JP2017069552A - Process liquid supply device, operation method for process liquid supply device, and storage medium - Google Patents

Process liquid supply device, operation method for process liquid supply device, and storage medium Download PDF

Info

Publication number
JP2017069552A
JP2017069552A JP2016176593A JP2016176593A JP2017069552A JP 2017069552 A JP2017069552 A JP 2017069552A JP 2016176593 A JP2016176593 A JP 2016176593A JP 2016176593 A JP2016176593 A JP 2016176593A JP 2017069552 A JP2017069552 A JP 2017069552A
Authority
JP
Japan
Prior art keywords
processing liquid
liquid supply
electrode
unit
surface potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016176593A
Other languages
Japanese (ja)
Other versions
JP6794730B2 (en
Inventor
仁志 羽島
Hitoshi Hajima
仁志 羽島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to TW105131069A priority Critical patent/TWI698283B/en
Priority to KR1020160123346A priority patent/KR102605345B1/en
Priority to US15/275,588 priority patent/US9943871B2/en
Publication of JP2017069552A publication Critical patent/JP2017069552A/en
Priority to US15/912,652 priority patent/US10549302B2/en
Application granted granted Critical
Publication of JP6794730B2 publication Critical patent/JP6794730B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02307Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Coating Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To grasp a charged amount of a process liquid when supplying the process liquid to a substrate via a process liquid supply path that is formed from an insulative flow passage member.SOLUTION: An electrode bar 71 that forms a first electrode is provided in contact with a process liquid and a flow passage member in a process liquid supply path 2, and in the electrode bar 71, a shield conductor 76 is provided via a conductive plate 74 and a support 75. A surface potential measuring part 77 is provided proximately to the shield conductor 76, and a display part 201 is provided for displaying a measurement of a surface potential. When the process liquid is circulated in the insulative process liquid supply path 2, static electricity is generated by friction and the process liquid and the flow passage member are charged, but by adopting a structure in which the electrode bar 71 and a flow passage are brought into tight contact, a charge amount corresponding to a sum of charged amounts of the process liquid and the flow passage member is measured by the surface potential measuring part 77 as a surface potential of the first electrode. The measured surface potential is displayed on the display part 201.SELECTED DRAWING: Figure 1

Description

本発明は、ノズルから基板に対して処理液を供給する処理液供給装置及び処理液供給装置の運用方法並びに記憶媒体に関する。   The present invention relates to a processing liquid supply apparatus that supplies a processing liquid from a nozzle to a substrate, a method for operating the processing liquid supply apparatus, and a storage medium.

半導体製造工程に用いられる枚葉式の液処理装置は、例えばスピンチャックに保持されている基板の表面にノズルから処理液を吐出するように構成されている。液処理としては、レジストパターンを形成するためにレジスト液を基板に塗布する処理、露光後の基板に現像液を供給する処理、あるいはリンス液を基板に供給して洗浄する処理などが挙げられる。このような処理液は、途中にバルブ、フィルタ、ポンプなどの機器を設けた配管を介してノズルに供給される。   A single wafer type liquid processing apparatus used in a semiconductor manufacturing process is configured, for example, to discharge a processing liquid from a nozzle onto the surface of a substrate held by a spin chuck. Examples of the liquid process include a process of applying a resist liquid to the substrate to form a resist pattern, a process of supplying a developer to the exposed substrate, and a process of supplying a rinse liquid to the substrate and cleaning. Such a treatment liquid is supplied to the nozzle via a pipe provided with devices such as a valve, a filter, and a pump in the middle.

配管や機器を含む流路は、清浄度や耐薬品性の観点からフッ素樹脂などの絶縁性材料により構成されており、流路に処理液を通流させると、流路と処理液との摩擦により静電気が発生することが知られている。処理液の種類やプロセス条件によっては帯電量が増加するおそれがあり、流路を構成する部材の静電破壊による破損や、処理プロセスの性能低下が懸念される。   The flow path including piping and equipment is made of an insulating material such as fluororesin from the viewpoint of cleanliness and chemical resistance. When the treatment liquid is passed through the flow path, the friction between the flow path and the treatment liquid It is known that static electricity is generated by the above. Depending on the type of the processing liquid and the process conditions, the charge amount may increase, and there is a concern about damage due to electrostatic breakdown of members constituting the flow path or a decrease in performance of the processing process.

特許文献1には、処理液に接触するように設けた炭素電極を介して処理液を接地することにより除電する手法が記載されているが、純度の高い炭素電極は割れたり、欠けたりするおそれがある。仮に炭素以外の元素を含有させた場合、不純物が処理液へ溶出し汚染するおそれがある。また特許文献1の構成では、処理液の帯電量の状況が把握できないので、帯電に対する対応をとりにくい。   Patent Document 1 describes a method of removing static electricity by grounding a treatment liquid through a carbon electrode provided so as to be in contact with the treatment liquid. However, a high-purity carbon electrode may be cracked or chipped. There is. If an element other than carbon is included, impurities may elute into the processing solution and become contaminated. Further, in the configuration of Patent Document 1, since the state of the charge amount of the processing liquid cannot be grasped, it is difficult to cope with charging.

特開2006−269677号公報(段落0036、0063、図2など)Japanese Patent Laying-Open No. 2006-269677 (paragraphs 0036, 0063, FIG. 2, etc.)

本発明は、このような事情においてなされたものであり、その目的は、絶縁性の流路部材により形成された処理液供給路を介して処理液を基板に供給するにあたり、処理液の帯電量を表面電位として測定することにより、帯電量の状況を把握できる技術を提供することにある。   The present invention has been made under such circumstances, and the object thereof is to charge the processing liquid when supplying the processing liquid to the substrate through the processing liquid supply path formed by the insulating channel member. It is to provide a technology that can grasp the state of the charge amount by measuring the surface potential as a surface potential.

このため本発明の処理液供給装置は、
ノズルから基板に対して処理液を供給する処理液供給装置において、
前記ノズルに処理液を供給するための処理液供給路を形成する絶縁性の流路部材と、
前記処理液供給路の処理液に接触した第1の電極と、
前記第1の電極の表面電位を測定する表面電位測定部と、を備えたことを特徴とする。
Therefore, the processing liquid supply apparatus of the present invention is
In a processing liquid supply apparatus for supplying a processing liquid from a nozzle to a substrate,
An insulating channel member that forms a processing liquid supply path for supplying a processing liquid to the nozzle;
A first electrode in contact with the treatment liquid in the treatment liquid supply path;
And a surface potential measuring unit for measuring the surface potential of the first electrode.

また本発明の処理液供給装置の運用方法は、
処理液供給路からノズルを介して基板に対して処理液を供給する処理液供給装置の運用方法において、
前記処理液供給路の処理液に接触した第1の電極の表面電位を測定する工程と、
前記工程にて測定された表面電位を表示する工程と、を含むことを特徴とする。
In addition, the operation method of the processing liquid supply apparatus of the present invention includes:
In the operation method of the processing liquid supply apparatus that supplies the processing liquid to the substrate from the processing liquid supply path via the nozzle,
Measuring the surface potential of the first electrode in contact with the treatment liquid in the treatment liquid supply path;
And a step of displaying the surface potential measured in the step.

さらに本発明の処理液供給装置に用いられるコンピュータプログラムを記憶した記憶媒体は、
前記コンピュータプログラムは、前記処理液供給装置の運用方法を実行するためのステップ群を備えていることを特徴とする。
Furthermore, a storage medium storing a computer program used in the processing liquid supply apparatus of the present invention is
The computer program includes a group of steps for executing an operation method of the processing liquid supply apparatus.

本発明によれば、絶縁性の流路部材により形成された処理液供給路を介して処理液を基板に供給するにあたり、処理液の帯電の状態を、処理液供給路の処理液に接触した電極の表面電位として測定(評価)している。従って、処理液の帯電の状態を把握することができるので、適切な対応をとることに役立つ。   According to the present invention, when the processing liquid is supplied to the substrate through the processing liquid supply path formed by the insulating flow path member, the charged state of the processing liquid is brought into contact with the processing liquid in the processing liquid supply path. It is measured (evaluated) as the surface potential of the electrode. Therefore, the state of charging of the treatment liquid can be grasped, which helps to take appropriate measures.

本発明の第1の実施形態に係る処理液供給装置の構成図である。1 is a configuration diagram of a processing liquid supply apparatus according to a first embodiment of the present invention. 表面電位値と時間との関係を示す特性図である。It is a characteristic view which shows the relationship between a surface potential value and time. 表面電位変化と流速との関係を示す特性図である。It is a characteristic view which shows the relationship between a surface potential change and a flow velocity. 表面電位変化と流速との関係を示す特性図である。It is a characteristic view which shows the relationship between a surface potential change and a flow velocity. 処理液供給装置に設けられる測定部の一例を示す平面図と縦断面図である。It is the top view and longitudinal cross-sectional view which show an example of the measurement part provided in a process liquid supply apparatus. 処理液供給装置に設けられる測定部の一例を示す縦断面図である。ある。It is a longitudinal cross-sectional view which shows an example of the measurement part provided in a process liquid supply apparatus. is there. 処理液供給装置に設けられる帯電量制御部の一例を示す構成図である。It is a block diagram which shows an example of the charge amount control part provided in a process liquid supply apparatus. 処理液供給装置に設けられる接地部の一例を示す縦断面図である。ある。It is a longitudinal cross-sectional view which shows an example of the grounding part provided in a process liquid supply apparatus. is there. 処理液供給装置の制御系を示す構成図である。It is a block diagram which shows the control system of a process liquid supply apparatus. 処理液供給装置の作用を示す工程図である。It is process drawing which shows the effect | action of a process liquid supply apparatus. 表面電位と時間との関係を示す特性図である。It is a characteristic view which shows the relationship between surface potential and time.

図1は、本発明における第1の実施形態に係る処理液供給装置を示したものである。処理液供給装置は、ノズル11、12、13から基板例えば半導体ウエハ(以下「ウエハ」という)Wに対して処理液例えば現像液を供給するものであり、ノズル11、12、13に処理液を供給するための処理液供給路2を備えている。処理液供給路2は絶縁性の流路部材により形成され、その上流端には図示しない処理液供給源が接続される。流路部材は、例えばPFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)、PTFE(ポリテトラフルオロエチレン)などのフッ素樹脂製の配管により構成される。図1は処理液供給路2における処理液供給源の下流側を示しており、バルブやポンプなどの供給機器と、この例では処理液及び流路部材の帯電量の制御に関する機器とを備えている。   FIG. 1 shows a processing liquid supply apparatus according to a first embodiment of the present invention. The processing liquid supply device supplies a processing liquid, for example, a developing solution from a nozzle 11, 12, 13 to a substrate, for example, a semiconductor wafer (hereinafter referred to as “wafer”) W, and supplies the processing liquid to the nozzles 11, 12, 13. A treatment liquid supply path 2 for supply is provided. The processing liquid supply path 2 is formed by an insulating flow path member, and a processing liquid supply source (not shown) is connected to the upstream end thereof. The flow path member is constituted by a pipe made of a fluororesin such as PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer) or PTFE (polytetrafluoroethylene). FIG. 1 shows the downstream side of the processing liquid supply source in the processing liquid supply path 2, and includes supply devices such as valves and pumps, and in this example, devices related to control of the charge amount of the processing liquid and the flow path member. Yes.

先ずバルブやポンプなどの供給機器について説明すると、処理液供給路2には、上流側から順に、第1バルブV1、レギュレータ31、ポンプユニット32が設けられている。第1バルブV1は、処理液供給源側から処理液供給装置に処理液を供給するためのバルブであり、第1バルブV1の上流側にはベント用のバルブV2を備えた分岐路20が接続されている。レギュレータ31は、その上流側の処理液供給路2を通流する処理液の圧力を減圧調整する機器である。   First, supply devices such as valves and pumps will be described. The processing liquid supply path 2 is provided with a first valve V1, a regulator 31, and a pump unit 32 in order from the upstream side. The first valve V1 is a valve for supplying the processing liquid from the processing liquid supply source side to the processing liquid supply device, and a branch path 20 having a vent valve V2 is connected to the upstream side of the first valve V1. Has been. The regulator 31 is a device that adjusts the pressure of the processing liquid flowing through the processing liquid supply path 2 on the upstream side to reduce the pressure.

例えばレギュレータ31は、例えばダイヤフラムと、ダイヤフラムと連動するバルブと、を備えており、バルブの開度により圧力損失を調整する。ポンプユニット32は、処理液をノズル11、12、13に吐出するものであり、例えばダイヤフラムポンプからなるポンプ321と、処理液をポンプ321に供給するための供給用バルブV3と、ポンプ321から下流側に処理液を排出するための排出用バルブV4と、を備えている。またポンプ321には、ドレイン用のバルブV5を備えたドレイン路322が接続されている。   For example, the regulator 31 includes, for example, a diaphragm and a valve that works in conjunction with the diaphragm, and adjusts the pressure loss according to the opening of the valve. The pump unit 32 discharges the processing liquid to the nozzles 11, 12, and 13. For example, the pump 321 including a diaphragm pump, the supply valve V <b> 3 for supplying the processing liquid to the pump 321, and the downstream of the pump 321. And a discharge valve V4 for discharging the processing liquid on the side. The pump 321 is connected to a drain path 322 having a drain valve V5.

