JP2017053758A - 関係情報設定方法、流速計測方法、関係情報設定システム及び流速計測システム - Google Patents

関係情報設定方法、流速計測方法、関係情報設定システム及び流速計測システム Download PDF

Info

Publication number
JP2017053758A
JP2017053758A JP2015178555A JP2015178555A JP2017053758A JP 2017053758 A JP2017053758 A JP 2017053758A JP 2015178555 A JP2015178555 A JP 2015178555A JP 2015178555 A JP2015178555 A JP 2015178555A JP 2017053758 A JP2017053758 A JP 2017053758A
Authority
JP
Japan
Prior art keywords
pipe
value
flow velocity
heat transfer
temperature distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015178555A
Other languages
English (en)
Other versions
JP6686335B2 (ja
Inventor
梅沢 修一
Shuichi Umezawa
修一 梅沢
杉田 勝彦
Katsuhiko Sugita
勝彦 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Holdings Inc filed Critical Tokyo Electric Power Co Holdings Inc
Priority to JP2015178555A priority Critical patent/JP6686335B2/ja
Publication of JP2017053758A publication Critical patent/JP2017053758A/ja
Application granted granted Critical
Publication of JP6686335B2 publication Critical patent/JP6686335B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

【課題】配管の温度分布と配管の内部を流れる流体の流速との関係を精度良く求められるようにする。【解決手段】配管の内部を流れる流体の流速と前記配管の表面の温度分布との関係を示す関係情報を求める関係情報設定方法が、前記配管の表面の所定部分で熱交換を行う熱交換工程と、前記配管の表面の所定部分で熱交換が行われている状態での前記配管の表面の温度分布の解析値を求める解析工程と、前記配管の表面の所定部分で熱交換が行われている状態での前記配管の表面の温度分布の解析値を修正する熱伝達率修正係数であって前記所定部分からの距離に応じた値を取る熱伝達率修正係数の値を取得する熱伝達率修正係数値取得工程と、前記解析工程で取得した解析値を、前記熱伝達率修正係数値取得工程で取得した熱伝達率修正係数の値に基づいて修正して、前記関係情報を求める関係情報設定工程と、を含む。【選択図】図8

Description

本発明は、関係情報設定方法、流速計測方法、関係情報設定システム及び流速計測システムに関する。
特許文献1では、配管内を流れる流体の流速計測方法が開示されている。この流速計測方法では、配管の表面の所定部分で熱交換を行い、当該配管の管軸方向における温度分布を計測し、計測した温度分布に基づいて、配管の内部を流れる流体の流速を求める。
特開2015−148508号公報
配管の温度分布から配管の内部を流れる流体の流速を求める方法として、温度分布と流速との関係を予め求めておき、得られた関係を用いて温度分布を流速に換算する方法が考えられる。この方法では、流速を精度良く求めるために、温度分布と流速との関係を精度良く求めておくことが好ましい。
本発明は、配管の温度分布と配管の内部を流れる流体の流速との関係を精度良く求めることができる関係情報設定方法、流速計測方法、関係情報設定システム及び流速計測システムを提供する。
本発明の第1の態様によれば、関係情報設定方法は、配管の内部を流れる流体の流速と前記配管の表面の温度分布との関係を示す関係情報を求める関係情報設定方法であって、前記配管の表面の所定部分で熱交換を行う熱交換工程と、前記配管の表面の所定部分で熱交換が行われている状態での前記配管の表面の温度分布の解析値を求める解析工程と、前記配管の表面の所定部分で熱交換が行われている状態での前記配管の表面の温度分布の解析値を修正する熱伝達率修正係数であって前記所定部分からの距離に応じた値を取る熱伝達率修正係数の値を取得する熱伝達率修正係数値取得工程と、前記解析工程で取得した解析値を、前記熱伝達率修正係数値取得工程で取得した熱伝達率修正係数の値に基づいて修正して、前記関係情報を求める関係情報設定工程と、を含む。
前記熱伝達率修正係数値取得工程では、前記配管に沿った位置毎に前記熱伝達率修正係数の値を取得する、ようにしてもよい。
前記所定部分で熱交換が行われた前記配管の管軸方向における前記配管の表面の温度分布を計測する温度計測工程と、前記流体の流速を計測する流速計測工程と、を含み、前記熱伝達率修正係数値取得工程では、前記温度計測工程で計測した温度分布、前記解析工程で取得した温度分布の解析値、及び、前記流速計測工程で計測した流速に基づいて前記熱伝達率修正係数の値を設定する、ようにしてもよい。
本発明の第2の態様によれば、流速計測方法は、配管の内部を流れる流体の流速が計測対象の流速となっている状態で、前記配管の表面の所定部分で熱交換を行う流速計測時熱交換工程と、前記流速計測時熱交換工程にて前記所定部分で熱交換が行われた前記配管の管軸方向における前記表面の温度分布を計測する流速計測時温度分布計測工程と、前記流速計測時温度分布計測工程で計測した前記温度分布、及び、請求項1から3のいずれか一項に記載の関係情報設定方法にて得られた関係情報に基づいて、前記配管の内部を流れる前記流体の流速を求める流速取得工程と、を含む。
本発明の第3の態様によれば、関係情報設定システムは、配管の内部を流れる流体の流速と前記配管の表面の温度分布との関係を示す関係情報を求める関係情報設定システムであって、前記配管の表面の所定部分で熱交換を行う熱交換器と、前記配管の表面の所定部分で熱交換が行われている状態での前記配管の表面の温度分布の解析値を求める解析部と、前記配管の表面の所定部分で熱交換が行われている状態での前記配管の表面の温度分布の解析値を修正する熱伝達率修正係数であって前記所定部分からの距離に応じた値を取る熱伝達率修正係数の値を取得する熱伝達率修正係数値取得部と、前記解析部が取得した解析値を、前記熱伝達率修正係数値取得部が取得した熱伝達率修正係数の値に基づいて修正して、前記関係情報を求める関係情報設定部と、を備える。
前記熱伝達率修正係数値取得部は、前記配管に沿った位置毎に前記熱伝達率修正係数の値を取得する、ようにしてもよい。
前記所定部分で熱交換が行われた前記配管の管軸方向における前記配管の表面の温度分布を計測する温度計測部と、前記流体の流速を計測する流速計測部と、を備え、前記熱伝達率修正係数値取得部は、前記温度計測部が計測した温度分布、前記解析部が取得した温度分布の解析値、及び、前記流速計測部が計測した流速に基づいて前記熱伝達率修正係数の値を設定する、ようにしてもよい。
本発明の第4の態様によれば、流速計測システムは、前記した関係情報設定システムと、前記関係情報設定部が設定した関係情報を記憶する記憶部と、配管の内部を流れる流体の流速が計測対象の流速となっている状態で、前記配管の表面の所定部分で熱交換を行う熱交換器と、前記所定部分で熱交換が行われた前記配管の管軸方向における前記配管の表面の温度分布を計測する温度計測部と、前記温度計測部が計測した温度分布、及び、前記記憶部が記憶している関係情報に基づいて、前記流体の流速を算出する流速算出部と、を備える。
上記した関係情報設定方法、流速計測方法、関係情報設定システム及び流速計測システムよれば、配管の温度分布と配管の内部を流れる流体の流速との関係を精度良く求めることができる。
本実施形態に係る流速計測システムの概略構成を示す図。 流速計測システムの要部構成を示す図。 制御ユニット4を示す模式図。 配管10の領域のセルへの分割例を示す説明図。 熱伝達率修正係数の設定例を示すグラフ。 温度境界係数の設定例を示す説明図。 温度境界係数の設定例を示すグラフ。 本実施形態に係る関係情報設定システムの概略構成を示す図。 熱伝達率修正係数の値と温度境界係数の値とを設定する前の、配管における温度分布の実測値及び解析値の例を示すグラフ。 熱伝達率修正係数の値と温度境界係数の値とを設定した後の、配管における温度分布の実測値及び解析値の例を示すグラフ。
以下、本発明の実施形態を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
本実施形態に係る流速計測システムは、例えば、ボイラーなどの蒸気製造装置と負荷設備との間に配設される配管内を流れる流体(例えば、蒸気)の流速を計測可能なシステムである。
図1は、本実施形態に係る流速計測システムの概略構成を示す図である。図2は、流速計測システムの要部構成を示す図である。
本実施形態に係る流速計測システム100は、図1に示すように、加熱部(熱交換器)2と、プレヒーター2bと、温度計測部3と、制御ユニット(流速算出部)4と、を含む。図1において、配管10は、蒸気製造装置20(ボイラーなど)と負荷設備30との間に配設されている。蒸気製造装置20からの蒸気が配管10を流れ、負荷設備30に送られる。負荷設備30において、蒸気又は蒸気の熱が利用される。負荷設備30から排出された蒸気はドレンとして回収され、還水槽(不図示)に集約された後、蒸気製造装置20に再度給水される。また、配管10の周りには断熱材が巻かれている。
加熱部2は、配管10の表面10aと熱交換することで所定部分を加熱するためのものである。本実施形態において、加熱部2は、例えば、リング状のヒーターから構成されており、図2に示すように、配管10の表面10aの所定位置において周方向に亘って配置される。これにより、加熱部2は、配管10の所定部分(該加熱部2の設置部分11)において、該配管10の表面10aを均一に加熱する。加熱部2は、制御ユニット4に電気的に接続されており、その動作が制御される。
なお、ここでいう熱交換器は、温度の高い物体から温度の低い物体へ熱を移動させるものである。ヒーターは、熱交換器の例に該当する。
なお、図2において、矢印B11は、流体が配管10内を流れる向きの例を示している。
プレヒーター2bは、配管10内を流れる流体を加熱する。このプレヒーター2bは、配管10内を流れる気体の流体の液化を防止するために設けられている。例えば、配管10内を流れる流体が蒸気である場合に、プレヒーター2bが当該蒸気を加熱することで、当該蒸気が液化して配管10内や負荷設備30内に水滴が付着することを防止する。
温度センサー群3Aは、配管10における表面10aの加熱部2の設置部分11の両側(上流側及び下流側)に配置されている。各温度センサー群3Aは、上記設置部分11からの距離に応じて設置位置が決定される。例えば、設置部分11の上流側を例に挙げると、各温度センサー群3Aは、設置部分11の端面からの距離が0mm(ミリメートル)、6mm、14mm、24mm、36mm、50mm、66mm、84mm、104mm、126mm、150mm、176mmに設置されている。ここで、設置部分11の端面からの距離が0mmとは、温度センサー群3Aが加熱部2の端面に沿って配置されることを意味する。なお、図2では、配管10の断面構造として、設置部分11の下流側端面の近傍(A−A矢視による断面)と、設置部分11の下流側端面からの距離24mm近傍(B−B矢視による断面)とを図示した。
図2に示されるように、温度センサー群3Aは、設置部分11から離間するに従って、隣接する温度センサー群3A間の距離が2mmずつ大きくなるように配置されている。したがって、温度センサー群3Aは、設置部分11(加熱部2)に近い程、センサーが密集して配置されたものとなっている。これにより、設置部分11の近傍において配管10の表面10aの温度を精度良く検出することが可能とされている。
温度計測部3は、複数(本実施形態では、例えば、12個)の温度センサー群3Aから構成される。各温度センサー群3Aは、配管10の表面10aにおいて、該配管10の管軸方向に沿って配置される。各温度センサー群3Aは、それぞれ配管10の表面10aの温度を計測する温度センサー3aを複数含む。本実施形態において、各温度センサー群3Aは4つの温度センサー3aから構成される。4つの温度センサー3aは、配管10の表面10aにおいて、周方向に均等に配置されている。すなわち、4つの温度センサー3aは、配管10の周方向において、90度ずつ位置を違えるように配置されている。各温度センサー群3Aは、4つの温度センサー3aが計測した値の平均値を計測値として出力する。このように温度センサー群3Aは、配管10の表面10aにおける複数個所を計測した値の平均を計測値とすることで信頼性の高い計測結果(温度)を出力可能である。
なお、各温度センサー群3Aを構成する温度センサー3aの数は、図2に示す4つに限らず1つ以上であればよい。例えば、各温度センサー群3Aが、2つの温度センサー3aから構成され、2つの温度センサー3aが、配管10の周方向に左右均等に(配管10の周方向において180度位置を違えるように)配置されていてもよい。上記のように、各温度センサー群3Aが複数の温度センサー3aを備え、配管10の表面10aにおける複数個所を計測した値の平均を計測値とすることで信頼性の高い計測結果(温度)を出力可能である。
上述した構成に基づき、温度計測部3は、各温度センサー群3Aの計測結果から配管10の管軸方向における表面10aの温度分布を計測することが可能である。温度計測部3が計測した温度分布は、制御ユニット4に送信される。
配管10は、表面10aの少なくとも一部が保温材12により覆われている。本実施形態において、保温材12は、配管10の表面に設けられた加熱部2及び温度計測部3(各温度センサー3a)を覆うように管軸方向に亘って設置されている。
図3は、制御ユニット4を示す模式図である。図3において、計算装置50は、例えばコンピュータシステムである。制御ユニット4は、計算装置50に加え、入力装置60、及び表示装置(出力装置)64を有する。計算装置50は、A/D変換器等の変換器61、CPU(演算処理手段)62、及びメモリ63等を有する。流速計測システム100の温度計測部3から送られる計測データ(温度分布)が、必要に応じて変換器61等で変換され、CPU62に取り込まれる。また、初期設定値、及び仮データなどが入力装置60などを介して計算装置50に取り込まれる。表示装置64は、入力されたデータに関する情報、及び計算に関する情報などを表示することができる。
CPU62は、計測データ、及びメモリ63に記憶された情報に基づき、配管10の内部を流れる蒸気の流速を算出することができる。CPU62は、例えば、温度計測部3の計測結果(配管10の表面10aにおける温度分布)を用い、メモリ63に記憶された情報から配管10の内部を流れる蒸気の流速を算出する。制御ユニット4は、流速算出部の例に該当する。
具体的には、メモリ63は、配管10の表面10aにおける温度分布と、配管10の内部を流れる流体の流速との関係を示す関係情報を予め(流速の計測よりも前に)記憶しておく。メモリ63は記憶部の例に該当する。メモリ63が記憶する関係情報では、流体の流速毎に、当該流速と温度分布とが対応付けられている。
そして、温度計測部3が配管10の表面10aにおける温度分布を計測すると、CPU62は、関係情報を参照して、温度計測部3が計測した温度分布に最も近い(例えば、差の絶対値の合計が最も小さい)温度分布に対応付けられている流速を読み出して、流速の計測値とする。
このように、メモリ63は、温度分布と流速とを対応付けた関係情報を予め記憶しておく。そして、加熱部2が、リングヒーター(リング状のヒーター)で所定箇所を加熱し、配管10の温度分布が定常状態になった状態で、温度計測部3が、配管における温度分布を計測する。そして、制御ユニット4は、関係情報を参照して、計測で得られた温度分布に最も近い温度分布に対応付けられている流速を流速計測値とする。
次に、メモリ63が予め記憶しておく関係情報の取得方法について説明する。
関係情報は、配管10の温度定常状態における熱の伝わりを、有限要素法で解析して求めることができる。以下では、制御ユニット4が有限要素法の計算を行う場合を例に説明するが、他のコンピュータを用いて有限要素法の解析を行うようにしてもよい。
配管10に有限要素法を適用するために、配管10の領域をセル(部分領域)に分割する。
図4は、配管10の領域のセルへの分割例を示す説明図である。
同図に示す領域A11は、管内の領域(流体が流れる領域)を示す。領域A12は、配管10の領域(管壁の領域)を示す。領域A13は、配管10の周りに巻かれた断熱材の領域を示す。領域A14は、断熱材の外側の空気の領域を示す。また、矢印B11は、流体が配管10内を流れる向きの例を示している。
有限要素法を適用するためのセル分割にて、図4に示すように、配管10の管壁の領域A12を均等な厚みで3層に分割する。この3層と、流体の領域A11、断熱材の領域A13、及び、外部の空気の領域A14とで、配管10の半径方向に6層に分割されている。
また、配管10の軸方向(長手方向)に関しては、例えば3mm幅など比較的小さい幅で均等に分割する。
また、加熱部2としてリング状のヒーターを用い、図4に示すように、配管10の長手方向における加熱部2の厚みを無視する。特に、加熱部2が、配管10の管壁の領域A12のセルのうち1つのみに入熱するものとして近似する。また、加熱部2自体の容量の影響は無視する(容量が十分に小さいものとする)。
