JP2016196791A - Seabed cutting/banking system and method, and loading box body and work ship used therewith - Google Patents

Seabed cutting/banking system and method, and loading box body and work ship used therewith Download PDF

Info

Publication number
JP2016196791A
JP2016196791A JP2015087107A JP2015087107A JP2016196791A JP 2016196791 A JP2016196791 A JP 2016196791A JP 2015087107 A JP2015087107 A JP 2015087107A JP 2015087107 A JP2015087107 A JP 2015087107A JP 2016196791 A JP2016196791 A JP 2016196791A
Authority
JP
Japan
Prior art keywords
loading box
soil
seabed
loading
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015087107A
Other languages
Japanese (ja)
Inventor
正佳 近藤
Masayoshi Kondo
正佳 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KONDO HIROKI
Original Assignee
KONDO HIROKI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KONDO HIROKI filed Critical KONDO HIROKI
Priority to JP2015087107A priority Critical patent/JP2016196791A/en
Publication of JP2016196791A publication Critical patent/JP2016196791A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To give priority to reduction of seabed soil (dredged soil) to be carried out in maintenance of water depth of a sea route and a berth while securing the water depth that results from settlement of the seabed, the soil carried out being minimized and a volume thereof being reduced by hydration through compression (compaction) and settlement, without polluting the surrounding, and recycled after obtaining required strength.SOLUTION: A work ship 1 is used for compression and settlement of a seabed for maintaining a water depth, the work ship being provided with a tower-type loading box body 5 with draining and depressurizing functions. The loading box body 5 is embedded in the seabed at a water depth maintenance work section, and seabed soil is compressed to reduce a volume thereof by loading atmospheric pressure and water pressure. Then, a bottom surface of the loading box body 5 is closed at a prescribed strength, with the seabed soil filled therein. The loading box body is then transported underwater to a receiving section. The loading box body 5 is lowered to the seabed in the receiving section, and the seabed soil is drawn out for banking. The seabed soil remains being filled inside the loading box body 5.SELECTED DRAWING: Figure 4

Description

本発明は船舶の航路・泊地の増深・水深維持における海底土の切土・運搬、そして海底土の再使用としての盛土に関する。  TECHNICAL FIELD The present invention relates to cutting and transporting seabed soil in ship routes, anchorage deepening, and water depth maintenance, and embankment as reuse of seabed soil.

近年、船舶の大型化に伴い航路・泊地は大水深化が求められている。また、航路・泊地は常に流れ込む土砂(流入堆積土)によって水深が浅くなる。水深確保のために定常的に浚渫が行われ、大量の浚渫土が発生している。浚渫土は埋立地処分や干潟・浅場造成などに利用されてきたが、こうした処分地の確保が年々難しい状況になっている。  In recent years, as the size of ships has increased, it has been required to deepen the waterways and anchorages. In addition, the channel and anchorage are always shallower due to the flowing sediment (inflowing sediment). Dredging is carried out regularly to secure the water depth, and a large amount of dredged soil has been generated. Dredged soil has been used for landfill disposal, tidal flats, and shallow land creation, but securing such disposal sites is becoming difficult year by year.

浚渫方法の主なものとしてポンプ浚渫、グラブ浚渫がある。ポンプ浚渫はポンプ浚渫船によって、ラダー(吸入管)を海底に降ろし、カッターを回転させて土砂を切り崩し、海水と共に大型ポンプで吸い込み、排砂管を使って運ぶ方式で、大規模の浚渫向きある。グラブ浚渫はグラブ浚渫船によって、グラブバケットで土砂をつかんで土運船に積み込み運ぶ方式で、中小規模の浚渫向きである。  The main methods are pump and grab. Pump dredging is a method of large-scale dredging, in which a ladder (suction pipe) is lowered to the seabed by a pump dredger, the cutter is rotated to crush the earth and sand, sucked with seawater with a large pump, and transported using a sand drain pipe. Grab dredging is a method for small and medium-sized dredgers, using grab dredgers to grab the earth and sand with a grab bucket and load them on an earth transport ship.

海底土は高含水比の軟弱土が多いが浚渫土は超軟弱土である。浚渫土は人工的に作られた超軟弱土である。ポンプ浚渫は海底土を海水と共に大型ポンプで吸い込んだ土である。ポンプ浚渫土が処分地に投入される時の含水比は2,000%程度といわれている。一方、グラブ浚渫は海中掘削で土運船に投入され、練りかえされた土である。リクレーマ船で揚土されたグラブ浚渫土の含水比は粘性土で200%とか液性限界の2〜3倍程度といわれている。  Submarine soils are mostly soft soils with high water content, while dredged soils are very soft soils. Dredged soil is artificially made ultra-soft soil. Pump dredging is the soil that sucks the seabed soil together with seawater with a large pump. It is said that the water content when pump clay is thrown into the disposal site is about 2,000%. On the other hand, Grab Pass is the soil that has been put into a ship by excavation in the sea and reconstituted. It is said that the water content of the grab dredged by the reclaimer ship is about 200% for viscous soil and about 2 to 3 times the liquid limit.

わが国における沖積粘性土の含水比は30〜150%,液性限界は50〜130%程度である。  The water content of alluvial clay in Japan is 30 to 150%, and the liquid limit is about 50 to 130%.

浚渫土の処分は海洋投入が可能であれば一番容易である。しかし、海洋投入処分は環境への取組から大幅に制限されている。国際的な海洋環境保全への取組として、廃棄物の海洋投棄による海洋汚染防止を目的として「ロンドン条約」がある。これを担保するため「海洋汚染等及び海上災害の防止に関する法律」が改正され、「浚渫土砂の海洋投入処分に係る技術指針」が示されている。  The disposal of dredged soil is easiest if it can be put into the ocean. However, offshore disposal is severely restricted from environmental efforts. As an international effort to protect the marine environment, there is the “London Convention” for the purpose of preventing marine pollution caused by the dumping of waste. To ensure this, the “Law Concerning the Prevention of Marine Pollution and Maritime Disasters” has been revised, and the “Technical Guidelines for the Disposal of Dredged Sediment into the Sea” is presented.

浚渫土の処分地の確保が困難なことから、近年、浚渫土のリサイクル利用が進められている。浚渫土は、高含水比の超軟弱土ある。粘性土の場合は特に著顕である。このため、プラントで脱水減容化、あるいは固化材(セメント等)を混合して十分な強度を持つ材料に改良してから、港湾・空港等の人工島埋立て資材等に利用されている。  Since it is difficult to secure a disposal site for dredged soil, recycling of dredged soil has been promoted in recent years. Dredged soil is very soft soil with high water content. This is especially true for clay soils. For this reason, it is used for artificial island landfill materials such as harbors and airports after dehydration and volume reduction at the plant or by improving the material with sufficient strength by mixing solidification material (cement, etc.).

廃棄物のリサイクル対策の優先順位は、抑制・再使用・再生利用である。浚渫土を使わなければならないほど埋立て資材に困窮しているならばともかく、浚渫土のリサイクル対策も同様でなければならない。現在の浚渫土のリサイクル対策は、発生の抑制がなく、いきなり再生利用である。なお、脱水減容化は浚渫土を搬出してプラントで行っているのであるから、抑制には当たらない。浚渫土のリサイクルは人工的に超軟弱土をつくり、これを人工的に再生資材としたものである。  The priority for waste recycling measures is control, reuse, and recycling. Regardless of whether you are in need of landfill to the point where you have to use dredged soil, the recycling measures for dredged soil must be the same. The current dredged material recycling measures do not control the outbreak and are suddenly recycled. In addition, dehydration and volume reduction are carried out in the plant after removing the dredged soil, so it is not a suppression. The recycling of dredged soil is made by artificially creating ultra-soft soil, which is artificially recycled.

特許第4996883号(特願2006−166657)  Patent No. 4996883 (Japanese Patent Application No. 2006-166657)

特許文献1は水深の維持・確保を浚渫に依らず、粘性土地盤を急速に圧密沈下させる方法(特許文献1の工法と称する)である。粘性土地盤の圧密沈下の促進要素は、沈下量と圧密時間である。沈下量は圧密荷重の大きさ、圧密時間の短縮は排水距離の短縮(H則)である。圧密荷重に大気圧を利用する方法が真空圧密工法で、これを海底地盤で実施するとさらに水圧が加わる。そして、圧密時間の短縮として海底にバーチィカルドレーンを打設する。特許文献1の工法は圧密静荷重(大気圧+水圧)に小さな繰り返し荷重(圧密静荷重のわずか6%)を加えて過剰間隙水圧の波動を発生させると大幅な圧密沈下促進となることを実験で示した。Patent Document 1 is a method (hereinafter referred to as the construction method of Patent Document 1) in which viscous land is rapidly consolidated and subsidized regardless of whether the water depth is maintained or secured. The factors that promote consolidation settlement of cohesive ground are settlement amount and consolidation time. Subsidence amount of compaction load size, shortening of the compaction time is shortened drainage distance (H 2 rule). A method of using atmospheric pressure for the consolidation load is a vacuum consolidation method, and when this is carried out on the seabed, water pressure is further applied. A vertical drain is placed on the seabed to shorten the consolidation time. The method of Patent Document 1 is an experiment that if a small repetitive load (only 6% of the consolidation static load) is added to the consolidation static load (atmospheric pressure + water pressure) to generate a wave of excess pore water pressure, it will greatly promote consolidation settlement. It showed in.

