JP2017048433A - Film deposition apparatus and film deposition method - Google Patents

Film deposition apparatus and film deposition method Download PDF

Info

Publication number
JP2017048433A
JP2017048433A JP2015173437A JP2015173437A JP2017048433A JP 2017048433 A JP2017048433 A JP 2017048433A JP 2015173437 A JP2015173437 A JP 2015173437A JP 2015173437 A JP2015173437 A JP 2015173437A JP 2017048433 A JP2017048433 A JP 2017048433A
Authority
JP
Japan
Prior art keywords
film
electrode
temperature
chamber
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015173437A
Other languages
Japanese (ja)
Other versions
JP6565502B2 (en
Inventor
佑 徳嵩
Yu Tokutake
佑 徳嵩
悟 尾崎
Satoru Ozaki
悟 尾崎
吉岡 尚規
Naoki Yoshioka
尚規 吉岡
優 田中
Masaru Tanaka
優 田中
隆治 西原
Takaharu Nishihara
隆治 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2015173437A priority Critical patent/JP6565502B2/en
Priority to CN201610188203.7A priority patent/CN106498371A/en
Publication of JP2017048433A publication Critical patent/JP2017048433A/en
Application granted granted Critical
Publication of JP6565502B2 publication Critical patent/JP6565502B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Abstract

PROBLEM TO BE SOLVED: To provide a film deposition apparatus in which exfoliation of a film deposition material from an electrode is reduced, and to provide a film deposition method.SOLUTION: A film deposition apparatus 1 includes: a chamber 10 for storing a workpiece 100; an electrode 20 which is arranged inside the chamber 10, and to which electric power is supplied in order to deposit a film on the workpiece 100; and a temperature adjustment device 30 for adjusting an electrode temperature so that the electrode 20 temperature is approximately constant between a film deposition step for depositing the film on the workpiece 100 and a time other than the film deposition step in a series of a film deposition processing for depositing the film on the workpiece 100 so that a film deposition material accumulated on the electrode 20 is not exfoliated from the electrode 20.SELECTED DRAWING: Figure 1

Description

本発明は、チャンバー内に電極が配置された成膜装置及び成膜方法に関する。   The present invention relates to a film forming apparatus and a film forming method in which electrodes are arranged in a chamber.

処理対象のワークに成膜する成膜装置として、プラズマ化学気相成長(CVD)装置やスパッタ装置などが使用されている。これらの成膜装置では、成膜工程中にチャンバーの内壁面やチャンバー内部に配置された電極の表面にも成膜物が堆積する。これらの成膜物がチャンバーや電極から剥離してワークに付着することによって、ワークに成膜された薄膜の膜質が低下するなどの問題が生じる。このため、例えばチャンバーの内壁面を覆って防着板を配置するなどの対策が検討されている(例えば特許文献1参照。)。   As a film forming apparatus for forming a film on a workpiece to be processed, a plasma chemical vapor deposition (CVD) apparatus or a sputtering apparatus is used. In these film forming apparatuses, the film deposit is also deposited on the inner wall surface of the chamber and the surface of the electrode disposed inside the chamber during the film forming process. When these film-formed products are peeled off from the chamber or electrode and adhere to the work, there arises a problem that the film quality of the thin film formed on the work is deteriorated. For this reason, measures such as disposing an adhesion preventing plate covering the inner wall surface of the chamber have been studied (see, for example, Patent Document 1).

特開2007−012907号公報JP 2007-012907 A

プラズマCVD装置のチャンバー内でプラズマに曝されるなどして、一般的にチャンバー内に配置された電極の温度は成膜処理中に上昇する。これにより、電極が膨張する。一方、ワークの交換時では、チャンバーを大気開放することによって、放冷により電極の温度は下降する。これにより、電極が収縮する。このように温度変化によって電極が変形することにより、電極と成膜物との熱膨張率の差に起因して、電極から成膜物が剥離する。その結果、ワークに成膜物が付着するなどの問題が生じる。   Generally, the temperature of the electrode disposed in the chamber rises during the film forming process, for example, by being exposed to plasma in the chamber of the plasma CVD apparatus. Thereby, an electrode expand | swells. On the other hand, when the workpiece is exchanged, the temperature of the electrode is lowered by allowing the chamber to open to the atmosphere and then allowing it to cool. As a result, the electrode contracts. As the electrode is deformed due to the temperature change in this manner, the film is peeled off from the electrode due to the difference in thermal expansion coefficient between the electrode and the film. As a result, there arises a problem that a film deposit adheres to the workpiece.

上記問題点に鑑み、本発明は、電極からの成膜物の剥離が低減された成膜装置及び成膜方法を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a film forming apparatus and a film forming method in which peeling of a film formed from an electrode is reduced.

本発明の一態様によれば、ワークに成膜する成膜装置であって、(ア)ワークが格納されるチャンバーと、(イ)チャンバーの内部に配置され、ワークに成膜するために電力が供給される電極と、(ウ)電極に堆積した成膜物が電極から剥離しないように、ワークに成膜する一連の成膜処理においてワークに成膜する成膜工程と成膜工程以外とで電極の温度が略一定であるように電極の温度を調整する温度調整装置とを備える成膜装置が提供される。   According to one aspect of the present invention, there is provided a film forming apparatus for forming a film on a work, comprising: (a) a chamber in which the work is stored; and (a) an electric power for forming a film on the work. And (c) a film forming process for forming a film on the workpiece and a process other than the film forming process so that the film deposited on the electrode does not peel from the electrode. And a temperature adjusting device for adjusting the temperature of the electrode so that the temperature of the electrode is substantially constant.