隣接する接点との熱移動は、管内面と管内の流体との対流熱伝達、管壁内(図4の領域A12内)での熱伝導、管壁から断熱材への熱伝導及び断熱材内での熱伝導、断熱材外表面と周囲空気との対流熱伝達による熱移動とする。また、加熱部2から十分離れた管端の部分のセルの外縁を断熱条件とする。
以下の熱バランスによる方程式(以下の式(1))をセル毎に設定しておき、制御ユニット4が、有限要素法を用いて解析することで、セル間の温度差を算出する。有限要素法の解法(連立方程式の解法)として、例えばNewton-Raphson法を用いることができる。但し、制御ユニット4が用いる解法は、Newton-Raphson法に限らず、連立方程式に適用可能ないろいろな解法を用いることができる。
ここで、定常状態では、隣接するセルからの入熱量の和が0になる。なお、熱量の放出は、入熱量マイナスとして表す。
座標(i,j)に位置するセルにおける熱バランスは、式(1)のように表される。
i,j−1 + Qi,j+1 + Qi−1,j + Qi+1,j = 0 ・・・ (1)
ここで、座標(i,j)に位置するセルに隣接するセルの座標を、(i,j−1)、(i,j+1)、(i−1,j)、(i+1,j)とする。また、Qi,j−1、Qi,j+1、Qi−1,j、Qi+1,jは、それぞれ、添え字で示す座標に位置するセルからの入熱量を示す。なお、隣接するセルが無い場合は、当該セルからの入熱量を0とする。
上記のように、セル毎に熱バランスによる方程式(式(1))を設定する。当該方程式の設定は、例えば流速計測システム100のユーザーが行って、制御ユニット4のメモリ63に記憶させる。そして、制御ユニット4は、流速の設定値毎に有限要素法による解析を行って、温度分布と流速との関係を示す関係情報を取得する。制御ユニット4は、配管10における温度分布の解析値を求める点で、解析部の例に該当する。
式(1)のQi,j−1、Qi,j+1、Qi−1,j、Qi+1,jには、例えば以下の式(2)〜式(4)のいずれかの右辺を適用する。
対流熱伝達:配管10のセルのうち再内側のセルへの流体(配管10内の流体)からの入熱量は、式(2)のように示される。
対流熱伝達による入熱量 = α・A・Δt ・・・ (2)
ここで、α[W(ワット)/(m(平方メートル)・K(ケルビン))]は、対流熱伝達率を示す。
A[m]は、伝熱面積を示す。ここでは、配管10のセルが管内の流体に接する面積である。
Δt[K]は、隣接するセルとの温度差を示す。ここでは、配管10と管内の流体との接触部分における温度差を示す。
半径方向熱伝導:配管10内における配管10の半径方向の熱伝導による入熱量は、式(3)のように示される。すなわち、管の半径方向に隣接する管のセル(管をメッシュに切ったセル)からの入熱量は、式(3)のように示される。
半径方向熱伝導による入熱量 = 2π・λ・L・Δt/ln(ro/ri) ・・・ (3)
ここで、πは、円周率を示す。
λ[W/(m(メートル)・K)]は、配管10の素材(例えば鋼鉄)の熱伝導率を示す。
L[m]は、管軸方向(配管10の軸方向)におけるセルの長さを示す。
Δt[K]は、上記のように、隣接するセルとの温度差を示す。ここでは、配管10の半径方向に隣接する配管10のセル同士の接触部分における温度差を示す。
lnは、自然対数を示す。
ro/ri[m]は、半径方向におけるセル間の距離(例えば、セルの中心間の距離)を示す。
管軸方向熱伝導:配管10内における配管10の軸方向(長手方向)の熱伝導による入熱量は式(4)のように示される。すなわち、管軸方向に隣接する配管10のセルからの入熱量は式(4)のように示される。
管軸方向熱伝達による入熱量 = λAΔt/L ・・・ (4)
ここで、λ、Lは、上記のとおりである。
A[m]は、上記のように、伝熱面積を示す。ここでは、配管10のセル同士(配管10の半径方向に隣接する配管10のセル)が接する面積である。
Δt[K]は、上記のように、隣接するセルとの温度差を示す。ここでは、管軸方向に隣接する配管10のセル同士の接触部分における温度差を示す。
また、対流熱伝達に関して、以下の式(5)を用いる。
ud = 0.022・XWT・Red 0.8・P 0.4 ・・・ (5)
ここで、Nudは、ヌセルト数(Nusselt Number)を示す。
edは、レイノルズ数(Reynolds Number)を示す。
は、プラントル数(Prandtl Number)を示す。
WTは、温度を修正する係数であり、加熱部2(ヒーター)からの距離に応じた値を取る。特に、XWTは、加熱部2の近傍について温度を高くする(すなわち、熱伝達を大きくする)。以下では、XWTを熱伝達率修正係数と称する。
ヌセルト数Nudは、式(6)のように示される。
Nu=αi・di/λ ・・・ (6)
ここで、λは、上記のとおりである。
di[m]は、配管10の内径を示す。
αi[W/(m・K)]は、配管10の内部における熱伝導率を示す。
また、レイノルズ数Redは、式(7)のように示される。
Re=u×di/ν ・・・ (7)
ここで、u[m/s(秒)]は、配管10内を流れる流体の流速を示す。
ν[m/s]は、配管10内を流れる流体の動粘性係数を示す。
di[m]は、配管10の内径を示す。
また、プラントル数Pは、式(8)のように示される。
Pr=ν×ρ×Cp/λ ・・・ (8)
ν、λは、上記のとおりである。
ρ[kg(キログラム)/m(立方メートル)]は、流体の密度を示す。
Cp[kJ(キロジュール)/(kg・K)]は、流体の比熱を示す。
図5は、熱伝達率修正係数の設定例を示すグラフである。同図の横軸は、配管10内を流れる流体の流れ方向(配管10の管軸方向)における所定の基準位置からの距離を示す。座標値が小さい側が、流体の流れの上流側を示し、座標値が大きい側が、流体の流れの下流側を示す。縦軸は、熱伝達率修正係数の値を示す。また座標値X1は、加熱部2のヒーターが設けられている位置の横軸座標値を示す。
同図に示すように、加熱部2のヒーターの設置位置(座標X1)の近傍で、熱伝達率修正係数XWTの値を1よりも大きくする。
熱伝達率修正係数XWTの値を大きくすることは、配管10内を流れる流体と配管10の管壁との熱伝達率を大きくすることに相当する。ここで、配管10内に蒸気を流して温度分布および流速を実測し、温度分布の解析値(一般的な熱伝達の式を適用して有限要素法を用いた解析で得られた値)と実測値とを比較したところ、加熱部2のヒーター設置位置の近傍で、温度実測値が解析値よりも高くなった。特に、加熱部2のヒーター設置位置から上流側で、温度実測値が解析値よりも高くなった。そこで、熱伝達率修正係数XWTを導入して再計算を行ったところ、解析値と実測値とがよりよく一致した。
図5の例では、加熱部2のヒーターの設置位置から上流側100mm以内の範囲で、熱伝達率修正係数XWTの値を1.75に設定している。また、加熱部2のヒーターの設置位置から下流側100mm以内の範囲でも、熱伝達率修正係数XWTの値を1よりも大きくしている。具体的には、加熱部2のヒーターの設置位置で熱伝達率修正係数XWTの値を1.25に設定している。そして、下流側に行くにつれて熱伝達率修正係数XWTの値を一定の減少率で徐々に減少させ、加熱部2のヒーターの設置位置から上流側100mmの位置で、熱伝達率修正係数XWTの値を1にしている。
例えば、流速計測システム100のユーザーが、配管10に流速既知の流体を流して温度分布を測定し、得られた計測結果に基づいて熱伝達率修正係数XWTの値を設定するようにしてもよい。
