JP2017057503A - Aluminum alloy clad material and heat exchanger assembled with tube made by forming the clad material - Google Patents

Aluminum alloy clad material and heat exchanger assembled with tube made by forming the clad material Download PDF

Info

Publication number
JP2017057503A
JP2017057503A JP2016212544A JP2016212544A JP2017057503A JP 2017057503 A JP2017057503 A JP 2017057503A JP 2016212544 A JP2016212544 A JP 2016212544A JP 2016212544 A JP2016212544 A JP 2016212544A JP 2017057503 A JP2017057503 A JP 2017057503A
Authority
JP
Japan
Prior art keywords
sacrificial anode
aluminum alloy
less
core
endothelial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016212544A
Other languages
Japanese (ja)
Other versions
JP6446015B2 (en
Inventor
寿和 田中
Toshikazu Tanaka
寿和 田中
知浩 小路
Tomohiro Komichi
知浩 小路
涼子 藤村
Ryoko Fujimura
涼子 藤村
尚希 山下
Naoki Yamashita
尚希 山下
田中 宏和
Hirokazu Tanaka
宏和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
Original Assignee
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp filed Critical UACJ Corp
Priority to JP2016212544A priority Critical patent/JP6446015B2/en
Publication of JP2017057503A publication Critical patent/JP2017057503A/en
Application granted granted Critical
Publication of JP6446015B2 publication Critical patent/JP6446015B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE: To provide an aluminum alloy clad material which gives a tube for heat exchangers having excellent corrosion resistance of the outer surface when formed into a tube.CONSTITUTION: An aluminum alloy clad material comprises a three-layer structure in which an inner skin material is cladded on one side of a core and a sacrificial anode material is cladded on the other side. The core is composed of an Al-Mn-Cu alloy comprising 0.6-2.0% Mn, 0.03-1.0% Cu and remaining aluminum and unavoidable impurities. The sacrificial anode material is an Al-Zn-Cu alloy comprising 0.5-6.0% Zn, 0.03-0.3% Cu and remaining aluminum and unavoidable impurities. The inner skin material is an Al-Mn-Cu alloy comprising 0.6-2.0% Mn, 0.2-1.5% Cu and remaining aluminum and unavoidable impurities. The Cu amounts, %, of the core, the inner skin material and the sacrificial anode material meet the condition: (Cu% of the sacrificial anode material)≤(Cu% of the core)≤(Cu% of the inner skin material). The aluminum alloy clad material may have a two-layer structure consisting of the core and the sacrificial anode material.SELECTED DRAWING: None

Description

本発明は、アルミニウム合金クラッド材、詳しくは、チューブに成形した場合、外面の耐食性に優れた熱交換器用チューブを得ることができるアルミニウム合金クラッド材、および該クラッド材を成形したチューブを組み付けた熱交換器に関する。   The present invention relates to an aluminum alloy clad material, more specifically, an aluminum alloy clad material capable of obtaining a heat exchanger tube having excellent outer surface corrosion resistance when molded into a tube, and a heat assembled with the tube formed from the clad material. Regarding the exchanger.

従来、ろう付けにより接合一体化されるアルミニウム製熱交換器の冷媒通路管としては、アルミニウム合金押出管またはアルミニウム合金板材を曲成してなるチューブが適用されている。これらの冷媒通路管は、外面(大気側)の耐食性向上のために、冷媒通路管の外面となる側に、押出管についてはZn溶射を行い、板材を曲成してなるチューブについてはAl−Zn系合金をクラッドして、Zn拡散層による犠牲陽極効果を狙った設計がなされている。   Conventionally, an aluminum alloy extruded tube or a tube formed by bending an aluminum alloy plate material is applied as a refrigerant passage tube of an aluminum heat exchanger that is joined and integrated by brazing. In order to improve the corrosion resistance of the outer surface (atmosphere side), these refrigerant passage tubes are subjected to Zn spraying on the extrusion tube on the outer surface side of the refrigerant passage tube, and Al− for the tube formed by bending the plate material. The Zn-based alloy is clad, and the design is aimed at the sacrificial anode effect by the Zn diffusion layer.

近年、とくに自動車用熱交換器においては、構成材料の薄肉化、高耐食化が要請され、犠牲陽極材のZn含有量低減による犠牲陽極層の腐食速度低減や犠牲陽極層厚さの増大が求められている。しかしながら、従来の押出管では、溶射効率の面からZn溶射量の低減は難しく、板材を曲成してなるチューブにおいても、心材に含有されるCuの拡散の影響により犠牲陽極材の電位が貴になって、Zn量を低減すると犠牲陽極効果を得るのに十分な電位差が確保できなくなるため、犠牲陽極材のZn含有量を低減することは困難であり、また、犠牲陽極層厚さの増大についても、製造コストの観点からクラッド率を増大することは難しい。   In recent years, especially in automotive heat exchangers, it has been required to reduce the thickness of the constituent materials and increase the corrosion resistance, and to reduce the corrosion rate of the sacrificial anode layer and increase the sacrificial anode layer thickness by reducing the Zn content of the sacrificial anode material. It has been. However, in the conventional extruded tube, it is difficult to reduce the amount of Zn spray from the viewpoint of spraying efficiency, and even in a tube formed by bending a plate material, the potential of the sacrificial anode material is noble due to the influence of diffusion of Cu contained in the core material. Therefore, if the Zn content is reduced, a sufficient potential difference for obtaining the sacrificial anode effect cannot be secured, so it is difficult to reduce the Zn content of the sacrificial anode material, and the sacrificial anode layer thickness is increased. Also, it is difficult to increase the cladding rate from the viewpoint of manufacturing cost.

内面側のろう材に心材より多くのCuを添加して、ろう付け後において、外面側から内面側に向かって電位が貴になるように電位勾配を付与したブレージングシートや、外面側のろう材にZnを添加するとともに内面側のろう材にCuを添加し、Zn、Cuを特定の添加比率にすることによって形成されたZnとCuの濃度勾配により、電位がブレージングシートの外面から内面方向に貴になるようにしたブレージングシートも提案されているが、ろう材から拡散されるCuにより形成される電位が貴な層が薄く、電位が貴な層と心材の電位差も小さいため、腐食によって心材が殆ど消耗し、貫通孔が発生する直前の状態では、貫通孔の発生を抑制する効果は十分ではない。   A brazing sheet in which a larger amount of Cu than the core material is added to the brazing material on the inner surface side and a potential gradient is applied so that the electric potential becomes noble from the outer surface side toward the inner surface side after brazing, and the brazing material on the outer surface side Zn is added to the brazing material on the inner surface side, and Zn and Cu are added at a specific addition ratio, so that the potential is increased from the outer surface of the brazing sheet to the inner surface due to the concentration gradient of Zn and Cu. Although a brazing sheet designed to be noble has been proposed, the potential layer formed by Cu diffused from the brazing material is thin, and the potential difference between the noble layer and the core material is small, so that the core material is corroded by corrosion. In the state immediately before the through hole is generated, the effect of suppressing the generation of the through hole is not sufficient.

特開2011−224656号公報JP 2011-224656 A 特開2009−127121号公報JP 2009-127121 A 特開2007−247021号公報JP 2007-247021 A

発明者らは、上記の問題を解決するために、アルミニウム合金板材を曲成してなるチューブについて、チューブを構成するアルミニウム合金クラッド材の構成、クラッド材各層の合金組成と耐食性との関連について試験、検討を行った結果、チューブを構成するアルミニウム合金クラッド材の構成を、心材と犠牲陽極材の2層構造、または心材の一方の面に犠牲陽極材をクラッドし、他方の面に心材よりも電位が貴な内皮材を配した3層構造としたものにおいて、犠牲陽極材に微量のCuを含有させた場合、犠牲陽極材の腐食速度が抑制されて犠牲陽極材が長期にわたり残存し、貫通孔の発生を抑制することが可能となり
、外面(大気側)の耐食性が向上することを見出した。とくに3層構造においては、心材が内皮材に対して犠牲陽極効果を発揮するため、内皮材に対して犠牲陽極材と心材が犠牲陽極層となり、結果として犠牲陽極層の厚さが増大することとなり、より長期にわたり貫通孔の発生を抑制することが可能となる。
In order to solve the above-mentioned problems, the inventors have tested a tube formed by bending an aluminum alloy plate material, the structure of the aluminum alloy clad material constituting the tube, and the relationship between the alloy composition of each layer of the clad material and the corrosion resistance. As a result of the examination, the structure of the aluminum alloy clad material constituting the tube is a two-layer structure of the core material and the sacrificial anode material, or the sacrificial anode material is clad on one surface of the core material, and the other surface is more than the core material. When the sacrificial anode material contains a small amount of Cu in the case of a three-layer structure in which a potential noble endothelial material is arranged, the corrosion rate of the sacrificial anode material is suppressed, and the sacrificial anode material remains for a long time. It has been found that the generation of holes can be suppressed, and the corrosion resistance of the outer surface (atmosphere side) is improved. In particular, in the three-layer structure, the core material exerts a sacrificial anode effect on the endothelial material, so that the sacrificial anode material and the core material become the sacrificial anode layer with respect to the endothelium material, resulting in an increase in the thickness of the sacrificial anode layer. Thus, it is possible to suppress the generation of through holes for a longer period.