この例における処理液供給路2は、排出用バルブV4の下流側にて3本に分岐しており、分岐された各処理液供給路を第1の流路21、第2の流路22、第3の流路23と呼ぶことにする。第1の流路21、第2の流路22、第3の流路23の下流端には、夫々ノズル11、12、13が設けられている。これらノズル11、12、13は液処理モジュール100に搬送されたウエハに同じ種類の処理液を供給するものである。現像処理用の液処理モジュール100は、例えばウエハWを鉛直軸まわりに回転自在に保持するための基板保持部110を備えている。   The processing liquid supply path 2 in this example is branched into three on the downstream side of the discharge valve V4, and the branched processing liquid supply paths are divided into the first flow path 21, the second flow path 22, This will be referred to as the third flow path 23. Nozzles 11, 12, and 13 are provided at the downstream ends of the first flow path 21, the second flow path 22, and the third flow path 23, respectively. These nozzles 11, 12, and 13 supply the same type of processing liquid to the wafer transferred to the liquid processing module 100. The liquid processing module 100 for development processing includes, for example, a substrate holding unit 110 for holding the wafer W so as to be rotatable about a vertical axis.

第1の流路21、第2の流路22、第3の流路23には、夫々上流側から順にフィルタ33、流量検出部34、ディスペンスバルブ(液吐出用バルブ)V6が設けられている。ディスペンスバルブV6は、予め設定された液量の処理液を吐出する機能を備えた機器である。フィルタ33は、処理液中に含まれるパーティクルを除去するためのものであり、ベント用のバルブV7を備えたベント路331を備えている。この例においては、各バルブV1〜V7は、例えばエアオペレートバルブより構成される。図1中35は圧力検出部である。   The first flow path 21, the second flow path 22, and the third flow path 23 are each provided with a filter 33, a flow rate detector 34, and a dispense valve (liquid discharge valve) V6 in order from the upstream side. . The dispense valve V6 is a device having a function of discharging a processing liquid having a preset liquid amount. The filter 33 is for removing particles contained in the processing liquid, and includes a vent path 331 including a vent valve V7. In this example, each valve V1-V7 is comprised, for example from an air operated valve. In FIG. 1, reference numeral 35 denotes a pressure detector.

処理液供給路2に設けられる処理液の帯電量制御に関する機器の説明に先立ち、図2〜図4を用いて処理液の帯電状態についての知見を記載しておく。処理液供給路2を形成する絶縁性の流路部材はマイナスへ帯電しやすく、処理液はプラスに帯電しやすい。このため処理液供給路2内に処理液を通流させると、流路部材と処理液との摩擦により静電気が発生し、処理液供給路2において圧力や流速が大きい領域では、摩擦力が大きくなり、帯電量が増大する。   Prior to the description of the apparatus relating to the charge control of the treatment liquid provided in the treatment liquid supply path 2, knowledge about the charged state of the treatment liquid will be described with reference to FIGS. The insulating flow path member that forms the processing liquid supply path 2 is easily charged to minus, and the processing liquid is easily charged to plus. For this reason, when the processing liquid is passed through the processing liquid supply path 2, static electricity is generated due to friction between the flow path member and the processing liquid, and the frictional force is large in the region where the pressure and flow velocity are large in the processing liquid supply path 2. As a result, the charge amount increases.

図2は、処理液供給路2におけるレギュレータ31の上流側直近位置(RegIN)と下流側直近位置(RegOUT)の表面電位値と時間との関係を示す特性図であり、表面電位値は後述する表面電位の測定部を設けて取得したものである。図2(a)は圧力損失が大きい場合、図2(b)は圧力損失が小さい場合であり、図中点線にてRegIN、実線にてRegOUTのデータを夫々プロットしている。この図2からノズル11、12、13から処理液を吐出させると、処理液が処理液供給路2内を通流するため、処理液供給路2の表面電位が変化し、圧力損失が大きい場合は小さい場合に比べてその変化量が大きいことが分かる。   FIG. 2 is a characteristic diagram showing the relationship between the surface potential value and the time at the upstream nearest position (RegIN) and the downstream nearest position (RegOUT) of the regulator 31 in the processing liquid supply path 2, and the surface potential value will be described later. This is obtained by providing a surface potential measurement unit. 2A shows a case where the pressure loss is large, and FIG. 2B shows a case where the pressure loss is small. RegIN is plotted with a dotted line and RegOUT data is plotted with a solid line. When the processing liquid is discharged from the nozzles 11, 12, and 13 from FIG. 2, the processing liquid flows through the processing liquid supply path 2, so that the surface potential of the processing liquid supply path 2 changes and the pressure loss is large. It can be seen that the amount of change is large compared to the case of small.

図3は、処理液供給路2におけるRegIN及びRegOUT位置の表面電位変化と配管内の平均流速との関係を示す特性図であり、図3(a)はRegIN、図3(b)はRegOUTのデータである。平均流速はレギュレータ31の開度により調整しており、開度が大きい程、流速が大きく、圧力損失が小さくなる。表面電位変化とは、表面電位の測定値と初期値(処理液を吐出させる前で液が動いていないとき)の差分である。この結果、RegINでは、圧力損失が大きい程、表面電位変化のマイナス値が大きく、RegOUTでは、圧力損失が大きい程、表面電位変化のプラス値が大きくなることが分かる。   FIG. 3 is a characteristic diagram showing the relationship between the surface potential change at the RegIN and RegOUT positions in the treatment liquid supply path 2 and the average flow velocity in the pipe. FIG. 3 (a) is RegIN, and FIG. 3 (b) is RegOUT. It is data. The average flow velocity is adjusted by the opening degree of the regulator 31, and the larger the opening degree, the larger the flow velocity and the smaller the pressure loss. The surface potential change is the difference between the measured value of the surface potential and the initial value (when the liquid is not moving before the treatment liquid is discharged). As a result, it can be seen that the greater the pressure loss, the greater the negative value of the surface potential change in RegIN, and the greater the pressure loss, the greater the positive value of the surface potential change in RegOUT.

図4は、第1バルブV1の上流側に設けられたポンプにより流速を調整したときの、処理液供給路2におけるRegIN及びRegOUT位置の表面電位変化と配管内の平均流速との関係を示す特性図である。図4(a)はRegIN、図4(b)はRegOUTのデータであって、レギュレータ31を設けた場合を△、設けない場合を◇により夫々プロットしている。レギュレータ31の開度は固定され、レギュレータ31を設けた場合は圧力損失が大きく、設けない場合は圧力損失がほとんどない状態になる。この結果、RegINでは、平均流速が大きい(ポンプの押し出し力が大きい)程、表面電位変化のマイナス値が大きくなり、さらに圧力損失が大きい場合には表面電位変化が大きくなることが認められる。一方RegOUTでは、圧力損失が大きい場合には、平均流速が大きい程、表面電位変化のプラス値が大きくなるが、圧力損失がほとんどない場合には、平均流速が大きい程、表面電位変化のマイナス値が大きくなることが確認された。   FIG. 4 is a characteristic showing the relationship between the surface potential change at the RegIN and RegOUT positions in the treatment liquid supply path 2 and the average flow velocity in the pipe when the flow velocity is adjusted by a pump provided upstream of the first valve V1. FIG. 4A shows data of RegIN, and FIG. 4B shows data of RegOUT, where the case where the regulator 31 is provided is plotted by Δ, and the case where the regulator 31 is not provided is plotted by ◇. The opening degree of the regulator 31 is fixed. When the regulator 31 is provided, the pressure loss is large, and when the regulator 31 is not provided, there is almost no pressure loss. As a result, in RegIN, it is recognized that the negative value of the surface potential change increases as the average flow velocity increases (the pump pushing force increases), and the surface potential change increases when the pressure loss is large. On the other hand, in RegOUT, when the pressure loss is large, the larger the average flow velocity, the larger the positive value of the surface potential change. When there is almost no pressure loss, the larger the average flow velocity, the smaller the negative value of the surface potential change. Was confirmed to be large.

図2〜図4によると、圧力損失が大きい場合には、処理液の通流により、RegINでは表面電位がマイナス側に変化し、RegOUTではプラス側に変化している。この理由については、圧力損失が大きい場合には、液圧の高い処理液の通流及びレギュレータ31内での大きな圧力変化により、処理液はプラスに、流路部材はマイナスに夫々大きく帯電する。そしてRegIN位置では、処理液は下流側へ移動していくため、流路部材側のマイナスの帯電状態が大きく寄与し、RegOUT位置では、処理液及び流路部材の帯電量は小さいものの、プラスに大きく帯電した処理液が測定点に送られてくるため、処理液側のプラスの帯電状態が大きく寄与することに起因すると推察される。 As shown in FIGS. 2 to 4, when the pressure loss is large, the surface potential of RegIN changes to the negative side and that of RegOUT changes to the positive side due to the flow of the processing liquid. For this reason, when the pressure loss is large, the flow of the processing liquid having a high liquid pressure and the large pressure change in the regulator 31 cause the processing liquid to be positively charged and the flow path member to be negatively charged. At the RegIN position, since the processing liquid moves downstream, the negative charge state on the flow path member side contributes greatly. At the RegOUT position, although the charge amount of the processing liquid and the flow path member is small, it is positive. It is inferred that this is because the processing solution that is highly charged is sent to the measurement point, and the positive charging state on the processing solution side contributes greatly.

以上のことから、処理液供給路2内の圧力損失の大小、流速の大小などにより処理液及び流路部材の各帯電量が異なってくることが分かる。処理液供給路2内において圧力損失が大きいときや、流速が大きい場合には、処理液と流路部材との摩擦力が大きくなるため、帯電量が増大する。このため本発明の実施形態では、後述のように、大きな圧力損失が発生する部位において、流路部材を接地するようにし、またノズルからウエハWに吐出される処理液の帯電量を抑えるためにノズルの直近位置において、処理液及び流路部材の各帯電量の和を監視し、更に帯電量を制御するように構成している。帯電量の監視については、処理液の帯電量を監視すれば足りるが、後述のように、処理液の通流空間の密閉性を確保するために帯電量の監視を行うために用いられる電極が流路部材と密着する構成を採用していることから、本実施形態では処理液及び流路部材の各帯電量の和が監視されることになる。   From the above, it can be seen that the charge amounts of the treatment liquid and the flow path member differ depending on the pressure loss in the treatment liquid supply path 2 and the flow velocity. When the pressure loss is large in the processing liquid supply path 2 or when the flow velocity is large, the frictional force between the processing liquid and the flow path member increases, and the charge amount increases. Therefore, in the embodiment of the present invention, as will be described later, the flow path member is grounded at a site where a large pressure loss occurs, and the charge amount of the processing liquid discharged from the nozzle to the wafer W is suppressed. The sum of the charge amounts of the treatment liquid and the flow path member is monitored at a position closest to the nozzle, and the charge amount is further controlled. Regarding the monitoring of the charge amount, it is sufficient to monitor the charge amount of the processing liquid. However, as will be described later, an electrode used for monitoring the charge amount in order to ensure the sealing of the flow space of the processing liquid. Since the configuration in close contact with the flow path member is employed, the sum of the respective charge amounts of the processing liquid and the flow path member is monitored in this embodiment.

続いて処理液供給路2に設けられる処理液の帯電量の低減、測定あるいは制御に関する機器について説明を戻すと、第1バルブV1の上流側には、上流側から順に第1の接地部41と第1の測定部51が設けられ、第1バルブV1とレギュレータ31の間、及びレギュレータ31と供給用バルブV3との間には、夫々第2の接地部42及び第3の接地部43が設けられている。また第1の流路21、第2の流路22、第3の流路23には夫々、フィルタ33と流量検出部34との間に第2の測定部52が設けられると共に、ディスペンスバルブV6とノズル11、12、13との間には、上流側から順に帯電量制御部61と第3の測定部53とが夫々設けられている。なお第1の流路21、第2の流路22、第3の流路23には、供給機器及び帯電量制御に関する機器が同様に設けられているので、符号を共通化している。   Subsequently, returning to the description of the equipment related to reduction, measurement, or control of the charge amount of the processing liquid provided in the processing liquid supply path 2, the first grounding portion 41 and the first grounding portion 41 are arranged upstream from the upstream side of the first valve V1. A first measurement unit 51 is provided, and a second grounding unit 42 and a third grounding unit 43 are provided between the first valve V1 and the regulator 31 and between the regulator 31 and the supply valve V3, respectively. It has been. The first flow path 21, the second flow path 22, and the third flow path 23 are each provided with a second measurement unit 52 between the filter 33 and the flow rate detection unit 34, and the dispense valve V6. And the nozzles 11, 12, and 13 are respectively provided with a charge amount control unit 61 and a third measurement unit 53 in order from the upstream side. Since the first flow channel 21, the second flow channel 22, and the third flow channel 23 are similarly provided with a supply device and a device related to charge amount control, the reference numerals are shared.

