JP2017068686A - 構成単位装置、モデル生成方法、モデル生成装置、及びモデル生成プログラム - Google Patents

構成単位装置、モデル生成方法、モデル生成装置、及びモデル生成プログラム Download PDF

Info

Publication number
JP2017068686A
JP2017068686A JP2015195035A JP2015195035A JP2017068686A JP 2017068686 A JP2017068686 A JP 2017068686A JP 2015195035 A JP2015195035 A JP 2015195035A JP 2015195035 A JP2015195035 A JP 2015195035A JP 2017068686 A JP2017068686 A JP 2017068686A
Authority
JP
Japan
Prior art keywords
information
structural unit
block
unit device
identification information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015195035A
Other languages
English (en)
Inventor
正芳 橋間
Masayoshi Hashima
正芳 橋間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2015195035A priority Critical patent/JP2017068686A/ja
Publication of JP2017068686A publication Critical patent/JP2017068686A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】簡単な作業により物体の形状を表す形状モデルを生成する。
【解決手段】構成単位装置101は、他の構成単位装置と組み合わせられることで物体の形状を形成する。記憶部111は、構成単位装置101を示す第1の識別情報を記憶し、接続部112は、他の構成単位装置と接続される。送信部113は、接続部112が他の構成単位装置と接続されている接続状態において、第1の識別情報と、他の構成単位装置を示す第2の識別情報と、接続状態を示す接続情報とを送信する。
【選択図】図1