本発明は、上記の知見に基づいて、さらに試験、検討を重ねた結果としてなされたものであり、その目的は、チューブに成形した場合、外面の耐食性に優れた熱交換器用チューブを得ることができるアルミニウム合金クラッド材、および該クラッド材を成形したチューブを組み付けた熱交換器を提供することにある。   The present invention was made as a result of further testing and examination based on the above knowledge, and its purpose is to obtain a heat exchanger tube having excellent corrosion resistance on the outer surface when formed into a tube. An aluminum alloy clad material that can be produced, and a heat exchanger in which a tube formed with the clad material is assembled.

上記の目的を達成するための請求項1によるアルミニウム合金クラッド材は、心材の一方の面に犠牲陽極材をクラッドしたアルミニウム合金クラッド材であって、心材が、Mn:0.6〜2.0%、Cu:0.03〜1.0%を含有し、残部アルミニウムおよび不可避的不純物からなるAl−Mn−Cu合金であり、犠牲陽極材が、Zn:0.5〜6.0%、Cu:0.03〜0.3%を含有し、残部アルミニウムおよび不可避的不純物からなるAl−Zn−Cu合金であり、心材および犠牲陽極材のCu含有量が(犠牲陽極材のCu含有量%)≦(心材のCu含有量%)の関係にあることを特徴とする。以下の説明において、合金%は全て質量%で示す。   An aluminum alloy clad material according to claim 1 for achieving the above object is an aluminum alloy clad material in which a sacrificial anode material is clad on one surface of a core material, and the core material has Mn: 0.6 to 2.0. %, Cu: 0.03 to 1.0%, Al—Mn—Cu alloy composed of the balance aluminum and inevitable impurities, and the sacrificial anode material is Zn: 0.5 to 6.0%, Cu : Al-Zn-Cu alloy containing 0.03 to 0.3%, the balance being aluminum and inevitable impurities, the Cu content of the core material and the sacrificial anode material (Cu content% of the sacrificial anode material) ≦ (Cu content% of core material) In the following description, all alloy percentages are indicated by mass%.

請求項2によるアルミニウム合金クラッド材は、請求項1において、前記心材が、さらにSi:1.5%以下、Fe:0.7%以下の1種または2種を含有することを特徴とする。   An aluminum alloy clad material according to claim 2 is characterized in that, in claim 1, the core material further contains one or two of Si: 1.5% or less and Fe: 0.7% or less.

請求項3によるアルミニウム合金クラッド材は、請求項1または2において、前記心材が、さらにTi:0.01〜0.3%を含有することを特徴とする。   An aluminum alloy clad material according to claim 3 is characterized in that, in claim 1 or 2, the core material further contains Ti: 0.01 to 0.3%.

請求項4によるアルミニウム合金クラッド材は、心材の一方の面に内皮材をクラッドし、他方の面に犠牲陽極材をクラッドしたアルミニウム合金クラッド材であって、心材が、Mn:0.6〜2.0%、Cu:0.03〜1.0%を含有し、残部アルミニウムおよび不可避的不純物からなるAl−Mn−Cu合金であり、内皮材が、Mn:0.6〜2.0%、Cu:0.2〜1.5%を含有し、残部アルミニウムおよび不可避的不純物からなるAl−Mn−Cu合金であり、犠牲陽極材が、Zn:0.5〜6.0%、Cu:0.03〜0.3%を含有し、残部アルミニウムおよび不可避的不純物からなるAl−Zn−Cu合金であり、心材、内皮材および犠牲陽極材のCu含有量が(犠牲陽極材のCu含有量%)≦(心材のCu含有量%)≦(内皮材のCu含有量%)の関係にあることを特徴とする。   The aluminum alloy clad material according to claim 4 is an aluminum alloy clad material in which a core material is clad with an endothelial material on one surface and a sacrificial anode material is clad on the other surface, and the core material has Mn: 0.6-2. 0.0%, Cu: 0.03 to 1.0%, Al-Mn-Cu alloy consisting of the balance aluminum and inevitable impurities, and the endothelial material is Mn: 0.6 to 2.0%, It is an Al—Mn—Cu alloy containing Cu: 0.2 to 1.5%, and the balance being aluminum and inevitable impurities, and the sacrificial anode material is Zn: 0.5 to 6.0%, Cu: 0 Al-Zn-Cu alloy containing 0.03 to 0.3% and the balance aluminum and inevitable impurities, the Cu content of the core material, the endothelial material and the sacrificial anode material (Cu content% of the sacrificial anode material) ) ≤ (Cu content of core material%) ≤ Characterized in that a relation of the Cu content%) of the inner covering.

請求項5によるアルミニウム合金クラッド材は、請求項4において、前記心材が、さらにSi:1.5%以下、Fe:0.7%以下の1種または2種を含有することを特徴とする。   The aluminum alloy clad material according to claim 5 is characterized in that, in claim 4, the core material further contains one or two of Si: 1.5% or less and Fe: 0.7% or less.

請求項6によるアルミニウム合金クラッド材は、請求項4または5において、前記心材が、さらにTi:0.01〜0.3%を含有することを特徴とする。   An aluminum alloy clad material according to claim 6 is characterized in that, in claim 4 or 5, the core material further contains Ti: 0.01 to 0.3%.

請求項7によるアルミニウム合金クラッド材は、請求項4〜6のいずれかにおいて、前記内皮材が、さらにSi:1.5%以下、Fe:0.7%以下の1種または2種を含有することを特徴とする。   The aluminum alloy clad material according to claim 7 is the aluminum alloy clad material according to any one of claims 4 to 6, wherein the endothelial material further contains one or two of Si: 1.5% or less and Fe: 0.7% or less. It is characterized by that.

請求項8によるアルミニウム合金クラッド材は、請求項4〜7のいずれかにおいて、前
記内皮材が、さらにTi:0.01〜0.3%を含有することを特徴とする。
The aluminum alloy clad material according to claim 8 is characterized in that, in any one of claims 4 to 7, the endothelial material further contains Ti: 0.01 to 0.3%.

請求項9によるアルミニウム合金クラッド材は、請求項1〜8のいずれかにおいて、前記犠牲陽極材が、さらにSi:1.5%以下、Fe:0.7%以下、Mn:1.5%以下の1種または2種以上を含有することを特徴とする。   The aluminum alloy clad material according to claim 9 is any one of claims 1 to 8, wherein the sacrificial anode material is further Si: 1.5% or less, Fe: 0.7% or less, Mn: 1.5% or less 1 type or 2 types or more are contained.

請求項10による熱交換器は、請求項1〜9のいずれかに記載のアルミニウム合金クラッド材を、内皮材が冷媒通路側、犠牲陽極材が大気側になるようにチューブに成形し、該チューブにアルミニウムフィンを組み付け、ろう付けしてなることを特徴とする。   A heat exchanger according to claim 10 is formed by forming the aluminum alloy clad material according to any one of claims 1 to 9 into a tube so that the endothelial material is on the refrigerant passage side and the sacrificial anode material is on the atmosphere side. It is characterized by being assembled by brazing aluminum fins.

本発明によれば、チューブに成形した場合、外面の耐食性に優れ、熱交換器、とくに自動車用熱交換器のチューブの素材として好適に使用することができるアルミニウム合金クラッド材、および該アルミニウム合金クラッド材を成形したチューブを組み付けた熱交換器が提供される。   According to the present invention, when formed into a tube, the aluminum alloy clad material which is excellent in corrosion resistance of the outer surface and can be suitably used as a material of a heat exchanger, in particular, a heat exchanger tube for automobiles, and the aluminum alloy clad A heat exchanger is provided that incorporates a tube formed from a material.

本発明のアルミニウム合金クラッド材を成形した熱交換器用チューブの実施例を示す断面図である。It is sectional drawing which shows the Example of the tube for heat exchangers which shape | molded the aluminum alloy clad material of this invention. 本発明のアルミニウム合金クラッド材を成形した熱交換器用チューブの他の実施例を示す断面図である。It is sectional drawing which shows the other Example of the tube for heat exchangers which shape | molded the aluminum alloy clad material of this invention.

本発明のアルミニウム合金クラッド材は、前記のように、その構成を心材と犠牲陽極材からなる2層構造、または心材の一方の面に犠牲陽極材を配し、他方の面に心材よりも電位が貴な内皮材を配した3層構造とし、犠牲陽極材にCuを含有させてなるものであり、内皮材が冷媒通路側、犠牲陽極材が大気側になるようにチューブに成形して熱交換器に組み付けられると、犠牲陽極材の腐食速度が抑制され、犠牲陽極材による犠牲陽極効果が長期間持続するため、長期にわたり貫通孔の発生を抑制することが可能となり、外面(大気側)の耐食性の向上が達成される。とくに3層構造においては、心材が内皮材にして犠牲陽極効果を発揮するため、内皮材に対して犠牲陽極材と心材が犠牲陽極層となり、結果として犠牲陽極層の厚さが増大することとなり、より長期にわたり貫通孔の発生を抑制することが可能となる。   As described above, the aluminum alloy clad material of the present invention has a two-layer structure composed of a core material and a sacrificial anode material, or a sacrificial anode material disposed on one surface of the core material, and a potential higher than that of the core material on the other surface. Has a three-layer structure in which noble endothelial material is arranged, and the sacrificial anode material contains Cu, and is molded into a tube so that the endothelial material is on the refrigerant passage side and the sacrificial anode material is on the atmosphere side. When assembled in the exchanger, the rate of corrosion of the sacrificial anode material is suppressed, and the sacrificial anode effect of the sacrificial anode material lasts for a long period of time. Improved corrosion resistance is achieved. In particular, in the three-layer structure, the sacrificial anode material and the core material serve as a sacrificial anode layer with respect to the endothelium material because the core material serves as the endothelium material, resulting in an increase in the thickness of the sacrificial anode layer. Thus, it is possible to suppress the generation of through holes for a longer period.

2層構造の基本構成において、心材としては、Mn:0.6〜2.0%、Cu:0.03〜1.0%を含有し、残部アルミニウムおよび不可避的不純物からなるAl−Mn−Cu合金、犠牲陽極材としては、Zn:0.5〜6.0%、Cu:0.03〜0.3%を含有し、残部アルミニウムおよび不可避的不純物からなるAl−Zn−Cu合金が適用される。但し、心材および犠牲陽極材のCu含有量が(犠牲陽極材のCu含有量%)≦(心材のCu含有量%)の関係にあるようにする。   In the basic structure of the two-layer structure, Al—Mn—Cu containing Mn: 0.6 to 2.0%, Cu: 0.03 to 1.0%, and the balance aluminum and inevitable impurities as core materials As the alloy and sacrificial anode material, an Al—Zn—Cu alloy containing Zn: 0.5 to 6.0%, Cu: 0.03 to 0.3%, and the balance aluminum and inevitable impurities is applied. The However, the Cu content of the core material and the sacrificial anode material is set such that (Cu content% of the sacrificial anode material) ≦ (Cu content% of the core material).

心材には、Si:1.5%以下、Fe:0.7%以下の1種または2種を含有させることができ、Ti:0.01〜0.3%を含有させることができる。また、犠牲陽極材には、Si:1.5%以下、Fe:0.7%以下、Mn:1.5%以下の1種または2種以上を含有させることができる。   The core material can contain one or two of Si: 1.5% or less and Fe: 0.7% or less, and can contain Ti: 0.01 to 0.3%. In addition, the sacrificial anode material may contain one or more of Si: 1.5% or less, Fe: 0.7% or less, and Mn: 1.5% or less.

3層構造の基本構成においては、心材として、Mn:0.6〜2.0%、Cu:0.03〜1.0%を含有し、残部アルミニウムおよび不可避的不純物からなるAl−Mn−Cu合金、内皮材として、Mn:0.6〜2.0%、Cu:0.2〜1.5%を含有し、残部アルミニウムおよび不可避的不純物からなるAl−Mn−Cu合金、犠牲陽極材として、Zn:0.5〜6.0%、Cu:0.03〜0.3%を含有し、残部アルミニウムおよび不可避的不純物からなるAl−Zn−Cu合金が適用される。但し、心材、内皮材および犠牲陽極材のCu含有量が(犠牲陽極材のCu含有量%)≦(心材のCu含有量%)≦(内皮材のCu含有量%)の関係にあるようにする。   In the basic structure of the three-layer structure, Al—Mn—Cu containing Mn: 0.6 to 2.0%, Cu: 0.03 to 1.0% as a core material, and remaining balance of aluminum and inevitable impurities Al-Mn-Cu alloy containing Mn: 0.6-2.0%, Cu: 0.2-1.5%, the balance aluminum and inevitable impurities, as sacrificial anode material , Zn: 0.5-6.0%, Cu: 0.03-0.3%, Al—Zn—Cu alloy consisting of the balance aluminum and inevitable impurities is applied. However, the Cu content of the core material, the endothelial material, and the sacrificial anode material is such that (Cu content% of the sacrificial anode material) ≦ (Cu content% of the core material) ≦ (Cu content% of the endothelium material). To do.

心材には、Si:1.5%以下、Fe:0.7%以下の1種または2種を含有させることができ、Ti:0.01〜0.3%を含有させることができる。内皮材には、Si:1.5%以下、Fe:0.7%以下の1種または2種を含有させることができ、Ti:0.01〜0.3%を含有させることができる。また、犠牲陽極材には、Si:1.5%以下、Fe:0.7%以下、Mn:1.5%以下の1種または2種以上を含有させることができる。   The core material can contain one or two of Si: 1.5% or less and Fe: 0.7% or less, and can contain Ti: 0.01 to 0.3%. The endothelium material can contain one or two of Si: 1.5% or less and Fe: 0.7% or less, and Ti: 0.01 to 0.3%. In addition, the sacrificial anode material may contain one or more of Si: 1.5% or less, Fe: 0.7% or less, and Mn: 1.5% or less.

以下、心材、内皮材および犠牲陽極材の合金成分の意義および限定理由について説明する。
(犠牲陽極材)
Zn:
犠牲陽極材中のZnは電位を貴にするよう機能し、心材、内皮材との電位のバランス調整のために含有させる。Znの好ましい含有量は0.5〜6.0%の範囲であり、0.5%未満ではその効果が十分でなく、6.0%を超えると、自己腐食速度が増大して耐食寿命が低下する。Znのさらに好ましい含有量範囲は1.0〜5.0%である。
Hereinafter, the significance and reasons for limitation of the alloy components of the core material, the endothelial material, and the sacrificial anode material will be described.
(Sacrificial anode material)
Zn:
Zn in the sacrificial anode material functions to make the potential noble, and is contained for adjusting the potential balance with the core material and the endothelial material. The preferable content of Zn is in the range of 0.5 to 6.0%. If the content is less than 0.5%, the effect is not sufficient. If the content exceeds 6.0%, the self-corrosion rate increases and the corrosion resistance life is shortened. descend. A more preferable content range of Zn is 1.0 to 5.0%.