先ず第1〜第3の測定部51〜53について説明する。これら第1〜第3の測定部51〜53は同様に構成されており、その一例について、第3の測定部53を例にして図5及び図6に示す。第1〜第3の測定部51〜53は、電極ユニット7を備えている。この電極ユニット7は、電極棒71と接液領域形成部材72とにより構成される。第3の測定部53の電極棒71は第1の電極をなすものであって、例えば断面形状が円形の棒状体であり、その上端は例えば円形の平面状に形成されている。   First, the first to third measurement units 51 to 53 will be described. These first to third measurement units 51 to 53 are configured in the same manner, and an example thereof is shown in FIGS. 5 and 6 by taking the third measurement unit 53 as an example. The first to third measurement units 51 to 53 include an electrode unit 7. The electrode unit 7 includes an electrode rod 71 and a liquid contact region forming member 72. The electrode rod 71 of the third measuring unit 53 forms the first electrode, and is, for example, a rod-shaped body having a circular cross-sectional shape, and its upper end is formed in, for example, a circular flat shape.

この電極棒71の接液部分は、例えばステンレスなどの金属の表面に、メタルコンタミネーションの発生を抑えるために導電性材料をコーティングすることにより構成され、導電性材料は、処理液が金属領域に浸透しないように厚膜例えば300μmの厚さで形成されている。導電性材料としては、ECシリーズ(日本フッソ工業社製)などの導電性または静電気拡散性(≦10Ω)のフッ素樹脂、AC140S(日清紡ケミカル社製)、AC140(日清紡ケミカル社製)などのガラス状カーボン、炭化ケイ素(SiC)などを用いることができる。 The wetted part of the electrode rod 71 is formed by coating a metal material such as stainless steel with a conductive material in order to suppress the occurrence of metal contamination. A thick film, for example, 300 μm thick is formed so as not to penetrate. Examples of the conductive material include conductive or electrostatic diffusive (≦ 10 9 Ω) fluororesin such as EC series (made by Nippon Fuso Kogyo Co., Ltd.), AC140S (made by Nisshinbo Chemical Co., Ltd.), AC140 (made by Nisshinbo Chemical Co., Ltd.), etc. Glassy carbon, silicon carbide (SiC), or the like can be used.

接液領域形成部材72は、例えば処理液供給路2に着脱自在に設けられ、電極棒71を保持すると共に、電極棒71と処理液との接液領域を形成するものであり、例えば処理液供給路2を形成する流路部材と同じ絶縁性の材料により構成される。例えば接液領域形成部材72は、処理液供給路2に沿って形成され、処理液が通流する通流部721と、通流部721と例えば一体に構成され、電極棒71を保持する保持部722と、を備えている。保持部722は通流部721の長さ方向の略中央部から通流部721に対して略鉛直に形成され、上端には電極棒71の挿入口723を備えている。保持部722は例えばその内面が電極棒71の外面と互いに接触し、電極棒71が保持部722に挿入されたときに、例えば電極棒71の先端部が通流部721を通流する処理液と接触するように構成される。電極棒71は、例えばネジ式の継ぎ手部711により保持部722に接続され、こうして電極棒71は、処理液供給路2の処理液及び流路部材に接触するように設けられる。   The liquid contact region forming member 72 is detachably provided in, for example, the processing liquid supply path 2 and holds the electrode rod 71 and forms a liquid contact region between the electrode rod 71 and the processing liquid. The flow path member forming the supply path 2 is made of the same insulating material. For example, the liquid contact region forming member 72 is formed along the processing liquid supply path 2 and is configured integrally with the flow part 721 through which the processing liquid flows and the flow part 721, for example, and holds the electrode rod 71. Part 722. The holding portion 722 is formed substantially perpendicular to the flow passage portion 721 from a substantially central portion in the length direction of the flow passage portion 721, and has an insertion port 723 for the electrode rod 71 at the upper end. The holding portion 722 is, for example, a processing liquid in which the inner surface thereof is in contact with the outer surface of the electrode rod 71 and the tip portion of the electrode rod 71 flows through the flow passage portion 721 when the electrode rod 71 is inserted into the holding portion 722, for example. Configured to contact with. The electrode rod 71 is connected to the holding portion 722 by, for example, a screw-type joint portion 711, and thus the electrode rod 71 is provided so as to contact the processing liquid and the flow path member of the processing liquid supply path 2.

このような接液領域形成部材72は、例えばネジ式の継ぎ手部731、732により処理液供給路2に接続され、流路部材の一部として機能する。また電極棒(第1の電極)71は、第1の流路21、第2の流路22、第3の流路23の夫々において、ノズル11、12、13の吐出口の近傍、例えば吐出口から処理液供給路2に沿って例えば100mm〜3000mmの位置に設けられている。継手部711、731、732は、例えば処理液供給路2と同じ材質の絶縁性のフッ素樹脂により構成される。   Such a liquid contact region forming member 72 is connected to the processing liquid supply path 2 by, for example, screw-type joint portions 731 and 732 and functions as a part of the flow path member. The electrode rod (first electrode) 71 is disposed in the vicinity of the discharge ports of the nozzles 11, 12, 13, for example, in each of the first flow path 21, the second flow path 22, and the third flow path 23. For example, it is provided at a position of 100 mm to 3000 mm along the processing liquid supply path 2 from the outlet. The joint portions 711, 731, and 732 are made of, for example, an insulating fluororesin made of the same material as the processing liquid supply path 2.

電極ユニット7の電極棒71の上面には、図5(a)の平面図及び図5(b)の縦断面図に示すように、例えば円板状の導電板74が設けられている。導電板74は第1の電極の一部を成すものであって、例えばその中心部が電極棒71の横断面の中心部と揃うように構成され、その上面には例えば円筒形状の支持体75を介して遮蔽用導電体76が設けられている。支持体75は例えばPEEK(ポリエーテルエーテルケトン)などの絶縁部材よりなり、導電板74及び遮蔽用導電体76は例えばSUS316Lなどのステンレス鋼材により構成される。   On the upper surface of the electrode rod 71 of the electrode unit 7, for example, a disc-shaped conductive plate 74 is provided as shown in the plan view of FIG. 5A and the longitudinal sectional view of FIG. The conductive plate 74 forms part of the first electrode, and is configured so that, for example, the center thereof is aligned with the center of the cross section of the electrode rod 71, and the upper surface thereof has, for example, a cylindrical support 75. A shielding conductor 76 is provided via the. The support 75 is made of an insulating member such as PEEK (polyether ether ketone), and the conductive plate 74 and the shielding conductor 76 are made of a stainless steel material such as SUS316L.

遮蔽用導電体76は、電極棒71の側方の周囲を空間を介して覆うように例えば円筒体形状に構成され、その上端は内側に屈曲し、上方から見たときに、その中央部が例えば円形に開口するリング形状の上面部761として形成されている。上面部761の裏面側は、支持体75の上端に接続されており、上面部761の中央の開口部762は支持体75よりも内側に形成されている。遮蔽用導電体76は外部の電場を遮蔽するために接地され、開口部762は例えば導電板74と同心円状に形成されている。   The shielding conductor 76 is configured, for example, in a cylindrical shape so as to cover the side periphery of the electrode rod 71 through a space, and its upper end is bent inward, and when viewed from above, its central portion is For example, it is formed as a ring-shaped upper surface portion 761 that opens in a circular shape. The back surface side of the upper surface portion 761 is connected to the upper end of the support body 75, and the central opening 762 of the upper surface portion 761 is formed inside the support body 75. The shielding conductor 76 is grounded to shield an external electric field, and the opening 762 is formed concentrically with the conductive plate 74, for example.

第1〜第3の測定部51〜53は、図6に示すように、第1の電極(電極棒71)の表面電位、この例では導電板74の表面電位を測定する表面電位測定部77を備えている。この表面電位測定部77は、遮蔽用導電体76の上面部761の直近例えば上面部761よりも例えば10mm上方側に設けられ、測定端が遮蔽用導電体76により囲まれた開口部(導電板74の上方の開口部)に臨むように位置している。既述のように、処理液供給路2に処理液を通流させると、処理液はプラス、流路部材はマイナスに帯電し、これらに接触する第1の電極(電極棒71)を介して、これらの電荷による電気力線が第1の電極、導電板74及び遮蔽用導電体76とにより囲まれた領域内にて収束する。導電板74及び遮蔽用導電体76により囲まれた領域は外部の電場が遮られるので内部の電位は等しくなる。この電位は、第1の電極の一部である導電板74の表面電位に対応する。   As shown in FIG. 6, the first to third measuring units 51 to 53 measure the surface potential of the first electrode (electrode bar 71), in this example, the surface potential measuring unit 77 that measures the surface potential of the conductive plate 74. It has. The surface potential measurement unit 77 is provided in the immediate vicinity of the upper surface portion 761 of the shielding conductor 76, for example, 10 mm above the upper surface portion 761, and has an opening (conductive plate) whose measurement end is surrounded by the shielding conductor 76. 74 (opening above 74). As described above, when the processing liquid is passed through the processing liquid supply path 2, the processing liquid is positively charged and the flow path member is negatively charged via the first electrode (electrode bar 71) in contact with them. The electric lines of force due to these charges converge in a region surrounded by the first electrode, the conductive plate 74 and the shielding conductor 76. Since the electric field outside the region surrounded by the conductive plate 74 and the shielding conductor 76 is blocked, the internal potential becomes equal. This potential corresponds to the surface potential of the conductive plate 74 that is a part of the first electrode.

表面電位測定部77は測定電極を備えており、この測定電極は、測定対象の被測定物との間の静電容量に対応した電圧を誘起し、測定電極を周期的に振動させることで交流変調した信号を取り出し、この信号から表面電位を把握する。表面電位測定部77としては、例えばオムロン社のZJ−SDなどの表面電位計を用いることができる。   The surface potential measurement unit 77 includes a measurement electrode. The measurement electrode induces a voltage corresponding to the capacitance between the measurement target and the measurement object, and the measurement electrode is periodically oscillated to generate alternating current. The modulated signal is taken out and the surface potential is grasped from this signal. As the surface potential measuring unit 77, for example, a surface potential meter such as OMRON ZJ-SD can be used.

こうして導電板74に対向して表面電位測定部77を設けることにより、処理液及び流路部材の帯電量が、第1の電極の表面電位(導電板74の表面電位)として測定される。既述のように本実施形態では、電極棒71が流路部材の一部をなす接液領域形成部材72に密接していることから、上記の表面電位は処理液の帯電状態と流路部材の帯電状態とを合成した帯電状態に対応するものであり、その測定値は後述する制御部200に出力される。また遮蔽用導電体76を用いなくともよい。   By providing the surface potential measuring unit 77 so as to face the conductive plate 74 in this manner, the charge amount of the treatment liquid and the flow path member is measured as the surface potential of the first electrode (surface potential of the conductive plate 74). As described above, in the present embodiment, since the electrode rod 71 is in close contact with the liquid contact region forming member 72 forming a part of the flow path member, the surface potential is determined by the charged state of the processing liquid and the flow path member. The measured value is output to the control unit 200 described later. Further, the shielding conductor 76 may not be used.

第1の測定部51は、処理液供給源側から処理液供給装置に供給される処理液の帯電状態を把握するために第1バルブV1の上流側に設けられており、第2の測定部52はフィルタ33の目詰まりや気泡の発生の有無を把握するために、フィルタ33の下流側に設けられている。また第3の測定部53は、ノズル11〜13に供給される処理液の帯電状態を把握するために、ノズル11〜13の上流側直近に設けられている。   The first measuring unit 51 is provided on the upstream side of the first valve V1 in order to grasp the charged state of the processing liquid supplied to the processing liquid supply device from the processing liquid supply source side, and the second measuring unit 52 is provided on the downstream side of the filter 33 in order to grasp whether the filter 33 is clogged or air bubbles are generated. The third measurement unit 53 is provided in the immediate vicinity of the upstream side of the nozzles 11 to 13 in order to grasp the charged state of the processing liquid supplied to the nozzles 11 to 13.

続いて帯電量制御部61の一例について図7を参照して説明する。この例の帯電量制御部61は、第1〜第3の表面電位測定部51〜53と同様に、電極ユニット7、導電板74、支持体75及び遮蔽用導電体76を備えており、電極ユニット7の電極棒71が第2の電極に相当する。電極棒(第2の電極)71は、第1の流路21、第2の流路22、第3の流路23の夫々において、例えば第3の測定部53の電極棒(第1の電極)71から処理液供給路2に沿って上流側10mm〜5000mmの位置に設けられている。   Next, an example of the charge amount control unit 61 will be described with reference to FIG. Similar to the first to third surface potential measurement units 51 to 53, the charge amount control unit 61 of this example includes an electrode unit 7, a conductive plate 74, a support body 75, and a shielding conductor 76, and an electrode The electrode rod 71 of the unit 7 corresponds to the second electrode. The electrode rod (second electrode) 71 is, for example, the electrode rod (first electrode) of the third measurement unit 53 in each of the first flow path 21, the second flow path 22, and the third flow path 23. ) 71 is provided along the processing liquid supply path 2 at a position of 10 mm to 5000 mm upstream.