本発明の他の態様によれば、成膜処理対象のワークをチャンバー内に格納するステップと、所定の電力をチャンバー内に配置された電極に供給してワークに成膜するステップと、ワークを成膜した後、チャンバーを大気開放するステップとを含む一連の成膜処理において、電極に堆積した成膜物が電極から剥離しないようにワークに成膜する成膜工程と成膜工程以外とで電極の温度が略一定であるように電極の温度を調整する成膜方法が提供される。   According to another aspect of the present invention, a step of storing a workpiece to be deposited in a chamber, a step of supplying a predetermined electric power to an electrode disposed in the chamber and depositing the workpiece on the workpiece, After a film is formed, a series of film forming processes including a step of opening the chamber to the atmosphere includes a film forming process in which a film deposited on the electrode is not peeled off from the electrode and a film forming process other than the film forming process. There is provided a film forming method for adjusting the temperature of an electrode so that the temperature of the electrode is substantially constant.

本発明によれば、電極からの成膜物の剥離が低減された成膜装置及び成膜方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the film-forming apparatus and the film-forming method with which peeling of the film-forming thing from the electrode was reduced can be provided.

本発明の第1の実施形態に係る成膜装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the film-forming apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る成膜装置を用いた成膜方法を説明するためのフローチャートである。It is a flowchart for demonstrating the film-forming method using the film-forming apparatus which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る成膜装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the film-forming apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る成膜装置の動作を説明する模式図である。It is a schematic diagram explaining operation | movement of the film-forming apparatus which concerns on the 2nd Embodiment of this invention. 本発明のその他の実施形態に係る成膜装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the film-forming apparatus which concerns on other embodiment of this invention.

次に、図面を参照して、本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであることに留意すべきである。又、以下に示す実施形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の実施形態は、構成部品の構造、配置などを下記のものに特定するものでない。この発明の実施形態は、特許請求の範囲において、種々の変更を加えることができる。   Next, an embodiment of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic. Further, the embodiment described below exemplifies an apparatus and a method for embodying the technical idea of the present invention, and the embodiment of the present invention has the following structure and arrangement of components. It is not something specific. The embodiment of the present invention can be variously modified within the scope of the claims.

(第1の実施形態)
本発明の第1の実施形態に係る成膜装置1は、図1に示すように、処理対象のワーク100が格納されるチャンバー10と、チャンバー10の内部に配置され、ワーク100に成膜するために電力が供給される電極20と、電極20の温度を調整する温度調整装置30とを備える。
(First embodiment)
As shown in FIG. 1, the film forming apparatus 1 according to the first embodiment of the present invention is disposed in a chamber 10 in which a workpiece 100 to be processed is stored, and inside the chamber 10, and forms a film on the workpiece 100. Therefore, an electrode 20 to which power is supplied and a temperature adjusting device 30 that adjusts the temperature of the electrode 20 are provided.

図1に示した成膜装置1は、プラズマCVD法によってワーク100に成膜するプラズマCVD装置であり、電極20に電力を供給する電源40と、ガス供給機構50及び排気機構60を備える。電源40は、例えば高周波電源である。ガス供給機構50は、ワーク100上に形成する薄膜の原料ガス510をチャンバー10の内部に供給する。排気機構60は、チャンバー10内のガスを外部に排気する。排気機構60には図示を省略するガス調圧弁が備えられ、チャンバー10内の圧力を一定に保つ。   A film forming apparatus 1 shown in FIG. 1 is a plasma CVD apparatus that forms a film on a workpiece 100 by a plasma CVD method, and includes a power supply 40 that supplies power to an electrode 20, a gas supply mechanism 50, and an exhaust mechanism 60. The power source 40 is, for example, a high frequency power source. The gas supply mechanism 50 supplies a thin film source gas 510 formed on the workpiece 100 into the chamber 10. The exhaust mechanism 60 exhausts the gas in the chamber 10 to the outside. The exhaust mechanism 60 is provided with a gas pressure regulating valve (not shown) to keep the pressure in the chamber 10 constant.

成膜装置1では、ワーク100に対向してチャンバー10に配置された電極20とワーク100が搭載されるワークホルダ70との間で原料ガス510のプラズマが形成される。例えば、電極20をカソード電極とし、ワークホルダ70をアノード電極とする。チャンバー10の内部に形成されたプラズマにワーク100が曝されることによって、原料ガス510に含まれる原料を主成分とする膜がワーク100に成膜される。   In the film forming apparatus 1, plasma of the source gas 510 is formed between the electrode 20 disposed in the chamber 10 facing the work 100 and the work holder 70 on which the work 100 is mounted. For example, the electrode 20 is a cathode electrode and the work holder 70 is an anode electrode. When the workpiece 100 is exposed to plasma formed in the chamber 10, a film mainly composed of the raw material contained in the raw material gas 510 is formed on the workpiece 100.

以下に、成膜装置1によって薄膜を形成する方法の例を、図2を参照して説明する。   Hereinafter, an example of a method for forming a thin film by the film forming apparatus 1 will be described with reference to FIG.

ステップS11において、温度調整装置30によって電極20を所定の温度に調整する。次いで、ステップS12において、電極20を所定の温度に調整しつつ、成膜処理対象のワーク100をチャンバー10内に格納する。その後、排気機構60によってチャンバー10内を真空にする。   In step S11, the temperature adjusting device 30 adjusts the electrode 20 to a predetermined temperature. Next, in step S <b> 12, the workpiece 100 to be deposited is stored in the chamber 10 while adjusting the electrode 20 to a predetermined temperature. Thereafter, the inside of the chamber 10 is evacuated by the exhaust mechanism 60.

ステップS13において、ガス供給機構50によって原料ガス510をチャンバー10内に導入する。次いで、排気機構60によってチャンバー10内を減圧し、チャンバー10内の原料ガス510を所定のガス圧に調整する。   In step S <b> 13, the source gas 510 is introduced into the chamber 10 by the gas supply mechanism 50. Next, the inside of the chamber 10 is depressurized by the exhaust mechanism 60, and the source gas 510 in the chamber 10 is adjusted to a predetermined gas pressure.

