapidly recycling high-water-content engineering sludge
Van Impe et al. Soil improvement experiences in Belgium: part II. Vibrocompaction and stone columns
JP2002309566A (en) Method for improving water permeability of ground
CN204491572U (en) Multifunctional integrated pipe well array water shakes and rushes integrated apparatus
Hamidi et al. GROUND IMPROVEMENT FOR CONCRETE TANKS BUILT ON RECLAIMED SAND
JP2004162426A (en) Foundation cell, cell foundation structure, and construction method for cell foundation structure
KR200316779Y1 (en) Reclaimed land formed in the soft ground of the seashore using dredged soil and sand so as to reinforce bearing power

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090508

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120501

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees