JP2017045892A - Composite soft magnetic material and production method therefor - Google Patents

Composite soft magnetic material and production method therefor Download PDF

Info

Publication number
JP2017045892A
JP2017045892A JP2015168064A JP2015168064A JP2017045892A JP 2017045892 A JP2017045892 A JP 2017045892A JP 2015168064 A JP2015168064 A JP 2015168064A JP 2015168064 A JP2015168064 A JP 2015168064A JP 2017045892 A JP2017045892 A JP 2017045892A
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic material
powder
cross
metal particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015168064A
Other languages
Japanese (ja)
Other versions
JP6582745B2 (en
Inventor
廣瀬 修
Osamu Hirose
修 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2015168064A priority Critical patent/JP6582745B2/en
Publication of JP2017045892A publication Critical patent/JP2017045892A/en
Application granted granted Critical
Publication of JP6582745B2 publication Critical patent/JP6582745B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a composite soft magnetic material having a sufficiently high flux density Bm and good core loss Pcv in a practical magnetic field, within a range of cross section structure capable of achieving normal temperature molding and warm molding.SOLUTION: In a composite soft magnetic material where intermetallic of soft magnetic metal particles 1 is composed of a high-resistance soft magnetic material 3, particle size of the high-resistance soft magnetic material 3 is 2.0 μm or more, cross-sectional area ratio in the composite soft magnetic material of the soft magnetic metal particles 1 is 0.71-0.85, cross-sectional area ratio of the high-resistance soft magnetic material 3 is 0.08-0.19, and cross-sectional area ratio of the combination of the soft magnetic metal particles 1 and the high-resistance soft magnetic material 3 is 0.89-0.95. On the interface of the soft magnetic metal particles 1 and the high-resistance soft magnetic material 3, a nonmagnetic metal oxide layer 2 is interposed, and the thickness of a nonmagnetic metal oxide layer 2 is 12-126 nm.SELECTED DRAWING: Figure 1

Description

本発明は、特に磁心用の軟磁性材料として好適に用いられる複合軟磁性材料に関する。 The present invention relates to a composite soft magnetic material preferably used as a soft magnetic material for a magnetic core.

磁心等の軟磁性材料として、センダスト、パーマロイ等の軟磁性金属材料やフェライト等の高抵抗軟磁性軟磁性材料が知られている。 Known soft magnetic materials such as magnetic cores include soft magnetic metal materials such as Sendust and Permalloy, and high resistance soft magnetic soft magnetic materials such as ferrite.

軟磁性金属材料は、高い飽和磁束密度と高い透磁率とを有するが、電気抵抗率が低いため、高周波数領域では渦電流損失が大きい。このため、高周波数領域での使用が困難である。 The soft magnetic metal material has a high saturation magnetic flux density and a high magnetic permeability, but has a low eddy current loss in a high frequency region because of its low electrical resistivity. For this reason, it is difficult to use in a high frequency region.

また、高抵抗軟磁性軟磁性材料は、金属軟磁性材料に比べ電気抵抗率が高いため、高周波数領域にて渦電流損失が小さい。しかし、高抵抗軟磁性軟磁性材料は、飽和磁束密度が不十分である。 Further, since the high resistance soft magnetic soft magnetic material has a higher electrical resistivity than the metal soft magnetic material, the eddy current loss is small in the high frequency region. However, the high resistance soft magnetic soft magnetic material has insufficient saturation magnetic flux density.

このような事情から、軟磁性金属材料および高抵抗軟磁性軟磁性材料の両者の欠点を解消した軟磁性材料として、飽和磁束密度および透磁率が高く、かつ電気抵抗率が高い複合軟磁性材料が提案されている。 For these reasons, composite soft magnetic materials with high saturation magnetic flux density and high permeability and high electrical resistivity have been developed as soft magnetic materials that have solved the disadvantages of both soft magnetic metal materials and high resistance soft magnetic soft magnetic materials. Proposed.

例えば、特許文献1では、軟磁性金属材料の表面に非磁性金属酸化物層を形成したのち、高抵抗軟磁性物質を被覆し、ホットプレス法あるいはプラズマ活性化焼結法により成形することにより、高い飽和磁束密度Bmと、良好なコアロスPcvを両立している。一般にホットプレス法あるいはプラズマ活性化焼結法により成形すると、ほぼ空隙のない構造となることが分かっており、これにより高い磁気特性を獲得している。しかし、ホットプレス法あるいはプラズマ活性化焼結法は生産性が悪く、生産コストが高いという問題点がある。 For example, in Patent Document 1, after a nonmagnetic metal oxide layer is formed on the surface of a soft magnetic metal material, a high resistance soft magnetic material is coated and molded by a hot press method or a plasma activated sintering method. High saturation magnetic flux density Bm and good core loss Pcv are compatible. In general, it has been found that when formed by a hot press method or a plasma activated sintering method, a structure having almost no voids is obtained, thereby obtaining high magnetic properties. However, the hot press method or the plasma activated sintering method has problems that productivity is poor and production cost is high.

例えば、特許文献1では、軟磁性金属材料の表面に非磁性金属酸化物層を形成したのち、高抵抗軟磁性物質を被覆し、ホットプレス法あるいはプラズマ活性化焼結法により成形することにより、高い飽和磁束密度Bmと、良好なコアロスPcvを両立している。一般にホットプレス法あるいはプラズマ活性化焼結法により成型すると、ほぼ空隙のない構造となることが分かっており、これにより高い磁気特性を獲得している。しかし、ホットプレス法あるいはプラズマ活性化焼結法は生産性が悪く、生産コストが高いという問題点がある。 For example, in Patent Document 1, after a nonmagnetic metal oxide layer is formed on the surface of a soft magnetic metal material, a high resistance soft magnetic material is coated and molded by a hot press method or a plasma activated sintering method. High saturation magnetic flux density Bm and good core loss Pcv are compatible. In general, it has been found that when formed by a hot press method or a plasma activated sintering method, a structure having almost no voids is obtained, thereby obtaining high magnetic properties. However, the hot press method or the plasma activated sintering method has problems that productivity is poor and production cost is high.

例えば、特許文献2では金属磁性材料の表面を塑性変形するMgO微粒で被覆し、さらにMnO粒子、Fe粒子で被覆したものを、パルス通電加圧焼結法などにより焼結させることにより実用的な金属体積比率の割合で、良好な磁束密度を達成している。しかし、BHカーブにある保磁力Hcの値が3000A/mと巨大な値になっている。一般にフェライトコアや軟磁性金属材料による圧粉磁心コアでは保磁力Hcは1〜200A/m程度であり、保磁力HcとコアロスPcvの大きな要素であるヒステリシス損失は相関が高いことが知られており、コアロスPcvの観点から問題があると考えられる。 For example, in Patent Document 2, the surface of a metal magnetic material is coated with MgO fine particles that are plastically deformed, and further coated with MnO particles and Fe 2 O 3 particles by sintering by a pulse current pressure sintering method or the like. Good magnetic flux density is achieved at a practical metal volume ratio. However, the value of the coercive force Hc on the BH curve is a huge value of 3000 A / m. In general, a coercive force Hc is about 1 to 200 A / m in a dust core made of a ferrite core or a soft magnetic metal material, and it is known that the hysteresis loss, which is a large factor of the coercive force Hc and the core loss Pcv, is highly correlated. From the viewpoint of core loss Pcv, there is a problem.

特開平5−109520号公報JP-A-5-109520 特開2011−214026号公報JP 2011-2104026 A

特許文献1の技術ではホットプレス法あるいはプラズマ活性化焼結法により製造するためコスト上の問題がある。特許文献2では実用的な軟磁性金属比率で良好な磁束密度Bmを達成しているが、保磁力Hcが大きくコアロスPcvの観点から問題がある。 The technique of Patent Document 1 has a problem in cost because it is manufactured by a hot press method or a plasma activated sintering method. In Patent Document 2, a good magnetic flux density Bm is achieved with a practical soft magnetic metal ratio, but the coercive force Hc is large and there is a problem from the viewpoint of the core loss Pcv.

本発明では、上記の問題を解決するために案出されたものであって、通常の常温の成形及び温間成型の達成できる断面構造の範囲で、実用となる磁界で十分磁束密度Bmが高く、コアロスPcvのよい複合軟磁性材料を得ることを課題とする。 The present invention has been devised to solve the above-described problem, and the magnetic flux density Bm is sufficiently high in a practical magnetic field within the range of the cross-sectional structure that can be achieved by normal room temperature forming and warm forming. An object is to obtain a composite soft magnetic material having a good core loss Pcv.

軟磁性金属粒子の金属間が高抵抗軟磁性物質で構成されている複合軟磁性材料であって、前記高抵抗軟磁性物質の粒子径が2.0μm以上であり、
前記軟磁性金属粒子の前記複合軟磁性材料における断面積比率が0.71−0.85であり、前記高抵抗軟磁性物質の断面積比率が0.08−0.19であり、かつ前記軟磁性金属と前記高抵抗軟磁性物質を合わせた断面積比率が0.89−0.95であり、
前記軟磁性金属粒子と前記高抵抗軟磁性物質の界面に、非磁性金属酸化物の層が介在しており、前記非磁性金属酸化物の層の厚さが12−126nmであることを特徴とする複合軟磁性材料。
A composite soft magnetic material in which a metal between soft magnetic metal particles is composed of a high resistance soft magnetic material, and the particle diameter of the high resistance soft magnetic material is 2.0 μm or more,
The cross-sectional area ratio of the soft magnetic metal particles in the composite soft magnetic material is 0.71-0.85, the cross-sectional area ratio of the high-resistance soft magnetic material is 0.08-0.19, and the soft The cross-sectional area ratio of the magnetic metal and the high resistance soft magnetic material is 0.89-0.95,
A nonmagnetic metal oxide layer is interposed at the interface between the soft magnetic metal particles and the high resistance soft magnetic material, and the thickness of the nonmagnetic metal oxide layer is 12 to 126 nm. Composite soft magnetic material.

上記の構成とすることにより、実用となる磁界で十分磁束密度Bmが高く、コアロスPcvのよい複合軟磁性材料を得ることが出来る。 With the above configuration, a composite soft magnetic material having a sufficiently high magnetic flux density Bm and a good core loss Pcv can be obtained with a practical magnetic field.

高抵抗軟磁性物質層に高抵抗軟磁性物質層に対してB、Vをいずれかあるいは、両方を0.05−1.00wt%含むことが好ましい。 The high resistance soft magnetic material layer preferably contains 0.05 to 1.00 wt% of either or both of B 2 O 3 and V 2 O 5 with respect to the high resistance soft magnetic material layer.

上記の構成とすることにより、高抵抗軟磁性物質の粒成長を促し磁束密度Bmが高く、コアロスPcvのよい複合軟磁性材料を得ることが出来る。 By adopting the above configuration, it is possible to obtain a composite soft magnetic material that promotes grain growth of a high-resistance soft magnetic substance, has a high magnetic flux density Bm, and has a good core loss Pcv.

軟磁性金属粒子の金属間が高抵抗軟磁性物質で構成されている、複合軟磁性材料の製造方法であって、
軟磁性金属粒子と高抵抗軟磁性物質原料を混合する工程と
得られた混合物を加圧成型して成型体を得る工程と、
前記成形体を焼成して焼成体とする工程とを備え、
前記高抵抗軟磁性物質原料が鉄粉末と金属酸化物粉末を含み、
前記前記成形体を焼成して焼成体とする工程が酸化雰囲気であることを特徴とする。
A method for producing a composite soft magnetic material, wherein a metal between soft magnetic metal particles is composed of a high resistance soft magnetic material,
A step of mixing soft magnetic metal particles and a high-resistance soft magnetic material raw material, a step of pressure-molding the obtained mixture to obtain a molded body,
A step of firing the molded body to obtain a fired body,
The high resistance soft magnetic material raw material includes iron powder and metal oxide powder,
The step of firing the molded body to form a fired body is an oxidizing atmosphere.

上記の製造方法により、目的の複合軟磁性材料を得ることが出来る。 The target composite soft magnetic material can be obtained by the above manufacturing method.

前記軟磁性金属は元素としてAl、Y、Mg、Zr、Ca、Siを含み酸化雰囲気機中で熱処理し、α−Al 、Y 、MgO、ZrO 、CaO、SiOの形成を行うことが好ましい。 The soft magnetic metal contains Al, Y, Mg, Zr, Ca, and Si as elements, and is heat-treated in an oxidizing atmosphere machine to form α-Al 2 O 3 , Y 2 O 3 , MgO, ZrO 2 , CaO, and SiO 2 . Preferably, the formation is performed.

前記軟磁性金属粒子は、平均粒径が5−100μmであることが好ましい。 The soft magnetic metal particles preferably have an average particle size of 5 to 100 μm.

本発明によって、通常の常温の成形及び温間成型の達成できる断面構造の範囲で、実用となる磁界で十分磁束密度Bmが高く、コアロスPcvのよい複合軟磁性材料の構造を提供することが出来る。 According to the present invention, it is possible to provide a structure of a composite soft magnetic material having a sufficiently high magnetic flux density Bm and a good core loss Pcv in a practical magnetic field within a range of a cross-sectional structure that can be achieved by normal room temperature forming and warm forming. .

本発明の複合軟磁性材料は、軟磁性金属粒子間に高抵抗軟磁性物質の層が介在し、かつこの軟磁性金属粒子と高抵抗軟磁性物質の層の界面に非磁性金属酸化物の層が介在したものである。そして、好ましくは軟磁性金属粒子を非磁性金属酸化物で被覆するか、あるいは軟磁性金属粒子を酸化雰囲気中で熱処理して粒子表面に非磁性金属酸化物の拡散層を形成するしたものに対し、さらに、鉄粉末と金属酸化物粉末あるいは、鉄粉末と金属酸化物粉末と高抵抗軟磁性粉末をB粉末、V粉末と混合分散したものを、常温で加圧成型もしくは250℃以下で温間成型し、酸化雰囲気中で焼成して製造される。 In the composite soft magnetic material of the present invention, a layer of a high resistance soft magnetic material is interposed between soft magnetic metal particles, and a layer of a nonmagnetic metal oxide is formed at the interface between the soft magnetic metal particle and the layer of the high resistance soft magnetic material. Is interposed. Preferably, the soft magnetic metal particles are coated with a nonmagnetic metal oxide, or the soft magnetic metal particles are heat-treated in an oxidizing atmosphere to form a nonmagnetic metal oxide diffusion layer on the particle surface. Furthermore, iron powder and metal oxide powder, or iron powder, metal oxide powder and high resistance soft magnetic powder mixed and dispersed with B 2 O 3 powder and V 2 O 5 powder are pressure molded at room temperature or It is manufactured by warm molding at 250 ° C. or lower and firing in an oxidizing atmosphere.

常温で加圧成型もしくは250℃以下で温間成型では軟磁性金属粒子が十分な変形ができず、粒子間の高抵抗軟磁性粉末が焼結した場合、焼結収縮し軟磁性金属粒子間には空隙ができ十分な密度が得られず、高抵抗軟磁性物質の密度にもばらつきができてしまう。こうした場合、高抵抗軟磁性物質は十分な磁気特性を発揮できず、複合軟磁性物質としても磁束密度BmやコアロスPcvといった磁気特性を十分には発揮しない。 If the soft magnetic metal particles cannot be sufficiently deformed by pressure molding at room temperature or warm molding at 250 ° C. or lower, and the high resistance soft magnetic powder between the particles is sintered, the shrinkage occurs between the soft magnetic metal particles. Since voids are formed, a sufficient density cannot be obtained, and the density of the high-resistance soft magnetic material also varies. In such a case, the high resistance soft magnetic material cannot exhibit sufficient magnetic properties, and the composite soft magnetic material does not sufficiently exhibit magnetic properties such as magnetic flux density Bm and core loss Pcv.

また、軟磁性金属粒子と高抵抗軟磁性粉末を混合し、ホットプレス法あるいはプラズマ活性化焼結法により成型することにより、高抵抗軟磁性物質層が十分に緻密で均一でも、十分な粒成長をしない場合、高抵抗軟磁性物質の粒界が増加することにより磁気抵抗が増加し、複合軟磁性材料の保磁力は増加してしまう。 Also, by mixing soft magnetic metal particles and high resistance soft magnetic powder and molding by hot pressing method or plasma activated sintering method, even if the high resistance soft magnetic material layer is sufficiently dense and uniform, sufficient grain growth If not, the grain boundary of the high-resistance soft magnetic material increases, so that the magnetic resistance increases and the coercive force of the composite soft magnetic material increases.

従来の技術の欠点は、複合軟磁性物質を焼成する際、軟磁性金属粒子間の高抵抗軟磁性粉末の充填に問題があり、焼結性が悪くなり十分な粒成長ができず磁気特性を発揮できない問題がある。また、ホットプレス法あるいはプラズマ活性化焼結法により成型することにより緻密にできても、十分に粒成長できなければ保磁力Hcが増大しコアロスが悪くなるという問題がある。 The disadvantage of the conventional technology is that when firing the composite soft magnetic material, there is a problem in filling the high resistance soft magnetic powder between the soft magnetic metal particles, the sinterability becomes poor and sufficient grain growth cannot be achieved. There are problems that cannot be demonstrated. Moreover, even if it can be made dense by molding by a hot press method or a plasma activated sintering method, there is a problem in that the coercive force Hc is increased and the core loss is deteriorated if the grains are not sufficiently grown.

本発明の複合軟磁性材料では高抵抗軟磁性物質の原料としてFe粉末と金属酸化物を使用し、常温で加圧成型もしくは250℃以下で温間成型後、酸化雰囲気で焼成することでFe粉の酸化膨張により高抵抗軟磁性物質を収縮することなく焼成することで十分緻密な複合軟磁性材料を形成できることを見出した。さらに、軟磁性金属粒子、Fe粉末、金属酸化物粉末、高抵抗軟磁性粉末に加え、B粉末、V粉末を加えることで、十分粒成長した高抵抗軟磁性物質を得ることができることを見出した。これにより800℃以下の焼成温度で良好な磁気特性を得ることができる。 In the composite soft magnetic material of the present invention, Fe powder and a metal oxide are used as raw materials for the high resistance soft magnetic substance, and the Fe powder is formed by pressure molding at room temperature or warm molding at 250 ° C. or lower and firing in an oxidizing atmosphere. It was found that a sufficiently dense composite soft magnetic material can be formed by firing the high-resistance soft magnetic material without contraction due to the oxidative expansion of. Further, by adding B 2 O 3 powder and V 2 O 5 powder in addition to soft magnetic metal particles, Fe powder, metal oxide powder, and high resistance soft magnetic powder, a high resistance soft magnetic substance with sufficient grain growth is obtained. I found that I can do it. Thereby, good magnetic properties can be obtained at a firing temperature of 800 ° C. or lower.

さらに本発明の複合軟磁性材料を焼成する際、軟磁性金属粒子と高抵抗軟磁性物質の界面に非磁性金属酸化物の層を形成することで、焼成中高抵抗軟磁性物質成分が軟磁性金属粒子に拡散することなく、磁気特性の良好な複合軟磁性材料を形成することができる。 Further, when the composite soft magnetic material of the present invention is fired, a non-magnetic metal oxide layer is formed at the interface between the soft magnetic metal particles and the high resistance soft magnetic material, so that the high resistance soft magnetic material component is soft magnetic metal during firing. A composite soft magnetic material having good magnetic properties can be formed without diffusing into the particles.

以下本発明の実施の形態について説明する Hereinafter, embodiments of the present invention will be described.

用いる金属粒子の材質は、遷移金属または遷移金属を1種以上含む合金であり、例えば、センダスト等のFe−Al−Si系合金、スーパーセンダスト等のFe−Al−Si−Ni系合金、SOFMAX等のFe−Ga−Si系合金、Fe−Si系合金、パーマロイ、スーパーマロイ等のFe−Ni系合金、パーメンジュール等のFe−Co系合金、ケイ素鉄、FeB、Co B、YFe、HfFe 、FeBe 、Fe Ge、Fe3 P、Fe−Co−P系合金、Fe−Ni−P系合金等が挙げられる。以上の中で本発明では、Fe−Al−Si系合金を用いる。 The material of the metal particles used is a transition metal or an alloy containing one or more transition metals, such as Fe-Al-Si alloys such as Sendust, Fe-Al-Si-Ni alloys such as Super Sendust, SOFMAX, etc. Fe-Ga-Si based alloys, Fe-Si-based alloy, permalloy, Fe-Ni based alloy such Supermalloy, Fe-Co-based alloys such as permendur, silicon iron, Fe 2 B, Co 3 B , YFe HfFe 2 , FeBe 2 , Fe 3 Ge, Fe 3 P, Fe—Co—P alloy, Fe—Ni—P alloy and the like. Among these, in the present invention, an Fe—Al—Si alloy is used.

用いる軟磁性金属粒子の平均粒径は、5〜100μm が好ましい。平均粒径が小さくなると、金属が酸化しやすいため、磁気特性が劣化しやすい。平均粒径が大きくなると金属粒子内での渦電流損失が大きくなり、高周波数領域で透磁率の低下が大きくなる。なお、平均粒径は、レーザ散乱法によって測定した粒径のヒストグラム中、粒径の小さい方からの粒子の重量が、総重量の50%に達する50%粒径D50である。 The average particle size of the soft magnetic metal particles used is preferably 5 to 100 μm. When the average particle size is small, the metal is easily oxidized, and the magnetic characteristics are likely to deteriorate. As the average particle size increases, the eddy current loss in the metal particles increases and the permeability decreases greatly in the high frequency region. The average particle diameter is a 50% particle diameter D50 in which the weight of the particles from the smaller particle diameter reaches 50% of the total weight in the particle diameter histogram measured by the laser scattering method.

本発明においてはこのような軟磁性金属粒子の表面に予め非磁性金属酸化物層を形成することが望ましく、この被覆方法を適用することにより、軟磁性金属粒子と後述の高抵抗軟磁性物質との反応が抑えられ、渦電流損失の増大が防止される。用いる非磁性酸化物としては、軟磁性金属粒子と高抵抗軟磁性物質の反応を抑えることができるものならば種々のものが使用可能であるが、600〜1000℃での酸化物生成自由エネル
ギーが−600KJ/mol 以下のものが好ましい。
In the present invention, it is desirable to previously form a non-magnetic metal oxide layer on the surface of such soft magnetic metal particles. By applying this coating method, soft magnetic metal particles and a high-resistance soft magnetic material described later can be obtained. Reaction is suppressed, and an increase in eddy current loss is prevented. Various nonmagnetic oxides can be used as long as they can suppress the reaction between the soft magnetic metal particles and the high-resistance soft magnetic material, but the free energy of oxide formation at 600 to 1000 ° C. Those of −600 KJ / mol or less are preferable.

このような非磁性金属酸化物としては、α−Al 、Y 、MgO、ZrO、CaO、SiO等が上げられる。 Examples of such nonmagnetic metal oxides include α-Al 2 O 3 , Y 2 O 3 , MgO, ZrO 2 , CaO, and SiO 2 .

本発明ではFe−Al−Si系合金を酸化雰囲気化において熱処理することでα−Alの酸化物層を形成した。500−700℃の温度で軟磁性金属粒子を熱処理することで目的とする3−300nmのα−Alの酸化物層を形成できる。 In the present invention, the α-Al 2 O 3 oxide layer is formed by heat-treating the Fe—Al—Si alloy in an oxidizing atmosphere. A target 3-300 nm α-Al 2 O 3 oxide layer can be formed by heat-treating soft magnetic metal particles at a temperature of 500 to 700 ° C.

拡散層の厚さは、拡散層の酸素ガス分析により推定することができ、透過型電子顕微鏡(TEM)観察などによって確認することができる。 The thickness of the diffusion layer can be estimated by oxygen gas analysis of the diffusion layer, and can be confirmed by observation with a transmission electron microscope (TEM).

また、拡散層の組成、α−Al 等の含有量は元素分析によって求めることができ、X線回折等によってその組成を同定することができる。 Further, the composition of the diffusion layer, the content of α-Al 2 O 3 and the like can be obtained by elemental analysis, and the composition can be identified by X-ray diffraction or the like.

また、焼成後軟磁性金属粒子間に介在する高抵抗軟磁性物質は、高抵抗のもので、しかも焼結によって軟磁気特性が向上するものであれば特に制限はない。ここに、高抵抗とは、バルク体で測定した電気抵抗率ρが10 Ω・cm 以上のことである。なお、ρが10 Ω・cm 未満では高周波数領域での渦電流損失が大となる。 The high-resistance soft magnetic material interposed between the soft magnetic metal particles after firing is not particularly limited as long as it has a high resistance and the soft magnetic properties are improved by sintering. Here, the high resistance means that the electrical resistivity ρ measured with a bulk body is 10 2 Ω · cm 2 or more. When ρ is less than 10 2 Ω · cm 2 , eddy current loss in the high frequency region becomes large.

このような高抵抗軟磁性物質としては、各種軟磁性フェライトが好ましい。そして、軟磁性フェライトとしては、Li、Mn、Zn、Mg、Ni、Cu等を1種類あるいは2種類以上含むフェライト等が挙げられる。このうち、高周波数特性が高い点で、Ni−Znフェライト、Ni−Cu−Znフェライト等のNi系フェライトが好ましい。なお、各種軟磁性フェライト等の高抵抗軟磁性物質は、通常1種のみ用いられるが、場合によっては2種以上併用してもよい。本発明ではNi−Cu−Znフェライトを用いる。 As such a high resistance soft magnetic substance, various soft magnetic ferrites are preferable. And as a soft magnetic ferrite, the ferrite etc. which contain Li, Mn, Zn, Mg, Ni, Cu etc. 1 type or 2 types or more are mentioned. Among these, Ni-based ferrites such as Ni-Zn ferrite and Ni-Cu-Zn ferrite are preferable because of high high frequency characteristics. Only one type of high-resistance soft magnetic material such as various soft magnetic ferrites is usually used, but two or more types may be used in some cases. In the present invention, Ni—Cu—Zn ferrite is used.

また、前記高抵抗軟磁性物質を得るための手段として、軟磁性金属間に目的のフェライトの量論比となるよう、鉄粉とLi、Mn、Zn、Mg、Ni、Cu等の酸化物を混合し酸化雰囲気中700℃以上の温度で焼成することにより、鉄粉が酸化し体積膨張することにより収縮することなく焼結と同時にフェライト化し、高抵抗軟磁性物質となる。この時、鉄粉と前記酸化物と他高抵抗軟磁性物質を混合すれば、体積変化量を調整できる。 Further, as a means for obtaining the high resistance soft magnetic material, iron powder and oxides such as Li, Mn, Zn, Mg, Ni, and Cu are used so as to achieve a desired ferrite stoichiometric ratio between the soft magnetic metals. When mixed and baked at a temperature of 700 ° C. or higher in an oxidizing atmosphere, the iron powder is oxidized and volume-expanded so that it does not shrink and becomes ferrite at the same time as sintering, and becomes a high-resistance soft magnetic material. At this time, if the iron powder, the oxide, and other high-resistance soft magnetic materials are mixed, the amount of volume change can be adjusted.

前記鉄粉と前記酸化物の平均粒径は0.01−2.00μm程度が望ましい。また高抵抗軟磁性物質を混合する際も、平均粒径0.01−1.00μm程度が望ましい。 The average particle size of the iron powder and the oxide is preferably about 0.01 to 2.00 μm. Further, when mixing the high resistance soft magnetic substance, it is desirable that the average particle size is about 0.01 to 1.00 μm.

本発明では軟磁性金属粒子と、焼成後高抵抗軟磁性物質となる鉄粉末、金属酸化物に加えてB粉末、V粉末をそれぞれ焼成後の高抵抗軟磁性物質に対し1.0wt%以下加える。これにより、高抵抗軟磁性物質の焼結を促進する効果がある。B粉末、V粉末はそれぞれ1.0wt%より多く加えると複合軟磁性材料の磁気特性を損なう。 In the present invention, soft magnetic metal particles, iron powder that becomes a high-resistance soft magnetic material after firing, and metal oxide, in addition to B 2 O 3 powder and V 2 O 5 powder, are applied to the high-resistance soft magnetic material after firing. Add 1.0 wt% or less. This has the effect of promoting the sintering of the high resistance soft magnetic material. If the B 2 O 3 powder and the V 2 O 5 powder are each added in an amount of more than 1.0 wt%, the magnetic properties of the composite soft magnetic material are impaired.

本発明では、非磁性金属酸化物層を形成した前記軟磁性金属と、鉄粉末と金属酸化物粉末あるいは、鉄粉末と金属酸化物粉末と高抵抗軟磁性粉末を分散剤と結合剤等と混合分散したものを、金型に入れ、室温−250℃の温度条件下で100−2000MPaの範囲で成型し、トロイダル形状の成型体を得ることが出来る。 In the present invention, the soft magnetic metal on which the nonmagnetic metal oxide layer is formed, and iron powder and metal oxide powder, or iron powder, metal oxide powder, and high resistance soft magnetic powder are mixed with a dispersing agent and a binder. The dispersed product is put into a mold and molded in a range of 100 to 2000 MPa under a temperature condition of room temperature to 250 ° C. to obtain a toroidal shaped molded body.

焼成は管状バッチ炉を用いて前記成型体を、酸化雰囲気中にて700−850℃の範囲で焼成し、トロイダルコア形状の試料を得ることが出来る。 Firing can be performed by firing the molded body in a range of 700 to 850 ° C. in an oxidizing atmosphere using a tubular batch furnace to obtain a sample having a toroidal core shape.

本発明で作製した試料は、外形15mm、内径6mm、厚み1.6mm程度のトロイダルコア形状である。
The sample produced by the present invention has a toroidal core shape having an outer diameter of 15 mm, an inner diameter of 6 mm, and a thickness of about 1.6 mm.

このようにして作製したトロイダルコア形状の試料の電磁気特性である磁束密度Bm、コアロス特性を測定評価について、磁束密度Bmは磁界8000A/mにおける磁束密度Bm値を直流B−Hカーブ測定機にて測定して評価できる。一方、コアロス特性は交流B−Hカーブ測定機を用いて測定周波数100kHz、測定磁束密度200mTで測定を行い評価できる。
Measurement and evaluation of magnetic flux density Bm and core loss characteristics, which are electromagnetic characteristics, of the toroidal core-shaped sample thus produced. Magnetic flux density Bm is obtained by measuring the magnetic flux density Bm value at a magnetic field of 8000 A / m with a DC BH curve measuring machine. Can be measured and evaluated. On the other hand, the core loss characteristic can be evaluated by measuring at a measurement frequency of 100 kHz and a measurement magnetic flux density of 200 mT using an AC BH curve measuring machine.

得られた測定値は、磁束密度Bmが480mT以上であり、コアロスPcvが4000kW/m3以下である場合、好適な磁気特性であると判断した。
The obtained measured value was judged to be suitable magnetic characteristics when the magnetic flux density Bm was 480 mT or more and the core loss Pcv was 4000 kW / m 3 or less.

得られた複合軟磁性物質の断面構造の模式図を図1に示した。1は軟磁性金属粒子であり、2の非磁性金属酸化物層が形成されている。1の軟磁性金属粒子の周りは高抵抗軟磁性物質で構成されており、高抵抗軟磁性物質の粒径の評価は、4の軟磁性金属粒子三重点近傍で行った。
A schematic diagram of a cross-sectional structure of the obtained composite soft magnetic material is shown in FIG. Reference numeral 1 denotes soft magnetic metal particles, and a nonmagnetic metal oxide layer 2 is formed. The periphery of 1 soft magnetic metal particles is composed of a high resistance soft magnetic material, and the particle size of the high resistance soft magnetic material was evaluated in the vicinity of 4 soft magnetic metal particle triple points.

高抵抗軟磁性物質の粒径は、複合軟磁性物質の断面を鏡面研磨後、酸エッチングを施し、電子顕微鏡を用い2000倍の倍率で観察した画像を、パソコンで、画像解析ソフトMac−View ver4.0 を用いてフェライト粒を認識させ、円形近似された高抵抗軟磁性物質粒の面積より高抵抗軟磁性物質粒径を算出できる。
測定する高抵抗軟磁性物質粒は、図1で示される軟磁性金属粒子三重点近傍の高抵抗軟磁性物質粒をn=5の平均値を用いて得られた値である。
The particle diameter of the high-resistance soft magnetic material is determined by mirror-polishing the cross section of the composite soft magnetic material, acid etching, and observing the image at a magnification of 2000 using an electron microscope on a personal computer using the image analysis software Mac-View ver4. 0.0 is used to recognize the ferrite grains, and the particle diameter of the high resistance soft magnetic material can be calculated from the area of the circularly approximated high resistance soft magnetic material grains.
The high resistance soft magnetic material particles to be measured are values obtained by using the average value of n = 5 for the high resistance soft magnetic material particles in the vicinity of the triple point of the soft magnetic metal particles shown in FIG.

得られた複合軟磁性物質の断面積比率、軟磁性金属断面積比率、高抵抗軟磁性物質断面積比率は、次のようにして求めることが出来る。複合軟磁性物質の断面を鏡面研磨後、酸エッチングを施し、電子顕微鏡を用い500倍の倍率で観察した画像を、パソコンで、画像解析ソフトMac−View ver4.0 を用いて、軟磁性金属断面、高抵抗軟磁性物質断面をそれぞれ認識させ、画像全体に占める割合をそれぞれ算出する。断面積比率はそれぞれ軟磁性金属断面積比率と高抵抗軟磁性物質断面積比率を足し合わせたものとなる。
The cross-sectional area ratio, the soft magnetic metal cross-sectional area ratio, and the high resistance soft magnetic material cross-sectional area ratio of the obtained composite soft magnetic material can be obtained as follows. The cross-section of the composite soft magnetic material is mirror-polished, acid-etched, and an image observed at a magnification of 500 times using an electron microscope is used to create a cross-section of the soft magnetic metal with a computer using image analysis software Mac-View ver4.0. The cross section of the high-resistance soft magnetic material is recognized, and the ratio of the entire image is calculated. The sectional area ratio is the sum of the sectional area ratio of the soft magnetic metal and the sectional area ratio of the high resistance soft magnetic material.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。本発明は、その趣旨を逸脱しない範囲で様々な変形が可能である。 The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment. The present invention can be variously modified without departing from the spirit of the present invention.

以下に本願発明について実施例を用いて更に詳述する。 Hereinafter, the present invention will be described in further detail using examples.

表1に実施例及び比較例を示す

Figure 2017045892
Table 1 shows examples and comparative examples.
Figure 2017045892

軟磁性金属粒子はガスアトマイズ法により作製されたFe−9.5%Si−5.5%Al粉末を篩い分けによって粒度を調整し、平均粒径65μmのものと平均粒径28μmのものを準備した。この粉末の表面にAl膜を形成するため、粉末を磁性皿に入れ、バッチ炉で空気雰囲気下、昇温速度10℃/minで600℃まで昇温し30min保持し、降温速度10℃/minで降温し熱処理を行った。また、Al膜を形成しない水準には熱処理を行わないものを準備した。 Soft magnetic metal particles were prepared by adjusting the particle size by sieving Fe-9.5% Si-5.5% Al powder produced by gas atomization method, and having an average particle size of 65 μm and an average particle size of 28 μm. . In order to form an Al 2 O 3 film on the surface of this powder, the powder was put in a magnetic dish, heated in a batch furnace to 600 ° C. at a temperature rising rate of 10 ° C./min in an air atmosphere, maintained for 30 minutes, and a temperature falling rate of 10 The temperature was lowered at ° C./min and heat treatment was performed. In addition, a material not subjected to heat treatment was prepared to a level at which no Al 2 O 3 film was formed.

熱処理したFe−9.5%Si−5.5%Al粉末をインパルス加熱溶融抽出法により単位重量当たりの酸素量を測定した。またBET法により単位重量当たりの比表面積を測定した。これよりFe−9.5%Si−5.5%Al粉末表面に形成されたAl膜の厚みを算出した。 The amount of oxygen per unit weight of the heat-treated Fe-9.5% Si-5.5% Al powder was measured by an impulse heating melt extraction method. The specific surface area per unit weight was measured by the BET method. From this, the thickness of the Al 2 O 3 film formed on the surface of the Fe-9.5% Si-5.5% Al powder was calculated.

高抵抗軟磁性物質として、Fe:48mol%、CuO:20mol%、ZnO:27mol%、残部がNiOの組成となるようにFe、CuO、ZnO、NiO粉末を秤量し、これに所定量のイオン交換水を溶媒として鋼鉄製ボールミルにて24時間湿式混合を行った。加熱炉を用いて、得られた混合粉末を最高温度700℃で10時間仮焼きした後、これを炉冷し、30メッシュのふるいで解砕した。解砕された仮焼き物を所定量のイオン交換水を溶媒として鋼鉄製ボールミルにて60時間微粉砕した。粉砕されたスラリー状の微粉体を乾燥し解砕し、平均粒径0.3μm程度のフェライト粉末を得た。 Fe 2 O 3 : 48 mol%, CuO: 20 mol%, ZnO: 27 mol%, and Fe 2 O 3 , CuO, ZnO, NiO powder are weighed so that the balance is NiO. Then, wet mixing was performed for 24 hours in a steel ball mill using a predetermined amount of ion-exchanged water as a solvent. The obtained mixed powder was calcined at a maximum temperature of 700 ° C. for 10 hours using a heating furnace, then cooled in a furnace and crushed with a 30-mesh sieve. The pulverized calcined product was finely pulverized in a steel ball mill for 60 hours using a predetermined amount of ion-exchanged water as a solvent. The pulverized slurry fine powder was dried and crushed to obtain a ferrite powder having an average particle size of about 0.3 μm.

他方、Fe粉末、CuO、ZnO、NiO粉末をFeが全量酸化してFeになった場合、Fe:48mol%、CuO:20mol%、ZnO:27mol%、残部がNiOの組成となるよう、CuO、ZnO、NiO粉末を秤量し、さらには前出のフェライト粉末に対し、フェライト化後の焼成後体積比率で、Fe粉末、CuO、ZnO、NiO粉末が焼成後フェライト化したものが75vol%、フェライト粉末が25vol%になるよう、フェライト粉末を秤量し、複合軟磁性物質中の総フェライト量に対してそれぞれ、0.5wt%になるようB粉末、V粉末を秤量し、鋼鉄製ボールミルにて10時間混合した。混合したスラリー状の微粉体を150℃で乾燥し解砕し、CuO、ZnO、NiO粉末、フェライト粉末、B粉末、V粉末の混合物を得た。 On the other hand, in the case where Fe powder, CuO, ZnO, and NiO powder are all oxidized to Fe 2 O 3 , the composition is Fe 2 O 3 : 48 mol%, CuO: 20 mol%, ZnO: 27 mol%, and the balance is NiO. CuO, ZnO, and NiO powders were weighed so that the volume ratios after firing were changed to Fe powder, CuO, ZnO, and NiO powders after firing. The ferrite powder is weighed so that the volume of the ferrite powder is 75 vol% and the volume of the ferrite powder is 25 vol%, and the B 2 O 3 powder and V 2 O 5 are each 0.5 wt% with respect to the total amount of ferrite in the composite soft magnetic material. The powder was weighed and mixed for 10 hours in a steel ball mill. The mixed slurry fine powder was dried at 150 ° C. and pulverized to obtain a mixture of CuO, ZnO, NiO powder, ferrite powder, B 2 O 3 powder, and V 2 O 5 powder.

粒度と調整し熱処理されたFe−9.5%Si−5.5%Al粉末とCuO、ZnO、NiO粉末、フェライト粉末、B粉末、V粉末の混合物と残りのFe粉末を複合軟磁性材料の軟磁性金属粒子と高抵抗軟磁性物質の所定の比率になるよう秤量し、バインダーとしてポリビニルアルコール6%水溶液を10wt%と過度の乾燥を防ぐためにジグリセリンを1wt%添加したものを、自転公転ミキサーで自転500rpm公転1500rpmで5分間混合した。得られたスラリー状のものを100℃で乾燥し、メノウ鉢で粉砕しFe−9.5%Si−5.5%Al粉末とCuO、ZnO、NiO粉末、フェライト粉末、B粉末、V粉末とFe粉末の混合粉末を得た。 The particle size and adjust heat-treated Fe-9.5% Si-5.5% Al powder and CuO, ZnO, NiO powder, ferrite powder, B 2 O 3 powder, a mixture of V 2 O 5 powder and the rest of Fe powder Was weighed so as to have a predetermined ratio of the soft magnetic metal particles of the composite soft magnetic material and the high resistance soft magnetic substance, and 10 wt% of a 6% aqueous solution of polyvinyl alcohol as a binder and 1 wt% of diglycerin were added to prevent excessive drying. The product was mixed for 5 minutes at a rotation speed of 500 rpm and a rotation speed of 1500 rpm with a rotation and revolution mixer. The obtained slurry was dried at 100 ° C., pulverized in an agate bowl, Fe-9.5% Si-5.5% Al powder and CuO, ZnO, NiO powder, ferrite powder, B 2 O 3 powder, A mixed powder of V 2 O 5 powder and Fe powder was obtained.

得られた混合粉末を適量秤量し、均一に金型に振り込み室温下成型圧1200MPaあるいは1700MPaでプレスして成型体を得た。なお、特に記載がない場合は、1700MPaで作製したサンプルである。 An appropriate amount of the obtained mixed powder was weighed, uniformly transferred into a mold, and pressed at room temperature at a molding pressure of 1200 MPa or 1700 MPa to obtain a molded body. In addition, when there is no description in particular, it is a sample produced at 1700 MPa.

得られた成型体を管状炉にて、空気雰囲気下1℃/minで500℃まで昇温し500℃から所定の焼成温度まで3℃/minで昇温し、2時間保持後、室温まで5℃/minで降温し焼結体コアを得た。 The obtained molded body was heated to 500 ° C. in an air atmosphere at 1 ° C./min in a tubular furnace, heated from 500 ° C. to a predetermined firing temperature at 3 ° C./min, held for 2 hours, and then allowed to reach room temperature. The temperature was lowered at ° C./min to obtain a sintered body core.

得られた焼結体コアについて、磁束密度BmとコアロスPcvを評価した。磁束密度Bmは直流磁化試験装置(メトロン技研株式会社)を用いてBHカーブを測定し、測定磁界8000A/mの時の磁束密度Bm値を求めた。コアロスPcvは交流BHアナライザ(岩通計測社製SY−8258)を用いて周波数100kHz、測定磁束密度200mTの条件で測定した。 About the obtained sintered compact core, magnetic flux density Bm and core loss Pcv were evaluated. For the magnetic flux density Bm, a BH curve was measured using a DC magnetization test apparatus (Metron Giken Co., Ltd.), and a magnetic flux density Bm value at a measurement magnetic field of 8000 A / m was obtained. The core loss Pcv was measured using an AC BH analyzer (SY-8258 manufactured by Iwatatsu Keiki Co., Ltd.) under the conditions of a frequency of 100 kHz and a measurement magnetic flux density of 200 mT.

実施例1−3は、焼成後の体積比率が軟磁性金属粒子:高抵抗軟磁性物質=0.90:0.10、0.85:0.15、0.80:0.20となるよう、熱処理した平均粒径65μmのFe−9.5%Si−5.5%Al粉末と鉄粉末、NiO粉末CuO粉末、ZnO粉末とフェライト粉末とB粉末、V粉末を混合し、成型し、750℃で焼成し得た焼結体コアの金属断面積比率、フェライト断面積比率、複合軟磁性材料の断面積比率、フェライト粒径、磁束密度Bm、コアロスPcvを表1に示した。 In Example 1-3, the volume ratio after firing becomes soft magnetic metal particles: high resistance soft magnetic material = 0.90: 0.10, 0.85: 0.15, 0.80: 0.20. , Fe-9.5% Si-5.5 % Al powder and iron powder having an average particle size of 65μm was heat-treated, NiO powder CuO powders, ZnO powder and ferrite powder and B 2 O 3 powder, a V 2 O 5 powder mix Table 1 shows the metal cross-sectional area ratio, ferrite cross-sectional area ratio, composite soft magnetic material cross-sectional area ratio, ferrite particle diameter, magnetic flux density Bm, and core loss Pcv of the sintered core that can be molded and fired at 750 ° C. Indicated.

これに対し比較例1では、成後の体積比率が軟磁性金属粒子:高抵抗軟磁性物質=0.80:0.20となるよう、熱処理した平均粒径65μmのFe−9.5%Si−5.5%Al粉末とフェライト粉末とB粉末、V粉末を混合し、成型し、750℃で焼成し得た焼結体コアの金属断面積比率、フェライト断面積比率、複合軟磁性材料の断面積比率、フェライト粒径、磁束密度Bm、コアロスPcvを表1に示した。 On the other hand, in Comparative Example 1, Fe-9.5% Si having an average particle diameter of 65 μm was heat-treated so that the volume ratio after the formation was soft magnetic metal particles: high resistance soft magnetic material = 0.80: 0.20. -5.5% Al powder, ferrite powder, B 2 O 3 powder, V 2 O 5 powder mixed, molded and sintered at 750 ° C, metal cross-sectional area ratio, ferrite cross-sectional area ratio Table 1 shows the cross-sectional area ratio, ferrite particle size, magnetic flux density Bm, and core loss Pcv of the composite soft magnetic material.

実施例1−3は比較例1に対して、同じ焼成温度で、体積比率より若干充填度が向上し、請求項の範囲のフェライト粒径となることで、磁束密度Bm、コアロスPcvが改善している。高抵抗軟磁性物質の原料を鉄粉末、NiO粉末CuO粉末、ZnO粉末とフェライト粉末とすることで、複合軟磁性材料の断面積比率が上がり、かつフェライト粒径が粒成長している。
一般に磁性材料は空隙がある場合磁束が通りにくくなり、磁束密度Bmが減少しコアロスPcvが増加するといわれている。また、フェライトは粒径が小さいほど磁束が通過する粒界が増え、磁束が通りにくくなるといわれている。複合軟磁性材料の場合、軟磁性金属間の高抵抗軟磁性物質を通る磁束が通りやすいほど磁束密度Bmが上がりコアロスPcvが減少するが、軟磁性金属間に空隙が多い場合軟磁性金属間のフェライトが磁束を通しにくくなる。同様に、フェライト粒径が小さく磁束が通る粒界が多いほど複合軟磁性材料を通る磁束は通りにくくなる。これより、複合軟磁性材料の断面積比率が上がり空隙が減少し、フェライト粒径が大きくなることで、複合軟磁性材料の磁束密度BmとコアロスPcvが向上したものと推測する。
In Example 1-3, the degree of filling is slightly higher than the volume ratio at the same firing temperature as in Comparative Example 1, and the ferrite particle size is in the range of the claims, whereby the magnetic flux density Bm and the core loss Pcv are improved. ing. By using iron powder, NiO powder CuO powder, ZnO powder and ferrite powder as the raw material of the high resistance soft magnetic substance, the cross-sectional area ratio of the composite soft magnetic material is increased, and the ferrite particle size grows.
In general, it is said that a magnetic material is difficult to pass a magnetic flux when there is a gap, the magnetic flux density Bm decreases, and the core loss Pcv increases. In addition, it is said that the smaller the particle size of ferrite, the more the grain boundaries through which the magnetic flux passes and the harder the magnetic flux passes. In the case of a composite soft magnetic material, the magnetic flux density Bm increases and the core loss Pcv decreases as the magnetic flux passing through the high resistance soft magnetic material between the soft magnetic metals increases. Ferrite becomes difficult to pass magnetic flux. Similarly, the smaller the ferrite grain size and the more grain boundaries through which the magnetic flux passes, the more difficult the magnetic flux through the composite soft magnetic material will pass. From this, it is presumed that the magnetic flux density Bm and the core loss Pcv of the composite soft magnetic material are improved by increasing the cross-sectional area ratio of the composite soft magnetic material and decreasing the voids and increasing the ferrite particle size.

実施例4は焼成後の体積比率が軟磁性金属粒子:高抵抗軟磁性物質=0.85:0.15となるよう、熱処理した平均粒径65μmのFe−9.5%Si−5.5%Al粉末と鉄粉末、NiO粉末CuO粉末、ZnO粉末とフェライト粉末とB粉末、V粉末を混合し、成型し、800℃で焼成し得た焼結体コアの金属断面積比率、フェライト断面積比率、複合軟磁性材料の断面積比率、フェライト粒径、磁束密度Bm、コアロスPcvを表1に示した。 In Example 4, Fe-9.5% Si-5.5 having an average particle diameter of 65 μm was heat-treated so that the volume ratio after firing was soft magnetic metal particles: high resistance soft magnetic material = 0.85: 0.15. % Al powder and iron powder, NiO powder CuO powder, ZnO powder and ferrite powder, B 2 O 3 powder, V 2 O 5 powder are mixed, molded, and sintered at 800 ° C. Table 1 shows the area ratio, the ferrite cross-sectional area ratio, the cross-sectional area ratio of the composite soft magnetic material, the ferrite particle diameter, the magnetic flux density Bm, and the core loss Pcv.

比較例2は焼成後の体積比率が軟磁性金属粒子:高抵抗軟磁性物質=0.85:0.15となるよう、熱処理した平均粒径65μmのFe−9.5%Si−5.5%Al粉末と鉄粉末、NiO粉末CuO粉末、ZnO粉末とフェライト粉末とB粉末、V粉末を混合し、成型し、900℃で焼成し得た焼結体コアの金属断面積比率、フェライト断面積比率、複合軟磁性材料の断面積比率、フェライト粒径、磁束密度Bm、コアロスPcvを表1に示した。 Comparative Example 2 was Fe-9.5% Si-5.5 having an average particle diameter of 65 μm and heat-treated so that the volume ratio after firing was soft magnetic metal particles: high resistance soft magnetic material = 0.85: 0.15. % Al powder and iron powder, NiO powder CuO powder, ZnO powder and ferrite powder, B 2 O 3 powder, V 2 O 5 powder are mixed, molded and fired at 900 ° C. Table 1 shows the area ratio, the ferrite cross-sectional area ratio, the cross-sectional area ratio of the composite soft magnetic material, the ferrite particle diameter, the magnetic flux density Bm, and the core loss Pcv.

これより、本発明では900℃以上の温度での焼成では好適な磁気特性を得ることができなかった。これはFe−9.5%Si−5.5%Alとフェライトが反応をして組成が変化しているためである。このためフェライト粒径は小さくなってしまい磁気特性が悪化したと考えられる。 Thus, in the present invention, suitable magnetic properties could not be obtained by firing at a temperature of 900 ° C. or higher. This is because Fe-9.5% Si-5.5% Al reacts with ferrite to change the composition. For this reason, it is considered that the ferrite grain size is reduced and the magnetic properties are deteriorated.

比較例3では、焼成後の体積比率が軟磁性金属粒子:高抵抗軟磁性物質=0.85:0.15となるよう、熱処理した平均粒径65μmのFe−9.5%Si−5.5%Al粉末とフェライト粉末とB粉末、V粉末を混合し、成型し、900℃で焼成し得た焼結体コアの金属断面積比率、フェライト断面積比率、複合軟磁性材料の断面積比率、フェライト粒径、磁束密度Bm、コアロスPcvを表1に示した。 In Comparative Example 3, Fe-9.5% Si-5. With an average particle size of 65 μm heat-treated so that the volume ratio after firing was soft magnetic metal particles: high resistance soft magnetic material = 0.85: 0.15. 5% Al powder, ferrite powder, B 2 O 3 powder, and V 2 O 5 powder are mixed, molded, and fired at 900 ° C. The metal cross-sectional area ratio, ferrite cross-sectional area ratio, composite softness ratio Table 1 shows the cross-sectional area ratio, ferrite particle size, magnetic flux density Bm, and core loss Pcv of the magnetic material.

比較例3では磁気特性が悪く、コアロスPcvは測定できなかった。比較例3では高抵抗軟磁性物質をフェライト粉末のみで作製したが、焼成温度が900℃の場合でも体積充填度が低くかつ比較例2と同様にFe−9.5%Si−5.5%Alとフェライトの反応が起こり磁気特性が悪化したと思われる。 In Comparative Example 3, the magnetic properties were poor and the core loss Pcv could not be measured. In Comparative Example 3, the high-resistance soft magnetic material was made of only ferrite powder. However, even when the firing temperature was 900 ° C., the volume filling degree was low and Fe-9.5% Si-5.5% as in Comparative Example 2. It seems that the reaction between Al and ferrite caused the magnetic properties to deteriorate.

比較例4は、焼成後の体積比率が軟磁性金属粒子:高抵抗軟磁性物質=0.80:0.20となるよう、熱処理した平均粒径65μmのFe−9.5%Si−5.5%Al粉末と鉄粉末、NiO粉末CuO粉末、ZnO粉末とフェライト粉末を混合し、成型し、750℃で焼成し得た焼結体コアの金属断面積比率、フェライト断面積比率、複合軟磁性材料の断面積比率、フェライト粒径、磁束密度Bm、コアロスPcvを表1に示した。 In Comparative Example 4, Fe-9.5% Si-5. With an average particle diameter of 65 μm was heat-treated so that the volume ratio after firing was soft magnetic metal particles: high resistance soft magnetic material = 0.80: 0.20. 5% Al powder and iron powder, NiO powder CuO powder, ZnO powder and ferrite powder are mixed, molded and fired at 750 ° C, metal cross-sectional area ratio, ferrite cross-sectional area ratio, composite soft magnetic Table 1 shows the cross-sectional area ratio, ferrite particle size, magnetic flux density Bm, and core loss Pcv of the material.

比較例4は実施例3に対しB粉末、V粉末を添加せずに焼成した水準で、フェライトの粒成長が促進されず、表1の値となり、十分な体積充填度を得ているにもかかわらずコアロス値が悪化した。 Comparative Example 4 is a level fired without adding B 2 O 3 powder and V 2 O 5 powder to Example 3, and the ferrite grain growth is not promoted, and the values shown in Table 1 are obtained. The core loss value deteriorated even though

比較例5は、焼成後の体積比率が軟磁性金属粒子:高抵抗軟磁性物質=0.80:0.20となるよう、熱処理せず表面にAl層を形成しなかった平均粒径65μmのFe−9.5%Si−5.5%Al粉末と鉄粉末、NiO粉末CuO粉末、ZnO粉末とフェライト粉末とB粉末、V粉末を混合し、成型し、750℃で焼成し得た焼結体コアの金属断面積比率、フェライト断面積比率、複合軟磁性材料の断面比率、フェライト粒径、磁束密度Bm、コアロスPcvを表1に示した。 Comparative Example 5 is an average particle in which the Al 2 O 3 layer was not formed on the surface without heat treatment so that the volume ratio after firing was soft magnetic metal particles: high resistance soft magnetic material = 0.80: 0.20 Fe-9.5% Si-5.5% Al powder and iron powder having a diameter of 65 μm, NiO powder, CuO powder, ZnO powder, ferrite powder, B 2 O 3 powder, V 2 O 5 powder are mixed and molded, Table 1 shows the metal cross-sectional area ratio, ferrite cross-sectional area ratio, composite soft magnetic material cross-sectional ratio, ferrite particle size, magnetic flux density Bm, and core loss Pcv of the sintered body core that can be fired at 750 ° C.

比較例5では空気雰囲気中の750℃焼成で、磁束密度Bmは減少し、コアロスPcvが増加した。十分な断面積充填度を得たがフェライト粒径が小さくなっており、Fe−9.5%Si−5.5%Al粉末と鉄粉末、NiO粉末CuO粉末、ZnO粉末が著しく反応しコアロス値が悪化したと推測される。 In Comparative Example 5, the magnetic flux density Bm decreased and the core loss Pcv increased by firing at 750 ° C. in an air atmosphere. Although sufficient cross-sectional area filling degree was obtained, the ferrite particle size was small, and Fe-9.5% Si-5.5% Al powder and iron powder, NiO powder CuO powder, ZnO powder reacted significantly, and the core loss value Is estimated to have deteriorated.

実施例5,6及び比較例6は、焼成後の体積比率が軟磁性金属粒子:高抵抗軟磁性物質=0.80:0.20となるよう、熱処理しAl膜厚がそれぞれ12、126、231μmとなるよう熱処理した平均粒径65μmのFe−9.5%Si−5.5%Al粉末と鉄粉末、NiO粉末CuO粉末、ZnO粉末とフェライト粉末とB粉末、V粉末を混合し、Al2O3膜厚が12μmのサンプルは1200MPaで成型し、Al膜厚が126、231μmのサンプルは1700MPaで成型し、750℃で焼成し得た焼結体コアの金属断面積比率、フェライト断面積比率、複合軟磁性材料の断面積比率、フェライト粒径、磁束密度Bm、コアロスPcvを表1に示した。 Examples 5 and 6 and Comparative Example 6, the fired volume ratio soft magnetic metal particles: high resistance soft magnetic substance = 0.80: 0.20 and so as, heat-treated Al 2 O 3 film thickness, respectively 12 126, 231 μm Fe-9.5% Si-5.5% Al powder and iron powder, NiO powder CuO powder, ZnO powder, ferrite powder and B 2 O 3 powder with an average particle diameter of 65 μm, V 2 O 5 powder was mixed, a sample with an Al 2 O 3 film thickness of 12 μm was molded at 1200 MPa, a sample with an Al 2 O 3 film thickness of 126, 231 μm was molded at 1700 MPa and sintered at 750 ° C. Table 1 shows the metal cross-sectional area ratio, ferrite cross-sectional area ratio, composite soft magnetic material cross-sectional area ratio, ferrite grain size, magnetic flux density Bm, and core loss Pcv.

実施例5,6では良好な磁気特性を示したが、比較例6では磁束密度Bmは減少し、コアロスPcvは増加した。比較例6ではAl膜厚が厚いため、非磁性層であるAl2O3膜自体が磁束が通ることを阻害し磁気特性が悪化したと推測されるが、Al膜を厚くするために熱処理時間を延ばしたため内部酸化が進行しFeそのものが酸化鉄となり軟磁性金属自体の磁気特性が悪化したことと厳密には区別できていない。実施例5は実施例3に対しAl膜が薄いにもかかわらず実施例3より磁束密度Bmが小さく、コアロスPcvが増加しているのは、比較して低い成型圧でサンプルを作製し、複合軟磁性材料の断面積比率が低くなったためである。実施例と同じ軟磁性金属粒子の添加量でも軟磁性金属粒子の間隔が大きくなり、フェライトの焼結が進まず粒径も小さくなっている。これより、磁束密度Bmは減少し、コアロスPcvは増加したものと考えられるが、十分磁気特性としては良好である。 In Examples 5 and 6, good magnetic characteristics were shown, but in Comparative Example 6, the magnetic flux density Bm decreased and the core loss Pcv increased. In Comparative Example 6, since the Al 2 O 3 film thickness is thick, it is estimated that the Al 2 O 3 film itself, which is a non-magnetic layer, hinders magnetic flux from passing through and the magnetic characteristics deteriorated, but the Al 2 O 3 film is thickened. In addition, since the heat treatment time is extended, internal oxidation proceeds, Fe itself becomes iron oxide, and the magnetic properties of the soft magnetic metal itself are deteriorated. In Example 5, the magnetic flux density Bm is smaller than that in Example 3 and the core loss Pcv is increased compared to Example 3 even though the Al 2 O 3 film is thinner. This is because the cross-sectional area ratio of the composite soft magnetic material is lowered. Even when the same amount of soft magnetic metal particles as in the examples is added, the interval between the soft magnetic metal particles becomes large, and the sintering of ferrite does not proceed and the particle size becomes small. From this, it is considered that the magnetic flux density Bm is decreased and the core loss Pcv is increased, but the magnetic characteristics are sufficiently good.

実施例7−8では、焼成後の体積比率が軟磁性金属粒子:高抵抗軟磁性物質=0.90:0.10、0.85:0.15、0.80:0.20となるよう、熱処理した平均粒径28μmのFe−9.5%Si−5.5%Al粉末と鉄粉末、NiO粉末CuO粉末、ZnO粉末とフェライト粉末とB粉末、V粉末を混合し、成型し、750℃で焼成し得た焼結体コアの金属断面積比率、フェライト断面積比率、複合軟磁性材料の断面積比率、フェライト粒径、磁束密度Bm、コアロスPcvを表1に示した。 In Example 7-8, the volume ratio after firing was soft magnetic metal particles: high resistance soft magnetic material = 0.90: 0.10, 0.85: 0.15, 0.80: 0.20. , Fe-9.5% Si-5.5% Al powder and iron powder, NiO powder CuO powder, ZnO powder, ferrite powder, B 2 O 3 powder and V 2 O 5 powder with an average particle size of 28 μm after heat treatment were mixed Table 1 shows the metal cross-sectional area ratio, ferrite cross-sectional area ratio, composite soft magnetic material cross-sectional area ratio, ferrite particle diameter, magnetic flux density Bm, and core loss Pcv of the sintered core that can be molded and fired at 750 ° C. Indicated.

実施例7−8では軟磁性金属の平均粒径を小さくすることにより、実施例1−3に対し磁束密度Bmは若干減少したが、コアロスPcvは一層の改善がみられた。コアロスPcvはヒステリシス損失と渦電流損失からなり、一般に軟磁性金属の粒径を小さくした場合、渦電流損失が減少するとされている。実施例5−7でもFe−9.5%Si−5.5%Al粉末の平均粒径を小さくすることで渦電流損失が減少し、コアロスPcvが減少したと考えられる。 In Example 7-8, by reducing the average particle diameter of the soft magnetic metal, the magnetic flux density Bm was slightly reduced compared to Example 1-3, but the core loss Pcv was further improved. The core loss Pcv is composed of hysteresis loss and eddy current loss. Generally, when the particle size of the soft magnetic metal is reduced, the eddy current loss is reduced. In Example 5-7, it is considered that the eddy current loss was reduced and the core loss Pcv was reduced by reducing the average particle size of the Fe-9.5% Si-5.5% Al powder.

以上のように、実施例1−9では複合軟磁性材料の断面積比率、軟磁性金属の断面積比率、高抵抗軟磁性物質の断面積比率、高抵抗軟磁性物質の粒径と複合軟磁性材料コアの磁束密度BmとコアロスPcvにいて相関を見出すことが出来た。このような構成にすることで複合軟磁性物質のコアにおいて、磁束密度Bmが高く、コアロスPcvが小さい有用なコアを実現可能である。 As described above, in Example 1-9, the cross-sectional area ratio of the composite soft magnetic material, the cross-sectional area ratio of the soft magnetic metal, the cross-sectional area ratio of the high-resistance soft magnetic material, the particle size of the high-resistance soft magnetic material, and the composite soft magnetic A correlation was found between the magnetic flux density Bm of the material core and the core loss Pcv. By adopting such a configuration, it is possible to realize a useful core having a high magnetic flux density Bm and a small core loss Pcv in the core of the composite soft magnetic material.

図1は、本発明の複合軟磁性材料の断面の模式図である。FIG. 1 is a schematic view of a cross section of the composite soft magnetic material of the present invention.

1…軟磁性金属粒子
2…非磁性酸化物層
3…高抵抗軟磁性物質
4…軟磁性金属粒子の三重点
DESCRIPTION OF SYMBOLS 1 ... Soft magnetic metal particle 2 ... Nonmagnetic oxide layer 3 ... High resistance soft magnetic substance 4 ... Triple point of soft magnetic metal particle

Claims (3)

軟磁性金属粒子の金属間が高抵抗軟磁性物質で構成されている複合軟磁性材料であって、前記高抵抗軟磁性物質の粒子径が2.0μm以上であり、
前記軟磁性金属粒子の前記複合軟磁性材料における断面積比率が0.70−0.85であり、前記高抵抗軟磁性物質の断面積比率が0.08−0.19であり、かつ前記軟磁性金属と前記高抵抗軟磁性物質を合わせた断面積比率が0.87−0.95であり、
前記軟磁性金属粒子と前記高抵抗軟磁性物質の界面に、非磁性金属酸化物の層が介在しており、前記非磁性金属酸化物の層の厚さが12−126nmである
ことを特徴とする複合軟磁性材料。
A composite soft magnetic material in which a metal between soft magnetic metal particles is composed of a high resistance soft magnetic material, and the particle diameter of the high resistance soft magnetic material is 2.0 μm or more,
The cross-sectional area ratio of the soft magnetic metal particles in the composite soft magnetic material is 0.70-0.85, the cross-sectional area ratio of the high-resistance soft magnetic material is 0.08-0.19, and the soft magnetic metal particles The cross-sectional area ratio of the magnetic metal and the high-resistance soft magnetic material is 0.87-0.95,
A nonmagnetic metal oxide layer is interposed at the interface between the soft magnetic metal particles and the high resistance soft magnetic material, and the thickness of the nonmagnetic metal oxide layer is 12 to 126 nm. Composite soft magnetic material.
高抵抗軟磁性物質層に高抵抗軟磁性物質層に対してB、Vをいずれかあるいは、両方を0.05−1.00wt%含む請求項1の複合軟磁性材料。
The composite soft magnetic material according to claim 1, wherein the high resistance soft magnetic material layer contains 0.05 to 1.00 wt% of either or both of B 2 O 3 and V 2 O 5 with respect to the high resistance soft magnetic material layer.
軟磁性金属粒子の金属間が高抵抗軟磁性物質で構成されている、複合軟磁性材料の製造方法であって、
軟磁性金属粒子と高抵抗軟磁性物質原料を混合する工程と
得られた混合物を加圧成型して成形体を得る工程と、
前記成形体を焼成して焼成体とする工程とを備え、
前記高抵抗軟磁性物質原料が鉄粉末と金属酸化物粉末を含み、
前記前記成形体を焼成して焼成体とする工程が酸化雰囲気であることを特徴とする、
複合軟磁性材料の製造方法。
A method for producing a composite soft magnetic material, wherein a metal between soft magnetic metal particles is composed of a high resistance soft magnetic material,
A step of mixing soft magnetic metal particles and a high-resistance soft magnetic material raw material, a step of pressure-molding the obtained mixture to obtain a molded body,
A step of firing the molded body to obtain a fired body,
The high resistance soft magnetic material raw material includes iron powder and metal oxide powder,
The step of firing the molded body to form a fired body is an oxidizing atmosphere,
A method for producing a composite soft magnetic material.
JP2015168064A 2015-08-27 2015-08-27 Composite soft magnetic material and manufacturing method thereof Active JP6582745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015168064A JP6582745B2 (en) 2015-08-27 2015-08-27 Composite soft magnetic material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015168064A JP6582745B2 (en) 2015-08-27 2015-08-27 Composite soft magnetic material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2017045892A true JP2017045892A (en) 2017-03-02
JP6582745B2 JP6582745B2 (en) 2019-10-02

Family

ID=58211721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015168064A Active JP6582745B2 (en) 2015-08-27 2015-08-27 Composite soft magnetic material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6582745B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031399A1 (en) * 2017-08-10 2019-02-14 住友電気工業株式会社 Method for manufacturing powder magnetic core, and method for manufacturing electromagnetic component
WO2020195842A1 (en) * 2019-03-22 2020-10-01 日本特殊陶業株式会社 Compressed powder magnetic core
CN112661501A (en) * 2021-01-08 2021-04-16 广安市华蓥山领创电子有限公司 NiZn ferrite material for high-frequency power conversion and preparation method thereof
JP2022029569A (en) * 2020-08-05 2022-02-18 株式会社タムラ製作所 Powder magnetic core and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005113169A (en) * 2003-10-03 2005-04-28 Matsushita Electric Ind Co Ltd Composite sintered magnetic material, its production method, and magnetic element obtained by using the composite sintered magnetic material
US20150022308A1 (en) * 2013-07-22 2015-01-22 Samsung Electro-Mechanics Co., Ltd. Magnetic material, method for manufacturing the same, and electronic component including the same
WO2015019576A1 (en) * 2013-08-07 2015-02-12 パナソニックIpマネジメント株式会社 Composite magnetic material, coil component using same, and power supply device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005113169A (en) * 2003-10-03 2005-04-28 Matsushita Electric Ind Co Ltd Composite sintered magnetic material, its production method, and magnetic element obtained by using the composite sintered magnetic material
US20150022308A1 (en) * 2013-07-22 2015-01-22 Samsung Electro-Mechanics Co., Ltd. Magnetic material, method for manufacturing the same, and electronic component including the same
WO2015019576A1 (en) * 2013-08-07 2015-02-12 パナソニックIpマネジメント株式会社 Composite magnetic material, coil component using same, and power supply device
US20160151836A1 (en) * 2013-08-07 2016-06-02 Panasonic Intellectual Property Management Co., Ltd. Composite magnetic material, coil component using same, and power supply device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031399A1 (en) * 2017-08-10 2019-02-14 住友電気工業株式会社 Method for manufacturing powder magnetic core, and method for manufacturing electromagnetic component
JPWO2019031399A1 (en) * 2017-08-10 2020-02-06 住友電気工業株式会社 Manufacturing method of dust core, manufacturing method of electromagnetic parts
US11211198B2 (en) 2017-08-10 2021-12-28 Sumitomo Electric Industries, Ltd. Method for manufacturing powder magnetic core, and method for manufacturing electromagnetic component
WO2020195842A1 (en) * 2019-03-22 2020-10-01 日本特殊陶業株式会社 Compressed powder magnetic core
JPWO2020195842A1 (en) * 2019-03-22 2021-04-30 日本特殊陶業株式会社 Powder magnetic core
KR20210068552A (en) * 2019-03-22 2021-06-09 니뽄 도쿠슈 도교 가부시키가이샤 compacted magnetic core
KR102375078B1 (en) 2019-03-22 2022-03-15 니뽄 도쿠슈 도교 가부시키가이샤 compacted magnetic core
JP2022029569A (en) * 2020-08-05 2022-02-18 株式会社タムラ製作所 Powder magnetic core and manufacturing method thereof
JP7202333B2 (en) 2020-08-05 2023-01-11 株式会社タムラ製作所 Powder magnetic core and its manufacturing method
CN112661501A (en) * 2021-01-08 2021-04-16 广安市华蓥山领创电子有限公司 NiZn ferrite material for high-frequency power conversion and preparation method thereof

Also Published As

Publication number Publication date
JP6582745B2 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
TWI294321B (en) Method for manufacturing of insulated soft magnetic metal powder formed body
JP5099480B2 (en) Soft magnetic metal powder, green compact, and method for producing soft magnetic metal powder
WO2010073590A1 (en) Composite soft magnetic material and method for producing same
JP5501970B2 (en) Powder magnetic core and manufacturing method thereof
JP5374537B2 (en) Soft magnetic powder, granulated powder, dust core, electromagnetic component, and method for manufacturing dust core
JP6582745B2 (en) Composite soft magnetic material and manufacturing method thereof
JP2007019134A (en) Method of manufacturing composite magnetic material
JP2009302420A (en) Dust core and manufacturing method thereof
JP7045905B2 (en) Soft magnetic powder and its manufacturing method
JP2015233119A (en) Soft magnetic metal powder, and soft magnetic metal powder compact core arranged by use thereof
JP2015233120A (en) Soft magnetic metal powder, and soft magnetic metal powder compact core arranged by use thereof
JP6667727B2 (en) Manufacturing method of dust core, manufacturing method of electromagnetic parts
JP2015233118A (en) Soft magnetic metal powder, and soft magnetic metal powder compact core arranged by use thereof
JP4534523B2 (en) Method for producing composite sintered magnetic material
JP2010236020A (en) Soft magnetic composite material, method for producing the same, and electromagnetic circuit component
JP2009246256A (en) High-strength high-resistivity low loss composite soft magnetic material, its method for manufacturing, and electromagnetic circuit component
JP2015088529A (en) Powder-compact magnetic core, powder for magnetic core, and manufacturing method thereof
JP4618557B2 (en) Soft magnetic alloy compact and manufacturing method thereof
JP2009141346A (en) High-strength high-resistivity low-loss composite soft magnetic material and method of manufacturing the same, and electromagnetic circuit component
JP2001085211A (en) Soft magnetic particle, soft magnetic molded body, and their manufacture
JP6179245B2 (en) SOFT MAGNETIC COMPOSITION AND METHOD FOR PRODUCING THE SAME, MAGNETIC CORE, AND COIL TYPE ELECTRONIC COMPONENT
JP2006183121A (en) Iron based powder for powder magnetic core and powder magnetic core using the same
JP2010185126A (en) Composite soft magnetic material and method for producing the same
JP2022168543A (en) Magnetic metal/ferrite composite and method of producing the same
JP5682725B1 (en) Soft magnetic metal powder and soft magnetic metal powder core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190404

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190819

R150 Certificate of patent or registration of utility model

Ref document number: 6582745

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150