特許文献1の工法による水深の維持は海底地盤の圧密沈下で、浚渫土の発生はなく完全抑制である。この工法は粘性土地盤に限定され、粘性土と砂質土の中間土地盤、砂質土地盤は不向きである。しかし、浚渫土の再生利用で厄介なのは粘性土である。ただし、低塑性粘土の場合は、圧縮性が小さいので大水深化に伴う大きな増深には不向きである。この工法は現行の浚渫土処分方法に比べれば浚渫土の完全抑制であるから、経済的・環境的に優位なのは明白である。  The maintenance of the water depth by the construction method of Patent Document 1 is the consolidation settlement of the seabed ground, and no dredging is generated and it is completely suppressed. This method is limited to cohesive land, and is not suitable for intermediate and sandy ground between cohesive soil and sandy soil. However, it is clay that is troublesome to reclaim dredged soil. However, in the case of low plastic clay, the compressibility is small, so it is not suitable for large depth increase due to deepening of water depth. It is clear that this construction method is economically and environmentally superior because it is a complete suppression of dredged soil compared with the current dredged soil disposal method.

特開平11−268683号  JP-A-11-268683

特許文献2はスパッド式作業船において、1基は船体固定、2基は船体軸線方向の往復可動機能を持たせたスパッドを操作することにより、船体の安定に加え、船体軸線方向の船体移動を可能にした。(特許文献2の作業船と称する)  Patent Document 2 is a spud-type work ship. One is fixed to the hull, and the other is operated by a spud that has a reciprocating function in the hull axis direction, in addition to the stability of the hull, hull movement in the hull axis direction. Made possible. (Referred to as work boat of Patent Document 2)

航路・泊地の水深確保・維持において、海底土(浚渫土)の搬出の抑制を優先として全ての海底地盤に適用できる工法が望まれる。しかも、海底土の搬出が発生する場合はこれを最小とし、且つ、発生場所で海水汚濁を起こさずに脱水減容化を図り、所要の強度に高めて資材として再使用することが肝要である。このためには汚濁を起こさずに水深確保ができ、搬出土の減容化・強度増加が図れる海底地盤の圧縮沈下を最大限に活用する。  In securing and maintaining the water depth of the channel and anchorage, a construction method that can be applied to all submarine ground is preferred, with priority given to the suppression of unloading of the submarine soil. In addition, it is important to minimize the amount of unloading of the seabed soil, and to reduce the volume of dewatering without causing seawater pollution at the place of occurrence, and to increase the required strength and reuse it as a material. . For this purpose, the water depth can be secured without causing pollution, and the subsidence of the submarine ground that can reduce the volume and increase the strength of the discharged soil will be utilized to the maximum.

特許文献1の工法は、粘性土地盤に限定される。それは搬出する海底土の発生があっても運搬手段を持たないからである。海底地盤を圧縮沈下させても沈下不足分を従来工法で浚渫したのでは意味がない。  The construction method of Patent Document 1 is limited to viscous land. This is because there is no means of transportation even if there is an outbreak of submarine soil to be carried out. Even if the submarine ground is compressed and subsidized, there is no point in drowning the subsidence by the conventional method.

そもそも特許文献1の工法は主に港湾施設の地盤の残留沈下対策として開発されたものである。地盤の全粘性土層が対象となるから大きな深度となることが多い。従って、海底地盤にバーチィカルドレーンを打設し、サンドマットを敷く先行工程が必要になる。また、残留沈下はほとんどが二次圧密で長時間に及ぶ。これに対して、航路・泊地の水深確保は、圧密増加荷重の減少で残留沈下には関係ない。如何に短時間で海底地盤をより大きく沈下をさせるかにある。これは相反することで、どこかで折合をつける必要がある。  In the first place, the construction method of Patent Document 1 was developed mainly as a countermeasure for residual settlement of the ground of a port facility. It is often a large depth because the entire viscous soil layer of the ground is the target. Therefore, a prior process for placing a vertical drain on the seabed and laying a sand mat is required. In addition, the residual settlement is mostly secondary compaction and takes a long time. On the other hand, securing the water depth in the channel and anchorage has no relation to the residual settlement due to a decrease in consolidation increase load. It is how to subsidize the submarine ground in a short time. This is a contradiction, and somewhere needs to be negotiated.

ポンプ浚渫方式は大規模の浚渫向きで、グラブ浚渫は、中小規模の浚渫向きである。望まれる工法は浚渫土の抑制方式で規模の大小を問わず効率的なものである。  The pump dredging method is suitable for large-scale dredging, and the grab dredging is suitable for small- and medium-sized dredging. The desired construction method is a dredged soil control method that is efficient regardless of the size.

土の強度を高める方法は、密度を増加させることが基本的な方法である。砂の密度増加方法は振動または衝撃による動的締固めが知られている。繰り返し圧縮荷重においても同様の効果が認められる。一方、特許文献1の工法から知れるように、沖積粘土は、適切な繰り返し荷重を加えると、圧密が促進される。そうすると、飽和土は、いずれも静荷重と繰返し荷重の併用によって密度増加が図られる。  The basic method for increasing the strength of soil is to increase the density. As a method for increasing the density of sand, dynamic compaction by vibration or impact is known. The same effect is observed even with repeated compression loads. On the other hand, as is known from the construction method of Patent Document 1, alluvial clay is promoted for consolidation when an appropriate repeated load is applied. As a result, the density of the saturated soil can be increased by using both a static load and a repeated load.

これは海底土(流入体積土含む)の搬出場所で脱水減容化して資材として再生していることにほかならない。そして、これは粘性土、砂質土、中間土のいずれの軟弱地盤にも対応でき、全ての海底地盤にも適用できる。従って、全ての海底地盤に適用できる工法としての課題は、搬出海底土がある場合はこれを最小とし、如何にして所要の強度に高めた海底土をそのまま保持して、切土・運搬し、再使用するかの課題に帰結する。
ここで、粘土のように透水性の低い土の圧縮は時間の遅れを伴う。これを圧密と呼んでいるが,ここでは全ての海底地盤を対象としているので、以降、圧縮沈下に統一して使う。
This is nothing but the dehydration and volume reduction at the place where the seabed soil (including the inflowing volume soil) is taken out and recycled as material. This can be applied to any soft soil such as clay soil, sandy soil, and intermediate soil, and can be applied to all submarine ground. Therefore, the problem as a construction method that can be applied to all submarine ground is that if there is an unloading seabed soil, this is minimized, how to keep the seabed soil raised to the required strength as it is, cut and transport, This results in the issue of re-use.
Here, compression of soil with low water permeability such as clay is accompanied by a time delay. This is called consolidation, but here it is used for all submarine grounds.

課題を解決するための手段の基本は作業船及び載荷函体の機構・機能である。載荷函体の機構は真空圧密工法に対応し、載荷面の気密を確保できるようにしている。載荷函体の剛性載荷板には水の出入りを制御する自動弁を設け、底面全体には微小厚の空間(ドレーン層)と剛性フィルターを2段に設け、底面外周には外周壁を接合し、上面中心部には海底面まで届く高さの載荷タワーを取付けたタワー形式の載荷函体である。載荷タワーには繰り返し載荷装置が装備される。また、載荷函体の機能は昇降機能、これが気密状態における減圧機能、海底地盤の載荷機能、気密の解除機能及び加圧機能を有する。ここで、載荷函体を海底地盤に押込み、気密状態で減圧すると載荷函体に大気圧・水圧が載荷されて海底地盤伝達される。気密状態を解除して圧気を送ると載荷函体内部の中詰状態の海底土が加圧される。この機能は海底土を抜き出すときに使われる。この載荷函体の機構・機能は、特許文献1の工法の加圧函体と基本的には同じである。  The basic means for solving the problem is the mechanism and function of the work boat and the loading box. The mechanism of the loading box corresponds to the vacuum consolidation method so that the loading surface can be kept airtight. The rigid loading plate of the loading box is equipped with an automatic valve that controls the entry and exit of water, the entire bottom surface is provided with a thin space (drain layer) and two stages of rigid filters, and the outer peripheral wall is joined to the outer periphery of the bottom surface. It is a tower-type loading box with a loading tower that is high enough to reach the bottom of the sea. The loading tower is equipped with repeated loading devices. Further, the loading box has a lifting function, a pressure reducing function in an airtight state, a loading function of the seabed ground, an airtight releasing function, and a pressurizing function. Here, when the loading box is pushed into the seabed ground and depressurized in an airtight state, atmospheric pressure and water pressure are loaded on the loading box and transmitted to the seabed ground. When the airtight state is released and pressurized air is sent, the seabed soil in the packed state inside the loading box is pressurized. This function is used when extracting seabed soil. The mechanism / function of this loading box is basically the same as the pressure box of the construction method of Patent Document 1.