成膜工程のステップS14において、電源40をオンして所定の電力を電極20に供給する。これにより、チャンバー10内の原料ガス510がプラズマ化される。形成されたプラズマ中の励起種がワーク100の表面で反応し、ワーク100の表面に薄膜が形成される。この成膜工程においても、温度調整装置30によって電極20の温度が調整される。つまり、電極20を所定の温度に調整しつつ、ワーク100の成膜が行われる。   In step S <b> 14 of the film forming process, the power supply 40 is turned on to supply predetermined power to the electrode 20. Thereby, the source gas 510 in the chamber 10 is turned into plasma. The excited species in the formed plasma react on the surface of the workpiece 100, and a thin film is formed on the surface of the workpiece 100. Also in this film forming step, the temperature of the electrode 20 is adjusted by the temperature adjusting device 30. That is, the workpiece 100 is formed while the electrode 20 is adjusted to a predetermined temperature.

ワーク100に所定の膜厚の膜が形成された後、ステップS15において電源40をオフし、成膜工程を終了する。次いで、排気機構60によって原料ガス510をチャンバー10から排気する。その後、ステップS16において、電極20を所定の温度に調整しつつチャンバー10を大気開放して、チャンバー10から成膜済みのワーク100を搬出する。   After a film having a predetermined thickness is formed on the workpiece 100, the power supply 40 is turned off in step S15, and the film forming process is completed. Next, the source gas 510 is exhausted from the chamber 10 by the exhaust mechanism 60. Thereafter, in step S <b> 16, the chamber 10 is opened to the atmosphere while the electrode 20 is adjusted to a predetermined temperature, and the film-formed workpiece 100 is unloaded from the chamber 10.

上記の一連の成膜処理によって、ワーク100に所定の膜が成膜される。なお、成膜装置1を連続運転する場合には、ステップS11に戻って、未処理の新たなワーク100をチャンバー10に格納する。   A predetermined film is formed on the workpiece 100 by the series of film forming processes described above. When the film forming apparatus 1 is continuously operated, the process returns to step S <b> 11 and a new unprocessed workpiece 100 is stored in the chamber 10.

温度調整装置30は、電極20に堆積した成膜物が電極20から剥離しないように、図2を参照して説明した一連の成膜処理において電極20の温度が一定であるように、電極20の温度を調整する。即ち、成膜装置1では、ワーク100に成膜する成膜工程と成膜工程以外の他の工程とで電極20の温度が一定に保持される。例えば、ワーク100の交換のためなどでチャンバー10を大気開放したときと、成膜工程中とで、電極20の温度は一定である。このため、温度変動による電極20の変形が抑制される。その結果、電極と成膜物との熱膨張率の差に起因して電極から成膜物が剥離することが抑制される。   The temperature adjusting device 30 prevents the film deposited on the electrode 20 from peeling from the electrode 20 so that the temperature of the electrode 20 is constant in the series of film forming processes described with reference to FIG. Adjust the temperature. That is, in the film forming apparatus 1, the temperature of the electrode 20 is kept constant in the film forming process for forming the film on the workpiece 100 and in other processes other than the film forming process. For example, the temperature of the electrode 20 is constant when the chamber 10 is opened to the atmosphere, for example, to replace the workpiece 100 and during the film forming process. For this reason, deformation of the electrode 20 due to temperature fluctuation is suppressed. As a result, separation of the film from the electrode due to the difference in coefficient of thermal expansion between the electrode and the film is suppressed.

図1に示した温度調整装置30は、電極20に配置される調整部31と、調整部31の温度を設定する設定部32を有する。例えば、調整部31として電極20の内部に温水の流れる循環水路を設ける。そして、設定部32で温度を調整した温水を調整部31に供給し、温水を電極20の内部で循環させて電極20の温度を調整する。或いは、ヒータなどの加熱素子を調整部31に使用し、この加熱素子を設定部32によって制御して電極20を所定の温度に調整してもよい。   The temperature adjustment device 30 illustrated in FIG. 1 includes an adjustment unit 31 disposed on the electrode 20 and a setting unit 32 that sets the temperature of the adjustment unit 31. For example, a circulating water channel through which hot water flows is provided inside the electrode 20 as the adjustment unit 31. Then, the hot water whose temperature is adjusted by the setting unit 32 is supplied to the adjusting unit 31, and the hot water is circulated inside the electrode 20 to adjust the temperature of the electrode 20. Alternatively, a heating element such as a heater may be used for the adjustment unit 31 and the heating element may be controlled by the setting unit 32 to adjust the electrode 20 to a predetermined temperature.

成膜装置1によって、例えば、ヘキサメチルジシロキサン(HMDSO:O[Si(CH332)と酸素(O2)を含む原料ガス510をプラズマ重合して得られるSiOXY:H構造を有する薄膜を、バリア膜として樹脂材であるワーク100に成膜できる。このとき、電極20の材料に金属材、例えば銅(Cu)を使用すると、ワーク100に成膜されるバリア膜と電極20の熱膨張係数の差が大きい。このため、成膜工程と他の工程との間の温度変化によって電極20が変形すると、電極20と電極20に堆積した成膜物との熱膨張率の差に起因して、電極20から成膜物が剥離する。 For example, SiO x C Y : H obtained by plasma polymerization of a source gas 510 containing hexamethyldisiloxane (HMDSO: O [Si (CH 3 ) 3 ] 2 ) and oxygen (O 2 ) by the film forming apparatus 1. A thin film having a structure can be formed on the workpiece 100 which is a resin material as a barrier film. At this time, when a metal material such as copper (Cu) is used as the material of the electrode 20, the difference in thermal expansion coefficient between the barrier film formed on the workpiece 100 and the electrode 20 is large. For this reason, when the electrode 20 is deformed due to a temperature change between the film formation step and another step, the electrode 20 is formed from the electrode 20 due to a difference in thermal expansion coefficient between the electrode 20 and the film deposited on the electrode 20. The film is peeled off.