電極棒(第2の電極)71は、補助切替え部62を介して電圧印加部63に接続されている。補助切替え部62は、電極棒71の接続先を電圧印加部63と接地部との間で切り替えるためのものである。また電圧印加部63は、第3の測定部53の表面電位測定部77にて得られた表面電位の測定値に基づいて、電極棒71に電圧を印加して処理液及び流路部材の帯電量を制御するものである。この例の電圧印加部63は、図7に示すように、正電圧印加用の正電源部631と、負電圧印加用の負電源部632と、これら正電源部631と、負電源部632とを切替えて接続する電圧切替え用の切替え部633と、を備えている。なお、この例では、第2の電極である電極棒71についても流路部材と密接する構造を採用していることから、処理液だけでなく流路部材の帯電量も制御することになる。   The electrode rod (second electrode) 71 is connected to the voltage application unit 63 via the auxiliary switching unit 62. The auxiliary switching unit 62 is for switching the connection destination of the electrode rod 71 between the voltage application unit 63 and the grounding unit. The voltage application unit 63 applies a voltage to the electrode rod 71 based on the measured value of the surface potential obtained by the surface potential measurement unit 77 of the third measurement unit 53 to charge the treatment liquid and the flow path member. The amount is to be controlled. As shown in FIG. 7, the voltage application unit 63 of this example includes a positive power supply unit 631 for applying a positive voltage, a negative power supply unit 632 for applying a negative voltage, the positive power supply unit 631, and a negative power supply unit 632. And a voltage switching switching unit 633 for switching and connecting. In this example, the electrode rod 71, which is the second electrode, also employs a structure that is in close contact with the flow path member, so that not only the processing liquid but also the charge amount of the flow path member is controlled.

さらに電圧印加部63は、電極棒71を、正電源部631又は負電源部632に対して接続された状態または切り離された状態に設定するための切替え部634を備えている。各切替え部は、例えば2つのリレースイッチが並列に接続され、リレー部の通電により一方がオン、他方がオフになり、これによりスイッチ接点が切り替わるリレー回路として構成することができる。なお帯電制御部61は遮蔽用導電体76を設けない構成としてもよい。   Further, the voltage application unit 63 includes a switching unit 634 for setting the electrode rod 71 in a connected state or a disconnected state with respect to the positive power source unit 631 or the negative power source unit 632. Each switching unit can be configured as a relay circuit in which, for example, two relay switches are connected in parallel, and one is turned on and the other is turned off by energization of the relay unit, whereby the switch contact is switched. Note that the charging controller 61 may be configured without the shielding conductor 76.

続いて第1〜第3の接地部41〜43について説明する。これら第1〜第3の接地部41〜43は同様に構成されており、その一例について、第1の接地部41を例にして図8に示す。第1〜第3の接地部41〜43は、第1〜第3の表面電位測定部51〜53と同様に構成された電極ユニット7を備えており、その電極棒71が第3の電極に相当する。この電極棒(第3の電極)71は、接地用の切替え部44により、接地状態と接地から開放された状態に切り替えて接続するように構成されている。   Next, the first to third grounding parts 41 to 43 will be described. These first to third grounding portions 41 to 43 are configured in the same manner, and an example thereof is shown in FIG. 8 by taking the first grounding portion 41 as an example. The 1st-3rd grounding parts 41-43 are equipped with the electrode unit 7 comprised similarly to the 1st-3rd surface potential measurement parts 51-53, The electrode stick | rod 71 serves as a 3rd electrode. Equivalent to. The electrode rod (third electrode) 71 is configured to be switched and connected between the ground state and the state released from the ground by the ground switching unit 44.

図9に示すように、処理液供給装置及び液処理モジュール100を備えた液処理装置にはコンピュータからなる制御部200が設けられ、この制御部200は図示しないプログラム格納部を有している。プログラム格納部には、後述の作用で説明する帯電量の制御及び、液処理モジュール100における液処理が行われるように命令が組まれた、例えばソフトウェアからなるプログラムが格納される。このプログラムが制御部200に読み出されることで、制御部200は液処理装置の各部に制御信号を出力する。それによって、バルブV1〜V7の開閉やポンプユニット32の駆動、電極棒71の接地や電極棒71への電圧印加、ノズル11〜13の移動、基板保持部110の駆動などの各動作が制御され、後述する帯電量の制御及び液処理が行われるようになっている。このプログラムは、例えばハードディスク、コンパクトディスク、マグネットオプティカルディスクまたはメモリーカードなどの記憶媒体に収納された状態でプログラム格納部に格納される。   As shown in FIG. 9, the liquid processing apparatus including the processing liquid supply apparatus and the liquid processing module 100 is provided with a control unit 200 including a computer, and the control unit 200 includes a program storage unit (not shown). The program storage unit stores, for example, a program made of software in which instructions are set so as to perform charge amount control, which will be described later, and liquid processing in the liquid processing module 100. By reading this program to the control unit 200, the control unit 200 outputs a control signal to each unit of the liquid processing apparatus. As a result, operations such as opening / closing of the valves V1 to V7, driving of the pump unit 32, grounding of the electrode rod 71, voltage application to the electrode rod 71, movement of the nozzles 11 to 13, and driving of the substrate holding unit 110 are controlled. The charge amount control and the liquid treatment described later are performed. This program is stored in the program storage unit while being stored in a storage medium such as a hard disk, a compact disk, a magnetic optical disk, or a memory card.

帯電量の制御に関して説明を続けると、図9に示すように、制御部200は、第1〜第3の測定部51〜53の表面電位測定部77にて検出された表面電位を同時に表示する表示部201を備えている。例えば表示部201は、表面電位に対応したアナログ出力値がモニターされるように構成されている。さらに制御部200は、例えば第1〜第3の測定部51〜53にて検出された表面電位の測定値毎に、この測定値が適正範囲であるかを判定し、測定された表面電位が適正範囲から外れたときにアラームを出力する機能を備えている。アラーム出力は、例えばアラーム音発生部、アラームランプなどのアラーム出力部202により行われる。表面電位の適正範囲は、例えば処理レシピ毎に、第1〜第3の測定部51〜53の夫々について設定される。   Continuing the description on the control of the charge amount, as shown in FIG. 9, the control unit 200 simultaneously displays the surface potential detected by the surface potential measurement unit 77 of the first to third measurement units 51 to 53. A display unit 201 is provided. For example, the display unit 201 is configured to monitor an analog output value corresponding to the surface potential. Further, the control unit 200 determines, for example, for each measurement value of the surface potential detected by the first to third measurement units 51 to 53 whether the measurement value is in an appropriate range, and the measured surface potential is It has a function to output an alarm when it falls outside the proper range. The alarm output is performed by an alarm output unit 202 such as an alarm sound generation unit or an alarm lamp. The appropriate range of the surface potential is set for each of the first to third measurement units 51 to 53 for each processing recipe, for example.

また制御部200は、処理レシピに応じて帯電量制御部61の補助切替え部62、電圧切替え用の切替え部633及び切替え部634の制御を行うように構成されている。具体的には、電圧切替え用の切替え部633は、第3の測定部53にて得られた表面電位の測定値と目標値とを比較して、測定値が目標値よりも正側に外れているときには負電源部632に接続し、測定値が目標値よりも負側に外れているときには正電源部631に接続するように制御される。さらに表面電位の目標値がゼロ電位のとき及び処理液の吐出を停止しているとき(処理液供給路2に処理液が流れていないとき)には、接続先が接地部に切り替わるように補助切替え部62が制御される。   The control unit 200 is configured to control the auxiliary switching unit 62 of the charge amount control unit 61, the switching unit 633 for voltage switching, and the switching unit 634 according to the processing recipe. Specifically, the voltage switching switching unit 633 compares the measured value of the surface potential obtained by the third measuring unit 53 with the target value, and the measured value deviates from the target value to the positive side. When the measured value is out of the target value, control is performed so as to connect to the positive power supply unit 631. Further, when the target value of the surface potential is zero potential and when the discharge of the processing liquid is stopped (when the processing liquid is not flowing in the processing liquid supply path 2), the connection destination is switched to the grounding portion. The switching unit 62 is controlled.

さらにまた表面電位の目標値がゼロ電位以外のときには、正電源部631または負電源部632に対して接続された状態と切り離された状態とが交互に繰り返されるように、例えばPWM(パルス幅変調)方式あるいはPID方式で切替え部634が制御される。   Furthermore, when the target value of the surface potential is other than zero potential, for example, PWM (pulse width modulation) is performed so that the state connected to the positive power supply unit 631 or the negative power supply unit 632 and the disconnected state are repeated alternately. ) Method or PID method, switching unit 634 is controlled.

ノズルからウエハWに対して処理液を供給する処理液供給プロセスは複数のステップを備えており、表面電位の目標値は、前記複数のステップの各々に応じて、予めレシピにて設定される。また切替え部634により正電源部631又は負電源部632に対して断続的に接続される周期は、予めレシピ毎に設定されている。これら目標値及び周期は、予め最適化を図る実験を実施することにより設定され、周期は吐出時の処理液の流速に応じて最適化されている。こうして表面電位の目標値がゼロ電位のときは、電極棒(第2の電極)71が接地側に接続され、目標値がゼロ電位以外のときは、電極棒(第2の電極)71が電圧印加部63に周期的に接続されると共に、表面電位の測定値に基づいて目標値に応じて正電源部631側あるいは負電源部632側に接続先が切り替わるように制御される。   The processing liquid supply process for supplying the processing liquid from the nozzle to the wafer W includes a plurality of steps, and the target value of the surface potential is set in advance in a recipe according to each of the plurality of steps. In addition, a cycle in which the switching unit 634 is intermittently connected to the positive power supply unit 631 or the negative power supply unit 632 is set in advance for each recipe. These target values and periods are set in advance by performing an experiment for optimization, and the periods are optimized according to the flow rate of the processing liquid during ejection. Thus, when the target value of the surface potential is zero potential, the electrode rod (second electrode) 71 is connected to the ground side, and when the target value is other than zero potential, the electrode rod (second electrode) 71 is a voltage. It is periodically connected to the application unit 63 and controlled so that the connection destination is switched to the positive power supply unit 631 side or the negative power supply unit 632 side according to the target value based on the measured value of the surface potential.

さらに第1〜第3の接地部41〜43では、処理レシピに応じて、第1〜第3の接地部41〜43が設けられた領域に処理液が流れているときに電極棒(第3の電極)71を接地し、前記領域に処理液が流れていないときには電極棒71を接地から開放された状態とするように接地用の切替え部44が制御される。反対に第1〜第3の接地部41〜43が設けられた領域に処理液が流れているときに電極棒(第3の電極)71を接地から開放された状態とし、前記領域に処理液が流れていないときには電極棒71を接地するように接地用の切替え部44を制御してもよい。   Furthermore, in the 1st-3rd grounding parts 41-43, when a process liquid is flowing into the area | region in which the 1st-3rd grounding parts 41-43 were provided according to a process recipe, it is an electrode stick (3rd. Electrode) 71 is grounded, and when the processing liquid does not flow in the region, the ground switching unit 44 is controlled so that the electrode rod 71 is released from the ground. On the contrary, when the processing liquid is flowing in the area where the first to third grounding portions 41 to 43 are provided, the electrode rod (third electrode) 71 is opened from the ground, and the processing liquid is placed in the area. The ground switching section 44 may be controlled so that the electrode rod 71 is grounded when no current flows.

続いて本実施形態の作用について説明する。処理液供給路2には、第1バルブV1を開くことにより、処理液供給源側から処理液が予め設定された圧力で供給される。先ず第1バルブV1、供給用バルブV3を開き、ポンプユニット32を作動させて、ポンプ321内に一定量の処理液を貯める。次いでバルブV5を開き、処理液をドレイン路322を介して排出しながら、ポンプ321内の処理液の泡抜きを行う。続いてバルブV5を閉じ、排出用バルブV4を開いて、ポンプユニット32を作動させる。処理液はフィルタ33を介して通流していき、例えばディスペンスバルブV6の上流側の処理液供給路2が処理液により満たされる。   Then, the effect | action of this embodiment is demonstrated. The processing liquid is supplied to the processing liquid supply path 2 from the processing liquid supply source side at a preset pressure by opening the first valve V1. First, the first valve V <b> 1 and the supply valve V <b> 3 are opened, the pump unit 32 is operated, and a certain amount of processing liquid is stored in the pump 321. Next, the valve V5 is opened, and the processing liquid in the pump 321 is removed while discharging the processing liquid through the drain passage 322. Subsequently, the valve V5 is closed, the discharge valve V4 is opened, and the pump unit 32 is operated. The processing liquid flows through the filter 33. For example, the processing liquid supply path 2 on the upstream side of the dispensing valve V6 is filled with the processing liquid.