作業船の機構は、浮体となる複数(2ないし4隻)の台船とこれのガイドタワー及びタワー形式の載荷函体から構成され、複数の台船は載荷函体の1辺が納まる間隔で立体的に連結され、連結立体骨組にはガイドタワーを複数配列して固定される。ガイドタワーにはそれぞれタワー形式の載荷函体が組み込まれている。載荷函体の水平断面積の基本形は正方形である。  The mechanism of the work ship is composed of multiple (2 to 4) floating ships that are floating bodies, their guide towers and tower-type loading boxes, and the multiple carriages are spaced at an interval where one side of the loading box fits. A plurality of guide towers are arranged and fixed to the connected three-dimensional frame. Each guide tower has a tower-type loading box. The basic shape of the horizontal cross-sectional area of the loading box is a square.

浚渫土の抑制方式で規模の大小を問わず効率的な工法。この課題に対しては、最初に、沈下する粘土層の深度の影響から解決する。その手段は作業工程の一部を削除する。地盤沈下の対象は浅い層に限定することで、バーチィカルドレーンは載荷函体に機能させる。  An efficient construction method regardless of the size of the dredged soil control method. First, this problem is solved by the effect of the depth of the subsidence clay layer. That means deletes part of the work process. By limiting the ground subsidence to shallow layers, the vertical drain functions as a loading box.

航路・泊地の水深確保は、いかに短時間(限定された時間)でより大きい沈

Figure 2016196791
して小さくなっていく。また、圧密増加荷重による沈下の大きさは、土被り圧
Figure 2016196791
に大きくなるので対数値は深さ方向に小さくなる。深い層は沈下の寄与の割合が小さい。従って、航路・泊地の水深の確保は、深い層を外して浅い層に限定する。これにより、バーチィカルドレーンは短いものでよい。真空圧密工法は載荷面を気密にする必要がある。このため、海底地盤の載荷板は載荷函体の構造となって気密機能を担っている。バーチィカルドレーンの長さは載荷函体の外周壁の高さで十分である。載荷函体内部に必要な間隔で格子状に隔壁を設けて外周壁の内面及び隔壁の両面にドレーン機能を持たせる。How to secure the water depth of the route / night anchorage, how much more subsidence in a short time (limited time)
Figure 2016196791
And get smaller. The size of settlement due to increased consolidation load is
Figure 2016196791
Therefore, the logarithmic value becomes smaller in the depth direction. The deep layer has a small contribution to the settlement. Therefore, securing the water depth of the channel and anchorage is limited to the shallow layer by removing the deep layer. Thereby, the vertical drain may be short. The vacuum consolidation method needs to make the loading surface airtight. For this reason, the loading board of the submarine ground becomes the structure of the loading box and has an airtight function. The length of the vertical drain is sufficient at the height of the outer peripheral wall of the loading box. A partition wall is provided in a lattice shape at a necessary interval inside the loading box, and a drain function is provided on the inner surface of the outer peripheral wall and both surfaces of the partition wall.

脱水減容化して所要の強度に高めた海底土をそのまま保持して、切土・運搬・再使用する。この課題に対しては、載荷函体の底面が水平に開閉する底板を設置する。そして、底面が閉じるときの海底土の強度保持である。
底板用のシャッター(鎧戸)を隔壁で区分された外周壁及び隔壁の一方向面に鉛直収納する。このシャッターによる載荷函体の底面としての開閉は、シャッターを両壁の刃先の頂部直近で水平に向きを変えて載荷函体の底面に水平に出し入れする。これの底板としての支持は、シャッターの出し入れ方向と平行の外周壁・隔壁の刃先天端の一部がこれの両端を鉛直支持の可動支承とする。そのイメーは載荷函体の内部にある圧縮された海底土を底板があたかも固めの羊羹を静かに切断するかのように水平移動して底面を閉じる。
Keep the bottom soil that has been dewatered and reduced in volume to the required strength, and cut, transport, and reuse it. For this problem, a bottom plate is installed in which the bottom surface of the loading box opens and closes horizontally. And it is the strength maintenance of submarine soil when the bottom is closed.
A shutter for a bottom plate (an armor door) is vertically stored on an outer peripheral wall partitioned by a partition wall and a unidirectional surface of the partition wall. When the shutter is opened and closed as the bottom of the loading box, the shutter is horizontally changed in the vicinity of the tops of the blade edges of both walls, and is horizontally put in and out of the bottom of the loading box. As a support for the bottom plate, a part of the outer edge of the outer peripheral wall and partition edge parallel to the direction in which the shutter is put in and out is used as a vertically supported movable support. The image moves horizontally through the compressed seabed soil inside the loading box as if the bottom plate gently cuts the hard sheep, closing the bottom.

次に海底土の運搬時の強度保持である。海底土が詰まったままの状態の載荷函体を上昇させて作業船の水面下の所定の位置で停止固定する。特許文献1の工法の場合は台船の直下であるが、本発明は台船と並列の位置である。これは運搬を意図したもので、喫水を抑えるためである。また、位置を水面下としてあるのは、載荷函体の内部の海底土砂の浮力を残すことで底板の負担を軽減するためである。  Next is strength maintenance during transportation of submarine soil. The loading box with the seabed soil still clogged is raised and stopped and fixed at a predetermined position below the surface of the work boat. In the case of the construction method of Patent Document 1, it is directly under the trolley, but the present invention is in a position parallel to the trolley. This is intended for transport and to reduce drafts. The reason why the position is below the water surface is to reduce the burden on the bottom plate by leaving the buoyancy of the seabed sediment inside the loading box.

次に海底土の再使用時の強度保持である。ここでは藻場造成の再使用とする。盛土は載荷函体を海底地盤まで下降接地させ、載荷函体に圧気を送り内部の海底土を押さえつけて、載荷函体を上昇させることにより海底土を抜き出して盛土する。
以上が載荷函体で海底土の脱水減容化を図り、所定の強度に上げて、切土・運搬・盛土の一連の作業を行う。海底土を常に載荷函体の中詰状態で行い、海底土と海水との接触を抑制して強度を保持し,且つ,海水汚濁の発生を抑えることを特徴とする海底地盤の切土・盛土のシステム工法の概略である。
Next is strength maintenance when seabed soil is reused. Here, it is assumed that the seaweed beds are reused. In the embankment, the loading box is lowered and grounded to the seabed ground, pressure is sent to the loading box to press down on the inner seabed soil, and the loading box is raised to extract and fill the seabed soil.
The above is a loading box that reduces the volume of dehydrated seabed soil, raises it to a predetermined strength, and performs a series of operations such as cutting, transporting, and embankment. Cutting and embankment of seabed soil, characterized in that the seabed soil is always packed in a loading box, the strength is maintained by suppressing contact between the seabed soil and seawater, and the occurrence of seawater contamination is suppressed. It is the outline of the system construction method.

大規模浚渫工事で浚渫土の抑制方式の効率的な工法。この課題に対しては作業船の能力から解決する。
浚渫工事の規模に対応する作業船の能力は、載荷函体の大きさ、すなわち載荷面積の大きさが基本となる。大規模浚渫には作業船の能力を高める必要がある。その解決手段の1つが載荷面積の拡大である。当該作業船の機構は載荷函体の複数配列である。
Efficient construction method for dredging in large-scale dredging works. This problem is solved from the capabilities of the work boat.
The capacity of a work boat corresponding to the scale of dredging is based on the size of the loading box, that is, the size of the loading area. For large dredging, it is necessary to increase the capacity of the work boat. One solution is to increase the loading area. The mechanism of the work ship is a plurality of arrays of loading boxes.

今、作業能力がn倍の作業船を用意するものとする。載荷面積はn倍になり、それぞれの機能もn倍の能力の装置が必要となる。ここで、使用されている既成装置が最大級のものであったとすると、通常は装置を複数連結することで解決される。しかし、ここでの載荷機能は圧密静荷重(大気圧+水圧)と繰り返し荷重の両荷重の載荷となる。繰り返し載荷装置は複数の連結はできない。つまり、複数の繰り返し載荷装置の偏心モーターの位相を合わせる必要があるがそれは不可能である。従って、n組の載荷装置・載荷函体を用意する。  Now, it is assumed that a work ship having a work capacity of n times is prepared. The loading area becomes n times, and each function requires a device with n times the capacity. Here, if the ready-made apparatus used is the largest, it is usually solved by connecting a plurality of apparatuses. However, the loading function here is loading of both a static static load (atmospheric pressure + water pressure) and a repeated load. Multiple loading devices cannot be connected. In other words, it is necessary to match the phases of the eccentric motors of a plurality of repetitive loading apparatuses, but this is not possible. Therefore, n sets of loading devices and loading boxes are prepared.

浚渫土の抑制方式で規模の大小を問わず効率的な工法。この課題に対しては作業速度、作業精度から解決する。その手段は作業船の外周上を走行式スパッドである。  An efficient construction method regardless of the size of the dredged soil control method. This problem is solved from the work speed and work accuracy. The means is a traveling spud on the outer periphery of the work boat.