式(5)のヌセルト数Nudは、式(2)の対流熱伝達率αと比例し、ヌセルト数Nudから熱伝達率αを求めることができる。式(5)のように熱伝達率修正係数XWTを導入してヌセルト数Nudの値を高精度に求めることで、対流熱伝達率αの値を高精度に求めることができる。対流熱伝達率αの値を高精度に得られることで、有限要素法を用いての解析でセル間の温度差を高精度に求めることができ、これにより、配管10における温度分布の解析値の精度を高めることができる。
また、対流熱伝達に関して、以下の式(9)も用いる。
W = YHT・G・C・ΔT ・・・ (9)
ここで、Cpは、上記のとおりである。
W[J(ジュール)/s]は、加熱部2による加熱量を示す。
G[kg/s]は、配管10を流れる流体の全流量を示す。
ΔT[℃(度)]は、加熱部2のヒーターの加熱による流体の上昇温度を示す。
HTは、管断面を流れる流体の全量のうち、加熱部2のヒーターからの熱の伝達に寄与する流体の量(加熱部2のヒーターの加熱による熱を受けた流体の量)の割合を示す。具体的には、管断面における流体全体の面積をSとし、管断面における流体のうちヒーターの加熱による熱を受けた部分の面積をS1として、YHT=S1/Sと表される。以下では、YHTを温度境界係数と称する。
上述したように、配管10内に蒸気を流して温度分布および流速を実測し、温度分布の解析値(一般的な熱伝達の式を適用して有限要素法を用いた解析で得られた値)と実測値とを比較したところ、加熱部2のヒーター設置位置の近傍で、温度実測値が解析値よりも高くなった。上述した加熱部2のヒーター設置位置から上流側での温度のずれに加えて、加熱部2のヒーター設置位置から下流側でも、温度実測値が解析値よりも高くなった。この温度のずれの一因として、配管10内を流れる流体のうち、ヒーターからの熱を伝達するのは配管10の内面に近い一部のみであることが考えられる。そこで、温度境界係数YHTを導入して再計算をおこなったところ、解析値と実測値とがよりよく一致した。特に、熱伝達率修正係数XWT、温度境界係数YHTの両方を導入することで、解析値と実測値とがよりよく一致した。
温度境界係数YHTの値を1より小さくすることは、ヒーターからの熱の伝達に寄与する流体の量を少なくすることに相当する。ヒーターからの熱の伝達に寄与する流体の量が少ないと、式(2)の温度差Δtの値(配管10と配管内の流体との接触部分における温度差)が大きく算出される。温度境界係数YHTを導入して式(2)の温度差Δtの値を高精度に算出することで、配管10における温度分布の解析値の精度を高めることができる。
図6は、温度境界係数YHTの設定例を示す説明図である。同図では、配管10内を流れる流体が空気である場合と上記である場合との各々について、流速10m/s、20m/s、30m/s、40m/sの各々の場合の温度境界係数YHTの設定値の例を示している。
上述した温度分布の実測により、図6に示すように流速が速いほど温度境界係数YHTの値を小さくすることで、温度分布の解析値を実測値に近づけることができた。また、図6に示すように、流体が空気である場合と蒸気である場合とで、温度境界係数YHTの値として同じ値を用いて、温度分布の解析値を実測値に近づけることができた。
図7は、温度境界係数の設定例を示すグラフである。同図の横軸は、配管10内を流れる流体の流速を示す。縦軸は、温度境界係数の値を示す。
図7に示す温度境界係数YHTの値は、図6に示す温度境界係数YHTの値と同様である。具体的には、流速10m/s〜約31m/sの範囲では、図6に示す温度境界係数YHTの値を直線補間した値となっている。また、約31m/s以上の流速では、温度境界係数YHTの値は一定(0.185)となっている。
次に、図8〜図10を参照して、熱伝達率修正係数XWTの値、及び、温度境界係数YHTの値の設定方法について説明する。
図8は、本実施形態に係る関係情報設定システムの概略構成を示す図である。図8に示す各部のうち、図1の各部に対応して同様の機能を有する部分には同一の符号(2、2b、3、4、10、20、30)を付して説明を省略する。
図8に示す関係情報設定システム101は、図1に示す流速計測システム100の各部に加えて、流速計5を備えている。なお、関係情報設定システム101は、図1に示す流速計測システム100の各部を有しており、流速計測システムとしても機能する。
流速計5は流速計測部の例に該当し、配管10内を流れる流体の流速を計測する。流速計5を備えることで、関係情報設定システム101は、配管10における温度分布と、配管10内を流れる流体の流速とを計測する。これにより、関係情報設定システム101は、配管10の表面10aにおける温度分布と、配管10の内部を流れる流体の流速との実測値における対応関係を取得する。
また、関係情報設定システム101では、制御ユニット4は、流速計測システム100での制御ユニット4の機能に加えて、上述した、配管10の温度定常状態における熱の伝わりを有限要素法で解析する機能を有している。関係情報設定システム101の制御ユニット4は、流速計測システム100での制御ユニット4の機能を有している点で、流速算出部の例に該当する。
ここで、配管10内を流れる流体の様々な流速について温度分布及び流速を計測すれば、メモリ63に記憶させる関係情報を取得することができる。しかしながら、関係情報を全て実測にて取得しようとすると計測回数が多くなり、関係情報設定システム101のユーザーにとって、関係情報設定システム101を設定する負担(例えば、流体の流速を調節する負担)が大きくなる。
そこで、制御ユニット4が、配管10の温度定常状態における熱の伝わりを流体の流速毎に有限要素法で解析して関係情報を取得する。これにより、ユーザーが関係情報設定システム101を設定する負担を低減させることができる。制御ユニット4は、関係情報設定部の例に該当する。
制御ユニット4は、上述した式(1)〜式(9)に基づいて、配管10の温度定常状態における熱の伝わりを解析する。その際、制御ユニット4は、熱伝達率修正係数XWTの値、及び、温度境界係数YHTの値を予め(関係情報を取得するための解析を行う前に)設定しておく。制御ユニット4は、熱伝達率修正係数値取得部の例に該当する。
制御ユニット4は、例えば、熱伝達率修正係数XWTの値と温度境界係数YHTの値との組み合わせを複数用意しておく。そして、制御ユニット4は、関係情報設定システム101が実測した流速(流速計5が計測した流速)について、熱伝達率修正係数XWTの値と温度境界係数YHTの値との組み合わせ毎に、有限要素法による解析を行って配管10における温度分布を算出する。そして、制御ユニット4は、配管10における温度分布の実測値に最も近い解析値を得られた、熱伝達率修正係数XWTの値と温度境界係数YHTの値との組み合わせを採用する。
図9は、熱伝達率修正係数XWTの値と温度境界係数YHTの値とを設定する前の、配管10における温度分布の実測値及び解析値の例を示すグラフである。
同図の横軸は、配管10内を流れる流体の流れ方向(配管10の管軸方向)における所定の基準位置からの距離を示す。座標値が小さい側が、流体の流れの上流側を示し、座標値が大きい側が、流体の流れの下流側を示す。縦軸は、温度を示す。なお、加熱部2のヒーターの設置位置は、横軸の座標値0.5の位置である。