Cu:
Cuは犠牲陽極材の腐食速度を抑制するよう機能する。Cuの好ましい含有量は0.03〜0.3%の範囲であり、0.03%未満では十分な腐食速度抑制効果が得られず、0.3%を超えると、電位が貴になるため犠牲陽極効果が得難くなる。Cuのさらに好ましい含有範囲は0.03〜0.2%である。
Cu:
Cu functions to suppress the corrosion rate of the sacrificial anode material. The preferable content of Cu is in the range of 0.03 to 0.3%. If it is less than 0.03%, a sufficient corrosion rate suppressing effect cannot be obtained, and if it exceeds 0.3%, the potential becomes noble. It becomes difficult to obtain the sacrificial anode effect. A more preferable content range of Cu is 0.03 to 0.2%.

Si:
Siは強度を向上させるよう機能する。Siの好ましい含有量は1.5%以下の範囲であり、1.5%を超えると自己腐食速度が増大する。Siのさらに好ましい含有範囲は0.
5%以下である。
Si:
Si functions to improve strength. The preferable content of Si is in the range of 1.5% or less, and when it exceeds 1.5%, the self-corrosion rate increases. The more preferable range of Si is 0.
5% or less.

Fe:
Feは強度を向上させるよう機能する。Feの好ましい含有量は0.7%以下の範囲であり、0.7%を超えると自己腐食速度が増大する。
Fe:
Fe functions to improve strength. The preferable content of Fe is in the range of 0.7% or less, and when it exceeds 0.7%, the self-corrosion rate increases.

Mn:
Mnは強度を向上させるよう機能する。Mnの好ましい含有量は1.5%以下の範囲であり、1.5%を超えると自己腐食速度が増大する。Mnのさらに好ましい含有範囲は0.5%以下である。なお、犠牲陽極材には、それぞれ0.3%以下のIn、Sn、Ti、V、Cr、ZrおよびBが含有されていても本発明の効果が損なわれることはない。
Mn:
Mn functions to improve strength. The preferable content of Mn is in the range of 1.5% or less, and when it exceeds 1.5%, the self-corrosion rate increases. A more preferable content range of Mn is 0.5% or less. Even if the sacrificial anode material contains 0.3% or less of In, Sn, Ti, V, Cr, Zr and B, the effects of the present invention are not impaired.

(心材)
Mn:
Mnは強度を向上させるよう機能する。Mnの好ましい含有量は0.6〜2.0%の範囲であり、0.6%未満ではその効果が十分でなく、2.0%を超えると圧延が困難となる。Mnのさらに好ましい含有範囲は1.0〜2.0%である。
(Heartwood)
Mn:
Mn functions to improve strength. The preferable content of Mn is in the range of 0.6 to 2.0%. If it is less than 0.6%, the effect is not sufficient, and if it exceeds 2.0%, rolling becomes difficult. A more preferable content range of Mn is 1.0 to 2.0%.

Cu:
Cuは心材の電位を貴にするよう機能し、犠牲陽極材、内皮材との電位のバランス調整の
ために含有させる。心材中のCu含有量が犠牲陽極材のCu含有量未満になると、犠牲陽極材との電位差が確保できなくなるため、心材中のCu含有量は犠牲陽極材のCu含有量以上とするのが好ましい。また、心材中のCuはろう付け加熱時に犠牲陽極材中に拡散し、犠牲陽極材との電位差を小さくするので、心材のCu含有量は1.5%以下とするのが好ましい。3層構造のクラッド材においては、心材中のCu含有量が内皮材中のCu含有量以上となると、内皮材との電位差が確保できなくなるため、3層構造のクラッド材における心材中のCu含有量は内皮材中のCu含有量未満とするのが好ましい。Cuのさらに好ましい含有範囲は0.6%以下である。
Cu:
Cu functions to make the potential of the core material noble, and is contained for adjusting the balance of the potential with the sacrificial anode material and the endothelial material. If the Cu content in the core material is less than the Cu content in the sacrificial anode material, a potential difference from the sacrificial anode material cannot be ensured, so the Cu content in the core material is preferably equal to or greater than the Cu content in the sacrificial anode material. . Further, since Cu in the core material diffuses into the sacrificial anode material during brazing heating and reduces the potential difference from the sacrificial anode material, the Cu content of the core material is preferably 1.5% or less. In the clad material with a three-layer structure, if the Cu content in the core material is equal to or higher than the Cu content in the endothelium material, a potential difference from the endothelium material cannot be secured, so the Cu content in the core material in the clad material with the three-layer structure The amount is preferably less than the Cu content in the endothelial material. A more preferable content range of Cu is 0.6% or less.

Si:
Siは強度を向上させるよう機能する。Siの好ましい含有量は1.5%以下の範囲であり、1.5%を超えると融点が低下して、ろう付け時に溶融し易くなる。Siのさらに好ましい含有範囲は0.8%以下である。
Si:
Si functions to improve strength. The preferable content of Si is in the range of 1.5% or less, and if it exceeds 1.5%, the melting point is lowered and it becomes easy to melt during brazing. A more preferable content range of Si is 0.8% or less.

Fe:
Feは強度を向上させるよう機能する。Feの好ましい含有量は0.7%以下の範囲であり、0.7%を超えると自己腐食速度が増大する。
Fe:
Fe functions to improve strength. The preferable content of Fe is in the range of 0.7% or less, and when it exceeds 0.7%, the self-corrosion rate increases.

Ti:
Tiは、心材の板厚方向に濃度の高い領域と低い領域とに分かれ、それらが交互に分布する層状となり、Ti濃度の低い領域が高い領域に比べ優先的に腐食する結果、腐食形態を層状にする効果を有し、それにより板厚方向への腐食の進行を妨げて耐食性を向上させる。Tiの好ましい含有量は0.01〜0.3%の範囲であり、0.01%未満ではその効果が十分でなく、0.3%を超えると、巨大な晶出物が生成して成形性が害される。なお、心材には、それぞれ0.3%以下のV、Cr、ZrおよびBが含有されていても本発明の効果が損なわれることはない。
Ti:
Ti is divided into a high-concentration region and a low region in the thickness direction of the core material, and the layers are alternately distributed. As a result, the low-concentration region is preferentially corroded as compared to the high region. This prevents the progress of corrosion in the thickness direction, thereby improving the corrosion resistance. The preferable content of Ti is in the range of 0.01 to 0.3%. If the content is less than 0.01%, the effect is not sufficient, and if it exceeds 0.3%, a huge crystallized product is formed and molded. Sex is harmed. In addition, even if the core material contains 0.3% or less of V, Cr, Zr and B, the effect of the present invention is not impaired.

(内皮材)
Mn:
Mnは強度を向上させるよう機能する。Mnの好ましい含有量は0.6〜2.0%の範囲であり、0.6%未満ではその効果が十分でなく、2.0%を超えると圧延が困難となる。Mnのさらに好ましい含有範囲は1.0〜2.0%である。
(Endothelial material)
Mn:
Mn functions to improve strength. The preferable content of Mn is in the range of 0.6 to 2.0%. If it is less than 0.6%, the effect is not sufficient, and if it exceeds 2.0%, rolling becomes difficult. A more preferable content range of Mn is 1.0 to 2.0%.

Si:
Siは強度を向上させるよう機能する。Siの好ましい含有量は1.5%以下の範囲であり、1.5%を超えると融点が低下して、ろう付け時に溶融し易くなる。
Si:
Si functions to improve strength. The preferable content of Si is in the range of 1.5% or less, and if it exceeds 1.5%, the melting point is lowered and it becomes easy to melt during brazing.

Fe:
Feは強度を向上させるよう機能する。Feの好ましい含有量は0.7%以下の範囲であり、0.7%を超えると自己腐食速度が増大する。
Fe:
Fe functions to improve strength. The preferable content of Fe is in the range of 0.7% or less, and when it exceeds 0.7%, the self-corrosion rate increases.

Cu:
Cuは内皮材の電位を貴にするよう機能し、心材との電位のバランス調整のために含有させる。Cuの好ましい含有量は0.2〜1.5%の範囲であり、(心材のCu含有量%)≦(内皮材のCu含有量%)となる範囲で、1.5%を超えると融点が低下して、ろう付け時に溶融し易くなる。内皮材のCu含有量が心材のCu含有量より少ない場合は、心材が内皮材に対して犠牲陽極材として作用しなくなるため、耐食寿命が低下する。内皮材のCuのさらに好ましい含有範囲は0.8%以下である。
Cu:
Cu functions to make the potential of the endothelial material noble and is contained for adjusting the balance of the potential with the core material. The preferable content of Cu is in the range of 0.2 to 1.5%, and in the range of (Cu content% of the core material) ≦ (Cu content% of the endothelium material), the melting point is over 1.5%. Decreases and becomes easier to melt during brazing. When the Cu content of the endothelial material is less than the Cu content of the core material, the core material does not act as a sacrificial anode material for the endothelial material, and therefore the corrosion resistance life is reduced. The more preferable content range of Cu in the endothelial material is 0.8% or less.