作業船上を船体軸線方向に往復可動するスパッドを装備する作業船として特許文献2の作業船がある。この作業船の自行移動の機能は、従来の浚渫船の作業移動に適したものである。従来の浚渫船の作業軌跡は、例えれば線が移動して面積になる。つまり、作業速度に合わせて短い進行移動が繰り返されればよい。本発明の作業船の作業軌跡は最初から面積である。それも横幅25m、縦幅50〜100mの規模である。本発明の作業船には相応の船体移動の機能が必要である。  As a work ship equipped with a spud that can reciprocate on the work ship in the hull axis direction, there is a work ship disclosed in Patent Document 2. This self-moving function of the work ship is suitable for the work movement of a conventional dredger. For example, the working trajectory of a conventional dredger becomes an area by moving a line. That is, it is only necessary to repeat the short movement according to the work speed. The work trajectory of the work boat of the present invention is an area from the beginning. It is also a scale with a width of 25 m and a length of 50 to 100 m. The work ship according to the present invention must have a function of corresponding hull movement.

作業船が係留するスパッド装置を作業船の外周4辺に設けた軌道(2本のレール)上を自走する4脚の車輪を備えた立体構造の台車4基に船外に向けて固定し、これの転倒防止は複数の台船の立体骨組みの連結材の水平材に水平支持の可動支承を取ることで安定して速く正確に走行できるスパッドを構成する。この移動式・スパッドは地盤の支持杭状態で走行すると作業船が移動し、地盤支持杭の解除状態では移動式スパッドが移動する。
本発明の移動式・スパッドは作業船の自行移動に特化している。作業船の外周を走行する台車の軌道は広く取れない。このため、偏心の大きい立体台車の転倒防止には台船の立体骨組に反力を取って軌道を狭く小型化している。また、各立体骨組の台車にはジェネレーターを搭載しモーター駆動の自走行となる。
The spud device moored by the work ship is fixed to the outside of the ship on four three-dimensional carts with four wheels that run on the track (two rails) provided on the outer periphery of the work ship. In order to prevent this toppling, a horizontal support movable support is adopted for the horizontal members of the connecting members of the three-dimensional frameworks of a plurality of carriages, thereby forming a spud that can be stably and quickly driven. When this mobile spud travels in the ground support pile state, the work ship moves, and in the released state of the ground support pile, the mobile spud moves.
The mobile spud according to the present invention is specialized for self-moving work vessels. The track of the bogie that runs on the outer periphery of the work ship cannot be taken widely. For this reason, in order to prevent a three-dimensional cart with a large eccentricity from falling, the track is narrowed and miniaturized by taking a reaction force on the three-dimensional framework of the cart. In addition, each three-dimensional trolley is equipped with a generator and is driven by a motor.

作業船及び載荷函体の機構において、載荷函体は作業船に固定の巨大なスパッドである。
海上作業は潮流、波浪の影響を受けやすい。しかし、当該作業船はタワー形式の載荷函体が巨大なスパッドの役目を果たし、その影響を軽減する。当該作業船にもスパッドを装備するが目的は作業船の正確で自在な自行移動である。
In the mechanism of the work ship and the loading box, the loading box is a huge spud fixed to the work ship.
Offshore operations are susceptible to tidal currents and waves. However, the work vessel has a tower-type loading box that acts as a huge spud, reducing the effect. The work ship is also equipped with a spud, but the purpose is to move the work ship accurately and freely.

バーチィカルドレーンは載荷函体に機能させる。
特許文献1の工法はバーチィカルドレーンの海底打設及びサンドマット敷設の作業船が先行し、急速圧密沈下の地盤改良船がこれに続く。これの先行工事が削除される。その効果は先行工事の工事費削減である。作業時間は先行作業と改良作業が並行作業となるので大幅な作業時間の短縮とはならない。しかし、本線航路の船舶の航行は非常に多く、先行作業船による工程が減ることは航行安全上からも大きな利点である。
The vertical drain functions as a loading box.
The construction method of Patent Document 1 is preceded by a work ship for placing a vertical drain on the seabed and a sand mat, followed by a ground consolidation ship with rapid consolidation. This preceding construction is deleted. The effect is a reduction in construction costs for the preceding construction. The work time does not significantly reduce the work time because the preceding work and the improvement work become parallel work. However, the number of ships on the main route is very large, and the reduction of processes by the preceding work vessels is a great advantage from the viewpoint of navigation safety.

海底土の切土の手段は載荷函体に水平に開閉する底板を設置する。
特許文献1の工法は、全ての海底地盤に対し、脱水減容化を図る機能をすでに有していた。しかしながら、再使用における搬出手段を持たないため、最小限の海底土の搬出もできず、適用地盤が限定されていた。これを根本的に変えたのが載荷函体の底面を水平に開閉する底板である。
航路・泊地の流入堆積土は、間隙の大きな状態にあり圧縮性が大きい。とはいえ、大きな荷重で載荷しても堆積土厚がゼロにはならないから、不足分を在来海底地盤の沈下に求める。航路・泊地の水深維持管理は定常的に続くのであるから、何度も繰り返していくうちに在来地盤の沈下が限界に達する。高塑性粘土地盤であっても、将来は海底土の搬出を余儀なくされる。
As a means of cutting undersea soil, a bottom plate that opens and closes horizontally is installed in the loading box.
The construction method of Patent Document 1 already had a function of reducing dehydration and volume for all the seabed ground. However, since there is no means for carrying out the reuse, it is not possible to carry out a minimum amount of submarine soil, and the applicable ground is limited. The fundamental change is the bottom plate that opens and closes the bottom of the loading box horizontally.
The inflow sediment in the channel and anchorage has a large gap and is highly compressible. However, since the sediment thickness does not become zero even when loaded with a large load, the shortage is calculated in the subsidence of the conventional submarine ground. Since the water depth maintenance management of the route and anchorage continues constantly, the subsidence of the conventional ground will reach its limit as it is repeated many times. Even in the case of high plastic clay ground, it will be forced to carry out seabed soil in the future.

次に海底土の運搬時の手段は載荷函体の位置は台船と並列で水面下である。これの効果は、喫水を抑えて運行時の水の抵抗を抑え、載荷函体の内部の海底土砂の浮力を残すことで底板の負担を軽減する。ちなみに、圧縮された海底粘性土の飽和単位体積重量は16.0kN/m程度で、水の単位体積重量は9.81kN/mであるから、水中単位体積重量は6.19kN/mで約60%強の重量軽減となる。Next, as for the means of transporting the submarine soil, the position of the loading box is parallel to the carriage and below the water surface. The effect of this is to reduce the load on the bottom plate by suppressing the draft and suppressing the resistance of water during operation and leaving the buoyancy of the seabed sediment inside the loading box. Incidentally, the saturated unit volume weight of the compressed submarine clay is about 16.0 kN / m 3 and the unit volume weight of water is 9.81 kN / m 3 , so the unit volume weight in water is 6.19 kN / m 3. Is about 60% weight reduction.

次に海底土の再使用時(盛土)の手段は海底面まで届く高さの載荷タワーと載荷函体の加圧機能である。本発明のシステム工法の盛土作業は海底土を海中落下させるものではない。所要の強度に高めた海底土をそのまま保持して海底盛土面に直接盛土する。
土工事としての効果は、盛土材としての強度があるので所定の盛土勾配を確保する。必要に応じて後付けで法面防護工を行えばよい。従来の浚渫土は液性限界を超えているので盛土勾配が形成できない。従って、先行して潜堤工事が必要になる。
環境面の効果は海水汚濁を発生させないことにある。海藻類はその生存のために光エネルギーを必要とする。水深が深くなるほど透過する光量は低下する。特に透明度が低下すると光量は激減する。海水汚濁・浮泥発生は既存の天然藻場を衰退させる。藻場造成で既存の藻場を衰退させては意味がない。
Next, the means for reusing the seabed soil (filling) is a pressurizing function of the loading tower and loading box that reach the bottom of the sea. The embankment work of the system construction method of the present invention does not cause the seabed soil to fall into the sea. Hold the seabed soil raised to the required strength as it is and fill it directly on the seabed.
The effect as earth work has a strength as a banking material, so a predetermined banking gradient is ensured. If necessary, slope protection work can be performed later. Since the conventional dredged soil exceeds the liquid limit, the embankment gradient cannot be formed. Therefore, submerged dike construction is required in advance.
The environmental effect is to prevent seawater pollution. Seaweeds need light energy for their survival. As the water depth increases, the amount of light transmitted decreases. In particular, when the transparency decreases, the amount of light decreases drastically. Seawater pollution and floating mud generation will cause existing natural algae beds to decline. There is no point in degrading existing seaweed beds by creating a seaweed bed.