次いでノズル11〜13から処理液を吐出するときには、ポンプユニット32を作動させた状態で、ディスペンスバルブV6を所定時間開く。これにより各液処理モジュール100では、ノズル11〜13からウエハWに対して所定時間処理液の吐出が行われ、液処理が実行される。ノズル11〜13から処理液を吐出しているときにも、第1バルブV1、供給用バルブV3、排出用バルブV4は開かれており、処理液供給路2に処理液供給源側から処理液が供給される状態である。ノズル11〜13から処理液の吐出を停止するときには、ディスペンスバルブV6を閉じる。   Next, when the processing liquid is discharged from the nozzles 11 to 13, the dispense valve V6 is opened for a predetermined time while the pump unit 32 is operated. Thereby, in each liquid processing module 100, the processing liquid is discharged from the nozzles 11 to 13 to the wafer W for a predetermined time, and the liquid processing is executed. Even when the processing liquid is discharged from the nozzles 11 to 13, the first valve V <b> 1, the supply valve V <b> 3, and the discharge valve V <b> 4 are open, and the processing liquid is supplied to the processing liquid supply path 2 from the processing liquid supply source side. Is in a state of being supplied. When stopping the discharge of the processing liquid from the nozzles 11 to 13, the dispense valve V6 is closed.

第1のバルブV1を開いて処理液供給源から処理液が供給されると、第1〜第3の測定部51〜53にて測定された表面電位が制御部200に出力されて表示部201に表示され、例えば表面電位(帯電量)に異常があるか否かが監視される。そして例えば表面電位が適正範囲から外れているときにはアラーム出力部202にてアラーム出力が行われ、作業者に帯電量の異常を報知する。   When the processing liquid is supplied from the processing liquid supply source by opening the first valve V1, the surface potential measured by the first to third measuring units 51 to 53 is output to the control unit 200 and displayed on the display unit 201. For example, it is monitored whether or not there is an abnormality in the surface potential (charge amount). For example, when the surface potential is out of the appropriate range, an alarm output is performed by the alarm output unit 202 to notify the operator of an abnormality in the charge amount.

例えば第1の測定部51は第1のバルブV1の上流側に設けられているので、処理液供給源側から表面電位の適正範囲を越える処理液が供給される場合には、アラームが出力される。また第2の測定部52は、フィルタ33と流量検出部34との間に設けられているので、例えばレギュレータ31、ポンプユニット32、フィルタ33の通過によって、処理液の帯電量が適正範囲を越えて大きくなる場合には、アラームが出力される。さらに第3の測定部53は、ノズル11、12、13の近傍に設けられているので、後述する帯電量の制御を行ってもウエハWに供給する処理液の帯電量が適正範囲を越えている場合には、アラームが出力される。   For example, since the first measurement unit 51 is provided on the upstream side of the first valve V1, an alarm is output when a processing liquid exceeding the appropriate range of the surface potential is supplied from the processing liquid supply source side. The In addition, since the second measurement unit 52 is provided between the filter 33 and the flow rate detection unit 34, for example, the charge amount of the processing liquid exceeds the appropriate range by passing through the regulator 31, the pump unit 32, and the filter 33. An alarm is output. Further, since the third measurement unit 53 is provided in the vicinity of the nozzles 11, 12, and 13, even if the charge amount described later is controlled, the charge amount of the processing liquid supplied to the wafer W exceeds the appropriate range. If so, an alarm is output.

続いて帯電量の制御について、処理液である現像液をウエハWに供給して現像処理を行う場合を例にして説明する。図10には、現像処理を行う液処理モジュール100を模式的に示している。液処理モジュール100には、例えば現像液の供給を行うための2種類のノズルが設けられており、一方は下方に吐出口を備えた直管状のノズルであり、他方は例えば20mm程度のスリット状の吐出口を備えた矩形状のノズルである。これらノズルは例えば共通の移動機構(図示せず)により、一体となってウエハWの直径方向に移動自在に構成され、例えば直管状のノズルが上述のノズル11、12、13に相当する。ここでは直管状のノズルを補助ノズル11、矩形状のノズルを主ノズル14と便宜上呼ぶこととして説明を続ける。補助ノズル11、主ノズル14に対しては、夫々別系統の処理液供給装置により処理液である現像液が供給されるように構成されている。   Subsequently, the control of the charge amount will be described by taking as an example a case in which a developing solution as a processing solution is supplied to the wafer W and development processing is performed. FIG. 10 schematically shows a liquid processing module 100 that performs development processing. The liquid processing module 100 is provided with, for example, two types of nozzles for supplying a developing solution, one is a straight tubular nozzle having a discharge port below, and the other is, for example, a slit shape of about 20 mm. This is a rectangular nozzle provided with a discharge port. These nozzles are configured to move together in the diameter direction of the wafer W by, for example, a common moving mechanism (not shown). For example, straight tubular nozzles correspond to the nozzles 11, 12, and 13 described above. Here, the description will be continued assuming that the straight nozzle is called the auxiliary nozzle 11 and the rectangular nozzle is called the main nozzle 14 for convenience. The auxiliary nozzle 11 and the main nozzle 14 are each configured to be supplied with a developing solution as a processing solution by a separate processing solution supply device.

先ずウエハWを回転させた状態で、図10には示されていないノズルからウエハWの略中央にプリウェット用の液体例えば純水を供給する。このステップでは、補助ノズル11及び主ノズル14の夫々の処理液供給路2では、現像液が各ノズルから吐出していない状態である。このため各処理液供給路2では、例えば第1〜第3の接地部41〜43の電極棒(第3の電極)71は接地から開放された状態とし、帯電量制御部61の電極棒(第2の電極)71は接地された状態に設定する。   First, in a state where the wafer W is rotated, a prewetting liquid such as pure water is supplied to a substantially center of the wafer W from a nozzle not shown in FIG. In this step, the developing solution is not discharged from each nozzle in the processing solution supply paths 2 of the auxiliary nozzle 11 and the main nozzle 14. Therefore, in each treatment liquid supply path 2, for example, the electrode rods (third electrodes) 71 of the first to third grounding portions 41 to 43 are opened from the ground, and the electrode rods ( The second electrode 71 is set to be grounded.

次いで図10(a)に示すように、補助ノズル11の処理液供給路2では、表面電位の目標値をマイナスの電位(−E1V)に設定し、ウエハWを回転数R1で回転させた状態で、補助ノズル11からウエハWの略中央に現像液を供給する。このステップでは、現像液を吐出させているので、例えば第1〜第3の接地部41〜43では、図8に示す切替え部44により電極棒(第3の電極)71を接地された状態にする。   Next, as shown in FIG. 10A, in the processing liquid supply path 2 of the auxiliary nozzle 11, the target value of the surface potential is set to a negative potential (−E1V), and the wafer W is rotated at the rotational speed R1. Thus, the developing solution is supplied from the auxiliary nozzle 11 to the approximate center of the wafer W. In this step, since the developer is discharged, for example, in the first to third grounding portions 41 to 43, the electrode bar (third electrode) 71 is grounded by the switching portion 44 shown in FIG. To do.

また表面電位の目標値がマイナスであることから、帯電量制御部61では、まず補助切替え部62により電極棒(第2の電極)71の接続先を電圧印加部63側に切り替えると共に、電圧印加用の切替え部633を負電源部632側に切替える。そして切替え部634により、周期的に接続された状態と切り離された状態とを繰り返した状態において第3の測定部53にて得た表面電位の測定値と目標値とを比較する。測定値が目標値よりも負側に外れていれば、電圧印加用の切替え部633を正電源部631側に切替え、測定値が目標値よりも正側に外れていれば、電圧印加用の切替え部633を負電源部632側に切替える。   Since the target value of the surface potential is negative, the charge amount control unit 61 first switches the connection destination of the electrode rod (second electrode) 71 to the voltage application unit 63 side by the auxiliary switching unit 62 and applies the voltage application. Switching unit 633 is switched to the negative power source unit 632 side. Then, the switching unit 634 compares the measured value of the surface potential obtained by the third measuring unit 53 with the target value in a state where the periodically connected state and the disconnected state are repeated. If the measured value deviates from the target value to the negative side, the voltage application switching unit 633 is switched to the positive power supply unit 631 side, and if the measured value deviates from the target value to the positive side, the voltage application unit The switching unit 633 is switched to the negative power supply unit 632 side.

この場合、表面電位の測定値と目標値との差分に応じて切替え部634のオン、オフにおけるデューティー比(オン時間とオフ時間との合計に対するオン時間の比率)を調整する。例えば表面電位の負の目標値よりも測定値が低い(絶対値が大きい)場合において、表面電位の測定値と目標値との差分が大きくなるほどデューティー比を大きくして電極棒71に供給する例えば正電荷量を増大させ、表面電位の測定値と目標値との差分が小さくなるほどデューティー比を小さくして電極棒71に供給する例えば正電荷量を減少させる。また測定値が目標値に一致しているときには、デューティー比をゼロにした状態、すなわち切替え部634を切り離された状態を維持する。こうして表面電位の測定値が目標値に近づこうとする制御動作が行われる。なお目標値は、例えば目標とする電圧値に対して許容範囲を持たせた電圧範囲であってもよい。
またこのようなPWM制御に限らず、PID制御などの手法で正電荷または負電荷を電極棒71に供給するようにしてもよい。
In this case, the duty ratio (the ratio of the on time to the sum of the on time and the off time) of the switching unit 634 is adjusted according to the difference between the measured value of the surface potential and the target value. For example, when the measured value is lower than the negative target value of the surface potential (the absolute value is large), the duty ratio is increased and supplied to the electrode rod 71 as the difference between the measured value of the surface potential and the target value increases. The positive charge amount is increased, and for example, the positive charge amount supplied to the electrode rod 71 is decreased by decreasing the duty ratio as the difference between the measured value of the surface potential and the target value decreases. When the measured value matches the target value, the state where the duty ratio is zero, that is, the state where the switching unit 634 is disconnected is maintained. Thus, a control operation is performed in which the measured value of the surface potential approaches the target value. The target value may be a voltage range having an allowable range with respect to the target voltage value, for example.
In addition to such PWM control, positive charge or negative charge may be supplied to the electrode rod 71 by a technique such as PID control.

続いてウエハWの回転数をR2に上昇させて、この回転数R2に応じた表面電位の目標値(−E2V)を設定し、補助ノズル11からウエハWの略中央に現像液を供給する。回転数が大きくなると、ウエハW表面における現像液の摩擦力が大きくなって現像液の帯電量が変化するため、回転数に応じて表面電位の目標値が設定される。実際には回転数は段階的に上昇するため、その回転数毎に表面電位の目標値が設定される。   Subsequently, the rotational speed of the wafer W is increased to R2, a target value (−E2V) of the surface potential corresponding to the rotational speed R2 is set, and the developing solution is supplied from the auxiliary nozzle 11 to the approximate center of the wafer W. When the number of rotations increases, the frictional force of the developer on the surface of the wafer W increases and the charge amount of the developer changes, so the target value of the surface potential is set according to the number of rotations. Actually, since the rotational speed rises stepwise, a target value of the surface potential is set for each rotational speed.

次に補助ノズル11からの現像液の吐出を停止して、補助ノズル11及び主ノズル14をウエハWの周縁部側に移動させる。この後図10(b)、(c)に示すように、ウエハWを回転させた状態で、主ノズル14を例えばウエハWの直径に沿って周縁部から中央部に移動させながら、現像液を吐出させる。表面電位の目標値は周縁部側ではプラスの電位(+E3V)、中央部ではゼロ電位(0V)に夫々設定され、ウエハW上の位置に応じて表面電位の目標値が+E3Vから0Vまで段階的に低下するように設定される。この場合も、目標値がゼロ電位ではないときには、既述のように、表面電位の測定値に基づいて、目標値に応じて電極棒(第2の電極71)に正電圧又は負電圧を印加する。また目標値をゼロ電位に設定したときには、補助切替え部62により電極棒(第2の電極)71の接続先を接地部に切り替える。   Next, the discharge of the developer from the auxiliary nozzle 11 is stopped, and the auxiliary nozzle 11 and the main nozzle 14 are moved to the peripheral edge side of the wafer W. Thereafter, as shown in FIGS. 10B and 10C, while the wafer W is rotated, the main nozzle 14 is moved along the diameter of the wafer W, for example, from the peripheral portion to the central portion, and the developer is supplied. Discharge. The target value of the surface potential is set to a positive potential (+ E3V) at the peripheral edge side and zero potential (0V) at the center part, and the target value of the surface potential is stepped from + E3V to 0V depending on the position on the wafer W. Is set to decrease. Also in this case, when the target value is not zero potential, a positive voltage or a negative voltage is applied to the electrode bar (second electrode 71) according to the target value based on the measured value of the surface potential as described above. To do. When the target value is set to zero potential, the auxiliary switching unit 62 switches the connection destination of the electrode rod (second electrode) 71 to the grounding unit.

