JP2017065927A - Web material winding method and winding core - Google Patents

Web material winding method and winding core Download PDF

Info

Publication number
JP2017065927A
JP2017065927A JP2016192379A JP2016192379A JP2017065927A JP 2017065927 A JP2017065927 A JP 2017065927A JP 2016192379 A JP2016192379 A JP 2016192379A JP 2016192379 A JP2016192379 A JP 2016192379A JP 2017065927 A JP2017065927 A JP 2017065927A
Authority
JP
Japan
Prior art keywords
web material
compressive stress
winding
compressive
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016192379A
Other languages
Japanese (ja)
Other versions
JP6149144B2 (en
Inventor
井上 義英
Yoshihide Inoue
義英 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIKATA KK
Original Assignee
MIKATA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIKATA KK filed Critical MIKATA KK
Publication of JP2017065927A publication Critical patent/JP2017065927A/en
Application granted granted Critical
Publication of JP6149144B2 publication Critical patent/JP6149144B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H75/00Storing webs, tapes, or filamentary material, e.g. on reels
    • B65H75/02Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks
    • B65H75/18Constructional details

Landscapes

  • Storage Of Web-Like Or Filamentary Materials (AREA)
  • Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce step marks due to a compression stress difference generated in the surface of a web material at a winding end of a web material when winding the web material around a winding core provided with a buffer material in the outer peripheral surface.SOLUTION: A winding method of a web material of this invention includes a step of sticking an end of a web material 30 on a buffer material 20 formed on the outer peripheral surface of a winding core body 10 and a step of winding the web material around the winding core body while adding tension to the web material, the buffer material consisting of a soft foam resin with a compression stress of 0.02 MPa or less under a compression strain of 20%, the thickness (t) of the buffer material set to 0.2≥t/t≥0.1 when the thickness of the web material is t, and the buffer material having a relation of σ/σ≤6 when compression strain is σunder a compression strain of α% (20≤α≤60) and compression strain is σat a compression strain of α% (α+t/t×100)%.SELECTED DRAWING: Figure 4

Description

本発明は、ウェブ材を巻芯に巻き取る巻き取り方法、及びウェブ材を巻き取る巻芯に関する。   The present invention relates to a winding method for winding a web material around a winding core, and a winding core for winding the web material.

フィルムやシート等のウェブ材をロール状に巻き取るには、円筒状の巻芯の外周面にウェブ材の先端を粘着材等で固定した後、巻芯を回転させて巻き取る方法が一般に用いられている。   In order to wind up a web material such as a film or a sheet in a roll shape, a method is generally used in which the tip of the web material is fixed to the outer peripheral surface of a cylindrical core with an adhesive or the like, and then the core is rotated and wound. It has been.

ところで、巻芯の表面は、一般に硬いために、可塑性を有するウェブ材をロール状に巻き取る場合、巻芯の外周面と、ウェブ材の巻き付け端部との間に段差が生じ、この段差上に巻かれたウェブ材には段差により不可逆な変形が生じる。そして、その変形したウェブ材に巻き重ねられたウェブ材にも同様の変形が転写するため、巻き始めから数周〜数十周以上にわたって、ウェブ材に歪み等の不可逆な段差痕が生じるという問題があった。このような段差痕の発生は、ウェブ材の平坦性を低下させることになり、製品ロスやコストアップの原因になっていた。   By the way, since the surface of the core is generally hard, when a web material having plasticity is wound into a roll, a step is generated between the outer peripheral surface of the core and the winding end of the web material. An irreversible deformation occurs due to the level difference in the web material wound around. And since the same deformation is also transferred to the web material wound around the deformed web material, there is a problem that an irreversible step mark such as a distortion occurs in the web material over several to several tens of laps from the beginning of winding. was there. Generation | occurrence | production of such a level | step difference will reduce the flatness of a web material, and has become a cause of a product loss and cost increase.

このような段差痕の発生を低減させるために、特許文献1には、巻芯の外周面に、緩衝材を設ける技術が開示されている。この技術によれば、ウェブ材の巻き付け端部が、緩衝材内に沈み込むことによって、ウェブ材の厚みによる段差が緩和されるため、段差痕を低減することができる。   In order to reduce the occurrence of such step marks, Patent Document 1 discloses a technique of providing a cushioning material on the outer peripheral surface of the core. According to this technique, since the step by the thickness of a web material is relieve | moderated because the winding edge part of a web material sinks in a buffer material, a level | step difference trace can be reduced.

特開2005−1624378号公報JP 2005-1624378 A

しかしながら、従来の方法では、緩衝材に柔らかい材料を用いた場合でも、後述するように、ウェブ材の巻き付け端部において、巻芯にウェブ材を巻き取る際の圧縮応力の差によって、ウェブ材の沈み込み量に差が生じ、その結果、ウェブ材の表面に、従来のウェブ材の端部段差に起因する段差痕とは異なる段差痕(以下、「圧縮応力差による段差痕」という)が新たな課題として生じていた。   However, in the conventional method, even when a soft material is used for the cushioning material, as described later, due to the difference in compressive stress when the web material is wound around the winding core at the winding end of the web material, There is a difference in the amount of subsidence, and as a result, there is a new step mark (hereinafter referred to as “step mark due to compressive stress difference”) different from the step mark caused by the end step of the conventional web material. It has arisen as a serious problem.

本発明は、上記課題に鑑みなされたもので、その主な目的は、外周面に、ウェブ材の端部段差に起因する段差痕対策として緩衝材が設けられた巻芯にウェブ材を巻き取る際に、ウェブ材の巻き付け端部において、ウェブ材の表面に発生する新たな課題である圧縮応力差による段差痕を低減することにある。   The present invention has been made in view of the above problems, and its main purpose is to wind the web material around a winding core provided with a cushioning material on the outer peripheral surface as a measure against a step mark caused by an end step of the web material. At the same time, it is to reduce a level difference mark due to a difference in compressive stress, which is a new problem occurring on the surface of the web material at the winding end of the web material.

本発明に係るウェブ材の巻き取り方法は、ウェブ材を巻芯に巻き取る巻き取り方法であって、巻芯は、巻芯本体の外周面に緩衝材が形成されており、緩衝材の上に、ウェブ材の端部を貼り付ける工程と、ウェブ材を、該ウェブ材に張力を付加しながら巻芯本体に巻き取る工程とを含み、緩衝材は、圧縮歪み20%における圧縮応力が0.02MPa以下の柔らかい発泡樹脂からなり、緩衝材の厚み(t)は、巻き取るウェブ材の厚みをtとしたとき、0.2≧t/t≧0.1に設定されており、緩衝材は、圧縮応力−歪み曲線において、圧縮歪みがα%(20≦α≦60)における圧縮応力をσとし、圧縮歪みが(α+t/t×100)%における圧縮応力をσとしたとき、σ/σ≦6であることを特徴とする。 A web material winding method according to the present invention is a winding method for winding a web material around a winding core, and the winding core has a cushioning material formed on the outer peripheral surface of the winding core body. The step of attaching the end of the web material and the step of winding the web material around the core body while applying tension to the web material, and the cushioning material has a compressive stress of 0% at a compressive strain of 20%. 0.02 MPa or less of soft foamed resin, and the thickness (t 1 ) of the cushioning material is set to 0.2 ≧ t 2 / t 1 ≧ 0.1, where t 2 is the thickness of the web material to be wound. In the compressive stress-strain curve, the buffer material has a compressive stress at a compressive strain of α% (20 ≦ α ≦ 60) as σa and a compressive stress at a compressive strain of (α + t 2 / t 1 × 100)%. When σ b , σ b / σ a ≦ 6.

ある好適な実施形態において、上記緩衝材の厚み(t)は、巻き取るウェブ材の厚みをtとしたとき、0.15≧t/t≧0.1に設定されており、緩衝材は、圧縮応力−歪み曲線において、圧縮歪みがα%(20≦α≦65)における圧縮応力をσとし、圧縮歪みが(α+t/t×100)%における圧縮応力をσとしたとき、σ/σ≦4である。 In a preferred embodiment, the thickness (t 1 ) of the cushioning material is set to 0.15 ≧ t 2 / t 1 ≧ 0.1, where t 2 is the thickness of the web material to be wound, cushioning material, compressive stress - in strain curve, the compressive stress in the compressive strain α% (20 ≦ α ≦ 65 ) and sigma a compressive strain compressive stress in (α + t 2 / t 1 × 100)% σ b Σ b / σ a ≦ 4.

本発明によれば、外周面に、ウェブ材の端部段差に起因する段差痕対策として緩衝材が設けられた巻芯にウェブ材を巻き取る際に、ウェブ材の巻き付け端部において、ウェブ材の表面に発生する圧縮応力差による段差痕を低減することができる。   According to the present invention, when the web material is wound around the winding core provided with a cushioning material as a measure against a step mark caused by the end step of the web material on the outer peripheral surface, the web material is wound at the winding end of the web material. The step mark due to the difference in compressive stress generated on the surface of the film can be reduced.

(a)〜(d)は、従来の巻芯にウェブ材を巻き取る工程を模式的に示した拡大断面図である。(A)-(d) is the expanded sectional view which showed typically the process of winding up a web material on the conventional winding core. 従来の緩衝材の圧縮応力−歪み曲線を示したグラフである。It is the graph which showed the compressive stress-distortion curve of the conventional buffer material. 本発明の一実施形態における巻芯の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the winding core in one Embodiment of this invention. (a)〜(e)は、本発明の一実施形態における巻芯にウェブ材を巻き取る工程を模式的に示した拡大断面図である。(A)-(e) is the expanded sectional view which showed typically the process of winding up a web material on the winding core in one Embodiment of this invention. 本発明の一実施形態における緩衝材の圧縮応力−歪み曲線を示したグラフである。It is the graph which showed the compressive stress-strain curve of the buffer material in one Embodiment of this invention. 本発明の一実施形態における緩衝材の圧縮応力−歪み曲線の一部を拡大して示したグラフである。It is the graph which expanded and showed a part of compressive stress-strain curve of the shock absorbing material in one Embodiment of this invention. 本発明の実施例に用いた緩衝材の表面にコインを押し当てて、緩衝材を圧縮歪み85%まで沈み込ませた後、コインを取り除いたときの緩衝材の表面を撮影した写真である。It is the photograph which image | photographed the surface of the shock absorbing material when coin was pressed on the surface of the shock absorbing material used for the Example of this invention, and the shock absorbing material was sunk to 85% of compression distortion, and the coin was removed.

本発明の実施形態を説明する前に、本発明を想到するに至った経緯を説明する。   Before describing the embodiments of the present invention, the background to the idea of the present invention will be described.

図1(a)〜(d)は、従来の巻芯にウェブ材を巻き取る工程を模式的に示した拡大断面図である。巻芯は、円筒形の巻芯本体と、巻芯本体の外周面に形成された緩衝材とを有する。なお、図1(a)〜(d)では、巻芯本体を省略し、巻芯本体の外周面に形成された緩衝材20のみを表示している。また、緩衝材20の表面の曲率は省略している。   1A to 1D are enlarged cross-sectional views schematically showing a process of winding a web material around a conventional winding core. The core includes a cylindrical core body and a buffer material formed on the outer peripheral surface of the core body. In FIGS. 1A to 1D, the core body is omitted, and only the cushioning material 20 formed on the outer peripheral surface of the core body is displayed. Further, the curvature of the surface of the buffer material 20 is omitted.

図1(a)は、緩衝材20の表面にウェブ材30の端部を貼り付けた状態を示す。ここでは、緩衝材20の厚みが500μm、及びウェブ材30の厚みが100μmの場合を例に説明する。   FIG. 1A shows a state in which the end of the web material 30 is attached to the surface of the cushioning material 20. Here, a case where the thickness of the buffer material 20 is 500 μm and the thickness of the web material 30 is 100 μm will be described as an example.