土工事・環境の両面の効果は水深が極端に深くなければ変わることなく確実に施工できることにある。
海藻類はその生存のために最低限の必要な光量が得られる水深・保障点深度がある。水の透明度によって異なり、通常内部の湾では数メートルから十数メートルといわれている。この程度の浅場は埋立ての対象になることが多く藻場の減少を著しく引き起こしている。ここに、保障点深度を超えた深度の海底を対象に藻場造成を計画する。天然の良好な藻場の上に人工藻場を造成するのでは結果的に単なる土捨て場になりかねない。
The effect of both earthwork and the environment is that construction can be performed without change unless the water depth is extremely deep.
Seaweeds have a depth of water and a guaranteed depth that provides the minimum amount of light necessary for their survival. Depending on the transparency of the water, it is usually said to be a few to a dozen meters in the inner bay. Such a shallow field is often a target for landfilling, which causes a significant decrease in algae fields. Here, we plan to create a seaweed bed for the seabed at a depth exceeding the guaranteed depth. If an artificial algae basin is built on a natural good algae basin, it may eventually become a simple dumping ground.

載荷函体が複数配列に装備された作業船。
これの効果は、複数の載荷函体の配列は工事規模に応じた能力の作業船を容易に準備できる。また、複数のタワー形式の載荷函体の配列は巨大なスパッドの配列となり、海気象条件に強い作業船となる。また、複数の載荷函体の配列はスパッドの走行機能を使ってシステム工法として多様なバリエイションが可能になる。例えば、載荷函体の二段階載荷がある。
A work ship equipped with multiple loading boxes.
The effect of this is that the arrangement of a plurality of loading boxes can easily prepare a work ship having the capacity corresponding to the construction scale. In addition, the array of multiple tower-type loading boxes is an array of huge spuds, making it a work ship that is resistant to marine weather conditions. In addition, the arrangement of a plurality of loading boxes enables various variations as a system construction method using the running function of the spud. For example, there is a two-stage loading of a loading box.

作業船外周の走行機能を持ったスパッドを装備した作業船。
作業船は自ら前後・左右自在に平行移動することができる。その移動距離は作業船の全長・全幅である。また、スパッド1基を海底地盤の支持杭とし残り3基を操作することで正確な回転が可能である。これらの効果は、作業船の外周位置と載荷函体の外周位置の相互関係から海底地盤の圧縮改良が終了・未了の境界が明確となり、次の所定の作業位置に正確に速く移動できることである。また境界をおさえて正確に移動できることで、工区内の切土・盛土による海底地盤の高さ調整及び2段階載荷のシステム工法が容易となる。
浚渫作業は作業船が作業位置を順次移動する繰り返し作業である。従って、移動速度、移動精度は重要で、施工能率から工期・工事費を大きく左右する。長い移動(50m〜100m)は、通常は押船等の附属船を使って移動するが、当該作業船は必要としない。また,押船等による作業船の移動は正確性に欠ける。
A work ship equipped with a spud with a traveling function on the outer periphery of the work ship.
The work ship can translate itself back and forth and left and right. The travel distance is the total length and width of the work boat. Moreover, accurate rotation is possible by using one spud as a support pile for the seabed and operating the remaining three. These effects are due to the fact that the boundary between the completion and incomplete compression of the submarine ground is clear from the mutual relationship between the outer peripheral position of the work ship and the outer peripheral position of the loading box, and it is possible to move quickly and accurately to the next predetermined work position. is there. In addition, since the boundary can be moved accurately, it is easy to adjust the height of the submarine ground by cutting and embankment in the work area and to perform the two-stage loading system method.
Dredging work is a repetitive work in which the work boat sequentially moves the work position. Therefore, the moving speed and moving accuracy are important, and the construction period and cost are greatly affected by the construction efficiency. Long movements (50m to 100m) are usually moved using an attached ship such as a push boat, but the work ship is not required. In addition, the movement of work vessels by pushing boats is not accurate.

図1は本発明の作業船による1実施例を示す側面図、図2は同平面図である。作業船1の構成は台船2、これを立体的に結合する台船結合立体骨組3、この立体骨組3と一体構造のガイドタワー4、これに組み込まれるタワー形式の載荷函体5及び作業船1の移動手段となる移動式スパッド6から成る。図1、図2に示す作業船1は台船2が4隻、載荷函体5が2基で構成された例である。また、作業船1の外周4辺には2本のレールの軌道7とそれぞれの辺に1基の移動式スパッド6が配置されている。ただし,図2の平面図には立体骨組3が省いてある。また、図中の12は海水面、13は海底地盤面である。  FIG. 1 is a side view showing an embodiment of the work boat according to the present invention, and FIG. 2 is a plan view thereof. The construction of the work ship 1 is a base ship 2, a base ship combined solid frame 3 for three-dimensionally connecting it, a guide tower 4 integrally formed with the solid frame 3, a tower type loading box 5 and a work ship incorporated therein. It consists of a movable spud 6 as one moving means. The work boat 1 shown in FIGS. 1 and 2 is an example in which four carriages 2 and two loading boxes 5 are configured. Further, two rail tracks 7 and one movable spud 6 are arranged on each of the four sides of the outer periphery of the work boat 1. However, the three-dimensional frame 3 is omitted from the plan view of FIG. In the figure, 12 is the sea level, and 13 is the seabed ground.

図3は作業船の側面図であるが図3(a)はタワー形式の載荷函体5を分離した作業船の側面図である。図3(b)はタワー形式の載荷函体5の単独の側面図である。載荷函体5の構造は剛性載荷板5aに水の出入りを制御する自動弁5bを設置し、剛性載荷板5aの上面中心部には海底面まで届く高さの載荷タワー5cを取付け、底面全体には微小厚の空間5d(ドレーン層)と剛性フィルター5eを2段に設け、底面外周には外周壁5fを接合し、さらに剛性載荷板5aの底面下に格子状にドレーン機能を持つ隔壁5gを接合したタワー形式の載荷函体5である。載荷タワー5cには繰り返し載荷装置8が装備される。また、附属設備として真空ポンプ9、コンプレッサー10がある。また、自走式スパッド6はスパッド6a、立体骨組みの台車6b、と水平支持の可動支承6cからなる。  FIG. 3 is a side view of the work ship, but FIG. 3A is a side view of the work ship with the tower-type loading box 5 separated. FIG. 3B is a single side view of the tower type loading box 5. The structure of the loading box 5 is provided with an automatic valve 5b for controlling the flow of water in and out of the rigid loading plate 5a, and a loading tower 5c having a height reaching the sea bottom is attached to the center of the upper surface of the rigid loading plate 5a. The space 5d (drain layer) and the rigid filter 5e are provided in two stages, the outer peripheral wall 5f is joined to the outer periphery of the bottom surface, and the partition wall 5g having a drain function in a lattice form below the bottom surface of the rigid loading plate 5a. It is a tower type loading box 5 in which The loading tower 5c is equipped with a repeated loading device 8. Further, as ancillary equipment, there are a vacuum pump 9 and a compressor 10. The self-propelled spud 6 includes a spud 6a, a three-dimensional cart 6b, and a horizontally supported movable support 6c.

図4は載荷函体5を海底地盤に押込んだ状態の側面図である。このとき,載荷函体5の内部は気密状態である。
載荷函体5の形状・寸法の一例を示すと,剛性載荷板5aは24m×24mの正方形,厚さは微小厚の空間5dと剛性フィルター5eを含めて0.5m。外周壁5fの高さ3.5m,隔壁5gの高さ3.0m。隔壁の一方の間隔4.0m,他方の間隔を1.0m。これの載荷函体5の内部に詰まった海底土の水平排水距離は0.5mである。
FIG. 4 is a side view of the loading box 5 pushed into the seabed ground. At this time, the inside of the loading box 5 is in an airtight state.
An example of the shape and dimensions of the loading box 5 is as follows. The rigid loading plate 5a is a square of 24 m × 24 m, and the thickness is 0.5 m including the minute space 5d and the rigid filter 5e. The height of the outer peripheral wall 5f is 3.5 m, and the height of the partition wall 5g is 3.0 m. One interval of the partition walls is 4.0 m, and the other interval is 1.0 m. The horizontal drainage distance of the submarine soil clogged inside the loading box 5 is 0.5 m.

航路・泊地の水深確保の海底土工事(浚渫工事)における本発明のシステム工法について順を追って説明する。
作業船1を水深維持の切土工区(浚渫工区)の所定の位置に曳航する。載荷函体5の位置関係は水面直下で図1の状態である。次に載荷函体5を海底地盤に押込む。図4の状態である。載荷函体5の内部を減圧することで、大気圧・水圧の載荷重を加え、流入堆積土・在来海底土を同時に圧縮させる。沈下が所定の浚渫深さに達したならば、載荷函体5に圧気を送り内部の海底土を押さえつけて、載荷函体5を上昇させることにより海底土を残存させる。この位置での作業は圧縮沈下だけで完了である。海底土の搬出はゼロである。
The system construction method of the present invention in the submarine soil construction (dredge construction) for securing the water depth of the route / night is explained in order.
The work ship 1 is towed to a predetermined position in a cut work area (construction area) for maintaining the water depth. The positional relationship of the loading box 5 is as shown in FIG. 1 immediately below the water surface. Next, the loading box 5 is pushed into the seabed ground. It is the state of FIG. By depressurizing the inside of the loading box 5, an applied load of atmospheric pressure and water pressure is applied, and the inflow sedimentary soil and the conventional seabed soil are simultaneously compressed. When the subsidence reaches a predetermined dredging depth, pressurized air is sent to the loading box 5 to hold down the seabed soil inside, and the loading box 5 is raised to leave the bottom soil. The operation at this position is completed only by compression settlement. There is no unloading of seabed soil.