次いで主ノズル14からの現像液の吐出を停止して、補助ノズル11及び主ノズル14をウエハWの周縁部側に退避させる。続いてウエハWを回転させた状態で、ウエハWにリンス液である例えば純水を供給して洗浄を行った後、ウエハWを回転させた状態で、ウエハWに窒素ガスを供給して乾燥させ、ウエハWの回転を停止する。以上のステップにおいて、補助ノズル11及び主ノズル14では、処理液の吐出を停止しているときは、夫々の処理液供給路2において、第1〜第3の接地部41〜43の電極棒(第3の電極)71は接地から開放され、帯電量制御部61の電極棒(第2の電極)71は接地された状態に夫々設定する。   Next, the discharge of the developer from the main nozzle 14 is stopped, and the auxiliary nozzle 11 and the main nozzle 14 are retracted to the peripheral edge side of the wafer W. Subsequently, after the wafer W is rotated, cleaning is performed by supplying, for example, pure water as a rinse liquid to the wafer W, and then the wafer W is rotated by supplying nitrogen gas to the wafer W for drying. The rotation of the wafer W is stopped. In the above steps, when the discharge of the processing liquid is stopped at the auxiliary nozzle 11 and the main nozzle 14, the electrode rods (first to third grounding portions 41 to 43) in the respective processing liquid supply paths 2 ( The third electrode 71 is released from the ground, and the electrode rod (second electrode) 71 of the charge amount control unit 61 is set to be grounded.

上述の実施形態によれば、絶縁性の流路部材により形成された処理液供給路2を介して処理液をウエハWに供給するにあたり、処理液及び流路部材の各々の帯電量の和に対応する電荷量を導電体の表面電位として測定している。このため処理液供給路2内の処理液及び流路部材の帯電状態を把握することができるので、表面電位が大き過ぎる場合や表面電位が急減に増大した場合にはアラーム出力部202より所定のアラームを出力するなど、適切な対応をとることができる。   According to the above-described embodiment, when supplying the processing liquid to the wafer W via the processing liquid supply path 2 formed by the insulating flow path member, the charge amount of each of the processing liquid and the flow path member is summed. The corresponding charge amount is measured as the surface potential of the conductor. For this reason, the charged state of the processing liquid and the flow path member in the processing liquid supply path 2 can be grasped. Therefore, when the surface potential is too large or the surface potential increases rapidly, a predetermined value is output from the alarm output unit 202. Appropriate measures can be taken, such as outputting an alarm.

また処理液供給路2に処理液が通流している状態で表面電位を測定し、表示することによって、通流により変化する処理液の帯電状態をリアルタイムで把握することができる。処理液供給路2を構成するフッ素樹脂は応力が加わった状態で有機溶剤と接触するとクラックが生じやすい。一方、ネガ型レジストの適用が増え、現像液として体積抵抗率が大きい酢酸ブチルが用いられる傾向にあるが、体積抵抗率が高いと、流路部材との摩擦による静電気が急激に増大し、蓄積する。このためレギュレータ31などの圧力損失が大きい機器では、微小クラック部分へ静電気電荷が集中し、フッ素樹脂が破壊される事象も発生している。   Further, by measuring and displaying the surface potential while the processing liquid is flowing through the processing liquid supply path 2, it is possible to grasp in real time the charged state of the processing liquid that changes due to the flow. When the fluororesin constituting the treatment liquid supply path 2 comes into contact with an organic solvent in a stressed state, cracks are likely to occur. On the other hand, the application of negative resist is increasing, and butyl acetate having a large volume resistivity tends to be used as a developer. However, if the volume resistivity is high, static electricity due to friction with the flow path member increases rapidly and accumulates. To do. For this reason, in devices with a large pressure loss such as the regulator 31, an electrostatic charge is concentrated on the minute crack portion, and the phenomenon that the fluororesin is destroyed also occurs.

また処理液を滞留させずに循環させる手法が主流になりつつあり、処理液に電荷が蓄積し、帯電量の増加が懸念される。このようなことから、処理液供給路2において、処理液の表面電位を把握することは有効である。また処理液供給源から複数の処理液供給装置に処理液を供給する場合には、各処理液供給装置毎に第1バルブV1の上流側に第1の測定部51が設けられる。このため処理液供給装置間における処理液の帯電量のばらつきの有無も把握できる。   Further, a method of circulating the processing liquid without staying is becoming mainstream, and electric charges are accumulated in the processing liquid, and there is a concern about an increase in the charge amount. For this reason, it is effective to grasp the surface potential of the processing liquid in the processing liquid supply path 2. When supplying the processing liquid from the processing liquid supply source to the plurality of processing liquid supply apparatuses, the first measurement unit 51 is provided on the upstream side of the first valve V1 for each processing liquid supply apparatus. For this reason, the presence or absence of variation in the charge amount of the processing liquid between the processing liquid supply apparatuses can also be grasped.

さらにまた第2の測定部52を設けるにより、フィルタ33の目詰まりや気泡の混入などの異常を検知することができる。図11は、処理液供給路2におけるフィルタ33の上流側直近位置(FilIN)及び下流側直近位置(FilOUT)の表面電位と時間との関係を示す特性図である。図11(a)は正常時、図11(b)は気泡が数十個混入した異常時のデータを夫々示し、図中点線にてFilIN、実線にてFilOUTのデータを夫々プロットしている。この図に示すように、ノズル11、12、13から処理液を開始すると、表面電位が大きく変化するが、フィルタ33に気泡が混入すると、FilIN、FilOUT共に、表面電位に小さなピークが発生することが分かる。このようにフィルタ33近傍の表面電位を把握することにより、フィルタ33の異常を検知することができる。   Furthermore, by providing the second measuring unit 52, it is possible to detect abnormalities such as clogging of the filter 33 and mixing of bubbles. FIG. 11 is a characteristic diagram showing the relationship between the surface potential at the upstream nearest position (FilIN) and the downstream nearest position (FilOUT) of the filter 33 in the processing liquid supply path 2 and time. FIG. 11 (a) shows data at the normal time, and FIG. 11 (b) shows data at the time of abnormality in which several tens of bubbles are mixed. The data of FilIN is plotted with a dotted line and the data of FilOUT is plotted with a solid line. As shown in this figure, when the processing liquid is started from the nozzles 11, 12, and 13, the surface potential changes greatly. However, when bubbles are mixed into the filter 33, a small peak occurs in the surface potential for both FilIN and FilOUT. I understand. Thus, by grasping the surface potential in the vicinity of the filter 33, an abnormality of the filter 33 can be detected.

さらに本発明では第3の測定部53の表面電位の測定値に基づいて、電極棒(第2の電極)71に電圧を印加しているので、電極棒71を介して処理液及び流路部材の帯電量を制御することができる。これにより帯電量や流速が大き過ぎて接地だけでは十分に除電できない場合に、確実に除電を行うことができる。また帯電量が大きくなり過ぎることが原因となる、流路部材の静電破壊によるリークや発火などの事故の発生を抑制できる上、流量検出部34など計測機器の精度の低下を抑えることができる。また表面電位の測定値と目標値とに基づいて、電極棒(第2の電極)71に正電圧又は負電圧を印加しているので、適切な制御を容易に行うことができ、速やかに表面電位を目標値に近付けることができる。さらに帯電量制御部61に補助切替え部62や切替え部634を設けることにより、電極棒(第2の電極)71を接地したり、断続的に電圧印加部63に接続することができ、表面電位の目標値に合わせた精度の高い制御を容易に行うことができる。   Furthermore, in the present invention, since the voltage is applied to the electrode bar (second electrode) 71 based on the measured value of the surface potential of the third measuring unit 53, the processing liquid and the flow path member are passed through the electrode bar 71. Can be controlled. As a result, when the charge amount and flow velocity are too large and the static electricity cannot be sufficiently removed by grounding alone, the static electricity can be reliably removed. In addition, it is possible to suppress the occurrence of accidents such as leakage or ignition due to electrostatic breakdown of the flow path member, which is caused by the amount of charge being excessively large, and it is possible to suppress a decrease in accuracy of the measuring device such as the flow rate detection unit 34. . Moreover, since a positive voltage or a negative voltage is applied to the electrode rod (second electrode) 71 based on the measured value and the target value of the surface potential, appropriate control can be easily performed and the surface can be quickly The potential can be brought close to the target value. Further, by providing the auxiliary amount switching unit 62 and the switching unit 634 in the charge amount control unit 61, the electrode rod (second electrode) 71 can be grounded or intermittently connected to the voltage application unit 63, and the surface potential can be increased. It is possible to easily perform highly accurate control in accordance with the target value.

このように処理液の帯電量の制御を行うことができることから、液処理時におけるウエハWの面内の電位分布を改善することができる。絶縁性の処理液は流動帯電によって常にプラスに帯電しており、ウエハWを回転させた状態で処理液を供給すると、ウエハW上の薄膜は、中心部が極端にマイナスに帯電し、外周へ行くほどゼロ電位に近い電位分布を有する。このようにウエハW面内において電位がばらつくと、例えばウエハ上の配線パターンの寸法を検査機(SEM:走査型電子顕微鏡)で測定する際に、像がぼやけて測定ができなくなったり、デバイス特性のばらつきなどが発生したり、リンス残渣が部分的に残りやすくなる。また処理液が帯電していると、ノズル11〜13から吐出した処理液を介して電流が流れるため、処理液の滴下位置近傍で薄膜が剥がれ、回路の静電破壊、吐出軌道の曲がり、吐出液の跳ねなどが発生するおそれがあるが、処理液の帯電量を制御することにより、これらの事象の発生が抑えられる。   Since the charge amount of the processing liquid can be controlled in this way, the potential distribution in the surface of the wafer W during the liquid processing can be improved. The insulating processing liquid is always positively charged by the flow charge, and when the processing liquid is supplied while the wafer W is rotated, the central portion of the thin film on the wafer W is extremely negatively charged to the outer periphery. The potential distribution is closer to zero potential as it goes. If the potential varies in the wafer W plane in this way, for example, when the dimensions of the wiring pattern on the wafer are measured with an inspection machine (SEM: scanning electron microscope), the image becomes blurred and the device characteristics cannot be measured. Variations or the like, and rinse residue is likely to remain partially. When the processing liquid is charged, current flows through the processing liquid discharged from the nozzles 11 to 13, so that the thin film is peeled near the dropping position of the processing liquid, electrostatic breakdown of the circuit, bending of the discharge trajectory, and discharge. Although liquid splashing or the like may occur, the occurrence of these events can be suppressed by controlling the charge amount of the processing liquid.

また第3の測定部53の電極棒(第1の電極)71及び帯電量制御部61の電極棒(第2の電極)71は、ノズル11〜13の吐出口から大きな圧損部を介さず5000mm以内の位置に設けられているので、帯電量を目標値に近付けた状態で処理液をノズル11〜13から吐出させることができ、良好なプロセス性能を確保することができる。さらに複数のノズル11〜13を設ける場合であっても、各ノズル11〜13から吐出される処理液の帯電量を揃えることができる。さらにまた帯電量制御部61の下流側に第3の測定部53を設けてノズル11〜13の吐出口の直前の表面電位を測定しているので、仮に帯電量制御部61において帯電量を制御しても表面電位が適正範囲から外れるなどの帯電量の異常を把握することができる。   Further, the electrode rod (first electrode) 71 of the third measuring unit 53 and the electrode rod (second electrode) 71 of the charge amount control unit 61 are 5000 mm from the discharge ports of the nozzles 11 to 13 without passing through a large pressure loss part. Therefore, the processing liquid can be ejected from the nozzles 11 to 13 with the charge amount approaching the target value, and good process performance can be ensured. Further, even when a plurality of nozzles 11 to 13 are provided, the charge amount of the processing liquid discharged from each nozzle 11 to 13 can be made uniform. Furthermore, since the third measurement unit 53 is provided on the downstream side of the charge amount control unit 61 to measure the surface potential immediately before the discharge ports of the nozzles 11 to 13, the charge amount control unit 61 temporarily controls the charge amount. Even in this case, it is possible to grasp an abnormality in the charge amount such as the surface potential deviating from the appropriate range.

さらに第1〜第3の接地部41〜43を設けて接地することにより、処理液供給装置のさまざまな圧損部において、処理液種や通流条件などで帯電量が大きくなる場合があるとしても、流体機器が保護される。また接地用の切替え部44を設けているので、処理液が処理液供給路2を通流するときだけ、若しくは処理液が処理液供給路2を通流しないときだけ接地する制御が可能となり、必要なときだけ効率的に除電を行うことができる。   Further, by providing the first to third grounding portions 41 to 43 and grounding them, the charge amount may increase depending on the type of processing liquid and flow conditions in various pressure loss portions of the processing liquid supply apparatus. , Fluid equipment is protected. In addition, since the switching unit 44 for grounding is provided, it is possible to control to ground only when the processing liquid flows through the processing liquid supply path 2 or only when the processing liquid does not flow through the processing liquid supply path 2. Charge removal can be performed efficiently only when necessary.