図1(b)に示すように、ウェブ材30に張力を付加しながら、ウェブ材30を緩衝材20に巻き取ると、緩衝材20が柔らかい材料で構成されている場合、ウェブ材30は、その厚み分だけ緩衝材20の中に沈み込む。このとき、ウェブ材30が沈み込んだ緩衝材20の領域20aの厚みは、400μm(圧縮歪みが20%)になっている。しかしながら、この緩衝材20の圧縮歪みは弾性変形であるため、ウェブ材30の端部に接する緩衝材20は、ウェブ材30の沈み込みに引きずられて、同じように沈み込むが、ウェブ材30の端部から少し離れた領域の緩衝材20は、沈み込まない。その結果、図1(b)に示すように、緩衝材20のウェブ材30の端部に接する緩衝材20の表面には、溝部40が形成される。なお、ウェブ材30は、緩衝材20から圧縮歪み20%における圧縮応力σを受ける。 As shown in FIG. 1B, when the web material 30 is wound around the cushioning material 20 while applying tension to the web material 30, when the cushioning material 20 is made of a soft material, It sinks into the cushioning material 20 by the thickness. At this time, the thickness of the region 20a of the cushioning material 20 in which the web material 30 sinks is 400 μm (compression strain is 20%). However, since the compressive strain of the buffer material 20 is elastic deformation, the buffer material 20 in contact with the end of the web material 30 is dragged by the sink of the web material 30 and sinks in the same manner. The cushioning material 20 in a region slightly away from the end of the stub does not sink. As a result, as shown in FIG. 1B, a groove 40 is formed on the surface of the cushioning material 20 in contact with the end of the web material 30 of the cushioning material 20. The web member 30 receives a compressive stress σ 1 at a compressive strain of 20% from the buffer member 20.

図1(c)に示すように、1層目のウェブ材30Aの上に、さらに2層目のウェブ材30Bを巻き取ると、ウェブ材30は、さらに緩衝材20の中に沈み込む。このとき、1層目のウェブ材30Aと、2層目のウェブ材30Bとが重なった部分が沈み込んだ緩衝材20の領域20aの厚みが200μmとすると、領域20aの圧縮歪みは60%になる。一方、2層目のウェブ材30Bが沈み込んだ緩衝材20の領域20bの厚みは300μmとなり、領域20bの圧縮歪みは40%になる。従って、1層目のウェブ材30Aと2層目のウェブ材30Bとが重なった部分のウェブ材30は、緩衝材20から圧縮歪み60%における圧縮応力σを受ける。一方、2層目のウェブ材30Bのみのウェブ材30は、緩衝材20から圧縮歪み40%における圧縮応力σを受ける。 As illustrated in FIG. 1C, when the second layer web material 30 </ b> B is wound on the first layer web material 30 </ b> A, the web material 30 further sinks into the buffer material 20. At this time, if the thickness of the region 20a of the cushioning material 20 in which the overlapping portion of the first layer web material 30A and the second layer web material 30B sinks is 200 μm, the compressive strain of the region 20a is 60%. Become. On the other hand, the thickness of the region 20b of the cushioning material 20 in which the web material 30B of the second layer is submerged is 300 μm, and the compressive strain of the region 20b is 40%. Therefore, the web material 30 in the portion where the first-layer web material 30A and the second-layer web material 30B overlap each other receives a compressive stress σ 3 at 60% compressive strain from the cushioning material 20. On the other hand, the web material 30 having only the second-layer web material 30 </ b> B receives the compressive stress σ 2 at the compression strain of 40% from the buffer material 20.

しかしながら、緩衝材20は、通常、図2に示すように、圧縮応力−歪み曲線において、圧縮歪みが大きくなると、圧縮応力が大きくなるという特性を有する。従って、図1(c)に示すように、1層目のウェブ材30Aと2層目のウェブ材30Bとが重なった部分のウェブ材30が受ける圧縮応力σ(圧縮歪み60%)と、2層目のウェブ材30Bのみのウェブ材30が受ける圧縮応力σ(圧縮歪み40%)とは、大きな差が生じる。そのため、2層目のウェブ材30Bのみのウェブ材30の方が、1層目のウェブ材30Aと2層目のウェブ材30Bとが重なった部分のウェブ材30よりも沈み込みやすくなる。その結果、図1(c)に示すように、1層目のウェブ材30Aの端部において、領域20aにおける1層目のウェブ材30Aの表面と、領域20bにおける緩衝材20の表面とに段差50が生じることになる。さらに、この段差50に起因して、1層目のウェブ材30Aの端部において、2層目のウェブ材30Bの表面にも段差50が生じる。 However, as shown in FIG. 2, the cushioning material 20 usually has a characteristic that the compressive stress increases as the compressive strain increases in the compressive stress-strain curve. Therefore, as shown in FIG. 1C, the compressive stress σ 3 (compression strain 60%) received by the web material 30 in the portion where the first-layer web material 30A and the second-layer web material 30B overlap, There is a large difference from the compressive stress σ 2 (compression strain 40%) received by the web material 30 of only the second-layer web material 30B. Therefore, the web material 30 having only the second-layer web material 30B is more likely to sink than the web material 30 where the first-layer web material 30A and the second-layer web material 30B overlap. As a result, as shown in FIG. 1C, there is a step between the surface of the first layer web material 30A in the region 20a and the surface of the buffer material 20 in the region 20b at the end of the first layer web material 30A. 50 will occur. Further, due to the step 50, a step 50 is also generated on the surface of the second-layer web material 30B at the end of the first-layer web material 30A.

さらに、図1(d)に示すように、2層目のウェブ材30Bの上に、3層目のウェブ材30Cを巻き取ると、ウェブ材30は、さらに緩衝材20の中に沈み込む。このとき、1層目〜3層目のウェブ材30A〜30Cが重なった部分が沈み込んだ緩衝材20の領域20aの厚みが100μmとすると、領域20aの圧縮歪みは80%になる。一方、2層目と3層目のウェブ材30B、30Cが重なった部分が沈み込んだ緩衝材20の領域20bの厚みは200μmとなり、領域20bの圧縮歪みは60%になる。従って、1層目〜3層目のウェブ材30A〜30Cが重なった部分のウェブ材30は、緩衝材20から圧縮歪み80%における圧縮応力σを受ける。一方、2層目と3層目のウェブ材30B、30Cが重なった部分のウェブ材30は、緩衝材20から圧縮歪み60%における圧縮応力σを受ける。 Further, as shown in FIG. 1D, when the third layer web material 30 </ b> C is wound on the second layer web material 30 </ b> B, the web material 30 further sinks into the buffer material 20. At this time, if the thickness of the region 20a of the cushioning material 20 in which the overlapped portions of the first to third layer web materials 30A to 30C are sunk is 100 μm, the compressive strain of the region 20a is 80%. On the other hand, the thickness of the region 20b of the cushioning material 20 in which the overlapped portions of the second layer and the third layer web materials 30B and 30C sink is 200 μm, and the compressive strain of the region 20b is 60%. Therefore, the web material 30 in the portion where the first to third layer web materials 30 </ b> A to 30 </ b> C overlap receives the compressive stress σ 5 at the compression strain of 80% from the buffer material 20. On the other hand, the web material 30 in the portion where the second-layer and third-layer web materials 30 </ b> B and 30 </ b> C overlap each other receives a compressive stress σ 4 at 60% compressive strain from the buffer material 20.

従って、図2に示すように、1層目〜3層目のウェブ材30A〜30Cが重なった部分のウェブ材30が受ける圧縮応力σ(圧縮歪み80%)と、2層目と3層目のウェブ材30B、30Cが重なった部分のウェブ材30が受ける圧縮応力σ(圧縮歪み60%)とは、さらに大きな差が生じる。そのため、1層目〜3層目のウェブ材30A〜30Cが重なった部分のウェブ材30の方が、2層目と3層目のウェブ材30B、30Cが重なったウェブ材30よりも沈み込みやすくなる。その結果、図1(d)に示すように、1層目のウェブ材30Aの端部において、領域20aにおける1層目のウェブ材30Aの表面と、領域20bにおける緩衝材20の表面とに、より大きな段差50が生じることになる。そのため、1層目のウェブ材30Aの端部において、2層目と3層目のウェブ材30B、30Cの表面に段差50が生じたまま、ウェブ材30が巻き取られることになる。 Accordingly, as shown in FIG. 2, the compressive stress σ 5 (compression strain 80%) received by the web material 30 in the portion where the web materials 30A to 30C of the first layer to the third layer are overlapped, and the second and third layers. There is an even greater difference from the compressive stress σ 4 (compressive strain 60%) received by the web material 30 where the web materials 30B, 30C overlap. Therefore, the web material 30 in the portion where the first to third layer web materials 30A to 30C overlap is submerged than the web material 30 where the second and third layer web materials 30B and 30C overlap. It becomes easy. As a result, as shown in FIG. 1 (d), at the end of the first-layer web material 30A, the surface of the first-layer web material 30A in the region 20a and the surface of the buffer material 20 in the region 20b A larger step 50 is produced. Therefore, at the end of the first layer web material 30A, the web material 30 is wound while the step 50 remains on the surface of the second and third layer web materials 30B and 30C.

このように、従来のウェブ材の端部段差に起因する段差痕対策として、巻芯本体の外周面に柔らかい緩衝材20を設けても、1層目〜n層目のウェブ材30が重なった部分が受ける圧縮応力と、2層目〜n層目のウェブ材30が重なった部分が受ける圧縮応力とに、大きな差が生じると、1層目のウェブ材30Aの端部において、2層目〜n層目のウェブ材30の表面に段差50が生じたまま、ウェブ材30が巻き取られることになる。その結果、従来のウェブ材30の端部段差に起因する段差痕に似たような圧縮応力差による段差痕がウェブ材30に発生する。   As described above, as a measure against a step mark caused by an end step of the conventional web material, even when the soft cushioning material 20 is provided on the outer peripheral surface of the core body, the first to n-th layer web materials 30 overlap. If there is a large difference between the compressive stress received by the portion and the compressive stress received by the portion where the second to n-th layer web materials 30 overlap, the second layer is formed at the end of the first layer web material 30A. The web material 30 is wound while the step 50 is generated on the surface of the web material 30 in the nth layer. As a result, a step mark due to a difference in compressive stress similar to the step mark caused by the end step of the conventional web material 30 is generated in the web material 30.

なお、このような圧縮応力差による段差痕は、熟練者による注意深い目視により発見することができるレベルであるが、例えば、薄膜の光学フィルム等に、このような圧縮応力差による段差痕が発生すると、形状的な歪みだけでなく、光学的な歪みとして品質劣化に繋がるため、特に、解決すべき重要な課題となる。   In addition, although the level difference trace by such a compressive stress difference is a level which can be discovered by careful visual inspection by a skilled person, for example, when a level difference trace due to such a compressive stress difference occurs in a thin film optical film or the like. Since this leads to quality degradation not only as a geometric distortion but also as an optical distortion, it is an especially important problem to be solved.

本願発明者は、このような知見から、緩衝材として、1層目〜n層目のウェブ材30が重なった部分が受ける圧縮応力と、2層目〜n層目のウェブ材30が重なった部分が受ける圧縮応力との差が小さい材料を用いることによって、1層目のウェブ材30の端部における2層目〜n層目のウェブ材30の表面に生じる段差50を低減し、これにより圧縮応力差による段差痕を低減することができると考え、本発明を想到するに至った。   From this knowledge, the inventor of the present application, as a cushioning material, the compressive stress received by the overlapping portion of the first to n-th layer web materials 30 and the second to n-th layer web materials 30 overlapped. By using a material having a small difference from the compressive stress received by the portion, the step 50 generated on the surface of the second-layer to n-th web material 30 at the end of the first-layer web material 30 is reduced. The present inventors have come up with the present invention by thinking that step marks due to the difference in compressive stress can be reduced.