沈下が所定の水深に達しなければ、沈下不足分を海底土の搬出で補う。ただし、このときの搬出される海底土は強度が高められ減容化された再生土(資材)となっている。海底土の搬出は切土そして受け入れ工区までの運搬となる。  If the subsidence does not reach the prescribed depth, the lack of subsidence will be compensated by carrying out the seabed soil. However, the submarine soil transported at this time is recycled soil (material) whose strength is increased and volume is reduced. The unloading of the seabed soil is cut and transported to the receiving work area.

切土は載荷函体5の底板用シャッター11aを水平に閉じることで行う。図5,図6は載荷函体5の鉛直断面図である。ただし,載荷タワー5cと載荷函体5の中央部を省いて両側を拡大した鉛直断面図である。
載荷函体5の外周壁5f・隔壁5gには底板用シャッター11aが鉛直に収納してある。格子状の隔壁5gの間隔は一方が4.0mで他方が1.0mである。4m間隔の隔壁5gと直行する外周壁5fと隔壁5gの鉛直面に底板用シャッター11aが収納される。図5は1m間隔の隔壁5gが正面となる向きで、底板用シャッター11aはこれの背面に鉛直に収納された図である。シャッター11aの大きさは、おおよそ長さ1.m幅4mである。図6は4m間隔の隔壁5gが正面となる向きで、1m間隔の隔壁5gは鉛直の断面として示されている。
Cutting is performed by closing the bottom plate shutter 11a of the loading box 5 horizontally. 5 and 6 are vertical sectional views of the loading box 5. However, it is a vertical cross-sectional view in which both sides of the loading tower 5c and the loading box 5 are omitted with the central portion omitted.
A bottom plate shutter 11a is vertically accommodated in the outer peripheral wall 5f and the partition wall 5g of the loading box 5. One of the intervals of the grid-like partition walls 5g is 4.0 m and the other is 1.0 m. The bottom plate shutter 11a is housed on the vertical walls of the outer peripheral wall 5f and the partition wall 5g that are perpendicular to the partition walls 5g at intervals of 4 m. FIG. 5 is a view in which the partition wall 5g with a 1 m interval is directed to the front, and the bottom plate shutter 11a is vertically housed on the back surface thereof. The size of the shutter 11a is approximately 1. m width is 4 m. In FIG. 6, the partition walls 5 g with a distance of 4 m are directed to the front, and the partition walls 5 g with a distance of 1 m are shown as a vertical cross section.

図7は載荷函体5の底面開閉システム装置11の説明用の立面図である。このシステム装置11の構成は複数のシャッター11a、これを移動させる2基の駆動装置11b(複動型油圧シリンダー)、これを繋ぐ索状物11c(チェイン,ワイヤーロープ等)、向きを変える2種類の定滑車11dである。このシステムは気密状態が保てる載荷函体5の内部で完結させる。  FIG. 7 is an elevation view for explaining the bottom opening / closing system device 11 of the loading box 5. This system unit 11 is composed of a plurality of shutters 11a, two drive units 11b (double-acting hydraulic cylinders) that move the shutters, cords 11c (chains, wire ropes, etc.) that connect them, and two types that change the direction. The fixed pulley 11d. This system is completed inside the loading box 5 which can be kept airtight.

図7aはシャッター11aが収納されていて載荷函体5の底面が開かれた状態である。底面開閉システム装置11は索状物11cで連結されて載荷函体5の内部を一周している。
底面開閉システム装置11は外周壁5f内側の一方の駆動装置11bから始まり、定滑車11daで水平に向きを変えて載荷函体5の内部上面を通過し、対面の外周壁5fの定滑車11daで下方に向きを変えてシャッター11aに連結され、再び外周壁5fの底部の定滑車11dbで水平に向きを変えて載荷函体5の内部底面を通過し、元の外周壁5fの定滑車11dbで上方に向きを変えて方向の異なる他方の駆動装置11bに連結される。2基の駆動装置11bの設置は、索状物11cが張力しか伝達できないことによる。
各隔壁5gにもシャッター11aが収納されている。これらを載荷函体5の内部を一周している索状物11cに連動させる必要がある。各隔壁5gの二つの定滑車11da、11dbと索状物11cで連結している。ここで,載荷函体5の底部の定滑車11dはシャッター11aが通過するので、長尺の定滑車11dbである。
FIG. 7A shows a state in which the shutter 11a is stored and the bottom surface of the loading box 5 is opened. The bottom opening / closing system device 11 is connected by a cord-like object 11 c and goes around the inside of the loading box 5.
The bottom opening / closing system device 11 starts from one drive device 11b inside the outer peripheral wall 5f, changes its direction horizontally by the fixed pulley 11da, passes through the inner upper surface of the loading box 5, and is moved by the fixed pulley 11da on the opposite outer peripheral wall 5f. The direction is changed downward and connected to the shutter 11a. The direction is changed again horizontally by the fixed pulley 11db at the bottom of the outer peripheral wall 5f and passes through the inner bottom surface of the loading box 5, and the original pulley 11db of the original outer peripheral wall 5f is used. It is connected to the other driving device 11b whose direction is changed by changing the direction upward. The installation of the two drive devices 11b is due to the fact that the cords 11c can only transmit tension.
A shutter 11a is also stored in each partition wall 5g. It is necessary to interlock these with the cord-like object 11 c that goes around the inside of the loading box 5. The two fixed pulleys 11da and 11db of each partition wall 5g are connected by a cord-like object 11c. Here, the fixed pulley 11d at the bottom of the loading box 5 is a long fixed pulley 11db because the shutter 11a passes therethrough.

図7bはシャッター11aが引き出されて載荷函体5の底面が閉じた状態である。
図7aと図7bの違いは載荷函体5の底面の開閉によるシャッター11aの位置、これに連動して2基の駆動装置11bの状態、そして各隔壁5gのシャッター11aを連結する索状物11cのズレである。
FIG. 7 b shows a state where the shutter 11 a is pulled out and the bottom surface of the loading box 5 is closed.
The difference between FIG. 7a and FIG. 7b is the position of the shutter 11a by opening and closing the bottom surface of the loading box 5, the state of the two driving devices 11b in conjunction with this, and the cords 11c connecting the shutters 11a of the respective partition walls 5g. This is a deviation.

図8は外周壁5fの下部とこれの刃先5faの側面図である。図8aの外周壁5fはシャッター11aを収納、図8cは駆動装置11bが設置されている。図8bの外周壁5fは図8、図9の壁に直行する壁で、これの刃先5faの天端の一部が底板用シャッター11aの両端を鉛直支持の可動支承となる。  FIG. 8 is a side view of the lower portion of the outer peripheral wall 5f and the blade edge 5fa thereof. The outer peripheral wall 5f of FIG. 8a houses the shutter 11a, and FIG. 8c is provided with the driving device 11b. The outer peripheral wall 5f in FIG. 8b is a wall that goes directly to the walls in FIGS. 8 and 9, and a part of the top edge of the blade edge 5fa serves as a movable support for vertically supporting both ends of the bottom plate shutter 11a.

図9は隔壁5gの下部とこれの刃先5gaの側面図である。図9aの隔壁5gはシャッター11aが収納され、その下端をシャッター11aが通過する。図9bの隔壁5gは図9aの壁に直行する壁で、これの刃先5gaの天端の一部が底板用シャッター11aの両端を鉛直支持の可動支承となる。  FIG. 9 is a side view of the lower part of the partition wall 5g and the blade edge 5ga thereof. In the partition wall 5g of FIG. 9a, the shutter 11a is accommodated, and the shutter 11a passes through the lower end thereof. The partition wall 5g in FIG. 9b is a wall that goes directly to the wall in FIG. 9a, and a part of the top edge of the blade edge 5ga serves as a movable support that vertically supports both ends of the shutter 11a for the bottom plate.

図10は載荷函体5の内部を減圧することで大気圧・水圧の載荷重で海底土を圧縮沈下させて所定の強度まで高めた状態の側面図である。沈下が所定の浚渫深さに達しなければ、沈下不足分の海底土を搬出(切土・運搬)する。切土は載荷函体5の底板用シャッター11aを水平に閉じることで行う。  FIG. 10 is a side view showing a state in which the inside of the loading box 5 is depressurized, and the seabed soil is compressed and sunk by a loading load of atmospheric pressure / water pressure to a predetermined strength. If the subsidence does not reach the predetermined dredging depth, the submarine soil that is insufficient for subsidence is carried out (cut or transported). Cutting is performed by closing the bottom plate shutter 11a of the loading box 5 horizontally.