Description

本発明は、構成単位装置、モデル生成方法、モデル生成装置、及びモデル生成プログラムに関する。
新たな製品の開発においては、概念設計(コンセプト設計)、構造設計、試作、及び生産の順序で各工程が実施されることがある。概念設計では、多数の設計案が幅広く検討され、構造設計では、設計案を具現化する部品形状を3次元モデルとして作成し、3次元シミュレーションによって構造解析等が行われる。このような製品開発では上流工程が重要な役割を果たし、概念設計において、製品全体の設計方針を見極めることが望ましい。
3次元モデルの配置位置をブロックに埋め込まれている無線タグの位置に従って決定することで、ブロック組立体の3次元モデルを示す組立体3次元データを生成する3次元データ生成システムも知られている(例えば、特許文献1を参照)。内装部材の実物見本又は印刷画像に付帯した識別タグから識別コードを読み取ることで、内装部材の特性情報を貼り付けた3次元内装空間画像を生成する3次元内装空間シミュレーションシステムも知られている(例えば、特許文献2を参照)。
特開2014−96111号公報 特開2004−206551号公報
従来のシミュレーション解析では、3次元Computer Aided Design(CAD)ソフトウェアにより作成した3次元モデルから解析モデルが生成され、解析モデルを用いて3次元シミュレーションが行われる。製品全体の設計方針を見極めるためには、概念設計の段階で3次元シミュレーションを行って、各設計案に対する妥当性又はリスクを検討することが望ましいが、概念設計の段階では、まだ3次元モデルが作成されていない。
シミュレーション解析のための3次元モデルを作成する作業者は、3次元CADソフトウェアの操作に習熟していることが多い。しかしながら、概念設計の設計者は、必ずしも3次元CADソフトウェアの操作に習熟しているとは限らず、概念設計において3次元シミュレーションを行うことは現実的ではない。
なお、かかる問題は、3次元形状の概念設計に限らず、2次元形状等の他の概念設計においても生ずるものである。
1つの側面において、本発明は、簡単な作業により物体の形状を表す形状モデルを生成することを目的とする。
1つの案では、構成単位装置は、記憶部、接続部、及び送信部を含み、他の構成単位装置と組み合わせられることで物体の形状を形成する。
記憶部は、第1の識別情報を記憶し、接続部は、他の構成単位装置と接続される。送信部は、接続部が他の構成単位装置と接続されている接続状態において、第1の識別情報と、他の構成単位装置を示す第2の識別情報と、接続状態を示す接続情報とを送信する。
実施形態によれば、簡単な作業により物体の形状を表す形状モデルを生成することができる。
構成単位装置の構成図である。 モデル生成装置の機能的構成図である。 モデル生成処理のフローチャートである。 モデル生成システムの構成図である。 ダイポールアンテナを示す図である。 ループアンテナを示す図である。 信号生成回路を示す図である。 接続部を示す図である。 コネクタを示す図である。 ダイポールアンテナのアンテナ素子を含むブロックを示す図である。 ブロックの第1の組み合わせを示す図である。 ブロックの第2の組み合わせを示す図である。 ループアンテナのアンテナ素子を含むブロックを示す図である。 接続された2個のブロックの第1の構成図である。 第1の送信処理のフローチャートである。 接続された2個のブロックの第2の構成図である。 第2の送信処理のフローチャートである。 リーダライタが受信する識別情報及び接続情報を示す図である。 接続箇所が存在する面を示す図である。 形状情報を示す図である。 面情報を示す図である。 生成処理のフローチャートである。 直方体、三角柱、及び円柱のブロックを示す図である。 熱回路網法の解析モデルを示す図である。 情報処理装置の構成図である。
以下、図面を参照しながら、実施形態を詳細に説明する。
図1は、構成単位装置の構成例を示している。図1の構成単位装置101は、記憶部111、接続部112、及び送信部113を含み、他の構成単位装置と組み合わせられることで物体の形状を形成する。
記憶部111は、構成単位装置101を示す第1の識別情報を記憶し、接続部112は、他の構成単位装置と接続される。送信部113は、接続部112が他の構成単位装置と接続されている接続状態において、第1の識別情報と、他の構成単位装置を示す第2の識別情報と、接続状態を示す接続情報とを送信する。
図2は、モデル生成装置の機能的構成例を示している。図2のモデル生成装置201は、受信部211及び生成部212を含む。
図3は、図2のモデル生成装置201が行うモデル生成処理の例を示すフローチャートである。まず、設計者は、物体の形状を形成するために、第1の構成単位装置と第2の構成単位装置とを組み合わせる(ステップ301)。
次に、受信部211は、第1の構成単位装置と第2の構成単位装置とが接続されている接続状態を示す接続情報と、第1の構成単位装置を示す第1の識別情報と、第2の構成単位装置を示す第2の識別情報とを、第1の構成単位装置から受信する(ステップ302)。そして、生成部212は、第1の識別情報と第2の識別情報と接続情報とに基づいて、物体の形状を表す形状モデルを生成する(ステップ303)。
図1の構成単位装置101又は図2のモデル生成装置201によれば、簡単な作業により物体の形状を表す形状モデルを生成することができる。
図4は、図1の構成単位装置101及び図2のモデル生成装置201を含むモデル生成システムの構成例を示している。モデル生成システムは、機械設計及び建築設計を含む様々な分野において、設計対象の物体の形状モデルを生成するために利用される。
設計者は、ブロック401〜ブロック404を組み合わせることで、物体の形状を形成する。ブロック401〜ブロック404のうち少なくとも1つのブロックは、図1の構成単位装置101に対応し、無線タグを含む。
図4のモデル生成装置201は、生成部212、リーダライタ411、表示部412、及び記憶部413を含む。リーダライタ411は、図2の受信部211に対応し、ブロック内の無線タグから無線通信により情報を読み取る。リーダライタ411は、無線通信により無線タグに情報を書き込むこともできる。無線タグは、パッシブ方式の無線タグであってもよく、アクティブ方式の無線タグであってもよい。
無線タグを含むブロックは、他のブロックと接続されることで、ブロックの識別情報と、ブロック間の接続状態を示す接続情報とをリーダライタ411へ発信する。ブロック401〜ブロック404の識別情報は、それぞれ、ID1〜ID4である。リーダライタ411は、ブロックから受信した識別情報及び接続情報を生成部212へ転送する。
記憶部413は、各ブロックの形状を表す形状情報を記憶する。生成部212は、受信した識別情報が示すブロックの形状情報と、受信した接続情報とを用いて、組み合わせられたブロック401〜ブロック404の形状を表す形状モデル421を生成する。表示部412は、生成された形状モデル421を画面上に表示する。なお、組み合わせられるブロックの個数は4個に限られず、より多数のブロックを組み合わせることが可能である。
モデル生成システムでは、2個のブロックを接続することで、いずれか一方のブロックに含まれる無線タグの回路構成が変化して、リーダライタ411と通信可能な状態になる。無線タグの回路構成の変更方法としては、リーダライタ411との通信に適したアンテナを形成する方法、制御信号を生成する信号生成回路を形成する方法等が考えられる。
図5は、2個のブロックが形成するダイポールアンテナの例を示している。ブロック501は、無線タグに対応するアンテナ素子511及び制御部512を含み、ブロック502は、アンテナ素子521を含む。ブロック501とブロック502を接続することで、アンテナ素子511とアンテナ素子521が電気的に接続され、所定波長のダイポールアンテナ531が形成される。これにより、制御部512は、リーダライタ411と通信可能な状態になる。アンテナ素子511は、図1の送信部113に対応する。
図6は、2個のブロックが形成するループアンテナの例を示している。ブロック601は、無線タグに対応するアンテナ素子611及び制御部612を含み、ブロック602は、アンテナ素子621を含む。ブロック601とブロック602を接続することで、アンテナ素子611とアンテナ素子621が電気的に接続され、ループ型のループアンテナ631が形成される。これにより、制御部612は、リーダライタ411と通信可能な状態になる。アンテナ素子611は、図1の送信部113に対応する。
図7は、2個のブロックが形成する信号生成回路の例を示している。ブロック701は、無線タグに対応するループアンテナ711、制御部712、及び回路713を含み、ブロック702は、回路721を含む。ブロック701とブロック702が接続されていない状態では、回路713の端子714に論理“High”の制御信号が発生する。
一方、ブロック701とブロック702を接続することで、回路713と回路721が電気的に接続され、信号生成回路731が形成される。これにより、端子714が接地電位に接続され、端子714の制御信号が論理“Low”に変化する。制御部712は、制御信号が論理“Low”を示しているとき、ループアンテナ711を介してリーダライタ411と通信する。ループアンテナ711は、図1の送信部113に対応する。
各ブロックの接続部112は、他のブロックを接続して固定するための接続機構を含む。この接続機構は、凸部又は凹部のいずれか一方であってもよい。図8は、接続部112の例を示している。ブロック801の上面811には、凸部821及び凸部822が設けられ、側面812には、凸部823及び凸部824が設けられている。ブロック801の下面813には、凹部831及び凹部832が設けられ、側面814には、凹部833及び凹部834が設けられている。
ブロック802〜ブロック804にも、ブロック801と同様に、凸部及び凹部が設けられている。図8の一点鎖線は、ブロック801〜ブロック804を組み立てたときに接続される、凸部及び凹部の組み合わせを示している。例えば、ブロック801の凸部823及び凸部824は、ブロック802の2個の凹部と接続することができ、ブロック801の凹部831及び凹部832は、ブロック803の2個の凸部と接続することができる。
凸部及び凹部の位置又は個数は、図8の例には限られない。ブロックの別の側面に凸部又は凹部を設けてもよく、1つの面上の別の位置に凸部又は凹部を設けてもよく、1つの面上に1個又は3個以上の凸部又は凹部を設けてもよい。
さらに、各ブロックの面上には、他のブロックのアンテナ素子又は回路と電気的に接続するためのコネクタが設けられる。このコネクタは、接続機構に併設されていてもよい。図9は、コネクタの例を示している。ブロック901の凸部911の先端部には、コネクタであるオス端子912が設けられ、ブロック902の凹部921の底部には、コネクタであるメス端子922が設けられている。凸部911と凹部921が接続されることで、オス端子912とメス端子922が電気的に接続される。
図10は、ダイポールアンテナのアンテナ素子を含むブロックの例を示している。図10では、ブロック1001の断面が示されており、奥行き方向の構成は省略されている。ブロック1001には、凸部1011、凸部1012、凹部1021、及び凹部1022が設けられている。このうち、凸部1011及び凸部1012には、アンテナ素子1031及びアンテナ素子1032がそれぞれ併設され、アンテナ素子1031及びアンテナ素子1032の先端部はオス端子の役割を果たす。
アンテナ素子1031及びアンテナ素子1032には、制御部1041及び制御部1042がそれぞれ接続されている。アンテナ素子1031及びアンテナ素子1032は、図1の送信部113に対応する。
一方、凹部1021及び凹部1022には、アンテナ素子1033及びアンテナ素子1034がそれぞれ併設され、アンテナ素子1033及びアンテナ素子1034の先端部はメス端子の役割を果たす。
図11は、6個のブロックの第1の組み合わせを示している。ブロック1101は、ブロック1102及びブロック1104と接続され、ブロック1102は、ブロック1101、ブロック1103、及びブロック1105と接続される。ブロック1103は、ブロック1102及びブロック1106と接続され、ブロック1104は、ブロック1101及びブロック1105と接続される。ブロック1105は、ブロック1102、ブロック1104、及びブロック1106と接続され、ブロック1106は、ブロック1103及びブロック1105と接続される。
図12は、6個のブロックの第2の組み合わせを示している。ブロック1201〜ブロック1203は、所定の材料属性を有し、ブロック1204〜ブロック1206は、別の材料属性を有する。ブロック1201〜ブロック1203の材料属性は金属であってもよく、ブロック1204〜ブロック1206の材料属性は金属以外であってもよい。
同じ色の複数のブロックは、同じ材料属性を有し、異なる色の2個のブロックは、それぞれ異なる材料属性を有する。このように、ブロックの色で材料属性を表現することで、設計者は、物体の部品に合わせて材料を選択しながら、ブロックを組み立てることができる。
ブロック1201は、ブロック1202及びブロック1204と接続され、ブロック1202は、ブロック1201及びブロック1203と接続される。ブロック1203は、ブロック1202及びブロック1206と接続され、ブロック1204は、ブロック1201及びブロック1205と接続される。ブロック1205は、ブロック1204及びブロック1206と接続され、ブロック1206は、ブロック1203及びブロック1205と接続される。この場合、ブロック1202とブロック1205を接続しないことで、2つの部品が単に接触している状態を表現することができる。
図13は、ループアンテナのアンテナ素子を含むブロックの例を示している。ブロック1301は、アンテナ素子1311〜アンテナ素子1314と制御部1315を含み、ブロック1302は、アンテナ素子1321を含む。ブロック1301とブロック1302を接続することで、アンテナ素子1312とアンテナ素子1321が電気的に接続され、ループ型のループアンテナを形成することができる。アンテナ素子1312は、図1の送信部113に対応する。
図14は、接続された2個のブロックの第1の構成例を示している。ブロック1401は、接続状態における親ブロックに対応し、アンテナ1411、制御回路1412、読み出し回路1413、メモリ1414、及び接続機構1415を含む。ブロック1402は、接続状態における子ブロックに対応し、読み出し回路1421、メモリ1422、及び接続機構1423を含む。親ブロックは、接続相手のブロックから情報を読み出すブロックであり、子ブロックは、接続相手のブロックから情報を読み出さず、接続相手のブロックに対して情報を出力するブロックである。
ブロック1401とブロック1402を接続することで、接続機構1415と接続機構1423が接続され、制御回路1412と読み出し回路1421が電気的に接続される。アンテナ1411は、図1の送信部113、図5のダイポールアンテナ531、図6のループアンテナ631、又は図7のループアンテナ711に対応する。
制御回路1412及び読み出し回路1413は、図5の制御部512、図6の制御部612、図7の制御部712、図10の制御部1041、制御部1042、又は図13の制御部1315に対応する。制御回路1412及び読み出し回路1413は、論理回路等のハードウェア回路として実装される。
メモリ1414は、図1の記憶部111に対応し、ブロック1401の識別情報と、接続機構1415の位置を示す位置情報とを記憶する。メモリ1422は、ブロック1402の識別情報と、接続機構1423の位置を示す位置情報とを記憶する。
親ブロック1401の制御回路1412は、読み出し回路1413を介して、メモリ1414から識別情報及び位置情報を読み出す。また、制御回路1412は、読み出し回路1421を介して、子ブロック1402のメモリ1422から識別情報及び位置情報を読み出すことができる。メモリ1414及びメモリ1422から読み出された位置情報は、ブロック1401とブロック1402の接続状態を表す接続情報として、リーダライタ411へ送信される。
図15は、図14のブロック1401が行う第1の送信処理を示すフローチャートである。まず、制御回路1412は、リーダライタ411からの問い合わせに応じて、読み出し回路1413に情報の読み出しを指示する(ステップ1501)。そして、読み出し回路1413は、メモリ1414から識別情報及び位置情報を読み出す。
次に、制御回路1412は、アンテナ1411を介して、メモリ1414から読み出した識別情報及び位置情報をリーダライタ411へ送信する(ステップ1502)。
次に、制御回路1412は、読み出し回路1421に情報の読み出しを指示する(ステップ1503)。そして、読み出し回路1421は、メモリ1422から識別情報及び位置情報を読み出す。
次に、制御回路1412は、アンテナ1411を介して、メモリ1422から読み出した識別情報及び位置情報をリーダライタ411へ送信する(ステップ1504)。
図16は、接続された2個のブロックの第2の構成例を示している。ブロック1601は、接続状態における親ブロックに対応し、アンテナ1611、Central Processing Unit(CPU)1612、メモリ1613、及び接続機構1614を含む。ブロック1602は、接続状態における子ブロックに対応し、CPU1621、メモリ1622、及び接続機構1623を含む。
ブロック1601とブロック1602を接続することで、接続機構1614と接続機構1623が接続され、CPU1612とCPU1621が電気的に接続される。アンテナ1611は、図1の送信部113、図5のダイポールアンテナ531、図6のループアンテナ631、又は図7のループアンテナ711に対応する。
CPU1612は、図5の制御部512、図6の制御部612、図7の制御部712、図10の制御部1041、制御部1042、又は図13の制御部1315に対応する。メモリ1613は、図1の記憶部111に対応し、ブロック1601の識別情報と、接続機構1614の位置を示す位置情報とを記憶する。メモリ1622は、ブロック1602の識別情報と、接続機構1623の位置を示す位置情報とを記憶する。
親ブロック1601のCPU1612は、メモリ1613から識別情報及び位置情報を読み出し、子ブロック1602のCPU1621は、メモリ1622から識別情報及び位置情報を読み出す。CPU1612は、CPU1621と通信することで、メモリ1622から読み出された情報を取得することができる。CPU間の通信方法としては、例えば、Serial Peripheral Interface(SPI)、Inter-Integrated Circuit(I2C)等のシリアル通信を用いることができる。
メモリ1613及びメモリ1622から読み出された位置情報は、ブロック1601とブロック1602の接続状態を表す接続情報として、リーダライタ411へ送信される。
図17は、図16のブロック1601が行う第2の送信処理を示すフローチャートである。まず、CPU1612は、リーダライタ411からの問い合わせに応じて、メモリ1613から識別情報及び位置情報を読み出す(ステップ1701)。そして、CPU1612は、アンテナ1611を介して、メモリ1613から読み出した識別情報及び位置情報をリーダライタ411へ送信する(ステップ1702)。
次に、CPU1612は、CPU1621に対してブロック1602の情報を要求する(ステップ1703)。そして、CPU1621は、メモリ1622から識別情報及び位置情報を読み出してCPU1612へ送信し、CPU1612は、読み出された識別情報及び位置情報を受信する(ステップ1704)。
次に、CPU1612は、アンテナ1611を介して、CPU1621から受信した識別情報及び位置情報をリーダライタ411へ送信する(ステップ1705)。
例えば、図12の組み合わせの場合、ブロック1201は、ブロック1201及びブロック1202の情報を送信し、ブロック1202は、ブロック1202及びブロック1203の情報を送信する。ブロック1204は、ブロック1201、ブロック1204、及びブロック1205の情報を送信する。ブロック1205は、ブロック1205及びブロック1206の情報を送信し、ブロック1206は、ブロック1203及びブロック1206の情報を送信する。
図18は、リーダライタ411が図12のブロックから受信する識別情報及び接続情報の例を示している。図18の識別情報及び接続情報は、モデル生成装置201の記憶部413に格納される。
データ番号は、各接続箇所のデータを識別する識別情報であり、親ブロックIDは、各接続箇所の接続状態における親ブロックを示す識別情報であり、親ブロック上の接続位置は、各接続箇所が存在する親ブロックの面を示す識別情報である。親ブロック上の接続位置は、親ブロック上の接続機構の位置を示す位置情報に対応する。
子ブロックIDは、各接続箇所の接続状態における子ブロックを示す識別情報であり、子ブロック上の接続位置は、各接続箇所が存在する子ブロックの面を示す識別情報である。子ブロック上の接続位置は、子ブロック上の接続機構の位置を示す位置情報に対応する。
図12のブロック1201〜ブロック1203の識別情報は、それぞれ、“11”〜“13”であり、ブロック1204〜ブロック1206の識別情報は、それぞれ、“21”〜“23”である。
図19は、図12の各ブロックにおいて、接続箇所が存在する面の例を示している。ブロック1201、ブロック1203、ブロック1204、及びブロック1206の場合、面1901及び面1904上には凸部が存在し、面1902及び面1903上には凹部が存在する。これに対して、ブロック1202の場合、面1902上には凹部が存在せず、ブロック1205の場合、面1904上には凸部が存在しない。面1901〜面1904の識別情報は、それぞれ、“1”〜“4”である。
例えば、図18のデータ番号“1”のデータの場合、親ブロックIDは、ブロック1201の識別情報“11”であり、親ブロック上の接続位置は、ブロック1201の面1901の識別情報“1”である。また、子ブロックIDは、ブロック1202の識別情報“12”であり、子ブロック上の接続位置は、ブロック1202の面1903の識別情報“3”である。
また、データ番号“6”のデータの場合、親ブロックIDは、ブロック1206の識別情報“23”であり、親ブロック上の接続位置は、ブロック1206の面1904の識別情報“4”である。また、子ブロックIDは、ブロック1203の識別情報“13”であり、子ブロック上の接続位置は、ブロック1203の面1902の識別情報“2”である。
モデル生成装置201の記憶部413は、各ブロックの識別情報と対応付けて、ブロックの形状を表す形状情報と、ブロックの材料属性を表す材料属性情報とを記憶している。さらに、記憶部413は、各ブロックの面の識別情報と対応付けて、面の位置を表す面情報を記憶している。例えば、ブロックが直方体である場合、ブロックの縦、横、及び奥行きの寸法が形状情報として用いられる。
図20は、記憶部413が記憶する形状情報の例を示している。この例では、ブロック1201〜ブロック1206の識別情報と対応付けて、縦の寸法L1、横の寸法L2、及び奥行きの寸法L3が登録されている。ブロック1201〜ブロック1206が立方体である場合、L1〜L3はすべて同じ長さになる。
図21は、記憶部413が記憶する面情報の例を示している。xyz座標系を基準座標系として用いた場合、基準座標系の原点Oに対する各面の座標を面情報として用いることができる。図21の例では、面2001の面情報は、x=aであり、面2002の面情報は、y=bであり、面2003の面情報は、z=cである。
図22は、モデル生成装置201の生成部212が行う生成処理の例を示すフローチャートである。生成部212は、ブロックから受信した識別情報及び接続情報に基づいて記憶部413を参照しながら、形状モデル421を生成する。
まず、生成部212は、記憶部413に格納された複数の接続箇所のデータの中から1つのデータを選択する(ステップ2101)。そして、生成部212は、選択したデータに含まれる親ブロックIDをキーとして形状情報を探索し、親ブロックIDに対応する形状情報を用いて親ブロックの3次元形状を生成する(ステップ2102)。また、選択したデータに含まれる子ブロックIDをキーとして形状情報を探索し、子ブロックIDに対応する形状情報を用いて子ブロックの3次元形状を生成する(ステップ2103)。
次に、生成部212は、親ブロック上の接続位置に対応する面情報と、子ブロック上の接続位置に対応する面情報とを参照する。そして、生成部212は、親ブロックの3次元形状に含まれる面のうち親ブロック上の接続位置が示す面と、子ブロックの3次元形状に含まれる面のうち子ブロック上の接続位置が示す面とが重なるように、2つの3次元形状を配置する(ステップ2104)。これにより、重なり合った2つの面を接続箇所として、親ブロックの3次元形状と子ブロックの3次元形状とが接続される。
このように、受信した親ブロック上の接続位置及び子ブロック上の接続位置を用いることで、親ブロックと子ブロックの接続状態に合わせて、これらのブロックの3次元形状を配置することができる。
次に、生成部212は、すべてのデータを選択したか否かをチェックし(ステップ2105)、未選択のデータが残っている場合(ステップ2105,NO)、次のデータについてステップ2101以降の処理を繰り返す。ただし、生成部212は、親ブロックの3次元形状が生成済みである場合は、ステップ2102の処理をスキップし、子ブロックの3次元形状が生成済みである場合は、ステップ2103の処理をスキップする。そして、すべてのデータを選択した場合(ステップ2105,YES)、生成部212は、処理を終了する。
例えば、図18のデータ番号“1”のデータが選択された場合、親ブロックID“11”に基づいてブロック1201の3次元形状が生成され、子ブロックID“12”に基づいてブロック1202の3次元形状が生成される。そして、親ブロック上の接続位置“1”及び子ブロック上の接続位置“3”に基づいて、ブロック1201の面1901とブロック1202の面1903とが接続されるように、ブロック1201及びブロック1202の3次元形状が配置される。
次に、データ番号“2”のデータが選択された場合、親ブロックID“12”に対応するブロック1202の3次元形状は生成済みであるため、その3次元形状は生成されない。そこで、子ブロックID“13”に基づいてブロック1203の3次元形状が生成される。そして、親ブロック上の接続位置“1”及び子ブロック上の接続位置“3”に基づいて、ブロック1202の面1901とブロック1203の面1903とが接続されるように、ブロック1203の3次元形状が配置される。
また、データ番号“6”のデータが選択された場合、親ブロックID“23”に基づいてブロック1206の3次元形状が生成される。しかし、子ブロックID“13”に対応するブロック1203の3次元形状は生成済みであるため、その3次元形状は生成されない。そして、親ブロック上の接続位置“4”及び子ブロック上の接続位置“2”に基づいて、ブロック1206の面1904とブロック1203の面1902とが接続されるように、ブロック1206の3次元形状が配置される。
このようなモデル生成システムによれば、3次元CADソフトウェア、3次元モデリングソフトウェア等の専門的なソフトウェアを用いることなく、ブロックを組み立てるだけの直感的な作業により、形状モデルを容易に生成することができる。
なお、ブロックの形状は、立方体又は直方体に限られず、他の形状であってもよい。図23は、直方体、三角柱、及び円柱のブロックを組み合わせた物体の形状の例を示している。物体の2次元形状を表す形状モデルを生成する場合、薄い平面状のブロックを用いてもよい。
生成部212は、記憶部413が記憶する材料属性情報を用いて、形状モデルから、物体の熱解析のための解析モデルを生成することも可能である。図24は、形状モデルから生成される熱回路網法の解析モデルの例を示している。図24の7個のブロックのうちブロック1201〜ブロック1206の組み合わせは、図12の組み合わせと同様であり、ブロック1202に対してブロック2301がさらに接続されている。
ブロック2301及びブロック1201〜ブロック1206の組み合わせは、情報処理装置の形状を表している。この場合、ブロック1204〜ブロック1206の材料属性はケースを表し、ブロック1201〜ブロック1203の材料属性はプリント基板を表し、ブロック2301の材料属性はCPUを表す。
ケースとプリント基板とが両端で固定されている状態を表現するため、ブロック1201とブロック1204が接続され、ブロック1203とブロック1206が接続されており、ブロック1202とブロック1205は接続されていない。また、プリント基板上にCPUが実装されている状態を表現するため、ブロック1202とブロック2301が接続されている。
これらのブロックの接続情報に基づいて、生成部212は、熱回路網法の解析モデル2302を生成する。解析モデル2302では、構造要素がノードで表され、ノード間が熱抵抗で連結される。解析モデル2302のノード2311〜ノード2317は、それぞれ、ブロック2301及びブロック1201〜ブロック1206を表す。
熱抵抗2321は、ノード2311とノード2313を連結し、熱抵抗2322は、ノード2312とノード2313を連結し、熱抵抗2323は、ノード2313とノード2314を連結する。熱抵抗2324は、ノード2312とノード2315を連結し、熱抵抗2325は、ノード2314とノード2317を連結し、熱抵抗2326は、ノード2315とノード2316を連結し、熱抵抗2327は、ノード2316とノード2317を連結する。各熱抵抗の値は、各ブロックの材料属性情報に基づいて設定される。
このように、ブロックの材料属性情報を用いることで、ブロックを組み立てるだけの直感的な作業により、熱回路網法の解析モデルを容易に生成することができる。材料属性情報は、金属、プラスチック、ガラス、木材等を表す情報であってもよい。
図1の構成単位装置101の構成は一例に過ぎず、構成単位装置101の用途又は条件に応じて一部の構成要素を省略又は変更してもよい。図5〜図14、図16、図19、及び図24のブロックの構成は一例に過ぎず、ブロックの用途又は条件に応じて一部の構成要素を省略又は変更してもよい。
例えば、ダイポールアンテナ又はループアンテナの代わりに、別の形状の線状アンテナを用いてもよく、平面アンテナを用いてもよい。図7の信号生成回路731の代わりに、別の信号生成回路を用いてもよい。
図8〜図12、図19、及び図24の凸部及び凹部の形状は、別の形状であってもよく、凸部及び凹部の代わりに別の接続機構を用いてもよい。凸部に併設されたアンテナ素子に制御部を接続する代わりに、凹部に併設されたアンテナ素子に制御部を接続してもよい。図12及び図24において、ブロックの色で材料属性を表現する代わりに、ブロックの模様、形状、サイズ等で材料属性を表現してもよい。
図14のメモリ1414は、接続機構1415の位置情報の代わりに、図5のアンテナ素子511、図6のアンテナ素子611、図7の回路713、又は図13のアンテナ素子1312に対応する接続機構の位置情報を記憶してもよい。メモリ1414は、図10の凸部1011又は凸部1012の位置情報を記憶してもよい。
メモリ1422は、接続機構1423の位置情報の代わりに、図5のアンテナ素子521、図6のアンテナ素子621、図7の回路721、又は図13のアンテナ素子1321に対応する接続機構の位置情報を記憶してもよい。メモリ1422は、図10の凹部1021又は凹部1022の位置情報を記憶してもよい。図16のメモリ1613及びメモリ1622が記憶する位置情報についても、メモリ1414及びメモリ1422が記憶する位置情報と同様に変更することができる。
図2及び図4のモデル生成装置201の構成は一例に過ぎず、モデル生成装置201の用途又は条件に応じて一部の構成要素を省略又は変更してもよい。例えば、図4のモデル生成装置201において、ブロック内の無線タグに情報を書き込む必要がない場合は、リーダライタ411の代わりに、リーダの機能のみを有する受信部を用いることができる。形状モデル421を画面上に表示する必要がない場合は、表示部412を省略することができる。モデル生成装置201が熱回路網法の解析モデルを生成しない場合、図4の記憶部413は、各ブロックの材料属性情報を記憶する必要はない。
図3、図15、図17、及び図22のフローチャートは一例に過ぎず、ブロック又はモデル生成装置201の構成又は条件に応じて一部の処理を省略又は変更してもよい。例えば、図15の送信処理において、ステップ1501及びステップ1502の処理と、ステップ1503及びステップ1504の処理の順序を入れ替えてもよい。制御回路1412は、ステップ1502の処理を省略して、ステップ1504において、メモリ1414及びメモリ1422から読み出した識別情報及び位置情報をリーダライタ411へ送信してもよい。
同様に、図17の送信処理において、ステップ1701及びステップ1702の処理と、ステップ1703〜ステップ1705の処理の順序を入れ替えてもよい。CPU1612は、ステップ1702の処理を省略して、ステップ1705において、メモリ1613から読み出した識別情報及び位置情報と、CPU1621から受信した識別情報及び位置情報とを、リーダライタ411へ送信してもよい。
図22の生成処理において、ステップ2102の処理とステップ2103の処理の順序を入れ替えてもよい。
図4のモデル生成装置201の記憶部413に代わって、図14のメモリ1414及びメモリ1422、又は図16のメモリ1613及びメモリ1622が、各ブロックの形状情報及び材料属性情報を記憶することも可能である。
この場合、図15又は図17の送信処理において、親ブロックは、親ブロック及び子ブロックの形状情報及び材料属性情報をそれぞれのメモリから読み出して、モデル生成装置201へ送信する。そして、図22の生成処理において、生成部212は、受信した形状情報を用いて各ブロックの3次元形状を生成するとともに、受信した材料属性情報を用いて解析モデルを生成する。
図4、図8、図11、図12、図23、及び図24のブロックの組み合わせは一例に過ぎず、別の組み合わせによって異なる物体の形状を表現することも可能である。
図18の識別情報及び接続情報、図20の形状情報、図21の面情報、及び図24の解析モデルは一例に過ぎず、ブロック又はモデル生成装置201の構成又は条件に応じて一部の情報を省略又は変更してもよい。例えば、図18の親ブロック上の接続位置及び子ブロック上の接続位置として、各ブロックの面を示す識別情報の代わりに、各ブロックの接続機構を示す識別情報を用いてもよい。図20の縦、横、及び奥行きの寸法の代わりに、ブロックが有する複数の頂点の位置を表す3次元座標を用いてもよい。図21の面情報の代わりに、各接続機構の位置を表す3次元座標を用いてもよい。
図2及び図4のモデル生成装置201は、例えば、図25に示すような情報処理装置(コンピュータ)を用いて実現可能である。
図25の情報処理装置は、CPU2401、メモリ2402、入力装置2403、出力装置2404、補助記憶装置2405、媒体駆動装置2406、及びネットワーク接続装置2407を備える。これらの構成要素はバス2408により互いに接続されている。図4のリーダライタ411は、バス2408に接続されていてもよい。
メモリ2402は、例えば、Read Only Memory(ROM)、Random Access Memory(RAM)、フラッシュメモリ等の半導体メモリであり、モデル生成処理に用いられるプログラム及びデータを格納する。メモリ2402は、図4の記憶部413として用いることができる。
CPU2401(プロセッサ)は、例えば、メモリ2402を利用してプログラムを実行することにより、図2及び図4の生成部212として動作する。
入力装置2403は、例えば、キーボード、ポインティングデバイス等であり、オペレータ又はユーザからの指示又は情報の入力に用いられる。出力装置2404は、例えば、表示装置、プリンタ、スピーカ等であり、オペレータ又はユーザへの問い合わせ又は処理結果の出力に用いられる。処理結果は、図4の形状モデル421であってもよい。
補助記憶装置2405は、例えば、磁気ディスク装置、光ディスク装置、光磁気ディスク装置、テープ装置等である。補助記憶装置2405は、ハードディスクドライブであってもよい。情報処理装置は、補助記憶装置2405にプログラム及びデータを格納しておき、それらをメモリ2402にロードして使用することができる。補助記憶装置2405は、図4の記憶部413として用いることができる。
媒体駆動装置2406は、可搬型記録媒体2409を駆動し、その記録内容にアクセスする。可搬型記録媒体2409は、メモリデバイス、フレキシブルディスク、光ディスク、光磁気ディスク等である。可搬型記録媒体2409は、Compact Disk Read Only Memory(CD−ROM)、Digital Versatile Disk(DVD)、Universal Serial Bus(USB)メモリ等であってもよい。オペレータ又はユーザは、この可搬型記録媒体2409にプログラム及びデータを格納しておき、それらをメモリ2402にロードして使用することができる。
このように、モデル生成処理に用いられるプログラム及びデータを格納するコンピュータ読み取り可能な記録媒体は、メモリ2402、補助記憶装置2405、又は可搬型記録媒体2409のような、物理的な(非一時的な)記録媒体である。