以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。また、本発明の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to the following embodiment. Moreover, it can change suitably in the range which does not deviate from the range which has the effect of this invention.

図3は、本発明の一実施形態における巻芯1の構成を模式的に示した断面図である。図3に示すように、本実施形態における巻芯1は、円筒形の巻芯本体10の外周面に緩衝材20が形成されている。   FIG. 3 is a cross-sectional view schematically showing the configuration of the core 1 in one embodiment of the present invention. As shown in FIG. 3, the core 1 in the present embodiment has a cushioning material 20 formed on the outer peripheral surface of a cylindrical core body 10.

本実施形態における緩衝材20は、緩衝材20の上にウェブ材30の端部を貼り付けて、ウェブ材30に張力を付加しながら巻芯本体に巻き取る際に、ウェブ材30の端部が、緩衝材20内に沈む込む程度に柔らかい材料で構成されていることが好ましい。このような特性を有する緩衝材20の材料としては、圧縮歪み20%における圧縮応力が0.02MPa以下の柔らかい発泡樹脂が好適である。ここに、圧縮応力は、JISK6767に準じて測定される値である。緩衝材20が、圧縮歪み20%における圧縮応力が0.02MPaを超える材料で構成されていると、ウェブ材30の緩衝材20内への沈み込み量が足らず、従来のウェブ材の端部段差に起因する段差痕を十分に低減することができない。   In the present embodiment, the cushioning material 20 is attached to the end portion of the web material 30 on the cushioning material 20, and when the web material 30 is wound around the core body while applying tension, the end portion of the web material 30. However, it is preferable to be made of a material soft enough to sink into the buffer material 20. As the material of the buffer material 20 having such characteristics, a soft foam resin having a compressive stress of 0.02 MPa or less at a compressive strain of 20% is suitable. Here, the compressive stress is a value measured according to JISK6767. If the cushioning material 20 is made of a material having a compressive stress of more than 0.02 MPa at a compression strain of 20%, the amount of sinking of the web material 30 into the cushioning material 20 is insufficient, and the end step of the conventional web material is reduced. It is not possible to sufficiently reduce the level difference caused by.

なお、緩衝材20の巻芯本体10外周面への形成は、例えば、巻芯本体10の外周面、若しくは、緩衝材20の表面に、粘着剤等を塗布して行うことができる。あるいは、緩衝材20を両面接着テープを介して、巻芯本体10の外周面に貼り付けてもよい。   The buffer material 20 can be formed on the outer peripheral surface of the core body 10 by applying an adhesive or the like to the outer peripheral surface of the core body 10 or the surface of the buffer material 20, for example. Or you may affix the buffer material 20 on the outer peripheral surface of the core main body 10 via a double-sided adhesive tape.

図4(a)〜(d)は、本実施形態における巻芯1にウェブ材30を巻き取る工程を模式的に示した拡大断面図である。なお、図4(a)〜(d)では、巻芯本体10を省略し、巻芯本体10の外周面に形成された緩衝材20のみを表示している。また、緩衝材20の表面の曲率は省略している。   4A to 4D are enlarged cross-sectional views schematically showing a step of winding the web material 30 around the core 1 in the present embodiment. 4A to 4D, the core body 10 is omitted, and only the cushioning material 20 formed on the outer peripheral surface of the core body 10 is displayed. Further, the curvature of the surface of the buffer material 20 is omitted.

図4(a)は、緩衝材20の表面にウェブ材30の端部を貼り付けた状態を示す。ここでは、図1(a)と同様に、緩衝材20の厚みが500μm、及びウェブ材30の厚みが100μmの場合を例に説明するが、緩衝材20の厚み、及びウェブ材30の厚みは、勿論、これらの大きさに限定されるものではない。   FIG. 4A shows a state in which the end portion of the web material 30 is attached to the surface of the cushioning material 20. Here, as in FIG. 1A, the case where the thickness of the cushioning material 20 is 500 μm and the thickness of the web material 30 is 100 μm will be described as an example, but the thickness of the cushioning material 20 and the thickness of the web material 30 are Of course, it is not limited to these sizes.

なお、ウェブ材30の端部の緩衝材20表面への貼り付けは、例えば、緩衝材20の表面に粘着テープを貼り付け、この粘着テープにウェブ材30の端部を貼り付けることにより行うことができる。あるいは、緩衝材20として、表面が粘着性を有するものを用いてもよい。   In addition, sticking the edge part of the web material 30 to the buffer material 20 surface is performed by sticking an adhesive tape on the surface of the buffer material 20, and sticking the edge part of the web material 30 to this adhesive tape, for example. Can do. Alternatively, as the buffer material 20, a material having a sticky surface may be used.

図4(b)に示すように、ウェブ材30に張力を付加しながら、ウェブ材30を緩衝材20に巻き取ると、ウェブ材30は、その厚み分だけ緩衝材20の中に沈み込む。このとき、緩衝材20のウェブ材30が沈み込んだ領域20aの厚みは、400μm(圧縮歪みが20%)になっている。そして、ウェブ材30は、緩衝材20から圧縮歪み20%における圧縮応力σを受ける。 As illustrated in FIG. 4B, when the web material 30 is wound around the cushioning material 20 while applying tension to the web material 30, the web material 30 sinks into the cushioning material 20 by the thickness. At this time, the thickness of the region 20a in which the web material 30 of the cushioning material 20 sinks is 400 μm (compression strain is 20%). Then, the web material 30 receives a compressive stress σ 1 at a compressive strain of 20% from the buffer material 20.

図4(c)に示すように、1層目のウェブ材30Aの上に、さらに2層目のウェブ材30Bを巻き取ると、ウェブ材30は、さらに緩衝材20の中に沈み込む。このとき、1層目のウェブ材30Aと、2層目のウェブ材30Bとが重なった部分が沈み込んだ緩衝材20の領域20aの厚みが200μmとすると、領域20aの圧縮歪みは60%になる。一方、2層目のウェブ材30Bが沈み込んだ緩衝材20の領域20bの厚みは300μmとなり、領域20bの圧縮歪みは40%になる。従って、1層目のウェブ材30Aと2層目のウェブ材30Bとが重なった部分のウェブ材30は、緩衝材20から圧縮歪み60%における圧縮応力σを受ける。一方、2層目のウェブ材30Bのみのウェブ材30は、緩衝材20から圧縮歪み40%における圧縮応力σを受ける。 As shown in FIG. 4C, when the second layer web material 30 </ b> B is wound on the first layer web material 30 </ b> A, the web material 30 further sinks into the buffer material 20. At this time, if the thickness of the region 20a of the cushioning material 20 in which the overlapping portion of the first layer web material 30A and the second layer web material 30B sinks is 200 μm, the compressive strain of the region 20a is 60%. Become. On the other hand, the thickness of the region 20b of the cushioning material 20 in which the web material 30B of the second layer is submerged is 300 μm, and the compressive strain of the region 20b is 40%. Therefore, the web material 30 in the portion where the first-layer web material 30A and the second-layer web material 30B overlap each other receives a compressive stress σ 3 at 60% compressive strain from the cushioning material 20. On the other hand, the web material 30 having only the second-layer web material 30 </ b> B receives the compressive stress σ 2 at the compression strain of 40% from the buffer material 20.

さらに、図4(d)に示すように、2層目のウェブ材30Bの上に、3層目のウェブ材30Cを巻き取ると、ウェブ材30は、さらに緩衝材20の中に沈み込む。このとき、1層目〜3層目のウェブ材30A〜30Cが重なった部分が沈み込んだ緩衝材20の領域20aの厚みが100μmとすると、領域20aの圧縮歪みは80%になる。一方、2層目と3層目のウェブ材30B、30Cが重なった部分が沈み込んだ緩衝材20の領域20bの厚みは200μmとなり、領域20bの圧縮歪みは60%になる。従って、1層目〜3層目のウェブ材30A〜30Cが重なった部分のウェブ材30は、緩衝材20から圧縮歪み80%における圧縮応力σを受ける。一方、2層目と3層目のウェブ材30B、30Cが重なった部分のウェブ材30は、緩衝材20から圧縮歪み60%における圧縮応力σを受ける。 Further, as shown in FIG. 4D, when the third layer web material 30 </ b> C is wound on the second layer web material 30 </ b> B, the web material 30 further sinks into the buffer material 20. At this time, if the thickness of the region 20a of the cushioning material 20 in which the overlapped portions of the first to third layer web materials 30A to 30C are sunk is 100 μm, the compressive strain of the region 20a is 80%. On the other hand, the thickness of the region 20b of the cushioning material 20 in which the overlapped portions of the second layer and the third layer web materials 30B and 30C sink is 200 μm, and the compressive strain of the region 20b is 60%. Therefore, the web material 30 in the portion where the first to third layer web materials 30 </ b> A to 30 </ b> C overlap receives the compressive stress σ 5 at the compression strain of 80% from the buffer material 20. On the other hand, the web material 30 in the portion where the second-layer and third-layer web materials 30 </ b> B and 30 </ b> C overlap each other receives a compressive stress σ 4 at 60% compressive strain from the buffer material 20.

図5は、本実施形態における緩衝材20の圧縮応力−歪み曲線を示したグラフである。   FIG. 5 is a graph showing a compressive stress-strain curve of the buffer material 20 in the present embodiment.

図5に示すように、本実施形態における緩衝材20は、圧縮歪みが20%〜80%の範囲Aにおいて、圧縮応力−歪み曲線の勾配(圧縮応力の変化)が小さいという特徴を有する。これにより、図4(c)に例示した状態においては、1層目のウェブ材30Aと2層目のウェブ材30Bとが重なった部分のウェブ材30が緩衝材20から受ける圧縮応力σ(圧縮歪み60%)と、2層目のウェブ材30Bのみのウェブ材30が緩衝材20から受ける圧縮応力σ(圧縮歪み40%)との差は、非常に小さくなる。そのため、1層目のウェブ材30Aの端部において、領域20aにおける1層目のウェブ材30Aの表面と、領域20bにおける緩衝材20の表面とに、圧縮応力の差によって段差が生じることはない。その結果、1層目のウェブ材30Aの端部において、2層目のウェブ材30Bの表面に、圧縮応力差による段差痕は生じない。 As shown in FIG. 5, the cushioning material 20 in the present embodiment has a characteristic that the gradient of the compressive stress-strain curve (change in compressive stress) is small in the range A where the compressive strain is 20% to 80%. Thereby, in the state illustrated in FIG. 4C, the compressive stress σ 3 (from the cushioning material 20 received by the portion of the web material 30 where the first-layer web material 30A and the second-layer web material 30B overlap with each other). The difference between the compressive stress σ 2 (compressive strain 40%) that the web material 30 of only the second layer web material 30B receives from the cushioning material 20 is very small. Therefore, at the end of the first layer web material 30A, there is no step due to the difference in compressive stress between the surface of the first layer web material 30A in the region 20a and the surface of the buffer material 20 in the region 20b. . As a result, there is no step mark due to the difference in compressive stress on the surface of the second layer web material 30B at the end of the first layer web material 30A.