次に、載荷函体5の気密状態を解除して大気圧・水圧を除荷し、海底土が中詰め状態の載荷函体5を上昇させて作業船1の水面下の所定の位置で停止する。載荷函体5の位置は図1の状態である。海底土の運搬は水中運搬する。  Next, the airtight state of the loading box 5 is released, the atmospheric pressure and the water pressure are unloaded, the loading box 5 in which the seabed soil is filled is lifted, and stopped at a predetermined position below the surface of the work boat 1. To do. The position of the loading box 5 is in the state shown in FIG. Seabed soil is transported underwater.

次に、盛土工区では載荷函体5を海底地盤まで下降接地させる。図11は下降接地の状態の側面図である。次に載荷函体5の底面を開き、中詰め状態の海底土を加圧すると共に載荷函体5を上昇させることで海底土を抜き出して盛土する。  Next, in the embankment work zone, the loading box 5 is lowered to the seabed ground. FIG. 11 is a side view of the descending grounding state. Next, the bottom surface of the loading box 5 is opened, the seabed soil in an intermediate state is pressurized, and the loading box 5 is raised to extract the seabed soil and fill it.

海底土の搬出は施工効率上載荷函体5の中詰め容量を一杯にして利される。載荷函体5の中詰め海底土を全て搬出すると深堀となる。この場合,帯状に海底土を搬出して切り盛りで深さの調整をする。図12は浚渫区域内における切り盛りによる高さ調整の説明用の側面図である。図のA−Aラインは現況海底高、B−Bラインは浚渫地盤高、C−Cラインは圧縮沈下地盤高である。  The unloading of the seabed soil is used by filling up the capacity of the loading box 5 in view of construction efficiency. When all the packed submarine soil in the loading box 5 is taken out, it becomes deep. In this case, the seabed soil is carried out in the form of a belt and the depth is adjusted by cutting. FIG. 12 is a side view for explaining the height adjustment by cutting in the ridge area. In the figure, the AA line is the current seabed height, the BB line is the dredged ground height, and the CC line is the compression sinking ground height.

沈下が所定の浚渫深さに達しないが、海底土の搬出先の都合がつかない場合は2段階載荷で所定の浚渫深さを確保する。図13は2基の載荷函体5を使った2段階載荷システムの説明図である。図中のライン高は図12に同じである。  If subsidence does not reach the predetermined dredging depth, but the destination of the seabed soil is not convenient, a predetermined dredging depth is secured by two-stage loading. FIG. 13 is an explanatory diagram of a two-stage loading system using two loading boxes 5. The line height in the figure is the same as in FIG.

図13aはA−Aラインの現況海底高がすでにC−Cラインの圧縮沈下地盤高であるがB−Bラインの浚渫地盤高に到達していない。そこで、先行の載荷函体5は海底土を中詰め状態で上昇、横移動した状態にある。  FIG. 13a shows that the current sea level of the AA line is already the height of the compression sedimentation base of the CC line, but has not reached the height of the basement of the BB line. Therefore, the preceding loading box 5 is in a state in which the submarine soil is lifted and moved laterally in the middle packing state.

図13bは先行の載荷函体5の跡の切土地盤に後行の載荷函体5を押し込んだ状態である。この状態はC−Cラインの圧縮沈下と先行の載荷函体5の切土の深さが加わった水深の位置にある。沈下量1m,隔壁5gの高さ3.0mとすると水圧による圧縮増加荷重は約40kN/mである。2段階載荷の意味がここにある。FIG. 13 b shows a state in which the subsequent loading box 5 is pushed into the cut ground of the preceding loading box 5. This state is in the position of the water depth in which the compression settlement of the CC line and the cutting depth of the preceding loading box 5 are added. When the amount of settlement is 1 m and the height of the partition wall 5 g is 3.0 m, the compression increase load due to water pressure is about 40 kN / m 2 . This is the meaning of the two-stage loading.

図13cは後行の載荷函体5が圧縮増加荷重を得て,さらに圧縮沈下した状態である。そして、函体内部の海底土を残して、先行の載荷函体5の中詰め海底土で埋め戻す。垂直切土部が少々崩れても問題は生じない。先行の載荷函体5の海底土で埋め戻すとき、再度圧縮して整形される。これは本発明の作業船1が正確に移動可能できることによる。これにより海底土の搬出を抑制する。
以上が海底土の強度の増加、切土・運搬・盛土までの一連の作業において、海底土を常に載荷函体の中詰状態で行うことで強度を保持し、海水汚濁の発生を抑えることを特徴とする海底地盤の切土・盛土のシステム工法の概要である。
FIG. 13 c shows a state in which the subsequent loading box 5 obtains a compression increasing load and further compresses and sinks. Then, the seabed soil inside the box is left and backfilled with the middle packed seabed soil of the preceding loading box 5. There is no problem even if the vertical cut part collapses a little. When the preceding loading box 5 is backfilled with the seabed soil, it is compressed and shaped again. This is because the work boat 1 of the present invention can move accurately. This suppresses the removal of submarine soil.
As described above, in a series of operations from increasing the strength of the seabed soil to cutting, transporting and embankment, the seafloor soil is always packed in the loading box to maintain the strength and suppress the occurrence of seawater pollution. This is an outline of the system construction method for cutting and embankment of the characteristic submarine ground.

本発明の作業船1による1実施例を示す側面図である。  It is a side view which shows one Example by the working ship 1 of this invention. 同じく作業船1の平面図である。  2 is a plan view of the work boat 1 similarly. FIG. 載荷函体5を分離した作業船1の側面図である  It is a side view of the work ship 1 which separated the loading box 5. 作業船1の載荷函体5を海底地盤に押し込んだ状態の側面図である。  It is a side view of the state which pushed the loading box 5 of the work ship 1 into the seabed ground. 載荷函体5の一方の拡大側面図である。  FIG. 4 is an enlarged side view of one side of the loading box 5. 同じく載荷函体5の他方の拡大側面図である。  It is the other enlarged side view of the loading box 5 similarly. 載荷函体5の底面開閉システム装置11の説明用の立面図である。  FIG. 3 is an elevation view for explaining the bottom opening / closing system device 11 of the loading box 5. 外周壁5fの下部と刃先5faの側面図である。  It is a side view of the lower part of outer peripheral wall 5f, and blade edge | tip 5fa. 隔壁5gの下部と刃先5gaの側面図である。  It is a side view of the lower part of the partition 5g, and the blade edge | tip 5ga. 作業船1の載荷函体5で海底土を圧縮沈下させた状態の側面図。  FIG. 3 is a side view of a state in which seabed soil is compressed and subsidized by the loading box 5 of the work ship 1. 載荷函体5で運搬した海底土を,盛土海底地盤に降下接地した状態の側面図  Side view of the state where the submarine soil transported by the loading box 5 descends to the embankment submarine ground. 浚渫区域内の切り盛りによる高さ調整の説明用の側面図である。  It is a side view for description of height adjustment by the cut in the ridge area. 2基の載荷函体5を使った2段階載荷システムの説明用の側面図である。  It is a side view for description of a two-stage loading system using two loading boxes 5.

1 作業船
2 台船
3 台船結合立体骨組
4 ガイドタワー
5 タワー式載荷函体
5a 剛性載荷板,5b 水の出入りを制御する自動弁,5c 載荷タワー
5d 微小厚の空間,5e 剛性フィルター,5f 外周壁,5g 隔壁
6 移動式スパッド
6a スパッド,6b 立体骨組の台車,6c 水平支持の可動支承
11 底面開閉システム装置
11a シャッター,11b 駆動装置(複動型油圧シリンダー),
11c 索状物(チェイン,ワイヤーロープ等),11d 定滑車
12 海水面
13 海底地盤面
DESCRIPTION OF SYMBOLS 1 Work ship 2 Cargo 3 Cargo combined solid frame 4 Guide tower 5 Tower-type loading box 5a Rigid loading board, 5b Automatic valve which controls entry / exit of water, 5c Loading tower 5d Minute space, 5e Rigid filter, 5f Peripheral wall, 5g Bulkhead 6 Mobile spud 6a Spud, 6b Three-dimensional frame cart, 6c Horizontal support movable support 11 Bottom opening / closing system device 11a Shutter, 11b Drive device (double acting hydraulic cylinder),
11c Cords (chains, wire ropes, etc.), 11d Regular pulley 12 Sea surface 13 Submarine ground surface

Claims (5)