ネットワーク接続装置2407は、Local Area Network、Wide Area Network等の通信ネットワークに接続され、通信に伴うデータ変換を行う通信インタフェースである。情報処理装置は、プログラム及びデータを外部の装置からネットワーク接続装置2407を介して受け取り、それらをメモリ2402にロードして使用することができる。
情報処理装置は、ネットワーク接続装置2407を介して、ユーザ端末から処理要求を受信し、モデル生成処理を行って、処理結果をユーザ端末へ送信することもできる。
なお、情報処理装置が図25のすべての構成要素を含む必要はなく、用途や条件に応じて一部の構成要素を省略することも可能である。例えば、オペレータ又はユーザからの指示又は情報を入力する必要がない場合は、入力装置2403を省略してもよい。オペレータ又はユーザへの問い合わせ又は処理結果を出力する必要がない場合は、出力装置2404を省略してもよい。
他の装置との通信を行う必要がない場合は、ネットワーク接続装置2407を省略してもよく、可搬型記録媒体2409を利用しない場合は、媒体駆動装置2406を省略してもよい。
開示の実施形態とその利点について詳しく説明したが、当業者は、特許請求の範囲に明確に記載した本発明の範囲から逸脱することなく、様々な変更、追加、省略をすることができるであろう。
図1乃至図25を参照しながら説明した実施形態に関し、さらに以下の付記を開示する。
(付記1)
他の構成単位装置と組み合わせられることで物体の形状を形成する構成単位装置であって、
第1の識別情報を記憶する記憶部と、
前記他の構成単位装置と接続される接続部と、
前記接続部が前記他の構成単位装置と接続されている接続状態において、前記第1の識別情報と、前記他の構成単位装置を示す第2の識別情報と、前記接続状態を示す接続情報とを送信する送信部と、
を備えることを特徴とする構成単位装置。
(付記2)
前記接続情報は、前記接続部の位置を示す第1の位置情報と、前記他の構成単位装置において前記接続部と接続されている部分の位置を示す第2の位置情報とを含むことを特徴とする付記1記載の構成単位装置。
(付記3)
前記第1の位置情報と前記第2の位置情報とを取得する制御部をさらに備え、
前記記憶部は、前記第1の位置情報をさらに記憶し、
前記制御部は、前記接続状態において、前記第1の位置情報を前記記憶部から読み出し、前記第2の識別情報と前記第2の位置情報とを前記他の構成単位装置から読み出すことを特徴とする付記2記載の構成単位装置。
(付記4)
前記送信部はアンテナ素子を含み、前記接続部が前記他の構成単位装置と接続されることによって、前記アンテナ素子が前記第1の識別情報と前記第2の識別情報と前記接続情報とを送信する動作を行うことを特徴とする付記1乃至3のいずれか1項に記載の構成単位装置。
(付記5)
コンピュータが、
物体の形状を形成するために組み合わせられた第1の構成単位装置と第2の構成単位装置とが接続されている接続状態を示す接続情報と、前記第1の構成単位装置を示す第1の識別情報と、前記第2の構成単位装置を示す第2の識別情報とを、前記第1の構成単位装置から受信し、
前記第1の識別情報と前記第2の識別情報と前記接続情報とに基づいて、前記形状を表す形状モデルを生成する、
ことを特徴とするモデル生成方法。
(付記6)
前記接続情報は、前記第1の構成単位装置において前記第2の構成単位装置と接続されている部分の位置を示す第1の位置情報と、前記第2の構成単位装置において前記第1の構成単位装置と接続されている部分の位置を示す第2の位置情報とを含み、
前記コンピュータは、前記第1の識別情報と、前記第1の構成単位装置の形状を表す第1の形状情報とを対応付けて記憶するとともに、前記第2の識別情報と、前記第2の構成単位装置の形状を表す第2の形状情報とを対応付けて記憶する記憶部を参照し、前記第1の位置情報、前記第2の位置情報、前記第1の形状情報、及び前記第2の形状情報に基づいて前記形状モデルを生成することを特徴とする付記5記載のモデル生成方法。
(付記7)
前記記憶部は、前記第1の識別情報と、前記第1の構成単位装置の材料属性を表す第1の材料属性情報とを対応付けて記憶するとともに、前記第2の識別情報と、前記第2の構成単位装置の材料属性を表す第2の材料属性情報とを対応付けて記憶し、
前記コンピュータは、前記形状モデルと前記第1の材料属性情報と前記第2の材料属性情報とに基づいて、前記物体の熱解析のための解析モデルを生成することを特徴とする付記6記載のモデル生成方法。
(付記8)
物体の形状を形成するために組み合わせられた第1の構成単位装置と第2の構成単位装置とが接続されている接続状態を示す接続情報と、前記第1の構成単位装置を示す第1の識別情報と、前記第2の構成単位装置を示す第2の識別情報とを、前記第1の構成単位装置から受信する受信部と、
前記第1の識別情報と前記第2の識別情報と前記接続情報とに基づいて、前記形状を表す形状モデルを生成する生成部と、
を備えることを特徴とするモデル生成装置。
(付記9)
前記接続情報は、前記第1の構成単位装置において前記第2の構成単位装置と接続されている部分の位置を示す第1の位置情報と、前記第2の構成単位装置において前記第1の構成単位装置と接続されている部分の位置を示す第2の位置情報とを含み、
前記モデル生成装置は、前記第1の識別情報と、前記第1の構成単位装置の形状を表す第1の形状情報とを対応付けて記憶するとともに、前記第2の識別情報と、前記第2の構成単位装置の形状を表す第2の形状情報とを対応付けて記憶する記憶部をさらに備え、
前記生成部は、前記第1の位置情報、前記第2の位置情報、前記第1の形状情報、及び前記第2の形状情報に基づいて前記形状モデルを生成することを特徴とする付記8記載のモデル生成装置。
(付記10)
前記記憶部は、前記第1の識別情報と、前記第1の構成単位装置の材料属性を表す第1の材料属性情報とを対応付けて記憶するとともに、前記第2の識別情報と、前記第2の構成単位装置の材料属性を表す第2の材料属性情報とを対応付けて記憶し、
前記生成部は、前記形状モデルと前記第1の材料属性情報と前記第2の材料属性情報とに基づいて、前記物体の熱解析のための解析モデルを生成することを特徴とする付記9記載のモデル生成装置。
(付記11)
物体の形状を形成するために組み合わせられた第1の構成単位装置と第2の構成単位装置とが接続されている接続状態を示す接続情報と、前記第1の構成単位装置を示す第1の識別情報と、前記第2の構成単位装置を示す第2の識別情報とを、前記第1の構成単位装置から受信し、
前記第1の識別情報と前記第2の識別情報と前記接続情報とに基づいて、前記形状を表す形状モデルを生成する、
処理をコンピュータに実行させるモデル生成プログラム。
(付記12)
前記接続情報は、前記第1の構成単位装置において前記第2の構成単位装置と接続されている部分の位置を示す第1の位置情報と、前記第2の構成単位装置において前記第1の構成単位装置と接続されている部分の位置を示す第2の位置情報とを含み、
前記コンピュータは、前記第1の識別情報と、前記第1の構成単位装置の形状を表す第1の形状情報とを対応付けて記憶するとともに、前記第2の識別情報と、前記第2の構成単位装置の形状を表す第2の形状情報とを対応付けて記憶する記憶部を参照し、前記第1の位置情報、前記第2の位置情報、前記第1の形状情報、及び前記第2の形状情報に基づいて前記形状モデルを生成することを特徴とする付記11記載のモデル生成プログラム。
(付記13)
前記記憶部は、前記第1の識別情報と、前記第1の構成単位装置の材料属性を表す第1の材料属性情報とを対応付けて記憶するとともに、前記第2の識別情報と、前記第2の構成単位装置の材料属性を表す第2の材料属性情報とを対応付けて記憶し、
前記コンピュータは、前記形状モデルと前記第1の材料属性情報と前記第2の材料属性情報とに基づいて、前記物体の熱解析のための解析モデルを生成することを特徴とする付記12記載のモデル生成プログラム。
101 構成単位装置
111、413 記憶部
112 接続部
113 送信部
201 モデル生成装置
211 受信部
212 生成部
401〜404、501、502、601、602、701、702、801〜804、901、902、1001、1101〜1106、1201〜1206、1301、1302、1401、1402、1601、1602、2301 ブロック
411 リーダライタ
412 表示部
421 形状モデル
511、521、611、621、1031〜1034、1311〜1314、1321 アンテナ素子
512、612、712、1041、1042、1315 制御部
531 ダイポールアンテナ
631、711 ループアンテナ
713、721 回路
714 端子
731 信号生成回路
811 上面
812、814 側面
813 下面
821〜824、911、1011、1012 凸部
831〜834、921、1021、1022 凹部
912 オス端子
922 メス端子
1411、1611 アンテナ
1412 制御回路
1413、1421 読み出し回路
1414、1422、1613、1622 メモリ
1415、1423、1614、1623 接続機構
1612、1621 CPU
1901〜1904、2001〜2003 面
2302 解析モデル
2311〜2317 ノード
2321〜2327 熱抵抗
2401 CPU
2402 メモリ
2403 入力装置
2404 出力装置
2405 補助記憶装置
2406 媒体駆動装置
2407 ネットワーク接続装置
2408 バス
2409 可搬型記録媒体