同様に、図4(d)に例示した状態においては、1層目〜3層目のウェブ材30A〜30Bが重なった部分のウェブ材30が緩衝材20から受ける圧縮応力σ(圧縮歪み80%)と、2層目と3層目のウェブ材30B、30Cのみのウェブ材30が緩衝材20から受ける圧縮応力σ(圧縮歪み40%)との差は、非常に小さくなる。そのため、1層目のウェブ材30Aの端部において、2層目と3層目のウェブ材30B、30Cの表面に、圧縮応力差による段差が新たに生じることはない。 Similarly, in the state illustrated in FIG. 4D, the compressive stress σ 5 (compressive strain 80) that the web material 30 in the portion where the web materials 30 </ b> A to 30 </ b> B of the first to third layers overlap is received from the cushioning material 20. %) And the compressive stress σ 2 (compressive strain 40%) that the web material 30 of only the second layer and the third layer web material 30B, 30C receives from the cushioning material 20 is very small. Therefore, a step due to a difference in compressive stress does not newly occur on the surface of the second layer and the third layer web members 30B and 30C at the end of the first layer web member 30A.

ところで、緩衝材20の厚みをt、ウェブ材30の厚みをtとしたとき、1層目〜n層目のウェブ材30が重なった部分の緩衝材20の領域20aの圧縮歪みと、2層目〜n層目のウェブ材30が重なった部分の緩衝材20の領域20bの圧縮歪みとの差は、常に、t/t×100(%)となる。例えば、図4(a)〜(d)に示した例では、緩衝材20の厚みtが500μmで、ウェブ材30の厚みtが100μmの場合、緩衝材20の領域20aの圧縮歪みと、領域20bの圧縮歪みとの差は、常に20%となる。 By the way, when the thickness of the buffer material 20 is t 1 and the thickness of the web material 30 is t 2 , the compressive strain of the region 20a of the buffer material 20 in the portion where the web material 30 of the first layer to the n-th layer overlaps, The difference from the compressive strain of the region 20b of the buffer material 20 where the second to n-th layer web materials 30 overlap is always t 2 / t 1 × 100 (%). For example, in the example shown in FIGS. 4A to 4D, when the thickness t 1 of the buffer material 20 is 500 μm and the thickness t 2 of the web material 30 is 100 μm, the compression strain of the region 20 a of the buffer material 20 The difference from the compressive strain in the region 20b is always 20%.

従って、図6に示すように、圧縮歪みがα%における圧縮応力をσとし、この圧縮歪みα%よりもt/t×100(%)だけ大きい圧縮歪みにおける圧縮応力をσとしたとき、σとσとの差が小さければ、ウェブ材30を巻芯1に巻き取る工程の間、常に、ウェブ材30が受ける圧縮応力の差(σ−σ)を小さな状態に維持することができる。これにより、圧縮応力差による段差痕を低減することができる。 Therefore, as shown in FIG. 6, the compressive stress when the compressive strain is α% is σ a, and the compressive stress when the compressive strain is larger than the compressive strain α% by t 2 / t 1 × 100 (%) is σ b . If the difference between σ a and σ b is small, the difference in compressive stress (σ b −σ a ) that the web material 30 receives is always small during the process of winding the web material 30 around the core 1. Can be maintained. Thereby, the level | step difference trace by a compressive-stress difference can be reduced.

本発明において、ウェブ材30を巻芯1に巻き取る工程の間、圧縮応力の比(σ/σ)が6以下(σ/σ≦6)であれば、圧縮応力差による段差痕を効果的に低減することができる。σ/σが6を超えると、ウェブ材30が受ける圧縮応力の差が大きくなり、圧縮応力差による段差痕を効果的に低減することが難しくなる。σa/σ≦4であれば、より効果的に圧縮応力差による段差痕を低減することができる。 In the present invention, if the ratio of compressive stress (σ a / σ b ) is 6 or less (σ a / σ b ≦ 6) during the step of winding the web material 30 around the core 1, the step due to the difference in compressive stress. Scratches can be effectively reduced. If σ a / σ b exceeds 6, the difference in compressive stress received by the web material 30 becomes large, and it becomes difficult to effectively reduce the level difference marks due to the compressive stress difference. If σa / σ b ≦ 4, it is possible to more effectively reduce step marks due to the difference in compressive stress.

上述したように、緩衝材20の厚みをt、ウェブ材30の厚みをtとしたとき、緩衝材20の領域20aと領域20bとで生じる圧縮歪みとの差は、t/t×100(%)となる。従って、緩衝材20の厚み(t)が、ウェブ材30の厚み(t)に対して十分に厚ければ、すなわち、t/t×100(%)が小さければ、圧縮歪みの差は小さくなるため、圧縮応力差による段差痕が発生するような問題は生じにくい。 As described above, when the thickness of the buffer material 20 is t 1 and the thickness of the web material 30 is t 2 , the difference between the compressive strain generated in the region 20a and the region 20b of the buffer material 20 is t 2 / t 1. × 100 (%). Therefore, if the thickness (t 1 ) of the cushioning material 20 is sufficiently thicker than the thickness (t 2 ) of the web material 30, that is, if t 2 / t 1 × 100 (%) is small, the compressive strain is reduced. Since the difference is small, it is difficult to cause a problem that a step mark due to a compressive stress difference occurs.

従って、本発明における課題である圧縮応力差による段差痕は、緩衝材20の厚み(t)が、巻き取るウェブ材30の厚みをtとしたとき、t/t≧0.1に設定されているときに顕在化する。なお、緩衝材20の厚み(t)が、ウェブ材30の厚み(t)に対して薄すぎると、緩衝材20の領域20aと領域20bとで生じる圧縮歪みの差が大きくなり、その結果、σ/σ≦6を満たす緩衝材20を見出すことが困難になる。従って、本発明による圧縮応力差による段差痕低減の効果は、緩衝材20の厚み(t)が、0.2≧t/t≧0.1に設定されている場合に、有効に発揮される。 Therefore, the step mark due to the difference in compressive stress, which is a problem in the present invention, is that t 2 / t 1 ≧ 0.1 when the thickness (t 1 ) of the buffer material 20 is t 2. Appears when set to. If the thickness (t 1 ) of the cushioning material 20 is too thin with respect to the thickness (t 2 ) of the web material 30, the difference in compressive strain generated between the region 20 a and the region 20 b of the cushioning material 20 increases. As a result, it becomes difficult to find the buffer material 20 that satisfies σ a / σ b ≦ 6. Therefore, the effect of reducing the step mark due to the compressive stress difference according to the present invention is effective when the thickness (t 1 ) of the buffer material 20 is set to 0.2 ≧ t 2 / t 1 ≧ 0.1. Demonstrated.

ところで、図5に示すように、本実施形態における緩衝材20は、圧縮歪みが20%〜80%の範囲Aにおいて、弾性変形をしている。そのため、ウェブ材30の端部に接する緩衝材20は、ウェブ材30の沈み込みに引きずられて、同じように沈み込むが、ウェブ材30の端部から少し離れた領域の緩衝材20は、沈み込まない。その結果、図4(b)〜(d)に示すように、緩衝材20のウェブ材30の端部に接する緩衝材20の表面には、溝部40が残存する。この溝部40が残存していると、ウェブ材30に巻き取りによる大きな応力が加わった場合、溝部40の隙間を埋めるように、ウェブ材30が座屈するおそれがある。   By the way, as shown in FIG. 5, the shock absorbing material 20 in this embodiment is elastically deforming in the range A where the compressive strain is 20% to 80%. Therefore, the cushioning material 20 in contact with the end of the web material 30 is dragged by the sinking of the web material 30 and sinks in the same manner, but the cushioning material 20 in a region slightly away from the end of the web material 30 is Don't sink. As a result, as shown in FIGS. 4B to 4D, the groove 40 remains on the surface of the cushioning material 20 in contact with the end of the web material 30 of the cushioning material 20. If the groove 40 remains, the web material 30 may buckle so as to fill a gap in the groove 40 when a large stress is applied to the web material 30 due to winding.

しかしながら、図4(e)に示すように、3層目のウェブ材30Cの上に、4層目のウェブ材30Cを巻き取り、ウェブ材30を緩衝材20の中にさらに沈み込ませることによって、以下の理由により、溝部40を消滅させることができる。   However, as shown in FIG. 4E, by winding the web material 30C of the fourth layer on the web material 30C of the third layer and further sinking the web material 30 into the cushioning material 20. The groove 40 can be eliminated for the following reason.

図4(e)に示した例では、1層目〜4層目のウェブ材30A〜30Dが重なった部分が沈み込んだ緩衝材20の領域20aの厚みは、75μmとなり、領域20aの圧縮歪みは85%になる。一方、2層目〜4層目のウェブ材30B〜30Dが重なった部分が沈み込んだ緩衝材20の領域20bの厚みは175μmとなり、領域20bの圧縮歪みは65%になる。   In the example shown in FIG. 4 (e), the thickness of the region 20a of the cushioning material 20 in which the overlapped portions of the first to fourth layers of the web materials 30A to 30D are 75 μm, and the compressive strain of the region 20a Will be 85%. On the other hand, the thickness of the region 20b of the cushioning material 20 in which the overlapping portions of the second to fourth layer web materials 30B to 30D are sunk is 175 μm, and the compressive strain of the region 20b is 65%.

本実施形態における緩衝材20は、図5に示すように、圧縮応力−歪み曲線において、圧縮歪み85%で、塑性変形を示す降伏点Sを有する。この降伏点における圧縮応力をσとする。 As shown in FIG. 5, the cushioning material 20 in the present embodiment has a yield point S that indicates plastic deformation at a compressive strain of 85% in the compressive stress-strain curve. The compressive stress at the yield point is σ s .

そのため、図4(e)において、1層目〜4層目のウェブ材30A〜30Dが重なった部分が沈み込んだ緩衝材20の領域20aは、弾性変形から塑性変形に変わる。その結果、ウェブ材30Aの沈み込みに引きずられて一緒に沈み込んだ緩衝材20は、ウェブ材30Aの端部との固着から開放されることによって、弾性変形の過程で残存していた溝部40が消滅する。これにより、溝部40に起因するウェブ材30の座屈を防止することができる。   Therefore, in FIG.4 (e), the area | region 20a of the shock absorbing material 20 into which the part which the web materials 30A-30D of the 1st layer-the 4th layer overlapped sank changes from an elastic deformation to a plastic deformation. As a result, the cushioning material 20 that has been dragged by the sinking of the web material 30A and released together with the end of the web material 30A is released from the adhering to the end portion of the web material 30A, thereby remaining in the elastic deformation process. Disappears. Thereby, buckling of the web material 30 resulting from the groove part 40 can be prevented.

さらに、1層目〜4層目のウェブ材30A〜30Dが重なった部分のウェブ材30は、緩衝材20から圧縮歪み85%における圧縮応力σ、すなわち、降伏点Sにおける圧縮応力を受ける。1層目〜4層目のウェブ材30A〜30Dが重なった部分が沈み込んだ緩衝材20の領域20aは、緩衝材20の全周のほとんどを占めるため、巻芯1に巻き付けられたウェブ材30は、緩衝材20のほぼ全周から、非常に大きな圧縮応力σsを受けることになる。これにより、緩衝材20に柔らかい材料を用いても、ウェブ材30の巻き締めによって緩衝材20が変形することを防止でき、その結果、ウェブ材30が座屈することも防止することができる。 Further, the web material 30 in the portion where the first to fourth layer web materials 30 </ b> A to 30 </ b> D overlap is subjected to the compressive stress σ s at the compressive strain of 85%, that is, the compressive stress at the yield point S. The region 20a of the cushioning material 20 in which the overlapped portions of the first to fourth layer web materials 30A to 30D sinks occupies most of the entire circumference of the cushioning material 20, and thus the web material wound around the core 1 30 receives a very large compressive stress σs from almost the entire circumference of the buffer material 20. Thereby, even if it uses a soft material for the buffer material 20, it can prevent that the buffer material 20 deform | transforms by winding of the web material 30, and can also prevent that the web material 30 buckles.