Ti:
Tiは、内皮材の板厚方向に濃度の高い領域と低い領域とに分かれ、それらが交互に分布する層状となり、Ti濃度の低い領域が高い領域に比べ優先的に腐食する結果、腐食形態を層状にする効果を有し、それにより板厚方向への腐食の進行を妨げて耐食性を向上させる。Tiの好ましい含有量は0.01〜0.3%の範囲であり、0.01%未満ではその効果が十分でなく、0.3%を超えると、巨大な晶出物が生成して成形性が害される。なお、内皮材には、それぞれ0.3%以下のV、Cr、ZrおよびBが含有されていても本発明の効果が損なわれることはない。
Ti:
Ti is divided into a high-concentration region and a low region in the plate thickness direction of the endothelium material, and they are layered alternately. As a result, the low-Ti concentration region corrodes preferentially compared to the high region, resulting in a corrosive form. It has the effect of layering, thereby preventing the progress of corrosion in the thickness direction and improving the corrosion resistance. The preferable content of Ti is in the range of 0.01 to 0.3%. If the content is less than 0.01%, the effect is not sufficient, and if it exceeds 0.3%, a huge crystallized product is formed and molded. Sex is harmed. In addition, even if 0.3% or less of V, Cr, Zr and B are contained in the endothelial material, the effect of the present invention is not impaired.

なお、犠牲陽極材、心材および内皮材中のSiおよびFeの含有量については、高純度地金を用いると製造コストの高騰を招くので、SiおよびFeの含有量をいずれも0.03%未満とすることは好ましくない。   As for the contents of Si and Fe in the sacrificial anode material, the core material and the endothelial material, the use of high-purity bullion causes an increase in manufacturing cost. Therefore, both the Si and Fe contents are less than 0.03%. Is not preferable.

本発明におけるクラッド構成は、犠牲陽極材のクラッド率を5〜30%、3層構造のものにおいては、内皮材のクラッド率を5〜30%とするのが好ましい。犠牲陽極材のクラッド率が5%未満では、ろう付け時の拡散により犠牲陽極材中のZn量が低下して十分な犠牲陽極効果が得難くなる。犠牲陽極材のクラッド率が30%を超えるとクラッド圧延が困難となる。より好ましい犠牲陽極材のクラッド率は10〜30%である。内皮材のクラッド率が5%未満では、ろう付け時の拡散により内皮材中のCu濃度が低下して心材との電位差が小さくなり、心材の犠牲陽極効果が得難くなる。内皮材のクラッド率が30%を超えるとクラッド圧延が困難となる。より好ましい内皮材のクラッド率は10〜30%である。   In the clad structure of the present invention, the clad rate of the sacrificial anode material is preferably 5 to 30%, and in the case of a three-layer structure, the clad rate of the endothelial material is preferably 5 to 30%. If the clad rate of the sacrificial anode material is less than 5%, the amount of Zn in the sacrificial anode material decreases due to diffusion during brazing, making it difficult to obtain a sufficient sacrificial anode effect. If the clad rate of the sacrificial anode material exceeds 30%, clad rolling becomes difficult. A more preferable sacrificial anode material has a cladding ratio of 10 to 30%. If the clad rate of the endothelial material is less than 5%, the Cu concentration in the endothelial material decreases due to diffusion during brazing, the potential difference from the core material becomes small, and the sacrificial anode effect of the core material becomes difficult to obtain. If the clad rate of the endothelial material exceeds 30%, clad rolling becomes difficult. A more preferable cladding ratio of the endothelial material is 10 to 30%.

本発明のアルミニウム合金クラッド材は、内皮材が冷媒通路側、犠牲陽極材が大気側(外面側)になるようにチューブに成形し、このチューブの外面側(大気側)に、あるいは外面側と内面側(冷媒流路側)にアルミニウムフィンを組み付けて、ろう付け接合し、熱交換器とする。   The aluminum alloy clad material of the present invention is formed into a tube so that the endothelial material is on the refrigerant passage side and the sacrificial anode material is on the atmosphere side (outside surface side), and on the outside surface side (atmosphere side) of this tube or on the outside surface side. Aluminum fins are assembled on the inner surface side (refrigerant flow path side) and brazed to form a heat exchanger.

チューブ材1の作製は、例えば、図1に示すように、アルミニウム合金クラッド材2をチューブに成形後、両面にろう材を配したブレージングシートからなるインナーフィン3を装入し、チューブの継ぎ目4をインナーフィン3のろう材でろう付け接合する手法、図2に示すように、予めアルミニウム合金クラッド材2の犠牲陽極材側にペーストろう5を塗布してチューブに成形し、または、チューブへの成形後にペーストろう5を塗布し、ペーストろう5により継ぎ目4をろう付け接合する手法により行われる。   For example, as shown in FIG. 1, the tube material 1 is produced by forming an aluminum alloy clad material 2 into a tube, and then inserting inner fins 3 made of a brazing sheet with brazing material disposed on both sides, and connecting the tube joint 4 As shown in FIG. 2, a paste brazing 5 is applied to the sacrificial anode material side of the aluminum alloy clad material 2 in advance to form a tube, or as shown in FIG. After molding, a paste brazing 5 is applied, and the joint 4 is brazed and joined by the paste brazing 5.

本発明のアルミニウム合金クラッド材を、2層構造のものにおいては心材、3層構造のものにおいては内皮材が冷媒通路側、犠牲陽極材が大気側(外面側)になるようにチューブに成形し、このチューブにアルミニウムフィンを組み付けて、600℃の温度で3分間ろう付け加熱、両者を接合して熱交換器を作製した場合、組み付けられたチューブにおける犠牲陽極材、心材および内皮材の電位は、(犠牲陽極材の電位)<(心材の電位)<(3層構造の内皮材の電位)の関係となり、犠牲陽極材は心材に対して犠牲陽極効果を発揮する。本発明によるAl−Zn−Cu系合金の犠牲陽極材は、一般的なAl−Zn系合金の犠牲陽極材よりも腐食速度が遅く、犠牲陽極効果が作用する期間が長くなるため耐食性の向上が達成できる。また、3層構造のものでは、心材が内皮材に対して犠牲陽極効果を発揮するため、結果として犠牲陽極層の厚さが増大することとなり、犠牲陽極材と心材のいずれもが腐食によりその殆どが消耗しても、電位の貴な内皮材が残存することによって貫通孔の発生を抑制することが可能となり、外面(大気側)の耐食性のさらなる向上が達成される。   The aluminum alloy clad material of the present invention is molded into a tube so that the core material in the case of the two-layer structure is the refrigerant passage side and the sacrificial anode material is on the atmosphere side (outer surface side) in the three-layer structure. When an aluminum fin is assembled to this tube and brazed and heated at a temperature of 600 ° C. for 3 minutes, both are joined to produce a heat exchanger, the potential of the sacrificial anode material, core material and endothelial material in the assembled tube is , (Potential of sacrificial anode material) <(potential of core material) <(potential of endothelium material having a three-layer structure), and the sacrificial anode material exerts a sacrificial anode effect on the core material. The sacrificial anode material of the Al—Zn—Cu based alloy according to the present invention has a slower corrosion rate than the sacrificial anode material of a general Al—Zn based alloy, and the period during which the sacrificial anode effect acts increases, thereby improving the corrosion resistance. Can be achieved. In the case of the three-layer structure, the core material exerts a sacrificial anode effect on the endothelium material. As a result, the thickness of the sacrificial anode layer is increased, and both the sacrificial anode material and the core material are affected by corrosion. Even when most of the material is consumed, the presence of a noble endothelial material can suppress the generation of through-holes, thereby further improving the corrosion resistance of the outer surface (atmosphere side).