また第1〜第3の接地部41〜43、第1〜第3の測定部51〜53、帯電量制御部61は共通の電極ユニット7を備え、処理液と流路部材に接触する電極をなす電極棒71は同様に構成されている。そしてこの電極棒71を介して接地、表面電位の測定、電圧印加による帯電量の制御を行っているので、帯電量制御のための設計や製造が容易となる。また電極ユニット7は流路部材に対して着脱自在に設けられているので、接地部や測定部、帯電制御部を任意の場所に容易に設置することができる。また電極棒71は、金属に導電性材料をコーティングすることにより形成されているため、メタルコンタミネーションの発生を抑えながら、処理液及び流路部材の接地による除電や、表面電位の測定や帯電量の制御を行うことができる。   The first to third grounding parts 41 to 43, the first to third measuring parts 51 to 53, and the charge amount control part 61 are provided with a common electrode unit 7, and electrodes that contact the processing liquid and the flow path member are provided. The formed electrode rod 71 is similarly configured. Since the grounding, the measurement of the surface potential, and the charge amount control by voltage application are performed via the electrode rod 71, the design and manufacture for the charge amount control are facilitated. In addition, since the electrode unit 7 is detachably attached to the flow path member, the grounding unit, the measurement unit, and the charging control unit can be easily installed at an arbitrary place. In addition, since the electrode rod 71 is formed by coating a metal with a conductive material, while suppressing the occurrence of metal contamination, the charge removal by grounding the treatment liquid and the channel member, the measurement of the surface potential, and the charge amount Can be controlled.

以上において、処理液供給装置では、装置の立ち上げ時やメンテナンス時、処理液の交換時などに、例えば第1の電極を処理液及び流路部材に接触するように設けて表面電位を測定して表示し、処理液及び流路部材の帯電状態を把握するようにしてもよい。これにより処理液及び流路部材の接地や、電圧印加による帯電量制御の必要な個所を把握することができる。   As described above, in the processing liquid supply apparatus, for example, the first electrode is provided so as to be in contact with the processing liquid and the flow path member at the time of start-up, maintenance, or replacement of the processing liquid, and the surface potential is measured. May be displayed, and the charged state of the treatment liquid and the flow path member may be grasped. As a result, it is possible to grasp the ground necessary for the treatment liquid and the flow path member and the portion where the charge amount control by voltage application is necessary.

また処理液は現像液には限られない。例えば本発明者は洗浄時のリンス液(純水)の帯電量とウエハW上の残渣数には相関関係があることを把握しており、リンス液の除電にも有効であることを確認している。リンス処理時の帯電量の制御の一例について示すと、例えばリンス液である純水は、ウエハWに現像液を供給する前のプリウェットにも用いられるが、このプリウェット処理では表面電位の目標値をゼロ電位に設定する。次いで現像液供給後の洗浄処理では、表面電位の目標値を−E4Vに設定し、ウエハWを回転させた状態でリンス液をウエハWの略中心に供給する。この後、リンス液と乾燥用の窒素ガスとをウエハWに供給するが、このときには表面電位の目標値をゼロ電位に設定する。処理液がリンス液である場合においても、処理液供給路2に処理液が通流していない(ノズルから処理液が吐出していない)とき、処理液供給路2に処理液が通流しているとき、目標値がゼロ電位のとき、ゼロ電位以外のときの制御は、上述の例と同様である。   Further, the processing solution is not limited to the developing solution. For example, the present inventor has known that there is a correlation between the amount of charge of the rinse liquid (pure water) at the time of cleaning and the number of residues on the wafer W, and has confirmed that it is also effective for static elimination of the rinse liquid. ing. As an example of controlling the charge amount during the rinsing process, for example, pure water, which is a rinsing liquid, is also used for pre-wetting before supplying the developer to the wafer W. Set the value to zero potential. Next, in the cleaning process after supplying the developing solution, the target value of the surface potential is set to −E4V, and the rinsing solution is supplied to the approximate center of the wafer W while the wafer W is rotated. Thereafter, the rinsing liquid and drying nitrogen gas are supplied to the wafer W. At this time, the target value of the surface potential is set to zero potential. Even when the processing liquid is a rinsing liquid, the processing liquid flows through the processing liquid supply path 2 when the processing liquid does not flow through the processing liquid supply path 2 (no processing liquid is discharged from the nozzle). When the target value is zero potential, the control when the target value is other than zero potential is the same as the above example.

以上においては、第1〜第3の電極の構成は上述の実施形態に限らず、処理液と接触する構成であればよく、表面電位測定部では、第1の電極よりなる導電体の表面電位を測定するものであればよい。また電圧印加部63は必ずしも切替え部634を備える必要はなく、第2の電極を補助切替え部62を介して電圧印加部63に接続するようにしてもよい。この場合には、表面電位の測定値と目標値とを比較するときや、測定値が目標値と一致したときには、補助切替え部62により電圧印加部63を切り離した状態に設定する。また第3の電極をなす電極棒71は、接地用の切替え部44を設けずに、直接接地状態に接続するようにしてもよい。さらに表面電位を表示する表示部は、第1〜第3の測定部51〜53の近傍に設けられていてもよいし、第1の電極、第2の電極及び第3の電極の少なくとも一つが、導電性のフッ素樹脂によりコーティングされていればよい。   In the above, the configuration of the first to third electrodes is not limited to the above-described embodiment, and may be any configuration that contacts the treatment liquid. In the surface potential measurement unit, the surface potential of the conductor made of the first electrode What is necessary is just to measure. The voltage application unit 63 does not necessarily include the switching unit 634, and the second electrode may be connected to the voltage application unit 63 via the auxiliary switching unit 62. In this case, when the measured value of the surface potential is compared with the target value, or when the measured value matches the target value, the auxiliary switching unit 62 sets the voltage applying unit 63 in a disconnected state. Further, the electrode rod 71 constituting the third electrode may be directly connected to the grounded state without providing the ground switching portion 44. Further, the display unit for displaying the surface potential may be provided in the vicinity of the first to third measurement units 51 to 53, and at least one of the first electrode, the second electrode, and the third electrode is provided. As long as it is coated with a conductive fluororesin.

さらに第1の測定部51及び第2の測定部52に対応する帯電量制御部61を夫々設け、第1の測定部51及び第2の測定部52の夫々の表面電位の測定値に基づいて、対応する第2の電極をなす電極棒71に電圧を印加して帯電量を制御してもよい。さらにまた帯電制御部61に表面電位測定部77を設ける構成としてもよい。この場合には、第1の電極は第2の電極を兼用し、第1の電極の電位に対応する導電体の表面電位を測定し、第1の電極に電圧を印加して帯電量を制御することになる。   Furthermore, a charge amount control unit 61 corresponding to each of the first measurement unit 51 and the second measurement unit 52 is provided, and based on the measured values of the surface potentials of the first measurement unit 51 and the second measurement unit 52, respectively. Alternatively, the charge amount may be controlled by applying a voltage to the electrode rod 71 forming the corresponding second electrode. Furthermore, the charge control unit 61 may be provided with a surface potential measurement unit 77. In this case, the first electrode also serves as the second electrode, measures the surface potential of the conductor corresponding to the potential of the first electrode, and controls the amount of charge by applying a voltage to the first electrode. Will do.

さらにまた上述の処理液供給路2では、表面電位の測定を行う測定部と、表面電位を表示する表示部と、電極棒を接地状態に接続する接地部と、電極棒に電圧印加を行って帯電量の制御を行う帯電量制御部と、を備えているが、少なくとも測定部を備える構成であればよい。従って測定部、表示部及び接地部のみを備える構成であってもよいし、測定部、表示部及び帯電量制御部のみを備える構成であってもよい。さらにまた表面電位の測定を行う測定部、接地部、帯電量制御部の設置個所及び個数は上述の例には限らない。上述に説明した塗布、現像装置に限定されず、例えば洗浄装置などの他の液処理装置、エッチング装置、成膜装置、基板貼り合わせ装置、露光装置、検査装置などに用いてもよい。また半導体製造工程とは、半導体ウエハに半導体装置を形成するための工程に限らず、ガラス基板にトランジスタを形成して液晶パネルを製造するための工程であってもよい。   Furthermore, in the treatment liquid supply path 2 described above, a measurement unit for measuring the surface potential, a display unit for displaying the surface potential, a ground unit for connecting the electrode rod to the ground state, and applying voltage to the electrode rod. The charge amount control unit that controls the charge amount is provided, but any configuration including at least a measurement unit may be used. Accordingly, a configuration including only the measurement unit, the display unit, and the grounding unit may be employed, or a configuration including only the measurement unit, the display unit, and the charge amount control unit may be employed. Furthermore, the location and number of the measurement unit, the grounding unit, and the charge amount control unit that measure the surface potential are not limited to the above example. The present invention is not limited to the coating and developing apparatus described above, and may be used for other liquid processing apparatuses such as a cleaning apparatus, etching apparatus, film forming apparatus, substrate bonding apparatus, exposure apparatus, and inspection apparatus. The semiconductor manufacturing process is not limited to a process for forming a semiconductor device on a semiconductor wafer, but may be a process for manufacturing a liquid crystal panel by forming a transistor on a glass substrate.

W 半導体ウエハ
100 液処理モジュール
11〜13 ノズル
2 処理液供給路
41 第1の接地部
42 第2の接地部
43 第3の接地部
51 第1の測定部
52 第2の測定部
53 第3の測定部
61 帯電量制御部
62 補助切替え部
63 電圧印加部
631 正電源部
632 負電源部
633 電圧印加用の切替え部
64 切替え部
W Semiconductor wafer 100 Liquid processing modules 11 to 13 Nozzle 2 Processing liquid supply path 41 First grounding part 42 Second grounding part 43 Third grounding part 51 First measurement part 52 Second measurement part 53 Third Measurement unit 61 Charge amount control unit 62 Auxiliary switching unit 63 Voltage application unit 631 Positive power supply unit 632 Negative power supply unit 633 Voltage application switching unit 64 Switching unit

Claims (14)