しかし、成膜装置1では、チャンバー10にワーク100を格納してから成膜工程を経てワーク100をチャンバー10から搬出するまで、電極20の温度が略一定であるように温度調整装置30によって電極20の温度が調整される。したがって電極20が変形せず、電極20からの成膜物の剥離が抑制される。電極20の温度を略一定に維持するとは、電極20から成膜物が剥離しない程度にしか電極20が変形しない温度に維持されることを意味し、好ましくは、電極20が全く変形しないように電極20の温度が完全に一定に維持される。   However, in the film forming apparatus 1, the temperature adjusting device 30 sets the electrode so that the temperature of the electrode 20 is substantially constant from the time when the work 100 is stored in the chamber 10 until the work 100 is unloaded from the chamber 10 through the film forming process. The temperature of 20 is adjusted. Therefore, the electrode 20 is not deformed, and peeling of the film formed from the electrode 20 is suppressed. Maintaining the temperature of the electrode 20 substantially constant means that the electrode 20 is maintained at a temperature at which the film 20 is not deformed only to such an extent that the film is not peeled off from the electrode 20, and preferably, the electrode 20 is not deformed at all. The temperature of the electrode 20 is kept completely constant.

電極20の温度は任意に設定可能である。例えば、チャンバー10の大気開放時の放熱による電極20の温度低下を抑制するように、チャンバー10が大気開放されたときの電極20の温度を、成膜工程での電極20の温度と略同じ温度に調整する。或いは、成膜レートが高い場合のチャンバー10の内部温度に合わせて電極20の温度を調整してもよい。特に、成膜レートが高く、且つ、所望の膜質の膜がワーク100に良好に成膜される温度に電極20の温度を調整することが好ましい。   The temperature of the electrode 20 can be arbitrarily set. For example, the temperature of the electrode 20 when the chamber 10 is opened to the atmosphere is substantially the same as the temperature of the electrode 20 in the film forming step so as to suppress the temperature drop of the electrode 20 due to heat dissipation when the chamber 10 is opened to the atmosphere. Adjust to. Alternatively, the temperature of the electrode 20 may be adjusted in accordance with the internal temperature of the chamber 10 when the film formation rate is high. In particular, it is preferable to adjust the temperature of the electrode 20 to a temperature at which a film formation rate is high and a film having a desired film quality can be satisfactorily formed on the workpiece 100.

例えば、以下のように、成膜工程時のワーク100の温度に合わせて電極20の温度を設定する。ワーク100が樹脂である場合には、ワーク100の温度を室温よりも高く設定することが成膜のために好ましい場合がある。例えばHMDSOを用いて成膜する場合には、ワーク100の温度が60℃〜80℃であると膜がワーク100に良好に着膜する。このように所定の温度に設定したワーク100がチャンバー10に格納される場合に、電極20の温度もワーク100の温度に合わせて設定しておく。これにより、ワーク100の温度変化を抑制できる。このため、温度調整装置30によって電極20の温度を60℃〜80℃に設定する。   For example, as described below, the temperature of the electrode 20 is set in accordance with the temperature of the workpiece 100 during the film forming process. When the workpiece 100 is a resin, it may be preferable for film formation to set the temperature of the workpiece 100 higher than room temperature. For example, in the case of forming a film using HMDSO, the film is satisfactorily deposited on the work 100 when the temperature of the work 100 is 60 ° C. to 80 ° C. Thus, when the workpiece | work 100 set to predetermined | prescribed temperature is stored in the chamber 10, the temperature of the electrode 20 is also set according to the temperature of the workpiece | work 100. FIG. Thereby, the temperature change of the workpiece | work 100 can be suppressed. For this reason, the temperature of the electrode 20 is set to 60 ° C. to 80 ° C. by the temperature adjusting device 30.

なお、温度調整装置30によって、チャンバー10を大気開放中の温度に電極20の温度を設定してもよい。大気開放中の電極20の温度よりも成膜工程中の電極20の温度の方が高い場合、例えば調整部31にペルチェ素子などを使用することによって、成膜工程中の電極20の温度を低くする。   Note that the temperature of the electrode 20 may be set to a temperature during which the chamber 10 is opened to the atmosphere by the temperature adjusting device 30. When the temperature of the electrode 20 in the film formation process is higher than the temperature of the electrode 20 in the atmosphere, for example, by using a Peltier element or the like for the adjustment unit 31, the temperature of the electrode 20 in the film formation process is lowered. To do.

ただし、電極20の温度を高くすることによって、大気開放時にチャンバー10の内壁面などに吸着する水分を、ベーキング効果によって少なくすることができる。これにより、チャンバー10の内部を排気する時間の増大を抑制できる。したがって、電極20の温度は室温よりも高いほうが好ましい。このため、チャンバー10が大気開放されるときの電極20の温度よりも高い温度で、電極20の温度を一定に調整する。例えば、電極20の温度が最も高くなる成膜工程での温度で一定になるように、温度調整装置30によって電極20の温度を調整してもよい。   However, by increasing the temperature of the electrode 20, the moisture adsorbed on the inner wall surface of the chamber 10 when the atmosphere is released can be reduced by the baking effect. Thereby, increase of the time which exhausts the inside of the chamber 10 can be suppressed. Therefore, the temperature of the electrode 20 is preferably higher than room temperature. For this reason, the temperature of the electrode 20 is adjusted to be constant at a temperature higher than the temperature of the electrode 20 when the chamber 10 is opened to the atmosphere. For example, the temperature of the electrode 20 may be adjusted by the temperature adjusting device 30 so that the temperature of the electrode 20 becomes constant at the temperature in the film forming process.

また、成膜工程で上昇する電極20の温度とチャンバー10を大気開放したときに下降する電極20の温度との間の温度変化以外にも、電極20の温度変化は生じる。例えば、電極20に供給される電力が変化した場合に電極20の温度が変化する。また、成膜時間が長い場合や、ワーク100を交換しながら成膜処理を連続する場合に、電極20の温度は徐々に上昇する。このように、電極20の温度を調整しない場合には、様々な要因によって電極20の温度変化が成膜処理ごとに発生する。   In addition to the temperature change between the temperature of the electrode 20 rising in the film forming process and the temperature of the electrode 20 falling when the chamber 10 is opened to the atmosphere, a temperature change of the electrode 20 occurs. For example, when the power supplied to the electrode 20 changes, the temperature of the electrode 20 changes. Further, when the film formation time is long or when the film formation process is continued while exchanging the workpiece 100, the temperature of the electrode 20 gradually increases. As described above, when the temperature of the electrode 20 is not adjusted, a temperature change of the electrode 20 occurs every film forming process due to various factors.

これに対し、本発明の第1の実施形態に係る成膜装置1では、成膜工程を含む一連の成膜処理において電極20の温度が一定に調整される。このため、電極20の温度変化に起因して成膜物が電極20から剥離することが抑制される。その結果、成膜装置1によれば、ワーク100に成膜物が付着して膜質が劣化したり膜厚が不均一になったりするなどの問題を防止できる。   On the other hand, in the film forming apparatus 1 according to the first embodiment of the present invention, the temperature of the electrode 20 is adjusted to be constant in a series of film forming processes including a film forming process. For this reason, it is suppressed that a film-forming thing peels from the electrode 20 resulting from the temperature change of the electrode 20. As a result, according to the film forming apparatus 1, it is possible to prevent problems such as film formation being attached to the workpiece 100 and deterioration in film quality or non-uniform film thickness.

(第2の実施形態)
本発明の第2の実施形態に係る成膜装置1は、図3に示すように、チャンバー10の内部にワーク100に対する処理がそれぞれ行われる複数の処理領域が設定されている点が、図1に示した成膜装置1と異なる。その他の構成については第1の実施形態と同様である。
(Second Embodiment)
As shown in FIG. 3, the film forming apparatus 1 according to the second embodiment of the present invention has a plurality of processing regions in which processing for the workpiece 100 is performed inside the chamber 10. Different from the film forming apparatus 1 shown in FIG. Other configurations are the same as those in the first embodiment.

図3は、複数の処理領域としてチャンバー10内に第1の処理領域101と第2の処理領域102が設定された例を示す。ワークホルダ70は、第1の処理領域101と第2の処理領域102に渡って、ワーク100をチャンバー10内で移動させる。   FIG. 3 shows an example in which a first processing region 101 and a second processing region 102 are set in the chamber 10 as a plurality of processing regions. The work holder 70 moves the work 100 in the chamber 10 over the first processing area 101 and the second processing area 102.

図3に示した成膜装置1は、第1の処理領域101がスパッタ法によってワーク100に成膜するスパッタ処理領域であり、第2の処理領域102がプラズマCVD法によってワーク100に成膜するプラズマCVD処理領域である例を示している。第1の処理領域101では、ターゲット201がターゲット電極202上に取り付けられている。ターゲット電極202は高周波(RF)電力或いは直流(DC)電力を供給するスパッタ電源203に接続されている。第2の処理領域102の構成は図1に示した成膜装置1と同様である。   In the film forming apparatus 1 shown in FIG. 3, the first processing region 101 is a sputtering processing region where a film is formed on the workpiece 100 by sputtering, and the second processing region 102 is formed on the workpiece 100 by plasma CVD. The example which is a plasma CVD process area | region is shown. In the first processing region 101, the target 201 is attached on the target electrode 202. The target electrode 202 is connected to a sputtering power source 203 that supplies radio frequency (RF) power or direct current (DC) power. The configuration of the second processing region 102 is the same as that of the film forming apparatus 1 shown in FIG.

以下に、スパッタ処理領域における処理とプラズマCVD処理領域における処理を連続して行う場合について説明する。   The case where the process in a sputter | spatter process area | region and the process in a plasma CVD process area | region are performed continuously is demonstrated below.

まず、温度調整装置30によって電極20を所定の温度に調整しつつ、チャンバー10内にワーク100を格納し、図3に示すようにワーク100を第1の処理領域101に配置する。そして、ガス供給機構50の不活性ガス供給源52からアルゴン(Ar)ガスなどの不活性ガス520がチャンバー10内に導入される。スパッタ電源203からターゲット電極202に電力を供給して不活性ガス520を放電させ、ターゲット201の表面近傍の気相中にプラズマを形成する。プラズマ中で加速された不活性ガス520の正イオンがターゲット201の表面に衝突し、スパッタリングによりターゲット原子が放出される。ターゲット201の表面から放出された原子がワーク100の表面に被着・堆積されて、薄膜が形成される。   First, while adjusting the electrode 20 to a predetermined temperature by the temperature adjusting device 30, the workpiece 100 is stored in the chamber 10, and the workpiece 100 is arranged in the first processing region 101 as shown in FIG. Then, an inert gas 520 such as argon (Ar) gas is introduced into the chamber 10 from an inert gas supply source 52 of the gas supply mechanism 50. Power is supplied from the sputtering power source 203 to the target electrode 202 to discharge the inert gas 520, and plasma is formed in the gas phase near the surface of the target 201. Positive ions of the inert gas 520 accelerated in the plasma collide with the surface of the target 201, and target atoms are released by sputtering. Atoms released from the surface of the target 201 are deposited and deposited on the surface of the workpiece 100 to form a thin film.

第1の処理領域101でのスパッタ処理が終了した後、図4に示すように、ワークホルダ70に搭載されたワーク100が第1の処理領域101から第2の処理領域102に移動する。その後、第2の処理領域102において、図2を参照して説明した成膜方法によって、電極20を所定の温度に調整しつつ、ワーク100についてプラズマCVD法による成膜処理が行われる。即ち、排気機構60によって真空に排気されたチャンバー10の内部に、ガス供給機構50の原料ガス供給源51から原料ガス510が導入される。そして、チャンバー10内で原料ガス510がプラズマ化され、ワーク100の表面に薄膜が形成される。その後、チャンバー10から処理済みのワーク100が搬出される。   After the sputtering process in the first processing area 101 is completed, the work 100 mounted on the work holder 70 moves from the first processing area 101 to the second processing area 102 as shown in FIG. Thereafter, in the second processing region 102, a film forming process by the plasma CVD method is performed on the workpiece 100 while the electrode 20 is adjusted to a predetermined temperature by the film forming method described with reference to FIG. That is, the source gas 510 is introduced from the source gas supply source 51 of the gas supply mechanism 50 into the chamber 10 evacuated to a vacuum by the exhaust mechanism 60. Then, the source gas 510 is turned into plasma in the chamber 10, and a thin film is formed on the surface of the workpiece 100. Thereafter, the processed workpiece 100 is unloaded from the chamber 10.

上記に説明した成膜処理に亘って電極20の温度が一定であるように、電極20の温度が温度調整装置30によって調整される。   The temperature of the electrode 20 is adjusted by the temperature adjusting device 30 so that the temperature of the electrode 20 is constant over the film forming process described above.

なお、第1の処理領域101には、昇降機205によってチャンバー10内を上下方向に移動するシャッター204が配置されている。第2の処理領域102での成膜処理の間は、図4に示すように上昇したシャッター204によってターゲット201の表面が保護されている。また、ワーク100の交換時などでチャンバー10を大気開放する間も、シャッター204によってターゲット201の表面が保護される。一方、スパッタ処理の間は、図3に示すようにシャッター204は下降している。   In the first processing region 101, a shutter 204 that moves up and down in the chamber 10 by an elevator 205 is disposed. During the film forming process in the second processing region 102, the surface of the target 201 is protected by the raised shutter 204 as shown in FIG. Further, the surface of the target 201 is protected by the shutter 204 while the chamber 10 is opened to the atmosphere when the workpiece 100 is replaced. On the other hand, during the sputtering process, the shutter 204 is lowered as shown in FIG.

以上に説明したように、本発明の第2の実施形態に係る成膜装置1によれば、第1の処理領域101における処理と第2の処理領域102における処理を真空連続によって行うことができる。このため、処理ごとにチャンバー内を真空にする場合と比べて、トータルの処理時間を短縮できる。また、ワーク100を大気に曝すことがないため、例えばワーク100に形成した膜が変質することや、膜に不純物が付着することを防止できる。   As described above, according to the film forming apparatus 1 according to the second embodiment of the present invention, the processing in the first processing region 101 and the processing in the second processing region 102 can be performed by continuous vacuum. . For this reason, compared with the case where the inside of a chamber is evacuated for every process, total processing time can be shortened. In addition, since the workpiece 100 is not exposed to the atmosphere, for example, it is possible to prevent a film formed on the workpiece 100 from being altered and impurities from adhering to the film.

更に、第2の実施形態に係る成膜装置1においても第1の実施形態と同様に、プラズマCVD法による成膜工程と成膜工程を除いた他の工程とで電極20の温度が一定であるように電極20の温度が温度調整装置30によって調整される。このため、温度変化による電極20の変形が抑制され、電極20と成膜物との熱膨張率の差に起因する電極20からの成膜物の剥離が抑制される。その結果、第2の実施形態に係る成膜装置1においても、ワーク100に電極20から剥離した成膜物が付着するなどの問題が防止される。他は、第1の実施形態と実質的に同様であり、重複した記載を省略する。   Further, in the film forming apparatus 1 according to the second embodiment, similarly to the first embodiment, the temperature of the electrode 20 is constant between the film forming process by the plasma CVD method and other processes excluding the film forming process. The temperature of the electrode 20 is adjusted by the temperature adjusting device 30 so that it exists. For this reason, deformation of the electrode 20 due to temperature change is suppressed, and peeling of the film formation from the electrode 20 due to the difference in thermal expansion coefficient between the electrode 20 and the film formation is suppressed. As a result, also in the film forming apparatus 1 according to the second embodiment, problems such as adhesion of a film formed peeled off from the electrode 20 to the workpiece 100 are prevented. Others are substantially the same as those in the first embodiment, and redundant description is omitted.

なお、第1の処理領域101での処理と第2の処理領域での処理の順番は任意である。例えば、上記のように第1の処理領域101において処理を行った後に第2の処理領域102において処理を行ってもよいし、或いは、第2の処理領域102において処理を行った後に第1の処理領域101において処理を行ってもよい。   Note that the order of processing in the first processing area 101 and processing in the second processing area is arbitrary. For example, the processing may be performed in the second processing region 102 after the processing in the first processing region 101 as described above, or the first processing region may be processed in the second processing region 102. Processing may be performed in the processing area 101.

図3に示した成膜装置1は、射出成型プラスチック製品の加飾用途などに使用される。例えば、ドアノブや計器類などの自動車部品に金属質感を出すためにアルミニウム膜、ステンレス鋼(SUS)膜、チタン膜などを成膜する場合に好適である。また、家電製品、玩具、化粧品容器、時計の文字板などの加飾用途にも使用可能である。   The film forming apparatus 1 shown in FIG. 3 is used for decorating an injection molded plastic product. For example, it is suitable for forming an aluminum film, a stainless steel (SUS) film, a titanium film, etc. in order to give a metal texture to automobile parts such as door knobs and instruments. It can also be used for decorative purposes such as home appliances, toys, cosmetic containers, and watch dials.

例えば、スパッタ法によってワーク100に酸化しやすい第1の膜(例えばアルミニウム膜など)を形成した後、真空連続で、第1の膜の酸化を防止する第2の膜を保護膜として第1の膜を覆ってプラズマCVD法によって形成する。例えば、自動車ヘッドランプのリフレクターの製造などにおける、樹脂部品の表面にアルミニウム膜を形成する場合などに上記の成膜方法は有効である。   For example, after a first film (for example, an aluminum film) that is easily oxidized is formed on the workpiece 100 by sputtering, the first film is formed as a protective film using a second film that prevents oxidation of the first film in a continuous vacuum. Covering the film, it is formed by plasma CVD. For example, the above film forming method is effective when an aluminum film is formed on the surface of a resin component in manufacturing a reflector for an automobile headlamp.

(その他の実施形態)
上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
As mentioned above, although this invention was described by embodiment, it should not be understood that the description and drawing which form a part of this indication limit this invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

上記では、ワーク100が水平にワークホルダ70に搭載される例を示したが、例えば図5に示すように、ワーク100がボートタイプのワークホルダ70に垂直に搭載される成膜装置1にも本発明は適用可能である。図5に示した成膜装置1では、電極20がワーク100と対向して垂直方向に延伸する。   In the above, the example in which the workpiece 100 is mounted horizontally on the workpiece holder 70 has been shown. However, for example, as illustrated in FIG. 5, the workpiece 100 is also mounted on the boat-type workpiece holder 70 vertically. The present invention is applicable. In the film forming apparatus 1 shown in FIG. 5, the electrode 20 extends in the vertical direction so as to face the workpiece 100.

また、成膜装置1がプラズマCVD装置である場合を例示的に説明したが、他の成膜方法を使用する成膜装置であっても、チャンバー内に配置された電極を有する成膜装置に本発明は適用可能である。例えば、スパッタ装置のターゲット電極の温度を温度調整装置30によって一定に設定することにより、ターゲット電極からの成膜物の剥離を抑制できる。   Moreover, although the case where the film-forming apparatus 1 is a plasma CVD apparatus was illustrated exemplarily, even if it is a film-forming apparatus using another film-forming method, the film-forming apparatus having an electrode disposed in the chamber is used. The present invention is applicable. For example, by setting the temperature of the target electrode of the sputtering apparatus to be constant by the temperature adjustment device 30, it is possible to suppress peeling of the film formed from the target electrode.

このように、本発明はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   As described above, the present invention naturally includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

1…成膜装置
10…チャンバー
20…電極
30…温度調整装置
40…電源
50…ガス供給機構
60…排気機構
70…ワークホルダ
100…ワーク
101…第1の処理領域
102…第2の処理領域
201…ターゲット
202…ターゲット電極
203…スパッタ電源
204…シャッター
510…原料ガス
DESCRIPTION OF SYMBOLS 1 ... Film-forming apparatus 10 ... Chamber 20 ... Electrode 30 ... Temperature control apparatus 40 ... Power supply 50 ... Gas supply mechanism 60 ... Exhaust mechanism 70 ... Work holder 100 ... Work 101 ... 1st process area 102 ... 2nd process area 201 ... Target 202 ... Target electrode 203 ... Sputtering power source 204 ... Shutter 510 ... Source gas

Claims (5)

ワークに成膜する成膜装置であって、
前記ワークが格納されるチャンバーと、
前記チャンバーの内部に配置され、前記ワークに成膜するために電力が供給される電極と、
前記電極に堆積した成膜物が前記電極から剥離しないように、前記ワークに成膜する一連の成膜処理において前記ワークに成膜する成膜工程と前記成膜工程以外とで前記電極の温度が略一定であるように前記電極の温度を調整する温度調整装置と
を備えることを特徴とする成膜装置。
A film forming apparatus for forming a film on a workpiece,
A chamber in which the workpiece is stored;
An electrode disposed inside the chamber and supplied with electric power to form a film on the workpiece;
In order to prevent the film deposited on the electrode from being peeled off from the electrode, the temperature of the electrode during the film forming process for forming the film on the work and other than the film forming process in a series of film forming processes for forming the film on the work And a temperature adjusting device that adjusts the temperature of the electrode so that is substantially constant.
前記温度調整装置が、前記チャンバーの大気開放時の放熱による温度低下を抑制するよう、前記チャンバーが大気開放されたときの前記電極の温度を前記成膜工程での前記電極の温度と略同じ温度に調整することを特徴とする請求項1に記載の成膜装置。   The temperature of the electrode when the chamber is opened to the atmosphere is substantially the same as the temperature of the electrode in the film formation step so that the temperature adjustment device suppresses a temperature drop due to heat dissipation when the chamber is opened to the atmosphere. The film forming apparatus according to claim 1, wherein the film forming apparatus is adjusted. 前記ワークに成膜する一連の成膜処理が、前記チャンバーに前記ワークを格納してから、前記成膜工程を経て、前記ワークを前記チャンバーから搬出するまでの各処理であることを特徴とする請求項1又は2に記載の成膜装置。   A series of film forming processes for forming a film on the work is each process from storing the work in the chamber to passing the work out of the chamber through the film forming process. The film forming apparatus according to claim 1. 前記電極に前記電力を供給する電源と、
原料ガスを前記チャンバーの内部に供給するガス供給機構を更に備え、
前記電源が前記電極に前記電力を供給して前記原料ガスのプラズマを形成し、
前記プラズマに前記ワークを曝すことによって前記原料ガスに含まれる原料を主成分とする膜を前記ワークに成膜することを特徴とする請求項1乃至3のいずれか1項に記載の成膜装置。
A power source for supplying the power to the electrode;
A gas supply mechanism for supplying a source gas into the chamber;
The power supply supplies the power to the electrodes to form plasma of the source gas,
4. The film forming apparatus according to claim 1, wherein a film containing a raw material contained in the source gas as a main component is formed on the work by exposing the work to the plasma. 5. .
成膜処理対象のワークをチャンバー内に格納するステップと、
所定の電力を前記チャンバー内に配置された電極に供給して前記ワークに成膜するステップと、
前記ワークを成膜した後、前記チャンバーを大気開放するステップと
を含む一連の成膜処理において、
前記電極に堆積した成膜物が前記電極から剥離しないように前記ワークに成膜する成膜工程と前記成膜工程以外とで前記電極の温度が略一定であるように前記電極の温度を調整することを特徴とする成膜方法。
Storing the workpiece to be deposited in the chamber;
Supplying a predetermined power to an electrode disposed in the chamber to form a film on the workpiece;
In a series of film forming processes including a step of opening the chamber to the atmosphere after forming the workpiece.
The temperature of the electrode is adjusted so that the temperature of the electrode is substantially constant between the film forming step of forming a film on the workpiece and other than the film forming step so that the film deposited on the electrode does not peel from the electrode. A film forming method characterized by:
JP2015173437A 2015-09-03 2015-09-03 Film forming apparatus and film forming method Active JP6565502B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015173437A JP6565502B2 (en) 2015-09-03 2015-09-03 Film forming apparatus and film forming method
CN201610188203.7A CN106498371A (en) 2015-09-03 2016-03-29 Film formation device and film build method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015173437A JP6565502B2 (en) 2015-09-03 2015-09-03 Film forming apparatus and film forming method

Publications (2)

Publication Number Publication Date
JP2017048433A true JP2017048433A (en) 2017-03-09
JP6565502B2 JP6565502B2 (en) 2019-08-28

Family

ID=58278964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015173437A Active JP6565502B2 (en) 2015-09-03 2015-09-03 Film forming apparatus and film forming method

Country Status (2)

Country Link
JP (1) JP6565502B2 (en)
CN (1) CN106498371A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807886A (en) * 2022-04-13 2022-07-29 北京北方华创微电子装备有限公司 Process chamber and process method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197575A (en) * 1989-01-26 1990-08-06 Canon Inc Microwave plasma cvd method and device therefor
JPH02236279A (en) * 1989-03-08 1990-09-19 Fujitsu Ltd Device for forming thin amorphous silicon film
JP2008300832A (en) * 2007-05-30 2008-12-11 Asm Japan Kk Plasma cvd apparatus having non-metal susceptor
JP2015220288A (en) * 2014-05-15 2015-12-07 三菱電機株式会社 Plasma cvd device and plasma cvd method using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3072989B1 (en) * 1999-05-14 2000-08-07 日本エー・エス・エム株式会社 Film forming method in a film forming apparatus for forming a thin film on a semiconductor substrate
US8491720B2 (en) * 2009-04-10 2013-07-23 Applied Materials, Inc. HVPE precursor source hardware
WO2012160718A1 (en) * 2011-05-20 2012-11-29 株式会社島津製作所 Thin film forming device
JP5940375B2 (en) * 2012-06-01 2016-06-29 シャープ株式会社 Vapor growth apparatus and method for manufacturing nitride semiconductor light emitting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197575A (en) * 1989-01-26 1990-08-06 Canon Inc Microwave plasma cvd method and device therefor
JPH02236279A (en) * 1989-03-08 1990-09-19 Fujitsu Ltd Device for forming thin amorphous silicon film
JP2008300832A (en) * 2007-05-30 2008-12-11 Asm Japan Kk Plasma cvd apparatus having non-metal susceptor
JP2015220288A (en) * 2014-05-15 2015-12-07 三菱電機株式会社 Plasma cvd device and plasma cvd method using the same

Also Published As

Publication number Publication date
CN106498371A (en) 2017-03-15
JP6565502B2 (en) 2019-08-28

Similar Documents

Publication Publication Date Title
JP2007042818A (en) Depositing apparatus and method
JP2009068110A (en) Method and device for depositing film on base material
US20180016675A1 (en) Vacuum chamber having a special design for increasing the removal of heat
CN107492490A (en) Film build method, aluminium nitride film build method and the electronic installation of semiconductor equipment
US10096725B2 (en) Method for graded anti-reflective coatings by physical vapor deposition
CN114369804B (en) Thin film deposition method
US11299801B2 (en) Structure and method to fabricate highly reactive physical vapor deposition target
KR102209219B1 (en) High-power pulse coating method
JP6565502B2 (en) Film forming apparatus and film forming method
EP3662094B1 (en) Coating device for conducting high efficient low temperature coating
JP2009057638A (en) Processing method
US11515129B2 (en) Radiation shield modification for improving substrate temperature uniformity
US20160222503A1 (en) Counter based time compensation to reduce process shifting in reactive magnetron sputtering reactor
US20190276932A1 (en) Film forming apparatus and film forming method
JPH03183778A (en) Method and device for forming deposited film
JP5901571B2 (en) Deposition method
JP2012067331A (en) Film deposition method and sputtering apparatus
WO2009104567A1 (en) A method for the production of cubic boron nitride-containing films
JP2015098617A (en) Film deposition apparatus
KR100800799B1 (en) Method for fabricating metal thin film on semiconductor surface using pvd
WO2016143263A1 (en) Aluminum oxide film-forming method and molding method, and sputtering apparatus
US9719166B2 (en) Method of supporting a workpiece during physical vapour deposition
US20140110248A1 (en) Chamber pasting method in a pvd chamber for reactive re-sputtering dielectric material
CN116607123A (en) Deposition method and substrate processing apparatus
JPWO2013133110A1 (en) CVD equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190605

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190715

R151 Written notification of patent or utility model registration

Ref document number: 6565502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151