Claims (9)

  1. 他の構成単位装置と組み合わせられることで物体の形状を形成する構成単位装置であって、
    第1の識別情報を記憶する記憶部と、
    前記他の構成単位装置と接続される接続部と、
    前記接続部が前記他の構成単位装置と接続されている接続状態において、前記第1の識別情報と、前記他の構成単位装置を示す第2の識別情報と、前記接続状態を示す接続情報とを送信する送信部と、
    を備えることを特徴とする構成単位装置。
  2. 前記接続情報は、前記接続部の位置を示す第1の位置情報と、前記他の構成単位装置において前記接続部と接続されている部分の位置を示す第2の位置情報とを含むことを特徴とする請求項1記載の構成単位装置。
  3. 前記第1の位置情報と前記第2の位置情報とを取得する制御部をさらに備え、
    前記記憶部は、前記第1の位置情報をさらに記憶し、
    前記制御部は、前記接続状態において、前記第1の位置情報を前記記憶部から読み出し、前記第2の識別情報と前記第2の位置情報とを前記他の構成単位装置から読み出すことを特徴とする請求項2記載の構成単位装置。
  4. 前記送信部はアンテナ素子を含み、前記接続部が前記他の構成単位装置と接続されることによって、前記アンテナ素子が前記第1の識別情報と前記第2の識別情報と前記接続情報とを送信する動作を行うことを特徴とする請求項1乃至3のいずれか1項に記載の構成単位装置。
  5. コンピュータが、
    物体の形状を形成するために組み合わせられた第1の構成単位装置と第2の構成単位装置とが接続されている接続状態を示す接続情報と、前記第1の構成単位装置を示す第1の識別情報と、前記第2の構成単位装置を示す第2の識別情報とを、前記第1の構成単位装置から受信し、
    前記第1の識別情報と前記第2の識別情報と前記接続情報とに基づいて、前記形状を表す形状モデルを生成する、
    ことを特徴とするモデル生成方法。
  6. 前記接続情報は、前記第1の構成単位装置において前記第2の構成単位装置と接続されている部分の位置を示す第1の位置情報と、前記第2の構成単位装置において前記第1の構成単位装置と接続されている部分の位置を示す第2の位置情報とを含み、
    前記コンピュータは、前記第1の識別情報と、前記第1の構成単位装置の形状を表す第1の形状情報とを対応付けて記憶するとともに、前記第2の識別情報と、前記第2の構成単位装置の形状を表す第2の形状情報とを対応付けて記憶する記憶部を参照し、前記第1の位置情報、前記第2の位置情報、前記第1の形状情報、及び前記第2の形状情報に基づいて前記形状モデルを生成することを特徴とする請求項5記載のモデル生成方法。
  7. 前記記憶部は、前記第1の識別情報と、前記第1の構成単位装置の材料属性を表す第1の材料属性情報とを対応付けて記憶するとともに、前記第2の識別情報と、前記第2の構成単位装置の材料属性を表す第2の材料属性情報とを対応付けて記憶し、
    前記コンピュータは、前記形状モデルと前記第1の材料属性情報と前記第2の材料属性情報とに基づいて、前記物体の熱解析のための解析モデルを生成することを特徴とする請求項5記載のモデル生成方法。
  8. 物体の形状を形成するために組み合わせられた第1の構成単位装置と第2の構成単位装置とが接続されている接続状態を示す接続情報と、前記第1の構成単位装置を示す第1の識別情報と、前記第2の構成単位装置を示す第2の識別情報とを、前記第1の構成単位装置から受信する受信部と、
    前記第1の識別情報と前記第2の識別情報と前記接続情報とに基づいて、前記形状を表す形状モデルを生成する生成部と、
    を備えることを特徴とするモデル生成装置。
  9. 物体の形状を形成するために組み合わせられた第1の構成単位装置と第2の構成単位装置とが接続されている接続状態を示す接続情報と、前記第1の構成単位装置を示す第1の識別情報と、前記第2の構成単位装置を示す第2の識別情報とを、前記第1の構成単位装置から受信し、
    前記第1の識別情報と前記第2の識別情報と前記接続情報とに基づいて、前記形状を表す形状モデルを生成する、
    処理をコンピュータに実行させるモデル生成プログラム。
JP2015195035A 2015-09-30 2015-09-30 構成単位装置、モデル生成方法、モデル生成装置、及びモデル生成プログラム Pending JP2017068686A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015195035A JP2017068686A (ja) 2015-09-30 2015-09-30 構成単位装置、モデル生成方法、モデル生成装置、及びモデル生成プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015195035A JP2017068686A (ja) 2015-09-30 2015-09-30 構成単位装置、モデル生成方法、モデル生成装置、及びモデル生成プログラム