以下、本発明の実施例を比較例と対比して説明し、その効果を実証する。これらの実施
例は、本発明の一実施態様を示すものであり、本発明はこれらに限定されない。
Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects. These examples show one embodiment of the present invention, and the present invention is not limited thereto.

実施例1
半連続鋳造により表1に示す組成を有する犠牲陽極材用合金(S1〜S11)、表2に示す組成を有する心材用合金および内皮材用合金(C1〜C20)を造塊し、得られた鋳塊のうち、犠牲陽極材用合金鋳塊については500℃で8時間の均質化処理を行った後、開始温度500℃で熱間圧延して所定厚さとし、心材および内皮材用合金鋳塊については500℃で8時間の均質化処理を行った後、心材用合金鋳塊は面削し、内皮材用合金鋳塊は開始温度500℃で熱間圧延して所定厚さとした。
Example 1
The alloy for sacrificial anode materials (S1 to S11) having the composition shown in Table 1 by semi-continuous casting, the alloy for core material and the alloy for endothelial material (C1 to C20) having the composition shown in Table 2 were obtained. Among the ingots, the alloy ingot for sacrificial anode material was homogenized at 500 ° C. for 8 hours, and then hot-rolled at a starting temperature of 500 ° C. to a predetermined thickness, and the alloy ingot for core material and endothelial material After performing a homogenization treatment at 500 ° C. for 8 hours, the core alloy ingot was chamfered, and the endothelium alloy ingot was hot-rolled at a starting temperature of 500 ° C. to a predetermined thickness.

ついで、犠牲陽極材用合金および内皮材用合金の熱間圧延材を面削後、各アルミニウム合金を、表3に示す組み合わせで重ね合わせて、開始温度500℃で3mm厚さまで熱間圧延し、さらに冷間圧延した後、400℃の温度で中間焼鈍を行い、その後、冷間圧延を行って厚さ0.2mmのアルミニウム合金クラッド板材(試験材1〜31)を得た。   Next, after chamfering the hot rolled material of the sacrificial anode material alloy and the endothelial material alloy, each aluminum alloy was superposed in the combination shown in Table 3, and hot rolled to a thickness of 3 mm at a starting temperature of 500 ° C., Further, after cold rolling, intermediate annealing was performed at a temperature of 400 ° C., and then cold rolling was performed to obtain aluminum alloy clad plate materials (test materials 1 to 31) having a thickness of 0.2 mm.

比較例1
半連続鋳造により表1に示す組成を有する犠牲陽極材用合金(S12〜S18)、表2に示す組成を有する心材用合金および内皮材用合金(C21〜C26)を造塊し、さらに、実施例1で造塊された犠牲陽極材用合金(S1)、心材用合金および内皮材用合金(C1、C11)を用い、これらの鋳塊のうち、犠牲陽極材用合金鋳塊については500℃で8時間の均質化処理を行った後、開始温度500℃で熱間圧延して所定厚さとし、心材および内皮材用合金鋳塊については500℃で8時間の均質化処理を行った後、心材用合金鋳塊は面削し、内皮材用合金鋳塊は開始温度500℃で熱間圧延して所定厚さとした。なお、表1〜2において、本発明の条件を外れたものには下線を付した。
Comparative Example 1
The alloy for sacrificial anode materials (S12 to S18) having the composition shown in Table 1 by semi-continuous casting, the alloy for core material and the alloy for endothelial material (C21 to C26) having the composition shown in Table 2 are further ingoted, and further implemented The alloy for sacrificial anode material (S1), the alloy for core material and the alloy for endothelium material (C1, C11) ingoted in Example 1 are used, and among these ingots, the alloy ingot for sacrificial anode material is 500 ° C. After performing a homogenization treatment for 8 hours at a starting temperature of 500 ° C. to obtain a predetermined thickness, the core material and the alloy ingot for endothelial material were subjected to a homogenization treatment at 500 ° C. for 8 hours, The core material alloy ingot was chamfered, and the endothelial material alloy ingot was hot-rolled at a starting temperature of 500 ° C. to a predetermined thickness. In Tables 1 and 2, those outside the conditions of the present invention are underlined.

ついで、犠牲陽極材用合金および内皮材用合金の熱間圧延材を面削後、各アルミニウム合金を、表4に示す組み合わせで重ね合わせて、開始温度500℃で3mm厚さまで熱間圧延し、さらに冷間圧延した後、400℃の温度で中間焼鈍を行い、その後、冷間圧延を行って厚さ0.2mmのアルミニウム合金クラッド板材(試験材101〜114)を得た。   Next, after chamfering the hot rolled material of the sacrificial anode material alloy and the endothelial material alloy, each aluminum alloy was superposed in the combination shown in Table 4 and hot rolled to a thickness of 3 mm at a starting temperature of 500 ° C., Further, after cold rolling, intermediate annealing was performed at a temperature of 400 ° C., and then cold rolling was performed to obtain aluminum alloy clad plate materials (test materials 101 to 114) having a thickness of 0.2 mm.

得られた試験材について、ろう付け加熱相当の600℃で3分間の加熱を加えた後、以下の方法で電位測定、引張試験、腐食試験を行った。結果を表3〜4に示す。
(電位測定)
試験材の電位は、酢酸を用いてpH3に調整した5%NaCl水溶液中で室温にて測定した。犠牲陽極材の電位は、犠牲陽極材側表面以外をマスキングして測定し、内皮材の電位は内皮材側表面以外をマスキングして測定した。また、心材の電位は、犠牲陽極材面側より心材厚さ中央まで試験材を研削し、研削面以外をマスキングして測定した。
About the obtained test material, after heating for 3 minutes at 600 degreeC equivalent to brazing heating, the potential measurement, the tension test, and the corrosion test were done with the following method. The results are shown in Tables 3-4.
(Potential measurement)
The potential of the test material was measured at room temperature in a 5% NaCl aqueous solution adjusted to pH 3 with acetic acid. The potential of the sacrificial anode material was measured by masking other than the sacrificial anode material side surface, and the potential of the endothelial material was measured by masking the surface other than the endothelial material side surface. Further, the potential of the core material was measured by grinding the test material from the sacrificial anode material surface side to the center of the core material thickness and masking other than the ground surface.

(引張試験)
試験材をJIS−5号試験片に成形し、JIS Z2241に準拠して引張試験を行い、3003合金のO材相当強度(95MPa)以上の引張強さを有するものを合格とした。
(Tensile test)
The test material was formed into a JIS-5 test piece, and a tensile test was performed in accordance with JIS Z2241, and a 3003 alloy having a tensile strength equal to or higher than the O-material equivalent strength (95 MPa) was regarded as acceptable.

(腐食試験)
マスキングにより犠牲陽極材面を露出させた試験片について、SWAAT試験(ASTM
G85)を行って耐食性を評価し、1000時間経過時点で貫通孔が生じなかったものを合格(○)とし、とくに1500時間経過時点でも貫通孔が生じなかったものを優良(◎)と評価し、1000時間未満で貫通孔を生じたものを不合格(×)と評価した。
(Corrosion test)
For the test piece with the sacrificial anode material exposed by masking, the SWAAT test (ASTM
G85) to evaluate the corrosion resistance. If no through-holes were generated after 1000 hours, the pass (○) was evaluated, and if no through-holes were generated even after 1500 hours, it was evaluated as excellent (◎). Those that produced through-holes in less than 1000 hours were evaluated as rejected (x).

Figure 2017057503
Figure 2017057503

Figure 2017057503
Figure 2017057503

Figure 2017057503
Figure 2017057503

Figure 2017057503
Figure 2017057503

表3にみられるように、本発明に従う試験材1〜31はいずれも、SWAAT試験において貫通孔を生じなかった。とくに、内皮材を配した試験材14〜31は、より長時間貫通孔を生じなかった。また、これらのアルミニウム合金クラッド材を、内皮材が冷媒通路側、犠牲陽極材が大気側(外面側)になるようにチューブに成形し、このチューブにアルミニウムフィンを組み付けて、600℃の温度で3分間ろう付け加熱、両者を接合して熱交換器を作製したところ、改善された外面(大気側)の耐食性が得られることが確認された。   As seen in Table 3, none of the test materials 1 to 31 according to the present invention produced through holes in the SWAAT test. In particular, the test materials 14 to 31 on which the endothelial material was arranged did not generate through holes for a longer time. Further, these aluminum alloy clad materials are formed into a tube so that the endothelial material is on the refrigerant passage side and the sacrificial anode material is on the atmosphere side (outer surface side), and an aluminum fin is assembled to the tube at a temperature of 600 ° C. When a heat exchanger was manufactured by brazing and heating for 3 minutes and joining both, it was confirmed that improved corrosion resistance of the outer surface (atmosphere side) was obtained.