本実施形態において、緩衝材20の降伏点は、圧縮歪み90%以下で生じることが好ましい。圧縮歪みが90%を超えて降伏点が生じると、急激な応力変化が生じ、これにより、ウェブ材30に局所的な応力が加わるため、ウェブ材30にダメージを与えるおそれがあり、好ましくない。また、降伏点Sにおける圧縮応力σは、10MPa以上であることが好ましい。降伏点Sにおける圧縮応力σが10MPaより小さいと、ウェブ材30の巻き締めによる緩衝材20の変形を防止することが難しい。また、降伏点Sにおける圧縮応力σは、70MPa以下であることが好ましい。降伏点Sにおける圧縮応力σが70MPaを超えると、圧縮応力σがウェブ材30の降伏強度を超える、あるいは近づくため、ウェブ材30が塑性変形するおそれがあり、好ましくない。 In the present embodiment, the yield point of the cushioning material 20 is preferably generated when the compressive strain is 90% or less. If the yield point occurs when the compressive strain exceeds 90%, an abrupt stress change occurs, which causes local stress to be applied to the web material 30, which may damage the web material 30, which is not preferable. The compressive stress σ s at the yield point S is preferably 10 MPa or more. When the compressive stress σ s at the yield point S is smaller than 10 MPa, it is difficult to prevent the buffer material 20 from being deformed due to the web material 30 being tightened. The compressive stress σ s at the yield point S is preferably 70 MPa or less. If the compressive stress σ s at the yield point S exceeds 70 MPa, the compressive stress σ s exceeds or approaches the yield strength of the web material 30, which may cause plastic deformation of the web material 30, which is not preferable.

以上、説明したように、本発明のウェブ材の巻き取り方法において、巻芯本体の外周面に形成する緩衝材20は、従来のウェブ材30の端部段差に起因する段差痕を低減するために、圧縮歪み20%における圧縮応力が0.02MPa以下の柔らかい発泡樹脂を採用する。そして、この柔らかい緩衝材20が設けられた巻芯にウェブ材30を巻き取る際に、新たに発生する圧縮応力差による段差痕は、緩衝材20の厚み(t)を、巻き取るウェブ材30の厚み(t)に対して、0.2≧t/t≧0.1に設定したときに顕在化する。そして、かかる緩衝材20の厚みの範囲において、緩衝材20として、圧縮応力−歪み曲線において、圧縮歪みがα%(20≦α≦60)における圧縮応力をσとし、圧縮歪みが(α+t/t×100)%における圧縮応力をσとしたとき、圧縮応力比(σ/σ)が、少なくとも6以下の特性を有する材料を用いることによって、ウェブ材30の巻き付け端部において、ウェブ材30の表面に発生する圧縮応力差による段差痕を低減することができる。 As described above, in the web material winding method of the present invention, the cushioning material 20 formed on the outer peripheral surface of the core body reduces step marks caused by the end step of the conventional web material 30. In addition, a soft foamed resin having a compressive stress of 0.02 MPa or less at a compressive strain of 20% is employed. When the web material 30 is wound around the core provided with the soft cushioning material 20, a step mark due to a newly generated difference in compressive stress is caused by the thickness of the cushioning material 20 (t 1 ). It becomes apparent when 0.2 ≧ t 2 / t 1 ≧ 0.1 for a thickness (t 2 ) of 30. Then, in the range of the thickness of such a cushioning member 20, as a buffer material 20, compressive stress - in strain curve, the compressive stress and sigma a of compressive strain α% (20 ≦ α ≦ 60 ), compressive strain (alpha + t 2 When the compressive stress at / t 1 × 100)% is σ b , a material having a compressive stress ratio (σ b / σ a ) of at least 6 or less is used. The step marks due to the difference in compressive stress generated on the surface of the web member 30 can be reduced.

また、緩衝材の厚み(t)を、巻き取るウェブ材の厚み(t)に対して、0.15≧t/t≧0.1に設定したときには、緩衝材の特性として、圧縮歪みがα%(20≦α≦65)における圧縮応力をσとし、圧縮歪みが(α+t/t×100)%における圧縮応力をσとしたとき、圧縮応力比(σ/σ)が、少なくとも4以下の特性を有する材料を用いることによって、ウェブ材30の巻き付け端部において、ウェブ材30の表面に発生する圧縮応力差による段差痕を低減することができる。 Further, when the thickness (t 1 ) of the buffer material is set to 0.15 ≧ t 2 / t 1 ≧ 0.1 with respect to the thickness (t 2 ) of the web material to be wound, the compressive stress in the compressive strain α% (20 ≦ α ≦ 65 ) and sigma a, when the compressive strain was b compressive stress sigma in (α + t 2 / t 1 × 100)%, compression stress ratio (sigma b / By using a material having a characteristic of σ a ) of at least 4 or less, step marks due to a difference in compressive stress generated on the surface of the web material 30 can be reduced at the winding end of the web material 30.

また、本実施形態における緩衝材20は、圧縮応力−歪み曲線において、圧縮歪み90%以下で、塑性変形を示す降伏点Sを有し、かつ、降伏点Sにおける圧縮応力が10MPa以上であることが好ましい。   Moreover, the shock absorbing material 20 in this embodiment has the yield point S which shows a plastic deformation at a compressive strain of 90% or less in the compressive stress-strain curve, and the compressive stress at the yield point S is 10 MPa or more. Is preferred.

このような特性を有する緩衝材20を用いることによって、圧縮応力差による段差痕をさらに低減できるとともに、緩衝材20に柔らかい材料を用いても、ウェブ材30の巻き締めにより生じるウェブ材30の座屈を低減することができる。   By using the cushioning material 20 having such characteristics, it is possible to further reduce the step marks due to the difference in compressive stress, and even if a soft material is used for the cushioning material 20, the seat of the web material 30 generated by the tightening of the web material 30. Bending can be reduced.

本発明の他の実施形態におけるウェブ材を巻き取る巻芯は、巻芯本体と、巻芯本体の外周面に形成された緩衝材20とを有し、緩衝材20は、以下の特性を有する。   A winding core for winding a web material in another embodiment of the present invention has a winding core body and a cushioning material 20 formed on the outer peripheral surface of the winding core body, and the cushioning material 20 has the following characteristics. .

すなわち、緩衝材20は、圧縮歪み20%における圧縮応力が0.02MPa以下の柔らかい発泡樹脂からなり、緩衝材20の厚み(t)は、巻き取るウェブ材30の厚みをtとしたとき、0.2≧t/t≧0.1に設定されており、緩衝材20は、圧縮応力−歪み曲線において、圧縮歪みがα%(20≦α≦60)における圧縮応力をσとし、圧縮歪みが(α+t/t×100)%における圧縮応力をσとしたとき、σ/σ≦6である。 That is, the buffer material 20 is made of a soft foamed resin having a compressive stress of 20% or less at a compression strain of 0.02 MPa or less, and the thickness (t 1 ) of the buffer material 20 is when the thickness of the web material 30 to be wound is t 2. 0.2 ≧ t 2 / t 1 ≧ 0.1, and the cushioning material 20 has a compressive stress of σ a when the compressive strain is α% (20 ≦ α ≦ 60) in the compressive stress-strain curve. Σ b / σ a ≦ 6, where σ b is the compressive stress when the compressive strain is (α + t 2 / t 1 × 100)%.

以下、本発明の実施例を挙げて本発明の構成及び効果をさらに説明するが、本発明はこれら実施例に限定されるものではない。   Hereinafter, although the example and the example of the present invention are given and the composition and effect of the present invention are further explained, the present invention is not limited to these examples.

(実施例1)
内径3インチ(外径約88mm)のABS樹脂からなる巻芯本体を用意し、巻芯本体の外周面に、連続気泡を有するポリウレタン発泡体(材料A)からなる緩衝材を貼り付けた。
Example 1
A core body made of ABS resin having an inner diameter of 3 inches (outside diameter of about 88 mm) was prepared, and a cushioning material made of polyurethane foam (material A) having open cells was attached to the outer peripheral surface of the core body.

本実施例で用いた緩衝材は、厚みが750μmmで、圧縮歪み20%における圧縮応力が0.020MPaであった。   The buffer material used in this example had a thickness of 750 μm and a compressive stress of 0.020 MPa at a compressive strain of 20%.

巻芯本体を巻き取り装置に装着して、厚みが75μmの2軸延伸PETフィルム(アルミ蒸着膜付き)を、巻き取り張力66N、巻き取り速度150m/minで、320m巻き取った。そして巻き取ったPETフィルムを室温で24時間放置した後、巻き解いたときのPETフィルムの巻き付け端部における段差痕を目視で確認した。   The core body was mounted on a winding device, and a biaxially stretched PET film (with an aluminum vapor deposition film) having a thickness of 75 μm was wound 320 m at a winding tension of 66 N and a winding speed of 150 m / min. The wound PET film was allowed to stand at room temperature for 24 hours, and then a step mark at the winding end of the PET film when unrolled was visually confirmed.

(比較例1)
内径3インチ(外径約88mm)のABS樹脂からなる巻芯本体を用意し、巻芯本体の外周面に、ポリエチレン発泡体からなる緩衝材(材料B)を貼り付けた。
(Comparative Example 1)
A core body made of ABS resin having an inner diameter of 3 inches (outside diameter of about 88 mm) was prepared, and a cushioning material (material B) made of polyethylene foam was attached to the outer peripheral surface of the core body.

比較例1で用いた緩衝材は、厚みが750mmで、圧縮歪み20%における圧縮応力が0.35MPaであった。   The buffer material used in Comparative Example 1 had a thickness of 750 mm and a compressive stress of 0.35 MPa at a compressive strain of 20%.

巻芯本体を巻き取り装置に装着して、厚みが75μmの2軸延伸PETフィルム(アルミ蒸着膜付き)を、巻き取り張力66N、巻き取り速度150m/minで、320m巻き取った。そして巻き取ったPETフィルムを室温で24時間放置した後、巻き解いたときのPETフィルムの巻き付け端部における段差痕を目視で確認した。   The core body was mounted on a winding device, and a biaxially stretched PET film (with an aluminum vapor deposition film) having a thickness of 75 μm was wound 320 m at a winding tension of 66 N and a winding speed of 150 m / min. The wound PET film was allowed to stand at room temperature for 24 hours, and then a step mark at the winding end of the PET film when unrolled was visually confirmed.

(比較例2)
内径3インチ(外径約88mm)のABS樹脂からなる巻芯本体を用意し、巻芯本体の外周面に、ポリウレタン発泡体からなる緩衝材(材料C)を貼り付けた。
(Comparative Example 2)
A core body made of ABS resin having an inner diameter of 3 inches (outside diameter of about 88 mm) was prepared, and a cushioning material (material C) made of polyurethane foam was attached to the outer peripheral surface of the core body.

比較例2で用いた緩衝材は、厚みが750mmで、圧縮歪み20%における圧縮応力が0.012MPaであった。   The buffer material used in Comparative Example 2 had a thickness of 750 mm and a compressive stress of 0.012 MPa at a compressive strain of 20%.

巻芯本体を巻き取り装置に装着して、厚みが75μmの2軸延伸PETフィルム(アルミ蒸着膜付き)を、巻き取り張力66N、巻き取り速度150m/minで、320m巻き取った。そして巻き取ったPETフィルムを室温で24時間放置した後、巻き解いたときのPETフィルムの巻き付け端部における段差痕を目視で確認した。   The core body was mounted on a winding device, and a biaxially stretched PET film (with an aluminum vapor deposition film) having a thickness of 75 μm was wound 320 m at a winding tension of 66 N and a winding speed of 150 m / min. The wound PET film was allowed to stand at room temperature for 24 hours, and then a step mark at the winding end of the PET film when unrolled was visually confirmed.