また、図9にプロットした点P11の各々は、配管10における温度分布の実測値(温度計測部3による実測値)の例を示す。線L11は、制御ユニット4が算出する温度分布の解析値の例を示す。線L12は、制御ユニット4が算出する流体温度の解析値の例を示す。
図9の例では、ヒーターの設置位置(横軸座標値0.5)の近傍で、配管10の温度の解析値が実測値よりも高くなっている箇所がある。特に、領域A21で配管10の温度の解析値が実測値よりも高くなっている。また、ヒーターの設置位置から下流側でも、配管10の温度の解析値が実測値よりも高くなっている箇所がある。
そこで、制御ユニット4は、例えば図5に示す例のように熱伝達率修正係数XWTの値を設定する。熱伝達率修正係数XWTの値を1より大きく設定することで、配管10の温度の解析値が低くなる。これは、配管10が流体によって冷却されることに相当する。
また、図9の例では、領域A22において、配管10の温度の解析値が実測値よりも低くなっている。そこで、制御ユニット4は、例えば図6及び図7に示す例のように温度境界係数YHTの値を設定する。これにより、配管10を流れる流体の温度が高く算出されるようになり、配管10の温度分布のうち当該流体から熱を受ける領域A22の部分の温度も高く算出されるようになる。
図10は、熱伝達率修正係数XWTの値と温度境界係数YHTの値とを設定した後の、配管10における温度分布の実測値及び解析値の例を示すグラフである。
図10の横軸及び縦軸は、図9の場合と同様である。また、加熱部2のヒーターの設置位置も、図9の場合と同様、横軸の座標値0.5の位置である。
また、図10にプロットした点P11の各々は、図9の場合と同じ実測値を示している。一方、線L21は、熱伝達率修正係数XWTの値と温度境界係数YHTの値とを設定した状態で制御ユニット4が算出する温度分布の解析値の例を示す。線L21が示す解析値は、図9の線L11が示す解析値と異なっている。線L12は、図9の場合と同様、制御ユニット4が算出する流体温度の解析値の例を示す。
また、領域A21、A22は、それぞれ図9の領域A11、A12に対応する。
図10の例では、図9の例よりも、配管10の温度の解析値と実測値とがほぼ一致している。特に、領域A21、A22のいずれにおいても、配管10の温度の解析値と実測値とがほぼ一致している。
このように、熱伝達率修正係数XWTおよび温度境界係数YHTを導入することで、制御ユニット4による配管10の温度分布の解析精度が向上している。これにより、メモリ63が記憶する関係情報の精度が向上する。関係情報の精度が向上することで、制御ユニット4が当該情報を参照して取得する流速計測値の精度が向上する。
なお、(関係情報設定部としての)制御ユニット4が、関係情報の設定に用いる流速は、流速計5による流速の実測値(流速計5が計測した流速)に限らない。例えば、制御ユニット4が、配管10の温度定常状態における熱の伝わりを有限要素法で解析する際に設定した流速を、関係情報における流速として用いるようにしてもよい。あるいは、制御ユニット4が、温度計測部3が計測した温度分布から推定される流速を、関係情報における流速として用いるようにしてもよい。
この場合、制御ユニット4が、有限要素法による解析を行う際に熱伝達率修正係数を用いることで、温度分布の解析値を実測値に近づけることができる。これにより、(流速算出部としての)制御ユニット4が温度分布の実測値から流速を求める際に、温度分布の実測値と関係情報に示される温度分布との乖離が小さくなる。当該乖離が小さくなることで、制御ユニット4は、関係情報に示される温度分布のうち、実測値に対応する温度分布を精度よく選択することができ、選択した温度分布に対応する流速を取得できる。この点で、制御ユニット4は、流速を精度よく求めることができる。
以上のように、制御ユニット4(熱伝達率修正係数値取得部)は、配管10の表面の温度分布の解析値を修正する熱伝達率修正係数であって所定部分(加熱部2のヒーターの設置位置)からの距離に応じた値を取る熱伝達率修正係数の値を取得する。例えば、制御ユニット4は、温度計測部3が計測した温度分布の計測値、及び、制御ユニット4(解析部)が取得した温度分布の解析値に基づいて、熱伝達率修正係数の値を設定する。そして、制御ユニット4(関係情報設定部)は、設定した熱伝達率修正係数の値に基づいて関係情報を取得する。
これにより、関係情報設定システム101では、配管10の温度分布と配管10を流れる流体の流速との関係を示す関係情報を、熱伝達率修正係数を用いない場合よりも精度よく求めることができる。関係情報の精度が高いことで、制御ユニット4(流速算出部)が当該関係情報を用いて流体の流速を算出する際に、流速を精度よく求めることができる。
また、制御ユニット4(熱伝達率修正係数値取得部)は、配管10に沿った位置毎に熱伝達率修正係数の値を取得する。ここでいう配管10に沿った位置は、図2及び図4にて矢印B11で示している流体の流れの方向における位置である。
このように、制御ユニット4(熱伝達率修正係数値取得部)が配管10に沿った位置毎に熱伝達率修正係数の値を取得することで、制御ユニット4(関係情報設定部)は、配管10に沿った位置に応じた熱伝達率修正係数の値を用いることができ、関係情報をより高精度に求めることができる。
なお、制御ユニット4の全部または一部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各部の処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
以上、本発明の一実施形態について説明したが、上記実施形態に限定されることはなく、発明の主旨を逸脱しない範囲において適宜変更可能である。例えば、上記実施形態では、配管10において、加熱部2および温度計測部3(各温度センサー3a)が保温材12で覆われた構成を例に挙げたが、これに限定されることは無い。例えば、制御ユニット4が配管10の表面10aからの放熱を考慮して温度計測部3から送られる測定データ(温度分布)を補正する態様であれば、配管10の表面10aを保温材12で被覆しなくてもよい。あるいは、表面10aの一部(温度計測部3の設置部分)のみを保温材12で被覆する構成であってもよい。
また、配管内を流れる流体は蒸気または空気に限らない。例えば、配管内を流れる熱水の流速を計測する場合にも本発明を適用可能である。また、配管内を流れる流体がフロン、アンモニア、LNG(Liquefied Natural Gas)等であってもよく、これら流体の流速を計測する場合にも本発明は適用可能である。
また、上記実施形態では、配管10と熱交換を行う熱交換器として加熱部2を例示したが、本発明はこれに限定されない。例えば、熱交換器としては、配管10の表面10aを冷却する冷却器を用いてもよく、冷却することで配管10の管軸方向に生じた温度分布に基づいて配管10内を流れる蒸気の流速を計測しても良い。この場合において、蒸気が飽和蒸気あるいはそれに近い過熱蒸気の時は、凝縮が生じる可能性が有ることから熱伝達率算出の際はそれを考慮する必要がある。
また、流速計測システム100(図1)、関係情報設定システム101(図8)のいずれにおいても、プレヒーター2bは必須の構成ではない。流速計測システム100、及び、関係情報設定システム101いずれか又は両方の構成を、プレヒーター2bを備えていない構成としてもよい。
2…加熱部、2b…プレヒーター、3…温度計測部、4…制御ユニット、5…流速計、10…配管、100…流速計測システム、101…関係情報設定システム。

Claims (8)

  1. 配管の内部を流れる流体の流速と前記配管の表面の温度分布との関係を示す関係情報を求める関係情報設定方法であって、
    前記配管の表面の所定部分で熱交換を行う熱交換工程と、
    前記配管の表面の所定部分で熱交換が行われている状態での前記配管の表面の温度分布の解析値を求める解析工程と、
    前記配管の表面の所定部分で熱交換が行われている状態での前記配管の表面の温度分布の解析値を修正する熱伝達率修正係数であって前記所定部分からの距離に応じた値を取る熱伝達率修正係数の値を取得する熱伝達率修正係数値取得工程と、
    前記解析工程で取得した解析値を、前記熱伝達率修正係数値取得工程で取得した熱伝達率修正係数の値に基づいて修正して、前記関係情報を求める関係情報設定工程と、
    を含む関係情報設定方法。
  2. 前記熱伝達率修正係数値取得工程では、前記配管に沿った位置毎に前記熱伝達率修正係数の値を取得する、
    請求項1に記載の関係情報設定方法。
  3. 前記所定部分で熱交換が行われた前記配管の管軸方向における前記配管の表面の温度分布を計測する温度計測工程と、
    前記流体の流速を計測する流速計測工程と、
    を含み、
    前記熱伝達率修正係数値取得工程では、前記温度計測工程で計測した温度分布、前記解析工程で取得した温度分布の解析値、及び、前記流速計測工程で計測した流速に基づいて前記熱伝達率修正係数の値を設定する、
    請求項1または請求項2に記載の関係情報設定方法。
  4. 配管の内部を流れる流体の流速が計測対象の流速となっている状態で、前記配管の表面の所定部分で熱交換を行う流速計測時熱交換工程と、
    前記流速計測時熱交換工程にて前記所定部分で熱交換が行われた前記配管の管軸方向における前記表面の温度分布を計測する流速計測時温度分布計測工程と、
    前記流速計測時温度分布計測工程で計測した前記温度分布、及び、請求項1から3のいずれか一項に記載の関係情報設定方法にて得られた関係情報に基づいて、前記配管の内部を流れる前記流体の流速を求める流速取得工程と、
    を含む流速計測方法。
  5. 配管の内部を流れる流体の流速と前記配管の表面の温度分布との関係を示す関係情報を求める関係情報設定システムであって、
    前記配管の表面の所定部分で熱交換を行う熱交換器と、
    前記配管の表面の所定部分で熱交換が行われている状態での前記配管の表面の温度分布の解析値を求める解析部と、
    前記配管の表面の所定部分で熱交換が行われている状態での前記配管の表面の温度分布の解析値を修正する熱伝達率修正係数であって前記所定部分からの距離に応じた値を取る熱伝達率修正係数の値を取得する熱伝達率修正係数値取得部と、
    前記解析部が取得した解析値を、前記熱伝達率修正係数値取得部が取得した熱伝達率修正係数の値に基づいて修正して、前記関係情報を求める関係情報設定部と、
    を備える関係情報設定システム。
  6. 前記熱伝達率修正係数値取得部は、前記配管に沿った位置毎に前記熱伝達率修正係数の値を取得する、
    請求項5に記載の関係情報設定システム。
  7. 前記所定部分で熱交換が行われた前記配管の管軸方向における前記配管の表面の温度分布を計測する温度計測部と、
    前記流体の流速を計測する流速計測部と、
    を備え、
    前記熱伝達率修正係数値取得部は、前記温度計測部が計測した温度分布、前記解析部が取得した温度分布の解析値、及び、前記流速計測部が計測した流速に基づいて前記熱伝達率修正係数の値を設定する、
    請求項5または請求項6に記載の関係情報設定システム。
  8. 請求項5または請求項6に記載の関係情報設定システムと、
    前記関係情報設定部が設定した関係情報を記憶する記憶部と、
    配管の内部を流れる流体の流速が計測対象の流速となっている状態で、前記配管の表面の所定部分で熱交換を行う熱交換器と、
    前記所定部分で熱交換が行われた前記配管の管軸方向における前記配管の表面の温度分布を計測する温度計測部と、
    前記温度計測部が計測した温度分布、及び、前記記憶部が記憶している関係情報に基づいて、前記流体の流速を算出する流速算出部と、
    を備える流速計測システム。
JP2015178555A 2015-09-10 2015-09-10 関係情報設定方法、流速計測方法、関係情報設定システム及び流速計測システム Active JP6686335B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015178555A JP6686335B2 (ja) 2015-09-10 2015-09-10 関係情報設定方法、流速計測方法、関係情報設定システム及び流速計測システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015178555A JP6686335B2 (ja) 2015-09-10 2015-09-10 関係情報設定方法、流速計測方法、関係情報設定システム及び流速計測システム