これに対して、表4に示すように、試験材101、109は犠牲陽極材のSi量が多いため、試験材102は犠牲陽極材のFe量が多いため、また試験材105は犠牲陽極材のMn量が多いため、いずれも犠牲陽極材の自己腐食量が多くなり、SWAAT試験で貫通孔が生じた。試験材103は犠牲陽極材のCu量が少ないため犠牲陽極材の自己腐食量が大きくなり、SWAAT試験で貫通孔が生じた。試験材104は犠牲陽極材のCu量が多いため、試験材106は犠牲陽極材のZn量が少ないため犠牲陽極効果が十分でなく、SWAAT試験で貫通孔が生じた。試験材107は犠牲陽極材のZn量が多いため、犠牲陽極材の自己腐食量が多くなり、SWAAT試験で貫通孔が生じた。試験材108は心材のCu量が少ないため犠牲陽極効果が十分でなく、SWAAT試験で貫通孔が生じた。   On the other hand, as shown in Table 4, the test materials 101 and 109 have a large amount of Si in the sacrificial anode material, the test material 102 has a large amount of Fe in the sacrificial anode material, and the test material 105 has a sacrificial anode material. Because of the large amount of Mn, the amount of self-corrosion of the sacrificial anode material increased, and through holes were generated in the SWAAT test. Since the test material 103 had a small amount of Cu in the sacrificial anode material, the amount of self-corrosion of the sacrificial anode material increased, and a through hole was generated in the SWAAT test. Since the test material 104 has a large amount of Cu in the sacrificial anode material, the test material 106 has a small amount of Zn in the sacrificial anode material, so that the sacrificial anode effect is not sufficient, and a through hole was generated in the SWAAT test. Since the test material 107 had a large amount of Zn in the sacrificial anode material, the amount of self-corrosion of the sacrificial anode material increased, and a through hole was generated in the SWAAT test. Since the test material 108 had a small amount of Cu in the core material, the sacrificial anode effect was not sufficient, and a through hole was generated in the SWAAT test.

試験材110は心材のSi量が多いため、ろう付け加熱時に心材が溶融した。試験材111は心材のFe量が多いため、心材の自己腐食量が多くなり、SWAAT試験で貫通孔が生じた。試験材112は心材のMn量が少ないため、引張強度が低かった。   Since the test material 110 has a large amount of Si in the core material, the core material melted during brazing heating. Since the test material 111 had a large amount of Fe in the core material, the self-corrosion amount of the core material increased, and a through hole was generated in the SWAAT test. Since the test material 112 had a small amount of Mn in the core material, the tensile strength was low.

試験材113は内皮材のCu量が多いため、ろう付け加熱時に内皮材が溶融した。試験材114は内皮材のMn量が多いため冷間圧延時に割れが生じ、健全なクラッド材を得ることができなかった。   Since the test material 113 had a large amount of Cu in the endothelial material, the endothelial material melted during brazing heating. Since the test material 114 had a large amount of Mn in the endothelial material, cracking occurred during cold rolling, and a sound clad material could not be obtained.

1 チューブ材
2 アルミニウム合金クラッド材
3 インナーフィン
4 継ぎ目
5 ペーストろう
1 Tube material 2 Aluminum alloy clad material 3 Inner fin 4 Seam 5 Paste brazing

請求項によるアルミニウム合金クラッド材は、前記犠牲陽極材が、さらにSi:1.5%以下、Fe:0.7%以下、Mn:1.5%以下の1種または2種以上を含有することを特徴とする。 Aluminum alloy clad sheet according to claim 4, before Symbol sacrificial anode material further Si: 1.5% or less, Fe: 0.7% or less, Mn: it contains one or more than 1.5% of It is characterized by doing.

請求項による熱交換器は、請求項1〜のいずれかに記載のアルミニウム合金クラッド材を、内皮材が冷媒通路側、犠牲陽極材が大気側になるようにチューブに成形し、該チューブにアルミニウムフィンを組み付け、ろう付けしてなることを特徴とする。 A heat exchanger according to claim 5 is formed by forming the aluminum alloy clad material according to any one of claims 1 to 4 into a tube so that the endothelial material is on the refrigerant passage side and the sacrificial anode material is on the atmosphere side. It is characterized by being assembled by brazing aluminum fins.

Claims (10)

心材の一方の面に犠牲陽極材をクラッドしたアルミニウム合金クラッド材であって、心材が、Mn:0.6〜2.0%(質量%、以下同じ)、Cu:0.03〜1.0%を含有し、残部アルミニウムおよび不可避的不純物からなるAl−Mn−Cu合金であり、犠牲陽極材が、Zn:0.5〜6.0%、Cu:0.03〜0.3%を含有し、残部アルミニウムおよび不可避的不純物からなるAl−Zn−Cu合金であり、心材および犠牲陽極材のCu含有量が(犠牲陽極材のCu含有量%)≦(心材のCu含有量%)の関係にあることを特徴とするアルミニウム合金クラッド材。   An aluminum alloy clad material in which a sacrificial anode material is clad on one surface of a core material, and the core material is Mn: 0.6 to 2.0% (mass%, the same applies hereinafter), Cu: 0.03 to 1.0 Al—Mn—Cu alloy containing the balance aluminum and unavoidable impurities, and the sacrificial anode material contains Zn: 0.5 to 6.0%, Cu: 0.03 to 0.3% And the Al-Zn-Cu alloy composed of the balance aluminum and inevitable impurities, and the Cu content of the core material and the sacrificial anode material is (Cu content% of the sacrificial anode material) ≦ (Cu content% of the core material) An aluminum alloy clad material characterized by 前記心材が、さらにSi:1.5%以下、Fe:0.7%以下の1種または2種を含有することを特徴とする請求項1記載のアルミニウム合金クラッド材。   The aluminum alloy clad material according to claim 1, wherein the core material further contains one or two of Si: 1.5% or less and Fe: 0.7% or less. 前記心材が、さらにTi:0.01〜0.3%を含有することを特徴とする請求項1または2記載のアルミニウム合金クラッド材。   The aluminum alloy clad material according to claim 1 or 2, wherein the core material further contains Ti: 0.01 to 0.3%. 心材の一方の面に内皮材をクラッドし、他方の面に犠牲陽極材をクラッドしたアルミニウム合金クラッド材であって、心材が、Mn:0.6〜2.0%、Cu:0.03〜1.0%を含有し、残部アルミニウムおよび不可避的不純物からなるAl−Mn−Cu合金であり、内皮材が、Mn:0.6〜2.0%、Cu:0.2〜1.5%を含有し、残部アルミニウムおよび不可避的不純物からなるAl−Mn−Cu合金であり、犠牲陽極材が、Zn:0.5〜6.0%、Cu:0.03〜0.3%を含有し、残部アルミニウムおよび不可避的不純物からなるAl−Zn−Cu合金であり、心材、内皮材および犠牲陽極材のCu含有量が(犠牲陽極材のCu含有量%)≦(心材のCu含有量%)≦(内皮材のCu含有量%)の関係にあることを特徴とするアルミニウム合金クラッド材。   An aluminum alloy clad material in which a core material is clad with an endothelial material on one surface and a sacrificial anode material is clad on the other surface, and the core material has Mn: 0.6-2.0%, Cu: 0.03- Al-Mn-Cu alloy containing 1.0% balance aluminum and inevitable impurities, endothelial material is Mn: 0.6-2.0%, Cu: 0.2-1.5% Al-Mn-Cu alloy containing the balance aluminum and inevitable impurities, and the sacrificial anode material contains Zn: 0.5-6.0%, Cu: 0.03-0.3% Al-Zn-Cu alloy consisting of the balance aluminum and inevitable impurities, and the Cu content of the core material, the endothelial material and the sacrificial anode material is (Cu content% of the sacrificial anode material) ≦ (Cu content% of the core material) ≤ (Cu content% of endothelial material%) Aluminum alloy clad material to. 前記心材が、さらにSi:1.5%以下、Fe:0.7%以下の1種または2種を含有することを特徴とする請求項4記載のアルミニウム合金クラッド材。   The aluminum alloy clad material according to claim 4, wherein the core material further contains one or two of Si: 1.5% or less and Fe: 0.7% or less. 前記心材が、さらにTi:0.01〜0.3%を含有することを特徴とする請求項4または5記載のアルミニウム合金クラッド材。   The aluminum alloy clad material according to claim 4 or 5, wherein the core material further contains Ti: 0.01 to 0.3%. 前記内皮材が、さらにSi:1.5%以下、Fe:0.7%以下の1種または2種を含有することを特徴とする請求項4〜6のいずれかに記載のアルミニウム合金クラッド材。   7. The aluminum alloy clad material according to claim 4, wherein the endothelial material further contains one or two of Si: 1.5% or less and Fe: 0.7% or less. . 前記内皮材が、さらにTi:0.01〜0.3%を含有することを特徴とする請求項4〜7のいずれかに記載のアルミニウム合金クラッド材。   8. The aluminum alloy clad material according to claim 4, wherein the endothelial material further contains Ti: 0.01 to 0.3%. 前記犠牲陽極材が、さらにSi:1.5%以下、Fe:0.7%以下、Mn:1.5%以下の1種または2種以上を含有することを特徴とする請求項1〜8のいずれかに記載のアルミニウム合金クラッド材。   The sacrificial anode material further contains one or more of Si: 1.5% or less, Fe: 0.7% or less, and Mn: 1.5% or less. The aluminum alloy clad material according to any one of the above. 請求項1〜9のいずれかに記載のアルミニウム合金クラッド材を、内皮材が冷媒通路側、犠牲陽極材が大気側になるようにチューブに成形し、該チューブにアルミニウムフィンを組み付け、ろう付けしてなることを特徴とする熱交換器。   The aluminum alloy cladding material according to any one of claims 1 to 9 is formed into a tube so that the endothelial material is on the refrigerant passage side and the sacrificial anode material is on the atmosphere side, and aluminum fins are assembled and brazed to the tube. A heat exchanger characterized by comprising
JP2016212544A 2016-10-31 2016-10-31 Aluminum alloy clad material and heat exchanger assembled with a tube formed from the clad material Expired - Fee Related JP6446015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016212544A JP6446015B2 (en) 2016-10-31 2016-10-31 Aluminum alloy clad material and heat exchanger assembled with a tube formed from the clad material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016212544A JP6446015B2 (en) 2016-10-31 2016-10-31 Aluminum alloy clad material and heat exchanger assembled with a tube formed from the clad material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013010116A Division JP6132330B2 (en) 2013-01-23 2013-01-23 Aluminum alloy clad material and heat exchanger assembled with a tube formed from the clad material