ノズルから基板に対して処理液を供給する処理液供給装置において、
前記ノズルに処理液を供給するための処理液供給路を形成する絶縁性の流路部材と、
前記処理液供給路の処理液に接触した第1の電極と、
前記第1の電極の表面電位を測定する表面電位測定部と、を備えたことを特徴とする処理液供給装置。
In a processing liquid supply apparatus for supplying a processing liquid from a nozzle to a substrate,
An insulating channel member that forms a processing liquid supply path for supplying a processing liquid to the nozzle;
A first electrode in contact with the treatment liquid in the treatment liquid supply path;
A treatment liquid supply apparatus comprising: a surface potential measurement unit that measures a surface potential of the first electrode.
前記表面電位測定部にて測定された表面電位を表示する表示部を備えていることを特徴とする請求項1記載の処理液供給装置。   The processing liquid supply apparatus according to claim 1, further comprising a display unit that displays the surface potential measured by the surface potential measuring unit. 前記表面電位測定部で測定された表面電位が適正範囲から外れたときにアラームを出力するアラーム出力部を備えていることを特徴とする請求項1又は2記載の処理液供給装置。   The treatment liquid supply apparatus according to claim 1, further comprising an alarm output unit that outputs an alarm when the surface potential measured by the surface potential measurement unit is out of an appropriate range. 前記処理液供給路の処理液に接触した第2の電極と、
前記表面電位測定部にて得られた表面電位の測定値に基づいて前記第2の電極に電圧を印加して前記処理液の帯電量を制御するための電圧印加部と、を備えたことを特徴とする請求項1ないし3のいずれか一項に記載の処理液供給装置。
A second electrode in contact with the processing liquid in the processing liquid supply path;
A voltage application unit for applying a voltage to the second electrode based on a measurement value of the surface potential obtained by the surface potential measurement unit to control a charge amount of the treatment liquid. The processing liquid supply apparatus according to any one of claims 1 to 3, wherein
前記電圧印加部は、負電圧印加用の負電源部と、正電圧印加用の正電源部と、前記測定値が目標値よりも正側に外れているときには前記負電源部を前記第2の電極に接続し、前記測定値が目標値よりも負側に外れているときには前記正電源を前記第2の電極に接続する電圧切替え用の切替え部と、を備えていることを特徴とする請求項1ないし4のいずれか一項に記載の処理液供給装置。   The voltage application unit includes a negative power supply unit for applying a negative voltage, a positive power supply unit for applying a positive voltage, and the negative power supply unit when the measured value is more positive than a target value. And a switching unit for voltage switching for connecting the positive power source to the second electrode when the measured value is more negative than a target value. Item 5. The processing liquid supply apparatus according to any one of Items 1 to 4. 前記第2の電極を前記電圧印加部と接地部との間で接続先を切替えるための補助切替え部が設けられ、
前記補助切替え部は、前記目標値がゼロ電位の時には、前記第2の電極の接続先が接地部に切替わるように構成されていることを特徴とする請求項5記載の処理液供給装置。
An auxiliary switching unit for switching the connection destination of the second electrode between the voltage application unit and the ground unit is provided,
The processing liquid supply apparatus according to claim 5, wherein the auxiliary switching unit is configured to switch the connection destination of the second electrode to the grounding unit when the target value is zero potential.
前記電圧印加部は、前記目標値がゼロ電位以外の時には、前記第2の電極が前記負電源部または正電源部に対して接続された状態と切り離された状態とが交互に繰り返されるように構成されていることを特徴とする請求項5または6に記載の処理液供給装置。   The voltage application unit is configured such that when the target value is other than zero potential, the state where the second electrode is connected to the negative power source unit or the positive power source unit and the state where the second electrode is disconnected are alternately repeated. The processing liquid supply apparatus according to claim 5, wherein the processing liquid supply apparatus is configured. 前記ノズルから基板に対して処理液を供給する処理液供給プロセスが複数のステップを備え、
前記目標値は、前記複数のステップの各々に応じて決められていることを特徴とする請求項5ないし7のいずれか一項に記載の処理液供給装置。
A treatment liquid supply process for supplying a treatment liquid from the nozzle to the substrate includes a plurality of steps.
The processing liquid supply apparatus according to claim 5, wherein the target value is determined according to each of the plurality of steps.
前記処理液供給路の処理液に接触した第3の電極と、
前記処理液供給路に処理液が流れているとき及び流れていないときの一方において、前記第3の電極を、接地された状態とし、前記処理液供給路に処理液が流れているとき及び流れていないときの他方において前記第3の電極を接地から開放された状態とするための接地用の切替え部と、を備えたことを特徴とする請求項1ないし8のいずれか一項に記載の処理液供給装置。
A third electrode in contact with the processing liquid in the processing liquid supply path;
When the processing liquid is flowing in the processing liquid supply path and when it is not flowing, the third electrode is grounded, and the processing liquid is flowing and flowing in the processing liquid supply path. The ground switching portion for bringing the third electrode into a state of being released from the ground on the other side when not connected to the ground. Treatment liquid supply device.
前記第1の電極、第2の電極及び第3の電極の少なくとも一つは、導電性のフッ素樹脂によりコーティングされていることを特徴とする請求項1ないし9のいずれか一項に記載の処理液供給装置。   The process according to any one of claims 1 to 9, wherein at least one of the first electrode, the second electrode, and the third electrode is coated with a conductive fluororesin. Liquid supply device. 処理液供給路からノズルを介して基板に対して処理液を供給する処理液供給装置の運用方法において、
前記処理液供給路の処理液に接触した第1の電極の表面電位を測定する工程と、
前記工程にて測定された表面電位を表示する工程と、を含むことを特徴とする処理液供給装置の運用方法。
In the operation method of the processing liquid supply apparatus that supplies the processing liquid to the substrate from the processing liquid supply path via the nozzle,
Measuring the surface potential of the first electrode in contact with the treatment liquid in the treatment liquid supply path;
And a step of displaying the surface potential measured in the step.
前記表面電位測定部で測定された表面電位が適正範囲から外れたときにアラームを出力する工程を含むことを特徴とする請求項11記載の処理供給装置の運用方法。   12. The method of operating a process supply apparatus according to claim 11, comprising a step of outputting an alarm when the surface potential measured by the surface potential measuring unit is out of an appropriate range. 前記処理液供給路の処理液に接触した第2の電極と、
前記表面電位の測定値に基づいて前記第2の電極に電圧を印加して前記処理液の帯電量を制御するための電圧印加部と、を備えたことを特徴とする請求項11または12に記載の処理液供給装置の運用方法。
A second electrode in contact with the processing liquid in the processing liquid supply path;
The voltage application part for applying a voltage to the 2nd electrode based on the measured value of the surface potential, and controlling the amount of charge of the processing liquid, It provided with Claim 11 or 12 characterized by things. An operation method of the processing liquid supply apparatus described.
ノズルから基板に対して処理液を供給する処理液供給装置に用いられるコンピュータプログラムを記憶した記憶媒体であって、
前記コンピュータプログラムは、請求項11ないし13のいずれか一項に記載の処理液供給装置の運用方法を実行するためのステップ群を備えていることを特徴とする記憶媒体。
A storage medium storing a computer program used in a processing liquid supply apparatus that supplies a processing liquid from a nozzle to a substrate,
A storage medium comprising: a group of steps for executing the operation method of the processing liquid supply apparatus according to any one of claims 11 to 13.
JP2016176593A 2015-09-28 2016-09-09 Operation method and storage medium of treatment liquid supply device and treatment liquid supply device Active JP6794730B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW105131069A TWI698283B (en) 2015-09-28 2016-09-26 Processing liquid supply device, operation method of processing liquid supply device, and memory medium
KR1020160123346A KR102605345B1 (en) 2015-09-28 2016-09-26 Processing liquid supply apparatus, operating method of processing liquid supply apparatus, and recording medium
US15/275,588 US9943871B2 (en) 2015-09-28 2016-09-26 Processing liquid supply apparatus, operating method of processing liquid supply apparatus, and recording medium
US15/912,652 US10549302B2 (en) 2015-09-28 2018-03-06 Operating method of processing liquid supply apparatus and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015190097 2015-09-28
JP2015190097 2015-09-28

Publications (2)

Publication Number Publication Date
JP2017069552A true JP2017069552A (en) 2017-04-06
JP6794730B2 JP6794730B2 (en) 2020-12-02

Family

ID=58495241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016176593A Active JP6794730B2 (en) 2015-09-28 2016-09-09 Operation method and storage medium of treatment liquid supply device and treatment liquid supply device

Country Status (3)

Country Link
JP (1) JP6794730B2 (en)
KR (1) KR102605345B1 (en)
TW (1) TWI698283B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044548A1 (en) * 2017-08-29 2019-03-07 東京エレクトロン株式会社 Substrate treatment apparatus and substrate treatment method
KR20190053473A (en) * 2017-11-10 2019-05-20 삼성전자주식회사 System and method for suppying liquid chemical
JP2019087585A (en) * 2017-11-02 2019-06-06 東京エレクトロン株式会社 Liquid supply device and leakage detection method
WO2020017376A1 (en) * 2018-07-18 2020-01-23 東京エレクトロン株式会社 Developing device and developing method
JP2021072446A (en) * 2019-10-31 2021-05-06 セメス カンパニー,リミテッド Chemical supply apparatus, method for removing particle from chemical, nozzle unit, and substrate treating apparatus
JP7425172B2 (en) 2021-12-27 2024-01-30 セメス カンパニー,リミテッド Substrate processing equipment and processing liquid charge monitoring method
JP7481946B2 (en) 2020-08-11 2024-05-13 東京エレクトロン株式会社 Treatment liquid supplying method, treatment liquid supplying device and storage medium
JP7488880B2 (en) 2021-12-27 2024-05-22 セメス カンパニー,リミテッド Home port and substrate processing apparatus including same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6883325B2 (en) * 2017-08-09 2021-06-09 アドバンス電気工業株式会社 Liquid micrometer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269677A (en) * 2005-03-23 2006-10-05 Dainippon Screen Mfg Co Ltd Substrate treatment apparatus
JP2008118109A (en) * 2006-10-13 2008-05-22 Dainippon Screen Mfg Co Ltd Nozzle, and substrate treatment device provided with the same
JP2008183532A (en) * 2007-01-31 2008-08-14 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
JP2013118316A (en) * 2011-12-05 2013-06-13 Renesas Electronics Corp Method for manufacturing semiconductor device
JP2016027616A (en) * 2014-06-25 2016-02-18 東京エレクトロン株式会社 Treatment solution supply method, treatment solution supply apparatus, and computer-readable recording medium
WO2016132788A1 (en) * 2015-02-19 2016-08-25 株式会社Screenホールディングス Substrate treatment apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2386647A (en) * 1941-02-24 1945-10-09 Gilbert J C Andresen Method and apparatus for detecting and neutralizing static charges on aircraft or the like
US4258736A (en) * 1978-09-06 1981-03-31 Bestobell Mobrey Limited Electrostatic monitoring system
JP5893823B2 (en) * 2009-10-16 2016-03-23 東京エレクトロン株式会社 SUBSTRATE LIQUID TREATMENT DEVICE, SUBSTRATE LIQUID TREATMENT METHOD, AND COMPUTER-READABLE RECORDING MEDIUM CONTAINING SUBSTRATE LIQUID TREATMENT PROGRAM

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269677A (en) * 2005-03-23 2006-10-05 Dainippon Screen Mfg Co Ltd Substrate treatment apparatus
JP2008118109A (en) * 2006-10-13 2008-05-22 Dainippon Screen Mfg Co Ltd Nozzle, and substrate treatment device provided with the same
JP2008183532A (en) * 2007-01-31 2008-08-14 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
JP2013118316A (en) * 2011-12-05 2013-06-13 Renesas Electronics Corp Method for manufacturing semiconductor device
JP2016027616A (en) * 2014-06-25 2016-02-18 東京エレクトロン株式会社 Treatment solution supply method, treatment solution supply apparatus, and computer-readable recording medium
WO2016132788A1 (en) * 2015-02-19 2016-08-25 株式会社Screenホールディングス Substrate treatment apparatus

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044548A1 (en) * 2017-08-29 2019-03-07 東京エレクトロン株式会社 Substrate treatment apparatus and substrate treatment method
JPWO2019044548A1 (en) * 2017-08-29 2020-10-01 東京エレクトロン株式会社 Substrate processing equipment and substrate processing method
JP2019087585A (en) * 2017-11-02 2019-06-06 東京エレクトロン株式会社 Liquid supply device and leakage detection method
KR20190053473A (en) * 2017-11-10 2019-05-20 삼성전자주식회사 System and method for suppying liquid chemical
KR102452175B1 (en) 2017-11-10 2022-10-06 삼성전자주식회사 System and method for suppying liquid chemical
JP7072065B2 (en) 2018-07-18 2022-05-19 東京エレクトロン株式会社 Development processing equipment and development processing method
JPWO2020017376A1 (en) * 2018-07-18 2021-08-02 東京エレクトロン株式会社 Development processing equipment and development processing method
CN112400215A (en) * 2018-07-18 2021-02-23 东京毅力科创株式会社 Developing apparatus and developing method
WO2020017376A1 (en) * 2018-07-18 2020-01-23 東京エレクトロン株式会社 Developing device and developing method
US11567444B2 (en) 2018-07-18 2023-01-31 Tokyo Electron Limited Developing treatment apparatus and developing treatment method
CN112400215B (en) * 2018-07-18 2024-03-26 东京毅力科创株式会社 Developing device and developing method
JP2021072446A (en) * 2019-10-31 2021-05-06 セメス カンパニー,リミテッド Chemical supply apparatus, method for removing particle from chemical, nozzle unit, and substrate treating apparatus
JP7373478B2 (en) 2019-10-31 2023-11-02 セメス カンパニー,リミテッド Chemical liquid supply device, chemical particle removal method, nozzle unit, and substrate processing device
US11981995B2 (en) 2019-10-31 2024-05-14 Semes Co., Ltd. Chemical supply apparatus, method for removing particles from chemical, nozzle unit, and substrate treating apparatus
JP7481946B2 (en) 2020-08-11 2024-05-13 東京エレクトロン株式会社 Treatment liquid supplying method, treatment liquid supplying device and storage medium
JP7425172B2 (en) 2021-12-27 2024-01-30 セメス カンパニー,リミテッド Substrate processing equipment and processing liquid charge monitoring method
JP7488880B2 (en) 2021-12-27 2024-05-22 セメス カンパニー,リミテッド Home port and substrate processing apparatus including same

Also Published As

Publication number Publication date
KR102605345B1 (en) 2023-11-23
TWI698283B (en) 2020-07-11
KR20170037841A (en) 2017-04-05
TW201720528A (en) 2017-06-16
JP6794730B2 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
JP6794730B2 (en) Operation method and storage medium of treatment liquid supply device and treatment liquid supply device
US10549302B2 (en) Operating method of processing liquid supply apparatus and recording medium
US9027577B2 (en) Nozzle and a substrate processing apparatus including the same
JP2008183532A (en) Substrate processing apparatus and substrate processing method
JP2006269677A (en) Substrate treatment apparatus
WO2013157366A1 (en) Liquid treatment device, liquid treatment method, and filter device
JP2007317821A (en) Substrate-treating apparatus and substrate treatment method
KR100830265B1 (en) Substrate processing apparatus and substrate processing method
JP2006286947A (en) Method and apparatus for cleaning electronic device
JP4776030B2 (en) Substrate processing apparatus and substrate processing method
JP4754408B2 (en) Static eliminator, static eliminator and substrate processing apparatus provided with the static eliminator
JP2007184363A (en) Substrate treatment apparatus and substrate neutralization method
US11430673B2 (en) Substrate processing apparatus and substrate processing method
JP2016162774A (en) Heater abnormality detector, process liquid supply device, substrate processing system, and heater abnormality detection method
US10807117B2 (en) Dispense nozzle with a dynamic liquid plug
JP2018133437A (en) Substrate processing apparatus
JP7390217B2 (en) Substrate processing equipment and conductive piping deterioration degree determination method
US20230215742A1 (en) Substrate processing apparatus and substrate processing method
JP6850701B2 (en) Cleaning method of treatment liquid supply device, coating treatment device and supply pipe of treatment liquid supply device
KR102249728B1 (en) Apparatus for processing substrate
KR20230149603A (en) Apparatus for treating chemical and apparatus for treating substrate
KR20230149604A (en) Apparatus for treating substrate
KR20230100540A (en) Apparatus for treating a substrate and electrostatic monitoring method of treatment liquid
CN114864434A (en) Substrate processing apparatus, substrate processing method, and computer-readable recording medium
KR20200013716A (en) Substrate processing apparatus and component inspection method of substrate processing apparatus

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201026

R150 Certificate of patent or registration of utility model

Ref document number: 6794730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250