Publications (2)

Publication Number Publication Date
JP2017053758A true JP2017053758A (ja) 2017-03-16
JP6686335B2 JP6686335B2 (ja) 2020-04-22

Family

ID=58317828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015178555A Active JP6686335B2 (ja) 2015-09-10 2015-09-10 関係情報設定方法、流速計測方法、関係情報設定システム及び流速計測システム

Country Status (1)

Country Link
JP (1) JP6686335B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113928058A (zh) * 2021-11-30 2022-01-14 清华大学苏州汽车研究院(吴江) 一种集成电驱动桥及桥壳总成
CN115191384A (zh) * 2022-07-08 2022-10-18 西双版纳云博水产养殖开发有限公司 一种双孔鱼的人工繁殖方法
CN115250970A (zh) * 2022-07-08 2022-11-01 西双版纳云博水产养殖开发有限公司 一种中国结鱼的人工繁殖方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7111014B2 (ja) * 2019-02-06 2022-08-02 東京電力ホールディングス株式会社 流量計測システム、流量計測装置および流量計測方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113928058A (zh) * 2021-11-30 2022-01-14 清华大学苏州汽车研究院(吴江) 一种集成电驱动桥及桥壳总成
CN113928058B (zh) * 2021-11-30 2023-09-12 清华大学苏州汽车研究院(吴江) 一种集成电驱动桥及桥壳总成
CN115191384A (zh) * 2022-07-08 2022-10-18 西双版纳云博水产养殖开发有限公司 一种双孔鱼的人工繁殖方法
CN115250970A (zh) * 2022-07-08 2022-11-01 西双版纳云博水产养殖开发有限公司 一种中国结鱼的人工繁殖方法及系统
CN115191384B (zh) * 2022-07-08 2023-06-02 西双版纳云博水产养殖开发有限公司 一种双孔鱼的人工繁殖方法
CN115250970B (zh) * 2022-07-08 2023-06-02 西双版纳云博水产养殖开发有限公司 一种中国结鱼的人工繁殖方法及系统

Also Published As

Publication number Publication date
JP6686335B2 (ja) 2020-04-22

Similar Documents

Publication Publication Date Title
Everts et al. Heat transfer of developing and fully developed flow in smooth horizontal tubes in the transitional flow regime
Morcos et al. Experimental investigation of combined forced and free laminar convection in horizontal tubes
US20170184432A1 (en) Flow speed measurement method and flow speed measurement system
US8015870B2 (en) Flowmeter for measuring a flow rate using a heat exchange principle
JP6686335B2 (ja) 関係情報設定方法、流速計測方法、関係情報設定システム及び流速計測システム
He et al. Experimental investigation on turbulent heat transfer characteristics of molten salt in a shell-and-tube heat exchanger
Taler et al. Thermal stress monitoring in thick walled pressure components of steam boilers
Taler Determination of local heat transfer coefficient from the solution of the inverse heat conduction problem
Lee et al. Estimation of temperature distributions and thermal stresses in a functionally graded hollow cylinder simultaneously subjected to inner-and-outer boundary heat fluxes
KR102256904B1 (ko) 열식 유량계 및 유량 보정 방법
JP6834148B2 (ja) 流速の評価方法、及び評価システム
CN109885885A (zh) 一种基于气固液三相耦合传热的喷嘴杆壁温预估方法
JP6657689B2 (ja) 関係情報設定方法、流速計測方法、関係情報設定システム及び流速計測システム
Jaremkiewicz Accurate measurement of unsteady state fluid temperature
Makhmalbaf Experimental study on convective heat transfer coefficient around a vertical hexagonal rod bundle
WO2018142475A1 (ja) 関係情報設定方法、流速決定方法、関係情報設定システム、流速決定システム及びプログラム
JP6500585B2 (ja) 計測システム及び方法
WO2018142456A1 (ja) 関係情報設定方法、流速決定方法、関係情報設定システム、流速決定システム及びプログラム
Booten et al. Discrete Green’s function measurements in internal flows
Urban et al. Experiments on the heat exchangers with the tubes of small diameters
JP6834122B2 (ja) 流速の評価方法および評価システム
Kline et al. An experimental study of forced heat convection in concentric and eccentric annular channels
Agafonova et al. Heat transfer upon motion in the channel of a dispersed water-steam flow
Egorov et al. Calculation of the Maximum Slope Angles of the Temperature Curve for the Single-Flow Non-Stationary Method of Deriving the Thermal Characteristics of Heat Transfer Surfaces
JP2018179807A (ja) ヒートサーモ式流量計、ヒートサーモ式流量計の補正システム、ヒートサーモ式流量計の補正プログラム、及びヒートサーモ式流量計測方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180808

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200316

R150 Certificate of patent or registration of utility model

Ref document number: 6686335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150