海底地盤の切土・盛土工事において、剛性載荷板の上面中心部には海底面まで届く高さの載荷タワーを取付け、底面外周には外周壁を接合したタワー形式の載荷函体を装備した作業船を使って、水深維持の切土工区では載荷函体を海底地盤に押し込み載荷函体内部を気密状態で減圧することで、大気圧・水圧の載荷重で海底地盤を所定の圧縮沈下をさせ、海底土の減容化を図り所定の強度まで高めたならば、載荷重を除荷して載荷函体の底面を閉じ、海底土が中詰め状態の載荷函体を上昇させて作業船の水面下の所定の位置で停止させ、海底土の運搬は載荷函体で水中運搬し、盛土工区では載荷函体を海底地盤まで下降させ、中詰め状態の海底土を加圧すると共に載荷函体を上昇させて海底土を抜出し盛土することで、海底土は常に載荷函体の中詰状態として、海水汚濁を発生させずに地盤の圧縮沈下・海底土の減容化・強度増加、再使用の盛土まで行うことを特徴とする海底地盤の切土・盛土のシステム工法。  In cutting and embankment work on the submarine ground, a work that is equipped with a tower-type loading box with a loading tower that reaches the bottom of the sea at the center of the upper surface of the rigid loading board and an outer peripheral wall joined to the outer periphery of the bottom By using a ship, in the cut area where the water depth is maintained, the loading box is pushed into the submarine ground and the inside of the loading box is depressurized in an airtight state. When the volume of the seabed soil is reduced and increased to the specified strength, the load is unloaded and the bottom surface of the loading box is closed, and the loading box with the seabed soil filled is raised to Stop at a predetermined position below the surface of the water, and transport the submarine soil underwater with a loading box.In the embankment construction area, lower the loading box to the bottom of the seabed, pressurize the padded seabed soil and remove the loading box. Raise the seabed soil and raise and fill it, so the seabed soil is always loaded As Wadding state, volume reduction and strength of the compression subsidence marine soil of the ground without generating seawater contamination increases, the system construction method Cut-embankment Seabed which is characterized in that to fill reuse. 請求項1の切土・盛土のシステム工法に使用される載荷函体において、載荷函体の内部空間に格子状に隔壁を設け、且つ外周壁の内側及び隔壁の両側にはドレーン機能を持たせたタワー形式の載荷函体。  The loading box used in the system method for cutting and embankment according to claim 1, wherein partition walls are provided in a lattice shape in the inner space of the loading box, and a drain function is provided inside the outer peripheral wall and on both sides of the partition wall. A tower-shaped loading box. 請求項1の作業船において、当該作業船の主構造は浮体となる複数の台船とガイドタワー及び請求項1のタワー形式の載荷函体から構成され、複数の台船は載荷函体の1辺が納まる間隔で立体的に連結され、連結材の骨組にはガイドタワーを複数配列固定し,ガイドタワーにはそれぞれにタワー形式の載荷函体を組み込むことで複数の載荷函体を有する海底地盤の切土・盛土のシステム工法に使用される作業船。  In the work ship according to claim 1, the main structure of the work ship is composed of a plurality of carriages and guide towers that are floating bodies, and a tower-type loading box according to claim 1, wherein the plurality of carriages are one of the loading boxes. Submarine ground that has multiple loading boxes by connecting three or more guide towers to the frame of the connecting material and incorporating a tower type loading box in each guide tower. A work boat used in the system construction method for cutting and embankment. 請求項2の載荷函体において、底板用のシャッターを隔壁で区分された外周壁及び隔壁の一方向面に鉛直収納し、当該シャッターによる載荷函体の底面としての開閉は、シャッターを両壁の刃先の頂部直近で水平に向きを変えて載荷函体の底面に水平に出し入れし、これの底板としての支持は、シャッター出し入れ方向と平行の外周壁・隔壁の刃先天端の一部がこれの両端を鉛直支持の可動支承とする載荷函体底面の開閉機能を有するタワー形式の載荷函体。  3. The loading box according to claim 2, wherein the shutter for the bottom plate is vertically stored on the outer peripheral wall partitioned by the partition wall and one direction surface of the partition wall, and the shutter is opened and closed as the bottom surface of the loading box by the shutter. Change the direction horizontally near the top of the blade edge and place it horizontally in and out of the bottom surface of the loading box. The bottom plate is supported by a part of the top edge of the outer peripheral wall and partition wall parallel to the shutter loading and unloading direction. A tower-type loading box that has a function to open and close the bottom of the loading box with both ends supported vertically. 請求項3の作業船において、作業船が係留するスパッド装置を作業船の外周4辺に設けた軌道上を自走する4脚の車輪を備えた立体構造の台車4基に船外に向けて固定し、これの転倒防止は台船の立体骨組みの連結材の水平材に水平支持の可動支承で取り、当該スパッドは地盤の支持杭状態で走行すると作業船が移動し、地盤支持杭の解除状態ではスパッドが移動することで作業船が正確に速く作業船の全長・前幅の長さを自在に移動することを特徴とする移動式スパッドを装備した作業船。  4. The work ship according to claim 3, wherein four-wheeled trucks having four wheels self-propelled on a track provided with a spud device moored by the work ship on four outer sides of the work ship are directed to the outside of the ship. It is fixed, and the fall of this is taken by a horizontal support movable support on the horizontal member of the three-dimensional framework of the carriage, and when the spud runs in the ground support pile state, the work ship moves and the ground support pile is released. A work ship equipped with a mobile spud characterized by the fact that the work ship can move precisely and quickly through the full length and front width of the work ship as the spud moves in the state.
JP2015087107A 2015-04-03 2015-04-03 Seabed cutting/banking system and method, and loading box body and work ship used therewith Pending JP2016196791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015087107A JP2016196791A (en) 2015-04-03 2015-04-03 Seabed cutting/banking system and method, and loading box body and work ship used therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015087107A JP2016196791A (en) 2015-04-03 2015-04-03 Seabed cutting/banking system and method, and loading box body and work ship used therewith

Publications (1)

Publication Number Publication Date
JP2016196791A true JP2016196791A (en) 2016-11-24

Family

ID=57358189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015087107A Pending JP2016196791A (en) 2015-04-03 2015-04-03 Seabed cutting/banking system and method, and loading box body and work ship used therewith

Country Status (1)

Country Link
JP (1) JP2016196791A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187169A1 (en) * 2018-03-27 2019-10-03 正佳 近藤 Vacuum consolidation dredging method, tower air-tight loading caisson, and dedicated work ship
JP2020066911A (en) * 2018-10-24 2020-04-30 五洋建設株式会社 Forming material and forming method for structure including sloping section
JP7365187B2 (en) 2019-10-09 2023-10-19 五洋建設株式会社 Method for improving dredged soil

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187169A1 (en) * 2018-03-27 2019-10-03 正佳 近藤 Vacuum consolidation dredging method, tower air-tight loading caisson, and dedicated work ship
WO2019187174A1 (en) * 2018-03-27 2019-10-03 正佳 近藤 Vacuum consolidation dredging method, tower air-tight loading caisson, and dedicated work ship
JP2020066911A (en) * 2018-10-24 2020-04-30 五洋建設株式会社 Forming material and forming method for structure including sloping section
JP7365187B2 (en) 2019-10-09 2023-10-19 五洋建設株式会社 Method for improving dredged soil

Similar Documents

Publication Publication Date Title
JP6582361B2 (en) Vacuum-consolidated dredging method, tower-type airtight loading box and dedicated work ship.
US3896628A (en) Marine structures
CN102926350B (en) A kind of can the construction method of dock module of transportation by driving towage
CN111502725B (en) Artificial island type middle well structure of submarine tunneling tunnel
JP2016196791A (en) Seabed cutting/banking system and method, and loading box body and work ship used therewith
CN102561379A (en) Novel bridge installation foundation and construction method thereof
US8882397B2 (en) Methods for waterproofing depositing sites
CN101929162B (en) Construction method for three-stay mudflat earthwork diker
JP2003261930A (en) Consolidation improvement method for water bottom soft ground
RU2386755C1 (en) Method for arrangement of shallow subway at water area bottom
CN210134470U (en) Dredging operation system under wharf
US4360291A (en) Subsea foundation
CN103806409B (en) The milling formation system of gravity type quay bedding and the construction method of Gravity harf structure
JP7324966B2 (en) Vacuum consolidation dredging method, airtight loading box and vacuum consolidation dredger
CN104612128A (en) Vacuum preloading reinforcement construction method applicable to underwater silt environment
WO2019187174A1 (en) Vacuum consolidation dredging method, tower air-tight loading caisson, and dedicated work ship
CN102535390B (en) Construction method of anti-wave-type offshore platform
KR100429370B1 (en) Method for constructing revetment dike using a fiber for public works
CN104895043A (en) A gravel pile construction method applied to deepwater long-period surge water areas
DE3230927C2 (en) Procedure for loading and / or handling environmentally unfriendly materials in the operation of offshore oil fields in shallow water and mud flats and artificial islands suitable for this purpose
DE202010007757U1 (en) Underwater foundation excavators
RU2382142C2 (en) Method for formation of closed section of water area bottom with possibility of its drying and system, which realises it
CN203729259U (en) Milling forming system of gravity wharf foundation bed
JP2023129165A (en) Mining, pulling up, wet type smelting, residual sludge treatment method and resource mining bucket, pressure control tank, wet type hydrometallurgical processing tank, and resource mining vessel for deposition resources on deep sea bottom
JP2017014880A (en) System method for maintenance of water depth of sea route and others, and loading housing and work ship used for the method