表1は、実施例1、比較例1、比較例2において、段差痕の発生状況を評価した結果を示した表である。   Table 1 is a table showing the results of evaluating the occurrence of step marks in Example 1, Comparative Example 1, and Comparative Example 2.

表1に示すように、実施例1では、段差痕は約1m(4周分)まで確認されたが、それ以上の周回においては確認されなかった。一方、比較例1、比較例2では、段差痕は、それぞれ、25m(約100周分)、10m(約40周分)まで確認された。   As shown in Table 1, in Example 1, step marks were confirmed up to about 1 m (for four laps), but were not confirmed in further laps. On the other hand, in Comparative Example 1 and Comparative Example 2, step marks were confirmed up to 25 m (about 100 laps) and 10 m (about 40 laps), respectively.

ここで、実施例1、比較例1、比較例2では、緩衝材の厚み(t)と、PETフィルムの厚み(t)との比率(t/t)は、全て0.1である。そこで、表1には、圧縮歪みがα%(20≦α≦70)における圧縮応力(σ)と、圧縮歪みが(α+10)%における圧縮応力(σ)の比(σ/σ)を示している。例えば、表1の実施例1で、圧縮歪みαが20%の欄の圧縮応力比(σ/σ)は、圧縮歪みが30%における圧縮応力(σ=0.024MPa)と、圧縮歪みが20%における圧縮応力(σ=0.020MPa)の比(σ/σ=1.2)を表している。 Here, Example 1, Comparative Example 1, Comparative Example 2, the thickness of the buffer material (t 1), the ratio between the thickness of the PET film (t 2) (t 2 / t 1) are all 0.1 It is. Accordingly, Table 1, compressive strain alpha% and (20 ≦ α ≦ 70) in the compression stress (sigma a), the ratio of compressive strain (α + 10)% in compressive stress (σ b) (σ b / σ a ). For example, in Example 1 of Table 1, the compression stress ratio (σ b / σ a ) in the column where the compression strain α is 20% is the compression stress (σ b = 0.024 MPa) when the compression strain is 30%, It represents the ratio (σ b / σ a = 1.2) of compressive stress (σ a = 0.020 MPa) when the strain is 20%.

表1に示すように、実施例1では、圧縮歪みα(%)が20≦α≦70の範囲において、圧縮応力比(σ/σ)の上限値は、2.7(α=70%)であった。従って、実施例1で用いた緩衝材は、ウェブ材(PETフィルム)を巻芯に巻き取る工程の間、常に、ウェブ材が受ける圧縮応力の差(σ−σ)を小さな状態(σ/σ≦2.7)に維持することができ、これにより、圧縮応力差による段差痕が低減できたものと考えられる。 As shown in Table 1, in Example 1, when the compressive strain α (%) is in the range of 20 ≦ α ≦ 70, the upper limit value of the compressive stress ratio (σ b / σ a ) is 2.7 (α = 70). %)Met. Therefore, the buffer material used in Example 1 always has a small difference (σ b −σ a ) in the compressive stress applied to the web material during the process of winding the web material (PET film) around the core. b / σ a ≦ 2.7), which is considered to reduce the level difference due to the difference in compressive stress.

これに対して、比較例1では、圧縮応力比(σ/σ)の上限値が2.2(α=70%)と小さいにも拘わらず、緩衝材の圧縮歪み20%における圧縮応力が0.35MPaと大いため、ウェブ材を巻芯本体に巻き取る際に、ウェブ材の端部が、緩衝材内に沈む込む量が足らず、その結果、従来のウェブ材の端部段差に起因する段差痕が発生したものと考えられる。 In contrast, in Comparative Example 1, although the upper limit value of the compressive stress ratio (σ b / σ a ) is as small as 2.2 (α = 70%), the compressive stress at 20% compressive strain of the buffer material Is as large as 0.35 MPa, so when winding the web material around the core body, the end portion of the web material is not enough to sink into the cushioning material, and as a result, the end step of the conventional web material is caused. It is thought that a stepped trace was generated.

また、比較例2では、緩衝材の圧縮歪み20%における圧縮応力が0.012MPaと小さいにも拘わらず、圧縮応力比(σ/σ)の上限値が6.8(α=70)と大きいため、圧縮応力差による段差痕の発生を十分に低減できなかったものと考えられる。 In Comparative Example 2, the upper limit value of the compressive stress ratio (σ b / σ a ) is 6.8 (α = 70) although the compressive stress at 20% compressive strain of the buffer material is as small as 0.012 MPa. Therefore, it is considered that the generation of step marks due to the difference in compressive stress could not be sufficiently reduced.

(実施例2)
緩衝材(材料A)の厚みを550μmとした以外は、実施例1と同様の方法で、上記と同じPETフィルム(厚み75μm)を巻芯に巻き取った後、巻き解いたときのPETフィルムの巻き付け端部における段差痕を目視で確認した。
(Example 2)
The PET film when unrolled after winding the same PET film (thickness 75 μm) as above in the same manner as in Example 1 except that the thickness of the buffer material (material A) was 550 μm. Step traces at the winding end were visually confirmed.

(比較例3)
緩衝材(材料B)の厚みを550μmとした以外は、比較例1と同様の方法で、上記と同じPETフィルム(厚み75μm)を巻芯に巻き取った後、巻き解いたときのPETフィルムの巻き付け端部における段差痕を目視で確認した。
(Comparative Example 3)
The PET film when unrolled after winding the same PET film (thickness 75 μm) as above in the same manner as in Comparative Example 1 except that the thickness of the buffer material (material B) was 550 μm. Step traces at the winding end were visually confirmed.

(比較例4)
緩衝材(材料C)の厚みを550μmとした以外は、比較例2と同様の方法で、上記と同じPETフィルム(厚み75μm)を巻芯に巻き取った後、巻き解いたときのPETフィルムの巻き付け端部における段差痕を目視で確認した。
(Comparative Example 4)
The PET film when unrolled after winding the same PET film (thickness 75 μm) as above in the same manner as in Comparative Example 2 except that the thickness of the buffer material (material C) was 550 μm. Step traces at the winding end were visually confirmed.

表2は、実施例1、比較例1、比較例2において、段差痕の発生状況を評価した結果を示した表である。   Table 2 is a table showing the results of evaluating the occurrence of step marks in Example 1, Comparative Example 1, and Comparative Example 2.

表2に示すように、実施例2では、段差痕は約1m(4周分)まで確認されたが、それ以上の周回においては確認されなかった。一方、比較例3、比較例4では、段差痕は、それぞれ、30m(約120周分)、20m(約80周分)まで確認された。   As shown in Table 2, in Example 2, step marks were confirmed up to about 1 m (for four laps), but were not confirmed in further laps. On the other hand, in Comparative Example 3 and Comparative Example 4, step marks were confirmed up to 30 m (about 120 laps) and 20 m (about 80 laps), respectively.

ここで、実施例2、比較例3、比較例4では、緩衝材の厚み(t)と、PETフィルムの厚み(t)との比率(t/t)は、全て0.15である。そこで、表2には、圧縮歪みがα%(20≦α≦65)における圧縮応力(σ)と、圧縮歪みが(α+15)%における圧縮応力(σ)の比(σ/σ)を示している。例えば、表2の実施例2で、圧縮歪みαが20%の欄の圧縮応力比(σ/σ)は、圧縮歪みが35%における圧縮応力(σ=0.028MPa)と、圧縮歪みが20%における圧縮応力(σ=0.020MPa)の比(σ/σ=1.4)を表している。 Here, Example 2, Comparative Example 3, Comparative Example 4, the thickness of the buffer material (t 1), the ratio between the thickness of the PET film (t 2) (t 2 / t 1) are all 0.15 It is. Therefore, Table 2, compressive strain alpha% and (20 ≦ α ≦ 65) in the compression stress (sigma a), the ratio of compressive strain (α + 15)% in compressive stress (σ b) (σ b / σ a ). For example, in Example 2 of Table 2, the compressive stress ratio (σ b / σ a ) in the column where the compressive strain α is 20% is the compressive stress (σ b = 0.028 MPa) when the compressive strain is 35%. It represents the ratio (σ b / σ a = 1.4) of compressive stress (σ a = 0.020 MPa) when the strain is 20%.

表2に示すように、実施例2では、圧縮歪みα(%)が20≦α≦65の範囲において、圧縮応力比(σ/σ)の上限値は、4.2(α=65%)であった。従って、実施例2で用いた緩衝材は、ウェブ材(PETフィルム)を巻芯に巻き取る工程の間、常に、ウェブ材が受ける圧縮応力の差(σ−σ)を小さな状態(σ/σ≦4.2)に維持することができ、これにより、圧縮応力差による段差痕が低減できたものと考えられる。 As shown in Table 2, in Example 2, when the compressive strain α (%) is in the range of 20 ≦ α ≦ 65, the upper limit value of the compressive stress ratio (σ b / σ a ) is 4.2 (α = 65 %)Met. Therefore, the buffer material used in Example 2 always has a small difference (σ b −σ a ) in the compressive stress received by the web material during the step of winding the web material (PET film) around the core. b / σ a ≦ 4.2), which is considered to reduce the level difference due to the difference in compressive stress.

これに対して、比較例3では、圧縮応力比(σ/σ)の上限値が3.3(α=65%)と小さいにも拘わらず、緩衝材の圧縮歪み20%における圧縮応力が0.35MPaと大いため、ウェブ材を巻芯本体に巻き取る際に、ウェブ材の端部が、緩衝材内に沈む込む量が足らず、その結果、従来のウェブ材の端部段差に起因する段差痕が発生したものと考えられる。 In contrast, in Comparative Example 3, although the upper limit value of the compressive stress ratio (σ b / σ a ) is as small as 3.3 (α = 65%), the compressive stress at 20% compressive strain of the buffer material Is as large as 0.35 MPa, so when winding the web material around the core body, the end portion of the web material is not enough to sink into the cushioning material, and as a result, the end step of the conventional web material is caused. It is thought that a stepped trace was generated.

また、比較例4では、緩衝材の圧縮歪み20%における圧縮応力が0.012MPaと小さいにも拘わらず、圧縮応力比(σ/σ)の上限値が17.3(α=65%)と大きいため、圧縮応力差による段差痕の発生を十分に低減できなかったものと考えられる。 In Comparative Example 4, the upper limit of the compressive stress ratio (σ b / σ a ) is 17.3 (α = 65%) even though the compressive stress at 20% compressive strain of the buffer material is as small as 0.012 MPa. ), It is considered that the generation of step marks due to the difference in compressive stress could not be sufficiently reduced.

(実施例3)
緩衝材(材料A)の厚みを370μmとした以外は、実施例1と同様の方法で、上記と同じPETフィルム(厚み75μm)を巻芯に巻き取った後、巻き解いたときのPETフィルムの巻き付け端部における段差痕を目視で確認した。
(Example 3)
The PET film when unrolled after winding the same PET film (thickness 75 μm) as above in the same manner as in Example 1 except that the thickness of the buffer material (material A) was 370 μm. Step traces at the winding end were visually confirmed.

(比較例5)
緩衝材(材料B)の厚みを370μmとした以外は、比較例1と同様の方法で、上記と同じPETフィルム(厚み75μm)を巻芯に巻き取った後、巻き解いたときのPETフィルムの巻き付け端部における段差痕を目視で確認した。
(Comparative Example 5)
The PET film when unrolled after winding the same PET film (thickness 75 μm) as above in the same manner as in Comparative Example 1 except that the thickness of the buffer material (material B) was 370 μm. Step traces at the winding end were visually confirmed.

(比較例6)
緩衝材(材料C)の厚みを370μmとした以外は、比較例2と同様の方法で、上記と同じPETフィルム(厚み75μm)を巻芯に巻き取った後、巻き解いたときのPETフィルムの巻き付け端部における段差痕を目視で確認した。
(Comparative Example 6)
The PET film when unrolled after winding the same PET film (thickness 75 μm) as above in the same manner as in Comparative Example 2 except that the thickness of the buffer material (material C) was 370 μm. Step traces at the winding end were visually confirmed.

表3は、実施例3、比較例5、比較例6において、段差痕の発生状況を評価した結果を示した表である。   Table 3 is a table showing the results of evaluating the occurrence of step marks in Example 3, Comparative Example 5, and Comparative Example 6.

表3に示すように、実施例3では、段差痕は約2m(8周分)まで確認されたが、それ以上の周回においては確認されなかった。一方、比較例5、比較例6では、段差痕は、それぞれ、50m(約200周分)、20m(約80周分)まで確認された。   As shown in Table 3, in Example 3, step marks were confirmed up to about 2 m (eight laps), but were not confirmed in further laps. On the other hand, in Comparative Example 5 and Comparative Example 6, step marks were confirmed up to 50 m (about 200 laps) and 20 m (about 80 laps), respectively.

ここで、実施例3、比較例5、比較例6では、緩衝材の厚み(t)と、PETフィルムの厚み(t)との比率(t/t)は、全て0.2である。そこで、表3には、圧縮歪みがα%(20≦α≦60)における圧縮応力(σ)と、圧縮歪みが(α+20)%における圧縮応力(σ)の比(σ/σ)を示している。例えば、表3の実施例3で、圧縮歪みαが20%の欄の圧縮応力比(σ/σ)は、圧縮歪みが40%における圧縮応力(σ=0.034MPa)と、圧縮歪みが20%における圧縮応力(σ=0.020MPa)の比(σ/σ=1.7)を表している。 Here, Example 3, Comparative Example 5, Comparative Example 6, the thickness of the buffer material (t 1), the ratio between the thickness of the PET film (t 2) (t 2 / t 1) are all 0.2 It is. Accordingly, Table 3, compressive strain alpha% and (20 ≦ α ≦ 60) in the compression stress (sigma a), the ratio of compressive strain (α + 20)% in compressive stress (σ b) (σ b / σ a ). For example, in Example 3 of Table 3, the compression stress ratio (σ b / σ a ) in the column where the compression strain α is 20% is the compression stress (σ b = 0.034 MPa) when the compression strain is 40%. It represents the ratio (σ b / σ a = 1.7) of compressive stress (σ a = 0.020 MPa) when the strain is 20%.

表3に示すように、実施例3では、圧縮歪みα(%)が20≦α≦60の範囲において、圧縮応力比(σ/σ)の上限値は、6.1(α=60%)であった。従って、実施例3で用いた緩衝材は、ウェブ材(PETフィルム)を巻芯に巻き取る工程の間、常に、ウェブ材が受ける圧縮応力の差(σ−σ)を小さな状態(σ/σ≦6.1)に維持することができ、これにより、圧縮応力差による段差痕が低減できたものと考えられる。 As shown in Table 3, in Example 3, when the compressive strain α (%) is in the range of 20 ≦ α ≦ 60, the upper limit value of the compressive stress ratio (σ b / σ a ) is 6.1 (α = 60 %)Met. Therefore, the cushioning material used in Example 3 always has a small difference (σ b −σ a ) in the compressive stress experienced by the web material during the process of winding the web material (PET film) around the core. b / σ a ≦ 6.1), which is considered to reduce the step marks due to the difference in compressive stress.

これに対して、比較例5では、圧縮応力比(σ/σ)の上限値が4.1(α=60%)と小さいにも拘わらず、緩衝材の圧縮歪み20%における圧縮応力が0.35MPaと大いため、ウェブ材を巻芯本体に巻き取る際に、ウェブ材の端部が、緩衝材内に沈む込む量が足らず、その結果、従来のウェブ材の端部段差に起因する段差痕が発生したものと考えられる。 On the other hand, in Comparative Example 5, although the upper limit value of the compressive stress ratio (σ b / σ a ) is as small as 4.1 (α = 60%), the compressive stress at 20% compressive strain of the buffer material Is as large as 0.35 MPa, so when winding the web material around the core body, the end portion of the web material is not enough to sink into the cushioning material, and as a result, the end step of the conventional web material is caused. It is thought that a stepped trace was generated.

また、比較例6では、緩衝材の圧縮歪み20%における圧縮応力が0.012MPaと小さいにも拘わらず、圧縮応力比(σ/σ)の上限値が31.7(α=60%)と大きいため、圧縮応力差による段差痕の発生を十分に低減できなかったものと考えられる。 In Comparative Example 6, the upper limit value of the compressive stress ratio (σ b / σ a ) is 31.7 (α = 60%) even though the compressive stress at 20% compressive strain of the buffer material is as small as 0.012 MPa. ), It is considered that the generation of step marks due to the difference in compressive stress could not be sufficiently reduced.

以上の結果から、巻芯本体の外周面に形成する緩衝材20は、従来のウェブ材の端部段差に起因する段差痕を低減するためには、圧縮歪み20%における圧縮応力が0.02MPa以下の柔らかい発泡樹脂を用いることが必要であることが分かる。   From the above results, the cushioning material 20 formed on the outer peripheral surface of the core body has a compressive stress of 0.02 MPa at a compressive strain of 20% in order to reduce the level difference caused by the end step of the conventional web material. It can be seen that it is necessary to use the following soft foam resin.

そして、この柔らかい緩衝材が設けられた巻芯にウェブ材を巻き取る際に、新たに発生する圧縮応力差による段差痕を低減するためには、緩衝材の厚み(t)を、巻き取るウェブ材の厚み(t)に対して、0.2≧t/t≧0.1に設定したときに、緩衝材の特性として、圧縮歪みがα%(20≦α≦60)における圧縮応力をσとし、圧縮歪みが(α+t/t×100)%における圧縮応力をσとしたとき、圧縮応力比(σ/σ)を、少なくとも6以下にすることが必要であることが分かる。 Then, when winding the web material to the winding core the soft cushioning material is provided, in order to reduce the step difference mark by compressive stress difference newly generated, the thickness of the buffer material a (t 1), wound When 0.2 ≧ t 2 / t 1 ≧ 0.1 with respect to the thickness (t 2 ) of the web material, the compression strain is α% (20 ≦ α ≦ 60) as a characteristic of the buffer material. the compressive stress and sigma a, when the compressive strain of the compressive stress in the (α + t 2 / t 1 × 100)% and the sigma b, compression stress ratio (σ b / σ a), must be at least 6 below It turns out that it is.

また、上記の結果から、緩衝材の厚み(t)を、巻き取るウェブ材の厚み(t)に対して、0.15≧t/t≧0.1に設定したときには、緩衝材の特性として、圧縮歪みがα%(20≦α≦65)における圧縮応力をσとし、圧縮歪みが(α+t/t×100)%における圧縮応力をσとしたとき、圧縮応力比(σ/σ)を、少なくとも4以下にすることによって、緩衝材が設けられた巻芯にウェブ材を巻き取る際に、新たに発生する圧縮応力差による段差痕を低減することができる。 From the above results, when the thickness (t 1 ) of the cushioning material is set to 0.15 ≧ t 2 / t 1 ≧ 0.1 with respect to the thickness (t 2 ) of the web material to be wound, the cushioning as the characteristics of wood, a compressive stress as the sigma a of compressive strain α% (20 ≦ α ≦ 65 ), when the compressive strain of the compressive stress in the (α + t 2 / t 1 × 100)% and the sigma b, compressive stress By setting the ratio (σ b / σ a ) to at least 4 or less, it is possible to reduce step marks due to a difference in compressive stress newly generated when the web material is wound around the core provided with the buffer material. it can.

また、上記の実施例1〜3において、緩衝材として、圧縮歪み20%における圧縮応力が0.02MPa以下の柔らかい材料を用いても、ウェブ材の巻き締めによって緩衝材が変形することによって発生するウェブ材の座屈は観察されなかった。これは、ウェブ材が、緩衝材の塑性変形を示す降伏点を超える圧縮歪みまで緩衝材に沈み込んで巻芯に巻き取られ結果、巻芯に巻き取られたウェブ材が、緩衝材のほぼ全周から、非常に大きな圧縮応力を受けたためと考えられる。なお、実施例1〜3で用いた緩衝材(材料A)の降伏点は、圧縮歪みが85%で発生し、この降伏点においけ圧縮応力は15MPaであった。   Further, in Examples 1 to 3 described above, even when a soft material having a compressive stress of 20% or less at a compressive strain of 0.02 MPa or less is used as the buffer material, the buffer material is deformed by winding the web material. No buckling of the web material was observed. This is because the web material is submerged in the cushioning material until the compressive strain exceeding the yield point indicating the plastic deformation of the cushioning material, and wound on the winding core, so that the web material wound on the winding core is almost the same as the cushioning material. This is thought to be due to a very large compressive stress from the entire circumference. The yield point of the buffer material (material A) used in Examples 1 to 3 was generated with a compressive strain of 85%, and the compressive stress at this yield point was 15 MPa.

なお、図7は、上記実施例1〜3に用いた緩衝材20の表面に、コインを押し当てて、緩衝材20を圧縮歪み85%まで沈み込ませた後、コインを取り除いたときの緩衝材20の表面を撮影した写真である。図7に示すように、緩衝材20の表面には、緩衝材20の塑性変形によるコイン形状の凹みが残っているのが分かる。   FIG. 7 shows the buffer when the coin is removed after the coin is pressed against the surface of the cushioning material 20 used in the first to third embodiments to sink the cushioning material 20 to a compression strain of 85%. It is the photograph which image | photographed the surface of the material 20. FIG. As shown in FIG. 7, it can be seen that coin-shaped dents due to plastic deformation of the buffer material 20 remain on the surface of the buffer material 20.

以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、もちろん、種々の改変が可能である。   As mentioned above, although this invention was demonstrated by suitable embodiment, such description is not a limitation matter and of course various modifications are possible.

例えば、上記実施形態において、図4(a)〜(e)を用いて、ウェブ材30の巻き取り工程における緩衝材20の圧縮歪みと、ウェブ材30が緩衝材20から受ける圧縮応力との関係を説明したが、ここで示したウェブ材の巻き取り回数は、説明のための一例に過ぎず、勿論、ウェブ材の巻き取り回数と、開通は圧縮歪みと圧縮応力との関係は、一義的に決まるものではない。   For example, in the above embodiment, the relationship between the compressive strain of the cushioning material 20 in the winding process of the web material 30 and the compressive stress that the web material 30 receives from the cushioning material 20 using FIGS. However, the number of windings of the web material shown here is only an example for explanation. Of course, the number of windings of the web material and the relationship between the opening and the compression strain and the compressive stress are unambiguous. It is not determined by.

また、上記実施例では、ウェブ材30として、PETフィルムを例に説明したが、これに限定されず、本発明は、他のポリエステルフィルムやポリエチレンフィルム等にも、勿論、適用することができる。   Moreover, in the said Example, although PET film was demonstrated to the example as the web material 30, it is not limited to this, Of course, this invention is applicable also to another polyester film, a polyethylene film, etc.

1 巻芯
10 巻芯本体
20 緩衝材
30 ウェブ材
40 溝部
50 段差
1 core 10 core body 20 cushioning material 30 web material 40 groove 50 step

本発明に係るウェブ材の巻き取り方法は、ウェブ材を巻芯に巻き取る巻き取り方法であって、巻芯は、巻芯本体の外周面に緩衝材が形成されており、緩衝材の上に、ウェブ材の端部を貼り付ける工程と、ウェブ材を、該ウェブ材に張力を付加しながら巻芯本体に巻き取る工程とを含み、緩衝材は、圧縮歪み20%における圧縮応力が0.02MPa以下の柔らかい発泡樹脂からなり、緩衝材の厚み(t)は、巻き取るウェブ材の厚みをtとしたとき、0.2≧t/t≧0.1に設定されており、緩衝材は、圧縮応力−歪み曲線において、圧縮歪みがα%(20≦α≦60)における圧縮応力をσとし、圧縮歪みが(α+t/t×100)%における圧縮応力をσとしたとき、σ/σ4であり、ウェブ材を巻芯本体に巻き取る工程において、1層目〜n層目のウェブ材が重なった部分が緩衝材中に沈み込んだときの該緩衝材の圧縮歪みと、2層目〜n層目のウェブ材が重なった部分が緩衝材中に沈み込んだときの該緩衝材の圧縮歪みとの差が、t /t ×100(%)になっていることを特徴とする。 A web material winding method according to the present invention is a winding method for winding a web material around a winding core, and the winding core has a cushioning material formed on the outer peripheral surface of the winding core body. The step of attaching the end of the web material and the step of winding the web material around the core body while applying tension to the web material, and the cushioning material has a compressive stress of 0% at a compressive strain of 20%. 0.02 MPa or less of soft foamed resin, and the thickness (t 1 ) of the cushioning material is set to 0.2 ≧ t 2 / t 1 ≧ 0.1, where t 2 is the thickness of the web material to be wound. In the compressive stress-strain curve, the buffer material has a compressive stress at a compressive strain of α% (20 ≦ α ≦ 60) as σa and a compressive stress at a compressive strain of (α + t 2 / t 1 × 100)%. When σ b is set, σ b / σ a4, and the web material is the winding core In the step of winding around the body, the compressive strain of the cushioning material when the overlapping portion of the first to nth layer web materials sinks into the cushioning material, and the second to nth layer web materials A difference from the compressive strain of the buffer material when the overlapped portion sinks into the buffer material is t 2 / t 1 × 100 (%) .

Claims (5)

ウェブ材を巻芯に巻き取る巻き取り方法であって、
前記巻芯は、巻芯本体の外周面に緩衝材が形成されており、
前記緩衝材の上に、前記ウェブ材の端部を貼り付ける工程と、
前記ウェブ材を、該ウェブ材に張力を付加しながら前記巻芯本体に巻き取る工程と
を含み、
前記緩衝材は、圧縮歪み20%における圧縮応力が0.02MPa以下の柔らかい発泡樹脂からなり、
前記緩衝材の厚み(t)は、巻き取る前記ウェブ材の厚みをtとしたとき、0.2≧t/t≧0.1に設定されており、
前記緩衝材は、圧縮応力−歪み曲線において、圧縮歪みがα%(20≦α≦60)における圧縮応力をσとし、圧縮歪みが(α+t/t×100)%における圧縮応力をσとしたとき、σ/σ≦6である、ウェブ材の巻き取り方法。
A winding method for winding a web material around a core,
The core has a buffer material formed on the outer peripheral surface of the core body,
A step of affixing an end of the web material on the cushioning material;
Winding the web material around the core body while applying tension to the web material,
The buffer material is made of a soft foamed resin having a compressive stress of 0.02 MPa or less at a compressive strain of 20%,
The thickness (t 1 ) of the cushioning material is set to 0.2 ≧ t 2 / t 1 ≧ 0.1, where t 2 is the thickness of the web material to be wound,
In the compression stress-strain curve, the buffer material has a compressive stress of σ a when the compressive strain is α% (20 ≦ α ≦ 60), and the compressive stress when the compressive strain is (α + t 2 / t 1 × 100)%. A web material winding method in which σ b / σ a ≦ 6 when b .
前記緩衝材の厚み(t)は、巻き取る前記ウェブ材の厚みをtとしたとき、0.15≧t/t≧0.1に設定されており、
前記緩衝材は、圧縮応力−歪み曲線において、圧縮歪みがα%(20≦α≦65)における圧縮応力をσとし、圧縮歪みが(α+t/t×100)%における圧縮応力をσとしたとき、σ/σ≦4である、請求項1に記載のウェブ材の巻き取り方法。
The thickness (t 1 ) of the cushioning material is set to 0.15 ≧ t 2 / t 1 ≧ 0.1, where t 2 is the thickness of the web material to be wound,
In the compressive stress-strain curve, the buffer material has a compressive stress of σ a when the compressive strain is α% (20 ≦ α ≦ 65), and the compressive stress when the compressive strain is (α + t 2 / t 1 × 100)%. when it is b, a σ b / σ a ≦ 4, winding method of a web material according to claim 1.
前記ウェブ材を前記巻芯本体に巻き取る工程において、前記ウェブ材は、前記緩衝材の塑性変形を示す降伏点を超える圧縮歪みまで前記緩衝材に沈み込んで前記巻芯本体に巻き取られる、請求項1または2に記載のウェブ材の巻き取り方法。   In the step of winding the web material around the core body, the web material is sunk into the buffer material until the compression strain exceeds the yield point indicating the plastic deformation of the buffer material, and is wound around the core body. The web material winding method according to claim 1 or 2. ウェブ材を巻き取る巻芯であって、
巻芯本体と、
前記巻芯本体の外周面に形成された緩衝材と
を有し、
前記緩衝材は、圧縮歪み20%における圧縮応力が0.02MPa以下の柔らかい発泡樹脂からなり、
前記緩衝材の厚み(t)は、巻き取る前記ウェブ材の厚みをtとしたとき、0.2≧t/t≧0.1に設定されており、
前記緩衝材は、圧縮応力−歪み曲線において、圧縮歪みがα%(20≦α≦60)における圧縮応力をσとし、圧縮歪みが(α+t/t×100)%における圧縮応力をσとしたとき、σ/σ≦6である、巻芯。
A winding core for winding web material,
A core body,
Having a cushioning material formed on the outer peripheral surface of the core body,
The buffer material is made of a soft foamed resin having a compressive stress of 0.02 MPa or less at a compressive strain of 20%,
The thickness (t 1 ) of the cushioning material is set to 0.2 ≧ t 2 / t 1 ≧ 0.1, where t 2 is the thickness of the web material to be wound,
In the compression stress-strain curve, the buffer material has a compressive stress of σ a when the compressive strain is α% (20 ≦ α ≦ 60), and the compressive stress when the compressive strain is (α + t 2 / t 1 × 100)%. A winding core where σ b / σ a ≦ 6 when b .
前記緩衝材の厚み(t)は、巻き取る前記ウェブ材の厚みをtとしたとき、0.15≧t/t≧0.1に設定されており、
前記緩衝材は、圧縮応力−歪み曲線において、圧縮歪みがα%(20≦α≦65)における圧縮応力をσとし、圧縮歪みが(α+t/t×100)%における圧縮応力をσとしたとき、σ/σ≦4である、請求項4に記載の巻芯。

The thickness (t 1 ) of the cushioning material is set to 0.15 ≧ t 2 / t 1 ≧ 0.1, where t 2 is the thickness of the web material to be wound,
In the compressive stress-strain curve, the buffer material has a compressive stress of σ a when the compressive strain is α% (20 ≦ α ≦ 65), and the compressive stress when the compressive strain is (α + t 2 / t 1 × 100)%. The core according to claim 4, wherein σ b / σ a ≦ 4 when b .

JP2016192379A 2015-10-02 2016-09-30 Web material winding method Active JP6149144B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015196812 2015-10-02
JP2015196812 2015-10-02

Publications (2)

Publication Number Publication Date
JP2017065927A true JP2017065927A (en) 2017-04-06
JP6149144B2 JP6149144B2 (en) 2017-06-14

Family

ID=58423005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016192379A Active JP6149144B2 (en) 2015-10-02 2016-09-30 Web material winding method

Country Status (3)

Country Link
JP (1) JP6149144B2 (en)
KR (1) KR101969979B1 (en)
WO (1) WO2017056505A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5874094B1 (en) * 2015-07-07 2016-03-02 株式会社美方 Winding method for winding core and web material.
TWI669544B (en) * 2018-02-14 2019-08-21 住華科技股份有限公司 Winding structure and a method for forming the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04260575A (en) * 1991-02-14 1992-09-16 Teijin Chem Ltd Tubular body for winding plastic film
JPH09142739A (en) * 1995-11-21 1997-06-03 Mitsui Toatsu Chem Inc Spool core for metal plastic laminating material and method of application thereof
JP2003146495A (en) * 2001-11-15 2003-05-21 Kanegafuchi Chem Ind Co Ltd Winding core for film and winding method
JP3174515U (en) * 2012-01-12 2012-03-22 日東電工株式会社 Rolls of belt-like patch
JP2013199344A (en) * 2012-03-26 2013-10-03 Nagaoka Sangyo Kk Winding core

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3174515B2 (en) 1996-12-03 2001-06-11 株式会社クボタ Gearshift operating device for work vehicles
JP3964892B2 (en) 2003-11-14 2007-08-22 長岡産業株式会社 Winding core

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04260575A (en) * 1991-02-14 1992-09-16 Teijin Chem Ltd Tubular body for winding plastic film
JPH09142739A (en) * 1995-11-21 1997-06-03 Mitsui Toatsu Chem Inc Spool core for metal plastic laminating material and method of application thereof
JP2003146495A (en) * 2001-11-15 2003-05-21 Kanegafuchi Chem Ind Co Ltd Winding core for film and winding method
JP3174515U (en) * 2012-01-12 2012-03-22 日東電工株式会社 Rolls of belt-like patch
JP2013199344A (en) * 2012-03-26 2013-10-03 Nagaoka Sangyo Kk Winding core

Also Published As

Publication number Publication date
KR101969979B1 (en) 2019-04-17
JP6149144B2 (en) 2017-06-14
KR20170140268A (en) 2017-12-20
WO2017056505A1 (en) 2017-04-06

Similar Documents

Publication Publication Date Title
JP6055171B2 (en) Polarizing plate roll and manufacturing method thereof
JP6149144B2 (en) Web material winding method
KR20130016239A (en) Polarizing plate, method for evaluating polarizing plate, and method for producing polarizing plate
WO2008109733A1 (en) Adhesive-backed polymeric film storage method and assembly
KR20090084709A (en) A process for producing a polarizer
SG11201806029XA (en) Pressure-sensitive-adhesive-layer-attached one-side-protected polarizing film, image display device, and method for continuously producing same
PH22019500016U1 (en) A reel body
JP2017043366A (en) Glass roll, method of manufacturing the same, and unwinding method for the same
KR101985993B1 (en) Wound roll
WO2016203775A1 (en) Method for winding web material, wound body, winding core, and adhesive tape
JP2017047978A (en) Wound body and method for manufacturing the same
JP2008156041A (en) Pancake for painted film transfer tool
JP6351798B1 (en) Web material winding method
EP3749519A1 (en) Surface impression resistant film constructions and methods
JP6110714B2 (en) Photosensitive resin winding body core and photosensitive resin winding body
KR100833258B1 (en) Gasket pad for a display device
JP6377224B1 (en) Double-sided adhesive tape for fixing web material and adhesive tape with double-sided separator
KR102151092B1 (en) Manufacturing method of release film for double-sided tape
JP2016155619A (en) Roll material and method of manufacturing the same
JP7294556B1 (en) winding roll
JP2018095339A (en) Taking-up method for web material
JP2018144920A (en) Winding method of web material, and winding core
JP2008162719A (en) Film winding roller
JP2011236041A (en) Cylindrical element for winding soft sheet
JP2013052946A (en) Winding core

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170522

R150 Certificate of patent or registration of utility model

Ref document number: 6149144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250