Publications (1)

Publication Number Publication Date
JP2017068686A true JP2017068686A (ja) 2017-04-06

Family

ID=58494878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015195035A Pending JP2017068686A (ja) 2015-09-30 2015-09-30 構成単位装置、モデル生成方法、モデル生成装置、及びモデル生成プログラム

Country Status (1)

Country Link
JP (1) JP2017068686A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7100923B1 (ja) 2021-11-19 2022-07-14 Archess株式会社 プログラム、方法、情報処理装置、システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7100923B1 (ja) 2021-11-19 2022-07-14 Archess株式会社 プログラム、方法、情報処理装置、システム
JP2023075631A (ja) * 2021-11-19 2023-05-31 Archess株式会社 プログラム、方法、情報処理装置、システム

Similar Documents

Publication Publication Date Title
CN102695032A (zh) 信息处理装置、信息共享方法、程序以及终端设备
US9838516B2 (en) Systems and methods for tangible configuration of a modular mobile electronic device
CN102439862A (zh) 光线跟踪设备和方法
KR101653878B1 (ko) 3차원 형상의 모델링을 위한 블록 및 사용자 단말기와 이를 이용한 3차원 형상의 모델링 방법
US20170148228A1 (en) Distance field coupled fitted deformation lattices for shape modification
KR101944459B1 (ko) 정보 처리 시스템 및 프로그램, 서버, 단말, 그리고 매체
JP2023540577A (ja) 動画移行方法及び装置、機器、記憶媒体並びにコンピュータプログラム
JP2017146710A (ja) 搬送計画生成装置および搬送計画生成方法
CN110657804A (zh) 室内位置服务
CN116127908A (zh) 电路版图的布线方法、装置、设备及存储介质
Qureshi et al. Fully integrated data communication framework by using visualization augmented reality for internet of things networks
CN110942485A (zh) 基于人工智能的场景感知方法、装置及电子设备
CN103838909A (zh) 信息处理设备、信息处理方法以及程序
JP2017068686A (ja) 構成単位装置、モデル生成方法、モデル生成装置、及びモデル生成プログラム
CN108875901B (zh) 神经网络训练方法以及通用物体检测方法、装置和系统
CN112528428A (zh) 对工程结构的物理参数展示的方法、装置和计算机设备
US20200013214A1 (en) Methods and Systems for Viewing a Three-Dimensional (3D) Virtual Object
CN115964984A (zh) 用于数字芯片版图平衡绕线的方法和装置
Song et al. Development of a lightweight CAE middleware for CAE data exchange
Wang et al. Estimation of Antenna Pose in the Earth Frame Using Camera and IMU Data from Mobile Phones
CN111507265A (zh) 表格关键点检测模型训练方法、装置、设备以及存储介质
WO2017204196A1 (ja) 3d形状データ作成装置及び3d形状データ作成支援方法
JP6064266B2 (ja) データファイルを長期保存するためのファイル処理方法、及びファイル処理装置
JP7100923B1 (ja) プログラム、方法、情報処理装置、システム
JP6146168B2 (ja) 装置情報表示方法及び装置情報記憶装置