Publications (2)

Publication Number Publication Date
JP2017057503A true JP2017057503A (en) 2017-03-23
JP6446015B2 JP6446015B2 (en) 2018-12-26

Family

ID=58389915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016212544A Expired - Fee Related JP6446015B2 (en) 2016-10-31 2016-10-31 Aluminum alloy clad material and heat exchanger assembled with a tube formed from the clad material

Country Status (1)

Country Link
JP (1) JP6446015B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232222A (en) * 1990-12-28 1992-08-20 Honda Motor Co Ltd Aluminum alloy clad material having superior corrosion resistance
JPH04232224A (en) * 1990-12-28 1992-08-20 Honda Motor Co Ltd Aluminum alloy clad material having superior corrosion resistance
JP2000087171A (en) * 1998-09-14 2000-03-28 Furukawa Electric Co Ltd:The Aluminum alloy composite material excellent in bending fatigue characteristic and corrosion resistance
JP2005314774A (en) * 2004-04-30 2005-11-10 Sumitomo Light Metal Ind Ltd Aluminum alloy clad material for automotive heat exchanger
JP2008138278A (en) * 2006-12-05 2008-06-19 Furukawa Sky Kk Aluminum alloy clad plate for heat exchanger
JP2008240084A (en) * 2007-03-28 2008-10-09 Kobe Steel Ltd Aluminum alloy-clad material for heat exchanger and brazing sheet
JP2012087342A (en) * 2010-10-18 2012-05-10 Showa Denko Kk Aluminum clad material for heat exchanger
WO2014077237A1 (en) * 2012-11-13 2014-05-22 株式会社デンソー Aluminum alloy clad material and heat exchanger provided with tube that is molded from aluminum alloy clad material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232222A (en) * 1990-12-28 1992-08-20 Honda Motor Co Ltd Aluminum alloy clad material having superior corrosion resistance
JPH04232224A (en) * 1990-12-28 1992-08-20 Honda Motor Co Ltd Aluminum alloy clad material having superior corrosion resistance
JP2000087171A (en) * 1998-09-14 2000-03-28 Furukawa Electric Co Ltd:The Aluminum alloy composite material excellent in bending fatigue characteristic and corrosion resistance
JP2005314774A (en) * 2004-04-30 2005-11-10 Sumitomo Light Metal Ind Ltd Aluminum alloy clad material for automotive heat exchanger
JP2008138278A (en) * 2006-12-05 2008-06-19 Furukawa Sky Kk Aluminum alloy clad plate for heat exchanger
JP2008240084A (en) * 2007-03-28 2008-10-09 Kobe Steel Ltd Aluminum alloy-clad material for heat exchanger and brazing sheet
JP2012087342A (en) * 2010-10-18 2012-05-10 Showa Denko Kk Aluminum clad material for heat exchanger
WO2014077237A1 (en) * 2012-11-13 2014-05-22 株式会社デンソー Aluminum alloy clad material and heat exchanger provided with tube that is molded from aluminum alloy clad material

Also Published As

Publication number Publication date
JP6446015B2 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
JP6132330B2 (en) Aluminum alloy clad material and heat exchanger assembled with a tube formed from the clad material
JP6236290B2 (en) Aluminum alloy clad material and heat exchanger assembled with a tube formed from the clad material
JP6186239B2 (en) Aluminum alloy heat exchanger
JP6452626B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP5054404B2 (en) Aluminum alloy clad material and brazing sheet for heat exchanger
CZ201654A3 (en) Aluminium alloy sheet for brazing and process for producing thereof
JP6418714B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JPWO2015104761A1 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP2014114475A (en) Aluminum alloy brazing sheet, method of producing the same, and heat exchanger employing the aluminum alloy brazing sheet
JP5180565B2 (en) Aluminum alloy brazing sheet for heat exchanger
JP2016069696A (en) Aluminum alloy brazing sheet
JP5629113B2 (en) Aluminum alloy brazing sheet excellent in brazing and corrosion resistance, and heat exchanger using the same
JP2011068933A (en) Aluminum alloy clad material for heat exchanger
JP2012057183A (en) Aluminum alloy clad material and heat exchanging device using the same
JP2017066494A (en) Aluminum alloy material for heat exchanger and manufacturing method therefor
JP7058176B2 (en) Aluminum alloy heat exchanger
JP2001170793A (en) High-strength aluminum alloy clad metal for heat exchanger excellent in tube manufacturing property and corrosion resistance
JP6351205B2 (en) High corrosion resistance aluminum alloy brazing sheet
JP6178483B1 (en) Aluminum alloy brazing sheet
JP6624417B2 (en) Brazing sheet with excellent corrosion resistance after brazing
JP6446015B2 (en) Aluminum alloy clad material and heat exchanger assembled with a tube formed from the clad material
JP6159841B1 (en) Aluminum alloy brazing sheet
JP2014062296A (en) Aluminum alloy brazing sheet excellent in corrosion resistance
JP2001170794A (en) High-strength aluminum alloy clad material for heat exchanger excellent in tube manufacturing property and corrosion resistance
JP7058175B2 (en) Aluminum alloy heat exchanger

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171108

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20171222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181001

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20181009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181130

R150 Certificate of patent or registration of utility model

Ref document number: 6446015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees