JP2017044347A - Motor valve - Google Patents

Motor valve Download PDF

Info

Publication number
JP2017044347A
JP2017044347A JP2016225871A JP2016225871A JP2017044347A JP 2017044347 A JP2017044347 A JP 2017044347A JP 2016225871 A JP2016225871 A JP 2016225871A JP 2016225871 A JP2016225871 A JP 2016225871A JP 2017044347 A JP2017044347 A JP 2017044347A
Authority
JP
Japan
Prior art keywords
valve
flow rate
chamber
inlet
valve seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016225871A
Other languages
Japanese (ja)
Other versions
JP6194403B2 (en
Inventor
原田 貴雄
Takao Harada
貴雄 原田
佐藤 雅也
Masaya Sato
雅也 佐藤
伊東 雅晴
Masaharu Ito
雅晴 伊東
文太 成川
Bunta Narukawa
文太 成川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2016225871A priority Critical patent/JP6194403B2/en
Publication of JP2017044347A publication Critical patent/JP2017044347A/en
Application granted granted Critical
Publication of JP6194403B2 publication Critical patent/JP6194403B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lift Valve (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a motor valve capable of controlling a flow rate in a high precise manner at the time of flowing a small flow rate and capable of flowing fluid so as not to produce pressure loss as much as possible at the time of flowing a large flow rate without making any large-sized formation of a valve main body, a complex formation of an inner structure and increasing in processing or assembling cost and the like.SOLUTION: A movable valve seat body 70 formed with a main valve port 23 for forming a flow passage for a small flow rate facing from a first inlet/outlet port 11 to a second inlet/outlet port 12 is placed between a valve chamber 21 and a lower chamber 22. The movable valve seat body 70 has its lower part that is slidably fitted and inserted into the lower chamber 22 and may act also as a float-type check valve body for opening/shutting off a flow passage for a large flow rate facing from a second inlet/outlet port 12 to the first inlet/outlet port 11. The movable valve seat body 70 has a valve seat plate part 72 having its outer peripheral part contacted with or removed from an opening end edge part 22a of the valve chamber at the lower chamber so as to open or shut off the flow passage for a large flow rate, and the valve seat plate part is arranged in the valve chamber 21.SELECTED DRAWING: Figure 3

Description

本発明は、ヒートポンプ式冷暖房システム等に組み込まれて使用される電動弁に係り、特に、正流れ時(小流量流通時)は流量を高精度に制御し得、逆流れ時(大流量流通時)には圧力損失を可及的に低減できるようにした電動弁に関する。   The present invention relates to an electric valve used by being incorporated in a heat pump type air conditioning system or the like, and in particular, the flow rate can be controlled with high accuracy during normal flow (when flowing a small flow rate), and during reverse flow (when flowing a large flow rate). ) Relates to a motor-operated valve capable of reducing pressure loss as much as possible.

図6にヒートポンプ式冷暖房システムの一例を示す。この冷暖房システム100は、圧縮機101、流路切換器102、室外熱交換器(凝縮器)103、室内熱交換器(蒸発器)104の他、省エネ効率等を向上させるため、通常は1つでよい膨張弁を二つ備えている(ディストリビュータ等は図示省略)。すなわち、室外熱交換器103の近くに第1膨張弁105が配置され、室内熱交換器104の近くに第2膨張弁106が配置されている。膨張弁105、106としては感温式(機械式)のものが用いられている。また、圧力損失を可及的に低減するため、これらの第1及び第2膨張弁105、106に並列に第1及び第2逆止弁108、109が配置されている。   FIG. 6 shows an example of a heat pump type air conditioning system. This cooling / heating system 100 is usually provided with a compressor 101, a flow path switch 102, an outdoor heat exchanger (condenser) 103, an indoor heat exchanger (evaporator) 104, and in order to improve energy saving efficiency and the like. There are two expansion valves (distributors etc. are not shown). That is, the first expansion valve 105 is disposed near the outdoor heat exchanger 103, and the second expansion valve 106 is disposed near the indoor heat exchanger 104. As the expansion valves 105 and 106, temperature-sensitive (mechanical) type valves are used. Further, in order to reduce the pressure loss as much as possible, the first and second check valves 108 and 109 are arranged in parallel with the first and second expansion valves 105 and 106.

この冷暖房システム100においては、冷房時には、圧縮機101で圧縮された冷媒ガスは、図の実線矢印で示される如くに、例えば四方弁等からなる流路切換器102から室外熱交換器103に導入され、ここで外気と熱交換して凝縮し、この凝縮した冷媒が第1逆止弁108を通って(第1膨張弁105をバイパスして)、第2膨張弁106に流入し、ここで断熱膨張した後、室内熱交換器104に流入し、室内熱交換器104にて室内空気と熱交換して蒸発し、室内を冷房する。   In the cooling / heating system 100, during cooling, the refrigerant gas compressed by the compressor 101 is introduced into the outdoor heat exchanger 103 from a flow path switch 102 formed of, for example, a four-way valve, as indicated by a solid arrow in the figure. Here, heat is exchanged with the outside air to condense, and the condensed refrigerant passes through the first check valve 108 (bypassing the first expansion valve 105) and flows into the second expansion valve 106, where After adiabatic expansion, the air flows into the indoor heat exchanger 104, heat is exchanged with the indoor air in the indoor heat exchanger 104, evaporates, and the room is cooled.

それに対し、暖房時には、圧縮機101で圧縮された冷媒ガスは、図の破線矢印で示される如くに、流路切換器102から室内熱交換器104に導入され、ここで室内空気と熱交換して凝縮し、室内を暖房した後、第2逆止弁109を通って(第2膨張弁106をバイパスして)、第1膨張弁105に流入し、ここで減圧された後、ディストリビュータを介して室外熱交換器103に導入され、ここで蒸発して圧縮機101に戻る。   On the other hand, at the time of heating, the refrigerant gas compressed by the compressor 101 is introduced from the flow path switch 102 to the indoor heat exchanger 104 and exchanges heat with the indoor air, as indicated by broken line arrows in the figure. After condensing and heating the room, it passes through the second check valve 109 (bypassing the second expansion valve 106) and flows into the first expansion valve 105, where it is depressurized and then passed through the distributor. Then, it is introduced into the outdoor heat exchanger 103, where it evaporates and returns to the compressor 101.

このように、冷暖房システム100では、正流れ時(冷房時)は、冷媒を第1膨張弁105を通さずに第1逆止弁108を通じて第2膨張弁106に導き、この第2膨張弁106で流量を調整し、逆流れ時(暖房時)は、冷媒を第2膨張弁106を通さずに第2逆止弁109を通じて第1膨張弁105に導き、この第1膨張弁105で流量を調整するようにされており、逆止弁108、109を膨張弁105、106に並列に組み込むことにより、圧力損失を可及的に低減するようにしている。   As described above, in the cooling / heating system 100, during normal flow (cooling), the refrigerant is guided to the second expansion valve 106 through the first check valve 108 without passing through the first expansion valve 105, and this second expansion valve 106. In the reverse flow (heating), the refrigerant is guided to the first expansion valve 105 through the second check valve 109 without passing through the second expansion valve 106, and the flow rate is adjusted by the first expansion valve 105. By adjusting the check valves 108 and 109 in parallel with the expansion valves 105 and 106, the pressure loss is reduced as much as possible.

ところで、近年、上記した如くの冷暖房システム100においては、省エネ効率等を一層向上させるべく、上記感温式(機械式)の膨張弁105、106に代えて、リフト量、すなわち、弁口の実効開口面積を任意に制御可能な電子制御式電動弁を用いることが検討されている。   Incidentally, in recent years, in the cooling / heating system 100 as described above, in order to further improve the energy saving efficiency and the like, instead of the temperature-sensitive (mechanical) expansion valves 105 and 106, the lift amount, that is, the effectiveness of the valve port is effective. The use of an electronically controlled motor-operated valve that can arbitrarily control the opening area has been studied.

以下、電子制御式電動弁の一例を図7を参照しながら説明する。図示例の電動弁10’は、下部大径部25aと上部小径部25bを有し、前記下部大径部25aの下端部に弁体24が一体に設けられた弁軸25と、前記弁体24が接離する弁口23が形成された弁座23Aが設けられるとともに、導管(継手)からなる第1入出口11及び第2入出口12が接続された弁室21を有する弁本体15と、この弁本体15に環状連結具44を介してその下端部が溶接により密封接合されたキャン40と、このキャン40の内周に所定の間隙αをあけて配在されたロータ30と、このロータ30を回転駆動すべく前記キャン40に外嵌されたステータ50Aと、前記ロータ30と前記弁体24との間に配在され、前記ロータ30の回転を利用して前記弁体24を前記弁口23に接離させるねじ送り機構とを備え、前記弁口23に対する弁体24のリフト量を変化させることにより冷媒の通過流量を制御するようになっている。   Hereinafter, an example of the electronically controlled motor-operated valve will be described with reference to FIG. The illustrated motor-operated valve 10 'has a lower large-diameter portion 25a and an upper small-diameter portion 25b, a valve shaft 25 in which a valve body 24 is integrally provided at a lower end portion of the lower large-diameter portion 25a, and the valve body. A valve main body 15 having a valve chamber 21 to which a first inlet / outlet 11 and a second inlet / outlet 12 made of a conduit (joint) are connected; A can 40 whose lower end is sealed and welded to the valve main body 15 via an annular connector 44, a rotor 30 disposed with a predetermined gap α on the inner periphery of the can 40, and A stator 50A externally fitted to the can 40 to rotationally drive the rotor 30, and the rotor 30 and the valve body 24 are disposed between the rotor 30 and the valve body 24. A screw feed mechanism that contacts and separates from the valve port 23; So as to control the flow rate through the refrigerant by changing the lift amount of the valve element 24 against the serial valve port 23.

前記ステータ50Aは、ヨーク51、ボビン52、ステータコイル53,53、及び樹脂モールドカバー56等で構成され、前記ロータ30やステータ50A等でステッピングモータ50が構成され、該ステッピングモータ50やねじ送り機構(後述)等で前記弁口23に対する前記弁体24のリフト量を調整するための昇降駆動機構が構成される。   The stator 50A includes a yoke 51, a bobbin 52, stator coils 53 and 53, a resin mold cover 56, and the like. A stepping motor 50 is configured by the rotor 30, the stator 50A, and the like. An elevating drive mechanism for adjusting the lift amount of the valve body 24 with respect to the valve port 23 is configured by (described later) or the like.

前記ロータ30には、支持リング36が一体的に結合されるとともに、この支持リング36に、前記弁軸25及びガイドブッシュ26の外周に配在された下方開口で筒状の弁軸ホルダ32の上部突部がかしめ固定され、これにより、ロータ30、支持リング36及び弁軸ホルダ32が一体的に連結されている。   A support ring 36 is integrally coupled to the rotor 30, and a cylindrical valve shaft holder 32 is formed on the support ring 36 at a lower opening disposed on the outer periphery of the valve shaft 25 and the guide bush 26. The upper protrusion is caulked and fixed, whereby the rotor 30, the support ring 36, and the valve shaft holder 32 are integrally connected.

前記ねじ送り機構は、弁本体15にその下端部26aが圧入固定されるとともに、弁軸25(の下部大径部25a)が摺動自在に内挿された筒状のガイドブッシュ26の外周に形成された固定ねじ部(雄ねじ部)28と、前記弁軸ホルダ32の内周に形成されて前記固定ねじ部28に螺合せしめられた移動ねじ部(雌ねじ部)38とから構成されている。   The screw feed mechanism has a lower end portion 26a press-fitted and fixed to the valve body 15, and a valve shaft 25 (a lower large-diameter portion 25a thereof) is slidably inserted on the outer periphery of a cylindrical guide bush 26. The formed fixed screw portion (male screw portion) 28 and a moving screw portion (female screw portion) 38 formed on the inner periphery of the valve shaft holder 32 and screwed into the fixed screw portion 28 are configured. .

また、前記ガイドブッシュ26の上部小径部26bが弁軸ホルダ32の上部に内挿されるとともに、弁軸ホルダ32の天井部32aの中央(に形成された通し穴)に弁軸25の上部小径部25bが挿通せしめられている。弁軸25の上部小径部25bの上端部にはプッシュナット33が圧入固定されている。   The upper small diameter portion 26b of the guide bush 26 is inserted into the upper portion of the valve shaft holder 32, and the upper small diameter portion of the valve shaft 25 is formed at the center of the ceiling portion 32a of the valve shaft holder 32 (through hole formed therein). 25b is inserted. A push nut 33 is press-fitted and fixed to the upper end portion of the upper small diameter portion 25 b of the valve shaft 25.

また、前記弁軸25は、該弁軸25の上部小径部25bに外挿され、かつ、弁軸ホルダ32の天井部32aと弁軸25における下部大径部25aの上端段丘面との間に縮装された圧縮コイルばねからなる閉弁ばね34によって、常時下方(閉弁方向)に付勢されている。弁軸ホルダ32の天井部32a上でプッシュナット33の外周には、コイルばねからなる復帰ばね35が設けられている。   The valve shaft 25 is extrapolated to the upper small-diameter portion 25b of the valve shaft 25, and between the ceiling portion 32a of the valve shaft holder 32 and the upper terrace surface of the lower large-diameter portion 25a of the valve shaft 25. The valve closing spring 34 composed of a compressed compression coil spring is always urged downward (in the valve closing direction). A return spring 35 made of a coil spring is provided on the outer periphery of the push nut 33 on the ceiling portion 32 a of the valve shaft holder 32.

前記ガイドブッシュ26には、前記ロータ30が所定の閉弁位置まで回転下降せしめられた際、それ以上の回転下降を阻止するための回転下降ストッパ機構の一方を構成する下ストッパ体(固定ストッパ)27が固着され、弁軸ホルダ32には前記ストッパ機構の他方を構成する上ストッパ体(移動ストッパ)37が固着されている。   The guide bush 26 has a lower stopper body (fixed stopper) that constitutes one of rotation lowering stopper mechanisms for preventing further rotation lowering when the rotor 30 is rotated and lowered to a predetermined valve closing position. 27 is fixed, and an upper stopper body (moving stopper) 37 constituting the other of the stopper mechanism is fixed to the valve shaft holder 32.

なお、前記閉弁ばね34は、弁体24が弁口23に着座する閉弁状態において所要のシール圧を得るため(漏れ防止)、及び、弁体24が弁口23に衝接した際の衝撃を緩和するために配備されている。   The valve closing spring 34 is used to obtain a required sealing pressure in a closed state where the valve body 24 is seated on the valve port 23 (to prevent leakage), and when the valve body 24 comes into contact with the valve port 23. Deployed to mitigate impact.

このような構成とされた電動弁10’にあっては、ステータコイル53,53に第1態様で通電励磁パルスを供給することにより、弁本体15に固定されたガイドブッシュ26に対し、ロータ30及び弁軸ホルダ32が一方向に回転せしめられ、ガイドブッシュ26の固定ねじ部28と弁軸ホルダ32の移動ねじ部38とのねじ送りにより、例えば弁軸ホルダ32が下方に移動して弁体24が弁口23(弁座23A)に押し付けられて弁口23が閉じられる(全閉状態)。   In the motor-operated valve 10 ′ configured as described above, the rotor 30 is made to the guide bush 26 fixed to the valve body 15 by supplying energization excitation pulses to the stator coils 53, 53 in the first mode. The valve shaft holder 32 is rotated in one direction, and, for example, the valve shaft holder 32 is moved downward by the screw feed between the fixing screw portion 28 of the guide bush 26 and the moving screw portion 38 of the valve shaft holder 32, so that the valve body. 24 is pressed against the valve port 23 (valve seat 23A) to close the valve port 23 (fully closed state).

弁口23が閉じられた時点では、上ストッパ体37は未だ下ストッパ体27に衝接しておらず、弁体24が弁口23を閉じたままロータ30及び弁軸ホルダ32はさらに回転下降する。この場合、弁軸25(弁体24)は下降しないが、弁軸ホルダ32は下降するため、閉弁ばね34が所定量圧縮せしめられ、その結果、弁体24が弁口23に強く押し付けられるとともに、弁軸ホルダ32の回転下降により、上ストッパ体37が下ストッパ体27に衝接し、その後ステータコイル53,53に対するパルス供給が続行されても弁軸ホルダ32の回転下降は強制的に停止される。   When the valve port 23 is closed, the upper stopper body 37 is not yet in contact with the lower stopper body 27, and the rotor 30 and the valve shaft holder 32 are further rotated and lowered while the valve body 24 remains closed. . In this case, the valve shaft 25 (valve body 24) does not descend, but the valve shaft holder 32 descends, so that the valve closing spring 34 is compressed by a predetermined amount, and as a result, the valve body 24 is strongly pressed against the valve port 23. At the same time, when the valve shaft holder 32 is rotated and lowered, the upper stopper body 37 comes into contact with the lower stopper body 27 and then the rotation and lowering of the valve shaft holder 32 is forcibly stopped even if the pulse supply to the stator coils 53 and 53 is continued. Is done.

一方、ステータコイル53,53に第2態様で通電励磁パルスを供給すると、弁本体15に固定されたガイドブッシュ26に対し、ロータ30及び弁軸ホルダ32が前記と逆方向に回転せしめられ、ガイドブッシュ26の固定ねじ部28と弁軸ホルダ32の移動ねじ部38とのねじ送りにより、今度は弁軸ホルダ32が上方に移動する。この場合、弁軸ホルダ32の回転上昇開始時点(パルス供給開始時点)では、閉弁ばね34が前記のように所定量圧縮せしめられているので、閉弁ばね34が前記所定量分伸長するまでは、前記弁体24が弁口23からは離れず閉弁状態(リフト量=0)のままである。そして、閉弁ばね34が前記所定量分伸長した後、弁軸ホルダ32がさらに回転上昇せしめられると、前記弁体24が弁口23から離れて弁口23が開かれ、冷媒が弁口23を通過する。この場合、ロータ30の回転量により弁体24のリフト量、言い換えれば、弁口23の実効開口面積を任意に細かく調整することができ、ロータ30の回転量は供給パルス数により制御されるため、冷媒流量を高精度に制御することができる(詳細は、特許文献1、2等を参照)。   On the other hand, when the energization excitation pulse is supplied to the stator coils 53, 53 in the second mode, the rotor 30 and the valve shaft holder 32 are rotated in the opposite direction to the guide bush 26 fixed to the valve body 15, and the guides are guided. Due to the screw feed between the fixing screw portion 28 of the bush 26 and the moving screw portion 38 of the valve shaft holder 32, the valve shaft holder 32 is now moved upward. In this case, since the valve closing spring 34 is compressed by a predetermined amount as described above at the time when the rotation of the valve shaft holder 32 starts to rise (when pulse supply starts), until the valve closing spring 34 is extended by the predetermined amount. The valve body 24 does not leave the valve port 23 and remains in the closed state (lift amount = 0). Then, after the valve closing spring 34 is extended by the predetermined amount, when the valve shaft holder 32 is further rotated up, the valve body 24 is separated from the valve port 23, the valve port 23 is opened, and the refrigerant is supplied to the valve port 23. Pass through. In this case, the lift amount of the valve body 24, in other words, the effective opening area of the valve port 23 can be arbitrarily finely adjusted by the rotation amount of the rotor 30, and the rotation amount of the rotor 30 is controlled by the number of supplied pulses. The refrigerant flow rate can be controlled with high accuracy (for details, refer to Patent Documents 1 and 2).

ところが、前記冷暖房システム100に上記した如くの電動弁10’を採用した場合においても、次のような改善すべき課題がある。すなわち、前記冷暖房システム100では、正流れ時(冷房時)は、冷媒を第1膨張弁105を通さずに第1逆止弁108を通じて第2膨張弁106に導き、この第2膨張弁106で流量を調整し、逆流れ時(暖房時)は、冷媒を第2膨張弁106を通さずに第2逆止弁109を通じて第1膨張弁105に導き、この第1膨張弁105で流量を調整するようにされている関係上、逆止弁108、109を膨張弁105、106に並列に組み込むことが不可欠であるが、逆止弁二つを冷媒回路に組み込むことは、その分、継手類などの部品の点数が増大するとともに、配管接続作業にも余計に手間と時間がかかる。   However, even when the motor-operated valve 10 'as described above is employed in the air conditioning system 100, there are the following problems to be improved. That is, in the cooling / heating system 100, during normal flow (cooling), the refrigerant is guided to the second expansion valve 106 through the first check valve 108 without passing through the first expansion valve 105, and the second expansion valve 106 The flow rate is adjusted, and during reverse flow (heating), the refrigerant is guided to the first expansion valve 105 through the second check valve 109 without passing through the second expansion valve 106, and the flow rate is adjusted by the first expansion valve 105. Therefore, it is indispensable to incorporate the check valves 108 and 109 in parallel with the expansion valves 105 and 106. However, incorporating two check valves in the refrigerant circuit is equivalent to the joints. The number of parts such as these increases, and the pipe connection work takes extra time and effort.

そこで、特許文献2には、前記した膨張弁と逆止弁の両機能を併せ持つ電動弁、すなわち、冷媒が一方向に流されるとき(正流れ時=小流量流通時)は、流量制御を行なうべくリフト量(実効開口面積)を所定値以下の特定範囲で細かく制御するようにし、冷媒が他方向に流されるとき(逆流れ時=大流量流通時)は、圧力損失を可及的に低減すべくリフト量(実効開口面積)を最大にするようにしたものが提案されている。   Therefore, Patent Document 2 discloses a motor-operated valve having both functions of the above-described expansion valve and check valve, that is, when the refrigerant is flowed in one direction (at the time of normal flow = at the time of small flow rate flow), flow control is performed. As much as possible, the lift amount (effective opening area) is finely controlled within a specific range below a predetermined value, and when the refrigerant is flowing in the other direction (reverse flow = high flow rate), pressure loss is reduced as much as possible. A device that maximizes the lift amount (effective opening area) has been proposed.

しかしながら、かかる提案の電動弁においては、大流量流通時における圧力損失を低減すべく、弁口の口径を大きくすると、小流量流通時において流量制御を高精度に行なえなくなってしまうという問題がある。   However, in the proposed motor-operated valve, there is a problem that if the diameter of the valve port is increased in order to reduce the pressure loss at the time of a large flow rate, the flow control cannot be performed with high accuracy at the time of a small flow rate.

一方、大流量流通時における圧力損失の低減と小流量流通時の流量制御精度の向上の両立を図るべく、特許文献3に所載のように、第1入出口、弁室、下部室、及び第2入出口が設けられた弁本体と、前記弁室内に配在され、前記第1入出口から第2入出口へ向かう小流量用流路を形成するための主弁口が形成されるとともに、前記第2入出口から第1入出口へ向かう大流量用流路を開通・遮断するためのフロート型の逆止弁体としても機能する可動弁座体と、前記主弁口を通る流量を調整すべく前記弁室内に配在されたニードル型の弁体部を有する弁軸と、該弁軸を昇降させるためのモータと、を備え、小流量流通時には、流量制御を高精度に行なうべく、前記可動弁座体により前記大流量用流路を閉じて、流体を前記弁体部と主弁口との間からのみ流し、大流量流通時には、圧力損失を可及的に低減すべく、前記可動弁座体(逆止弁体)を浮上させて前記大流量用流路を開くように構成された双方向流通型の電動弁が提案されている。   On the other hand, in order to achieve both a reduction in pressure loss at the time of a large flow rate and an improvement in flow control accuracy at the time of a small flow rate, as described in Patent Document 3, the first inlet / outlet, the valve chamber, the lower chamber, and A valve main body provided with a second inlet / outlet and a main valve port arranged in the valve chamber for forming a small flow rate channel from the first inlet / outlet to the second inlet / outlet are formed. A movable valve seat body that also functions as a float type check valve body for opening / closing a flow passage for large flow rate from the second inlet / outlet to the first inlet / outlet, and a flow rate through the main valve port. A valve shaft having a needle-type valve element disposed in the valve chamber to be adjusted, and a motor for raising and lowering the valve shaft. The large flow passage is closed by the movable valve seat, and the fluid flows between the valve body and the main valve port. When the flow rate is large, the bidirectional valve is configured to float the movable valve seat (check valve body) and open the flow path for large flow rate in order to reduce pressure loss as much as possible. A flow-type electric valve has been proposed.

特開2001-50415号公報Japanese Patent Laid-Open No. 2001-50415 特開2009-14056号公報JP 2009-14056 A 特開2009-287913号公報JP 2009-287913 A

しかしながら、上記特許文献3に所載の電動弁では、小流量流通時には、ニードル型の弁体部のみで流量制御を行い、大流量流通時には可動弁座体(逆止弁体)が大流量用流路を自動的に開くようにされているので、小流量流通時の流量制御精度の向上と大流量流通時における圧力損失の低減の両立を図ることができるが、可動弁座体(逆止弁体)が弁軸が配在された弁室に配備され、可動弁座体は弁室の内周壁面を摺動案内面として昇降するようにされているので、可動弁座体が大きなものとなる嫌いがあるとともに、弁室に可動弁座体を昇降させるための比較的大きなスペースが必要となり、その結果、弁本体の大型化、内部構造の複雑化、加工組み立てコストの増大等を招きやすく、費用対効果が課題となっている。   However, in the motor-operated valve described in Patent Document 3, flow control is performed only with a needle-type valve body when a small flow rate is distributed, and a movable valve seat (check valve body) is used for a large flow rate when a large flow rate is distributed. Since the flow path is automatically opened, it is possible to achieve both improvement in flow rate control accuracy at low flow rate and reduction of pressure loss at high flow rate. Valve body) is arranged in the valve chamber in which the valve shaft is arranged, and the movable valve seat body is moved up and down with the inner peripheral wall surface of the valve chamber as a sliding guide surface. And a relatively large space is required in the valve chamber to move the movable valve seat up and down, resulting in an increase in the size of the valve body, a complicated internal structure, and an increase in processing and assembly costs. It is easy and cost effective.

また、この電動弁では、小流量流通時においてニードルによる流量特性に影響を与えない程度の大きさの連通孔を、可動弁座体の側面に設けなければならない。   In addition, in this motor-operated valve, a communication hole having a size that does not affect the flow rate characteristic of the needle when the flow rate is small must be provided on the side surface of the movable valve seat body.

本発明は、このような事情に鑑みてなされたもので、その目的とするところは、弁本体の大型化、内部構造の複雑化、加工組み立てコストの増大等を招くことなく、小流量流通時には流量を高精度に制御し得、大流量流通時には可及的に圧力損失が生じないように流体を流すことのできる費用対効果に優れた電動弁を提供することにある。また構成が簡単であり、流通方向の変更を速やかに安定して行うことができ、動作状態が安定して信頼性を向上させ得る電動弁を提供することにある。   The present invention has been made in view of such circumstances, and its purpose is to increase the valve body size, to increase the complexity of the internal structure, to increase the processing and assembly costs, etc. An object of the present invention is to provide a motor-driven valve that is capable of controlling the flow rate with high accuracy and is capable of flowing a fluid so that a pressure loss does not occur as much as possible when a large flow rate is distributed. It is another object of the present invention to provide a motor-operated valve that has a simple configuration, can change the flow direction quickly and stably, can stably operate, and can improve reliability.

前記目的を達成すべく、本発明に係る電動弁は、基本的には、第1入出口、該第1入出口が開口する弁室、該弁室に連なる下部室、及び前記下部室に連なる第2入出口が設けられた弁本体と、前記弁室と下部室との間に配在され、前記第1入出口から第2入出口へ向かう小流量用流路を形成するための主弁口が形成された可動弁座体と、前記主弁口を通る流量を調整すべく前記弁室内に配在されたニードル型の弁体部を有する弁軸と、該弁軸を昇降させるためのモータと、を備え、前記可動弁座体は、その下部が前記下部室に摺動自在に嵌挿され、前記第2入出口から第1入出口へ向かう大流量用流路を開通・遮断するためのフロート型の逆止弁体としても機能するようにされていることを特徴としている。   In order to achieve the object, the motor-operated valve according to the present invention basically includes a first inlet / outlet, a valve chamber in which the first inlet / outlet opens, a lower chamber connected to the valve chamber, and a lower chamber connected to the valve chamber. A main valve for forming a flow passage for small flow rate disposed between the valve body provided with the second inlet / outlet and the valve chamber and the lower chamber and going from the first inlet / outlet to the second inlet / outlet. A movable valve seat having a port, a valve shaft having a needle-type valve body disposed in the valve chamber to adjust a flow rate through the main valve port, and a valve shaft for raising and lowering the valve shaft A movable valve seat body, the lower part of which is slidably inserted into the lower chamber, and opens and shuts off the flow path for large flow from the second inlet / outlet to the first inlet / outlet. It is also characterized by functioning as a float type check valve body.

前記可動弁座体は、好ましくは、前記大流量用流路を開通・遮断すべく、前記下部室における前記弁室側の開口端縁部にその外周部が接離する弁座板部と、該弁座板部から立ち下がって前記下部室に摺動自在に嵌挿された嵌挿部とを有し、前記弁座板部に前記主弁口が形成されるとともに、前記嵌挿部に前記大流量用流路を形成するための透孔、切欠、溝等の連通路が形成される。   The movable valve seat body preferably has a valve seat plate portion whose outer peripheral portion is in contact with or separated from an opening edge portion on the valve chamber side in the lower chamber in order to open / close the flow passage for large flow rate. An insertion portion that is slidably inserted into the lower chamber after falling from the valve seat plate portion, the main valve port is formed in the valve seat plate portion, and the insertion portion A communication passage such as a through hole, a notch, or a groove for forming the large flow rate channel is formed.

前記大流量用流路は、好ましくは、前記下部室、前記可動弁座体の嵌挿部に形成された透孔、切欠、溝等の連通路、及び前記弁室で構成される。   The flow passage for large flow rate is preferably configured by the lower chamber, a communication passage such as a through hole, a notch, or a groove formed in the insertion portion of the movable valve seat body, and the valve chamber.

本発明に係る電動弁では、フロート型の逆止弁体としても機能する可動弁座体は、大流量用流路を閉じているとき、その大半(嵌挿部)が下部室に摺動自在に嵌挿されており、大流量用流路を開くとき、弁室側に浮上するようにされるので、従来のように可動弁座体の全体が弁室21に配在される場合に比して、構成の簡素化を図ることができる上、最大流通量を減らすことなく、可動弁座体を小さくすることができるとともに、弁室に可動弁座体を昇降させるための大きなスペースは不要となる。   In the motor-operated valve according to the present invention, the movable valve seat that also functions as a float type check valve body can be slid freely in the lower chamber when the large flow passage is closed. When the large flow passage is opened, it floats to the valve chamber side, so that the entire movable valve seat body is distributed in the valve chamber 21 as in the prior art. In addition, the structure can be simplified, the movable valve seat body can be made smaller without reducing the maximum flow rate, and a large space for raising and lowering the movable valve seat body in the valve chamber is unnecessary. It becomes.

そのため、弁本体の小型化、部品コスト、加工組み立てコストの削減等を効果的に図ることができる。   For this reason, it is possible to effectively reduce the size of the valve body, reduce component costs, and reduce processing costs.

本発明に係る電動弁の一実施例の主要部の非流通時(全閉時)の状態を示す部分切欠断面図。The partial cutaway sectional view showing the state at the time of non-circulation (at the time of full closure) of the principal part of one example of the electric valve concerning the present invention. 本発明に係る電動弁の一実施例の主要部の正流れ時(小流量用流通時)の状態を示す部分切欠断面図。The partial notch sectional view which shows the state at the time of the positive flow (at the time of the distribution | circulation for small flow rates) of the principal part of one Example of the motor operated valve which concerns on this invention. 本発明に係る電動弁の一実施例の主要部の逆流れ時(大流量用流通時)の状態を示す部分切欠断面図。The partial notch sectional view which shows the state at the time of the reverse flow (at the time of the distribution | circulation for large flow rates) of the principal part of one Example of the motor operated valve which concerns on this invention. 図1から図3に示される電動弁に使用された可動弁座体の一例を示し、(A)は斜視図、(B)は平面図、(C)は側面図、(D)は底面図。An example of the movable valve seat used for the motor-driven valve shown in FIGS. 1 to 3 is shown, (A) is a perspective view, (B) is a plan view, (C) is a side view, and (D) is a bottom view. . 図1から図3に示される電動弁に使用される可動弁座体の他の例を示し、(A)は斜視図、(B)は平面図、(C)は側面図、(D)は底面図。FIG. 1 shows another example of a movable valve seat used in the motor-operated valve shown in FIGS. 1 to 3, (A) is a perspective view, (B) is a plan view, (C) is a side view, and (D) is a side view. Bottom view. 従来のヒートポンプ式冷暖房システムの一例を示す構成図。The block diagram which shows an example of the conventional heat pump type | formula air conditioning system. 従来の電動弁の一例を示す縦断面図。The longitudinal cross-sectional view which shows an example of the conventional motor operated valve.

以下、本発明に係る電動弁の実施の形態を図面を参照しながら説明する。
図1、図2、図3は、本発明に係る電動弁の一実施例の主要部の部分切欠断面図であり、図1は非流通時(全閉時)、図2は正流れ時(小流量流通時)、図3は逆流れ時(大流量流通時)を示している。なお、本実施例では、流体(冷媒)の流れ方向が第1入出口11→第2入出口12の場合を正流れ(図2)、第2入出口12→第1入出口11の場合を逆流れ(図3)と称す。
Hereinafter, embodiments of a motor-operated valve according to the present invention will be described with reference to the drawings.
1, 2, and 3 are partially cutaway cross-sectional views of the main part of one embodiment of the motor-operated valve according to the present invention. FIG. 1 is a non-flowing state (when fully closed), and FIG. FIG. 3 shows a reverse flow (when a large flow rate is flowing). In the present embodiment, the flow direction of the fluid (refrigerant) is the first inlet / outlet 11 → the second inlet / outlet 12 is the normal flow (FIG. 2), and the second inlet / outlet 12 → the first inlet / outlet 11 is the case. This is referred to as reverse flow (FIG. 3).

また、図示実施例の電動弁10のステッピングモータ50、弁軸25等の基本構成は、前述した図7に示される従来例の電動弁10’と略同じであるので、ここでは、図7に示される従来例の電動弁10’の各部に対応する部分には同一の符号を付して重複説明を省略し、以下は、主要部(特徴部分)を重点的に説明する。   Further, the basic configuration of the stepping motor 50, the valve shaft 25, etc. of the motor-operated valve 10 in the illustrated embodiment is substantially the same as that of the motor-operated valve 10 ′ of the conventional example shown in FIG. 7 described above. The parts corresponding to the respective parts of the conventional motor-operated valve 10 ′ shown in the figure are denoted by the same reference numerals and redundant description is omitted, and the following mainly describes the main parts (characteristic parts).

本実施例の弁本体15には、正流れ方向で見て、順次、第1入出口11、この第1入出口が開口する弁室21、この弁室21に連なる円筒状の下部室22、及び下部室22に連なる第2入出口12が設けられている。   The valve body 15 of the present embodiment includes a first inlet / outlet 11, a valve chamber 21 in which the first inlet / outlet opens, a cylindrical lower chamber 22 connected to the valve chamber 21, in the forward flow direction, And a second inlet / outlet 12 connected to the lower chamber 22.

より詳細には、弁本体15の上部には、ガイドブッシュ26の下部大径部26aが圧入固定される上面開口穴42を有する蓋状部材18が被着嵌合せしめられて溶接により接合されている。蓋状部材の下部には弁軸25が摺動自在に嵌合される案内孔19が設けられている。   More specifically, the lid-like member 18 having the upper surface opening hole 42 into which the lower large diameter portion 26a of the guide bush 26 is press-fitted and fixed is attached and fitted to the upper portion of the valve body 15 and joined by welding. Yes. A guide hole 19 into which the valve shaft 25 is slidably fitted is provided in the lower part of the lid-like member.

弁室21と下部室22との間には、可動弁座体70が配在されている。可動弁座体70には、第1入出口11から第2入出口12へ向かう小流量用流路を形成するための主弁口23が形成されている。   A movable valve seat body 70 is disposed between the valve chamber 21 and the lower chamber 22. The movable valve seat body 70 is formed with a main valve port 23 for forming a small flow rate channel from the first inlet / outlet 11 to the second inlet / outlet 12.

また、可動弁座体70は、その下部が前記下部室22に摺動自在に嵌挿され、前記第2入出口12から第1入出口11へ向かう大流量用流路を開通・遮断するためのフロート型の逆止弁体としても機能するようにされている。   In addition, the movable valve seat body 70 is slidably inserted into the lower chamber 22 so as to open and shut off the large flow passage from the second inlet / outlet 12 to the first inlet / outlet 11. It is designed to function as a float type check valve body.

より詳細には、可動弁座体70は、図1から図3に加えて、図4を参照すればよくわかるように、弁座板部72とこれに連なる円筒状の嵌挿部75とからなっている。弁座板部72は、大流量用流路を開通・遮断すべく、下部室22における弁室21側の開口端縁部22a(これが逆止弁口の弁座に相当する)にその外周部下面側に形成された逆円錐面部からなる逆止弁体部73が接離するようにされている。嵌挿部75は、弁座板部72における逆止弁体部73の下端付近から立ち下がって下部室22に摺動自在に嵌挿されている。   More specifically, the movable valve seat body 70 includes a valve seat plate portion 72 and a cylindrical fitting insertion portion 75 connected to the valve seat plate portion 72, as can be understood by referring to FIG. 4 in addition to FIGS. It has become. The valve seat plate portion 72 has an outer peripheral portion on an opening edge portion 22a on the valve chamber 21 side in the lower chamber 22 (which corresponds to a valve seat of a check valve port) in order to open / close the flow passage for large flow rate. A check valve body portion 73 formed of an inverted conical surface portion formed on the lower surface side is configured to contact and separate. The fitting insertion portion 75 falls from the vicinity of the lower end of the check valve body portion 73 in the valve seat plate portion 72 and is slidably inserted into the lower chamber 22.

可動弁座体70の弁座板部72中央には、弁棒25の下端部に設けられたニードル型の弁体部24により開閉される主弁口23が形成されるとともに、可動弁座体70の嵌挿部75における上部には、大流量用流路を形成すべく4個の円形の透孔76が等角度(90度)間隔で形成されている。   At the center of the valve seat plate portion 72 of the movable valve seat body 70, a main valve port 23 that is opened and closed by a needle type valve body portion 24 provided at the lower end portion of the valve rod 25 is formed, and the movable valve seat body. Four circular through holes 76 are formed at equiangular (90 degrees) intervals in the upper portion of the fitting insertion portion 75 of 70 to form a flow passage for large flow rate.

ここで、本実施例においては、大流量用流路は、前記下部室22、可動弁座体70の嵌挿部75に形成された4個の透孔76、及び弁室21で構成されている。   Here, in this embodiment, the flow passage for large flow rate is configured by the lower chamber 22, four through holes 76 formed in the fitting insertion portion 75 of the movable valve seat body 70, and the valve chamber 21. Yes.

このような構成とされた本実施例の電動弁10においては、図2に示される如くの小流量流通時(正流れ時)には、弁室21の圧力が下部室22の圧力より大きいので、可動弁座体70の逆止弁体部73が下部室22における弁室21側の開口端縁部22a(逆止弁口)に押し付けられ、これによって大流量用流路が閉じられ、第1入出口11から弁室21に導入された冷媒(流体)は、主弁口23と弁体部24との間に形成される隙間を介して下部室22→第2入出口12に流出する。   In the motor-operated valve 10 of the present embodiment having such a configuration, the pressure in the valve chamber 21 is larger than the pressure in the lower chamber 22 when a small flow rate is flowing (at the normal flow) as shown in FIG. The check valve body 73 of the movable valve seat 70 is pressed against the opening end edge 22a (check valve port) on the valve chamber 21 side in the lower chamber 22, thereby closing the flow passage for large flow rate. The refrigerant (fluid) introduced into the valve chamber 21 from the first inlet / outlet 11 flows out from the lower chamber 22 to the second inlet / outlet 12 through a gap formed between the main valve port 23 and the valve body portion 24. .

一方、図3に示される如くの大流量流通時(逆流れ時)には、弁軸25が例えば最大リフト位置まで上昇せしめられる。この場合、弁室21の圧力は下部室22の圧力より小さいので、流体(冷媒)圧力により可動弁座体70が蓋状部材18の下端に接当するまで押し上げられる。これにより、可動弁座体70の逆止弁体部73が下部室22における弁室21側の開口端縁部22a(逆止弁口)から離れるとともに、4個の透孔76が弁室21内へ移動して開口せしめられ、第2入出口12からの冷媒(流体)は、大流量用流路を構成する下部室22→可動弁座体70の嵌挿部75に形成された4個の透孔76→弁室21を通って第1入出口11へと流れる。   On the other hand, the valve shaft 25 is raised to, for example, the maximum lift position during a large flow rate flow (reverse flow) as shown in FIG. In this case, since the pressure in the valve chamber 21 is smaller than the pressure in the lower chamber 22, the movable valve seat body 70 is pushed up by the fluid (refrigerant) pressure until it contacts the lower end of the lid-like member 18. As a result, the check valve body 73 of the movable valve seat 70 is separated from the opening edge 22a (check valve port) on the valve chamber 21 side in the lower chamber 22, and the four through holes 76 are formed in the valve chamber 21. Four refrigerants (fluids) from the second inlet / outlet 12 are formed in the fitting portion 75 of the lower chamber 22 → movable valve seat body 70 constituting the flow passage for large flow rate. Through the valve chamber 21 to the first inlet / outlet 11.

このように本実施例の電動弁10は、小流量流通時には流量を高精度に制御し得、大流量流通時には可及的に圧力損失が生じないように流体を流すことができ、流通方向の変更を速やかに安定して行うことができ、動作状態が安定して信頼性を向上させ得る。   As described above, the motor-operated valve 10 of this embodiment can control the flow rate with high accuracy when the flow rate is small, and can flow the fluid so that pressure loss does not occur as much as possible when the flow rate is large. The change can be performed promptly and stably, and the operation state can be stabilized and the reliability can be improved.

上記に加えて、フロート型の逆止弁体としても機能する可動弁座体70は、大流量用流路を閉じているとき、その大半(嵌挿部75)が下部室22に摺動自在に嵌挿されており、大流量用流路を開くとき、弁室21側に浮上するようにされるので、従来のように可動弁座体の全体が弁室21に配在される場合に比して、構成の簡素化を図ることができる上、最大流通量を減らすことなく、可動弁座体を小さくすることができるとともに、弁室に可動弁座体を昇降させるための大きなスペースは不要となる。   In addition to the above, most of the movable valve seat 70 that also functions as a float type check valve body (the fitting insertion portion 75) is slidable into the lower chamber 22 when the flow passage for large flow rate is closed. When the flow passage for large flow rate is opened, it floats to the valve chamber 21 side. Therefore, when the entire movable valve seat body is distributed in the valve chamber 21 as in the prior art. In comparison, the structure can be simplified, the movable valve seat body can be made smaller without reducing the maximum flow rate, and a large space for raising and lowering the movable valve seat body in the valve chamber is It becomes unnecessary.

そのため、弁本体の小型化、部品コスト、加工組み立てコストの削減等を効果的に図ることができる。   For this reason, it is possible to effectively reduce the size of the valve body, reduce component costs, and reduce processing costs.

なお、可動弁座体70は、材料として、ステンレスや真鍮等の金属で作製されることができる。また可動弁座体70は、プラスチック、アルミニウム等の軽量金属、セラミック、及びゴム等のうちの一つもしくは複数を用いて(例えば硬質プラスチック等で可動弁座体を形成し、その表面に弾力性を持つゴムを被覆するなどして)比較的軽量に作製することも可能である。   The movable valve seat body 70 can be made of a metal such as stainless steel or brass as a material. The movable valve seat body 70 is made of one or a plurality of plastics, lightweight metals such as aluminum, ceramics, rubber, etc. (for example, the movable valve seat body is made of hard plastic or the like, and its surface has elasticity. It can also be made relatively lightweight (for example, by coating rubber with

以上、本発明の実施例について詳述したが、本発明は、前記の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行なうことができるものである。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed.

例えば、上記実施例においては、可動弁座体70の嵌挿部75における上部に大流量用流路を形成すべく4個の円形の透孔76が等角度(90度)間隔で形成されているが、図5に示される如くに、前記透孔76に代えて、嵌挿部75に下側が開口する半レーストラック形の切欠77を形成するようにしてもよい。透孔76や切欠77の個数や形状は適宜変更することができる。また、透孔76や切欠77に代えて縦溝等を形成するようにしてもよい。すなわち、嵌挿部75には、可動弁座体70が上昇したときに下部室22と弁室21とを連通する連通路が設けられれば良く、この連通路の形状は上記の透孔76、切欠77、縦溝等に限定されず、またその個数もいくつであっても良い。   For example, in the above embodiment, four circular through-holes 76 are formed at equiangular (90 degrees) intervals so as to form a flow passage for large flow rate in the upper part of the fitting insertion portion 75 of the movable valve seat body 70. However, as shown in FIG. 5, instead of the through-hole 76, a semi-race track-shaped notch 77 whose lower side opens may be formed in the fitting insertion portion 75. The number and shape of the through holes 76 and the notches 77 can be changed as appropriate. Further, a vertical groove or the like may be formed in place of the through hole 76 and the notch 77. That is, it is only necessary to provide the insertion portion 75 with a communication path that communicates the lower chamber 22 and the valve chamber 21 when the movable valve seat 70 is raised. The number is not limited to the notch 77, the longitudinal groove, and the like.

また、本発明に係る電動弁は、ヒートポンプ式冷暖房システムに適用されるだけではなく、他のシステムにも適用できることは言うまでもない。   Moreover, it cannot be overemphasized that the motor operated valve which concerns on this invention is applicable not only to a heat pump type | formula air conditioning system but to another system.

10 電動弁
11 第1入出口
12 第2入出口
15 弁本体
21 弁室
22 下部室
22a 開口端縁部
23 主弁口
24 弁体部
25 弁軸
50 モータ
70 可動弁座体
72 弁座板部
73 逆止弁体部
75 嵌挿部
76 透孔(連通路)
77 切欠(連通路)
DESCRIPTION OF SYMBOLS 10 Motorized valve 11 1st inlet / outlet 12 2nd inlet / outlet 15 Valve main body 21 Valve chamber 22 Lower chamber 22a Open end edge part 23 Main valve opening 24 Valve body part 25 Valve shaft 50 Motor 70 Movable valve seat body 72 Valve seat board part 73 Check valve body part 75 Insertion part 76 Through hole (communication path)
77 Notch (communication passage)

本発明は、ヒートポンプ式冷暖房システム等に組み込まれて使用される電動弁に係り、特に、正流れ時(小流量流通時)は流量を高精度に制御し得、逆流れ時(大流量流通時)には圧力損失を可及的に低減できるようにした電動弁に関する。   The present invention relates to an electric valve used by being incorporated in a heat pump type air conditioning system or the like, and in particular, the flow rate can be controlled with high accuracy during normal flow (when flowing a small flow rate), and during reverse flow (when flowing a large flow rate). ) Relates to a motor-operated valve capable of reducing pressure loss as much as possible.

図6にヒートポンプ式冷暖房システムの一例を示す。この冷暖房システム100は、圧縮機101、流路切換器102、室外熱交換器(凝縮器)103、室内熱交換器(蒸発器)104の他、省エネ効率等を向上させるため、通常は1つでよい膨張弁を二つ備えている(ディストリビュータ等は図示省略)。すなわち、室外熱交換器103の近くに第1膨張弁105が配置され、室内熱交換器104の近くに第2膨張弁106が配置されている。膨張弁105、106としては感温式(機械式)のものが用いられている。また、圧力損失を可及的に低減するため、これらの第1及び第2膨張弁105、106に並列に第1及び第2逆止弁108、109が配置されている。   FIG. 6 shows an example of a heat pump type air conditioning system. This cooling / heating system 100 is usually provided with a compressor 101, a flow path switch 102, an outdoor heat exchanger (condenser) 103, an indoor heat exchanger (evaporator) 104, and in order to improve energy saving efficiency and the like. There are two expansion valves (distributors etc. are not shown). That is, the first expansion valve 105 is disposed near the outdoor heat exchanger 103, and the second expansion valve 106 is disposed near the indoor heat exchanger 104. As the expansion valves 105 and 106, temperature-sensitive (mechanical) type valves are used. Further, in order to reduce the pressure loss as much as possible, the first and second check valves 108 and 109 are arranged in parallel with the first and second expansion valves 105 and 106.

この冷暖房システム100においては、冷房時には、圧縮機101で圧縮された冷媒ガスは、図の実線矢印で示される如くに、例えば四方弁等からなる流路切換器102から室外熱交換器103に導入され、ここで外気と熱交換して凝縮し、この凝縮した冷媒が第1逆止弁108を通って(第1膨張弁105をバイパスして)、第2膨張弁106に流入し、ここで断熱膨張した後、室内熱交換器104に流入し、室内熱交換器104にて室内空気と熱交換して蒸発し、室内を冷房する。   In the cooling / heating system 100, during cooling, the refrigerant gas compressed by the compressor 101 is introduced into the outdoor heat exchanger 103 from a flow path switch 102 formed of, for example, a four-way valve, as indicated by a solid arrow in the figure. Here, heat is exchanged with the outside air to condense, and the condensed refrigerant passes through the first check valve 108 (bypassing the first expansion valve 105) and flows into the second expansion valve 106, where After adiabatic expansion, the air flows into the indoor heat exchanger 104, heat is exchanged with the indoor air in the indoor heat exchanger 104, evaporates, and the room is cooled.

それに対し、暖房時には、圧縮機101で圧縮された冷媒ガスは、図の破線矢印で示される如くに、流路切換器102から室内熱交換器104に導入され、ここで室内空気と熱交換して凝縮し、室内を暖房した後、第2逆止弁109を通って(第2膨張弁106をバイパスして)、第1膨張弁105に流入し、ここで減圧された後、ディストリビュータを介して室外熱交換器103に導入され、ここで蒸発して圧縮機101に戻る。   On the other hand, at the time of heating, the refrigerant gas compressed by the compressor 101 is introduced from the flow path switch 102 to the indoor heat exchanger 104 and exchanges heat with the indoor air, as indicated by broken line arrows in the figure. After condensing and heating the room, it passes through the second check valve 109 (bypassing the second expansion valve 106) and flows into the first expansion valve 105, where it is depressurized and then passed through the distributor. Then, it is introduced into the outdoor heat exchanger 103, where it evaporates and returns to the compressor 101.

このように、冷暖房システム100では、正流れ時(冷房時)は、冷媒を第1膨張弁105を通さずに第1逆止弁108を通じて第2膨張弁106に導き、この第2膨張弁106で流量を調整し、逆流れ時(暖房時)は、冷媒を第2膨張弁106を通さずに第2逆止弁109を通じて第1膨張弁105に導き、この第1膨張弁105で流量を調整するようにされており、逆止弁108、109を膨張弁105、106に並列に組み込むことにより、圧力損失を可及的に低減するようにしている。   As described above, in the cooling / heating system 100, during normal flow (cooling), the refrigerant is guided to the second expansion valve 106 through the first check valve 108 without passing through the first expansion valve 105, and this second expansion valve 106. In the reverse flow (heating), the refrigerant is guided to the first expansion valve 105 through the second check valve 109 without passing through the second expansion valve 106, and the flow rate is adjusted by the first expansion valve 105. By adjusting the check valves 108 and 109 in parallel with the expansion valves 105 and 106, the pressure loss is reduced as much as possible.

ところで、近年、上記した如くの冷暖房システム100においては、省エネ効率等を一層向上させるべく、上記感温式(機械式)の膨張弁105、106に代えて、リフト量、すなわち、弁口の実効開口面積を任意に制御可能な電子制御式電動弁を用いることが検討されている。   Incidentally, in recent years, in the cooling / heating system 100 as described above, in order to further improve the energy saving efficiency and the like, instead of the temperature-sensitive (mechanical) expansion valves 105 and 106, the lift amount, that is, the effectiveness of the valve port is effective. The use of an electronically controlled motor-operated valve that can arbitrarily control the opening area has been studied.

以下、電子制御式電動弁の一例を図7を参照しながら説明する。図示例の電動弁10’は、下部大径部25aと上部小径部25bを有し、前記下部大径部25aの下端部に弁体24が一体に設けられた弁軸25と、前記弁体24が接離する弁口23が形成された弁座23Aが設けられるとともに、導管(継手)からなる第1入出口11及び第2入出口12が接続された弁室21を有する弁本体15と、この弁本体15に環状連結具44を介してその下端部が溶接により密封接合されたキャン40と、このキャン40の内周に所定の間隙αをあけて配在されたロータ30と、このロータ30を回転駆動すべく前記キャン40に外嵌されたステータ50Aと、前記ロータ30と前記弁体24との間に配在され、前記ロータ30の回転を利用して前記弁体24を前記弁口23に接離させるねじ送り機構とを備え、前記弁口23に対する弁体24のリフト量を変化させることにより冷媒の通過流量を制御するようになっている。   Hereinafter, an example of the electronically controlled motor-operated valve will be described with reference to FIG. The illustrated motor-operated valve 10 'has a lower large-diameter portion 25a and an upper small-diameter portion 25b, a valve shaft 25 in which a valve body 24 is integrally provided at a lower end portion of the lower large-diameter portion 25a, and the valve body. A valve main body 15 having a valve chamber 21 to which a first inlet / outlet 11 and a second inlet / outlet 12 made of a conduit (joint) are connected; A can 40 whose lower end is sealed and welded to the valve main body 15 via an annular connector 44, a rotor 30 disposed with a predetermined gap α on the inner periphery of the can 40, and A stator 50A externally fitted to the can 40 to rotationally drive the rotor 30, and the rotor 30 and the valve body 24 are disposed between the rotor 30 and the valve body 24. A screw feed mechanism that contacts and separates from the valve port 23; So as to control the flow rate through the refrigerant by changing the lift amount of the valve element 24 against the serial valve port 23.

前記ステータ50Aは、ヨーク51、ボビン52、ステータコイル53,53、及び樹脂モールドカバー56等で構成され、前記ロータ30やステータ50A等でステッピングモータ50が構成され、該ステッピングモータ50やねじ送り機構(後述)等で前記弁口23に対する前記弁体24のリフト量を調整するための昇降駆動機構が構成される。   The stator 50A includes a yoke 51, a bobbin 52, stator coils 53 and 53, a resin mold cover 56, and the like. A stepping motor 50 is configured by the rotor 30, the stator 50A, and the like. An elevating drive mechanism for adjusting the lift amount of the valve body 24 with respect to the valve port 23 is configured by (described later) or the like.

前記ロータ30には、支持リング36が一体的に結合されるとともに、この支持リング36に、前記弁軸25及びガイドブッシュ26の外周に配在された下方開口で筒状の弁軸ホルダ32の上部突部がかしめ固定され、これにより、ロータ30、支持リング36及び弁軸ホルダ32が一体的に連結されている。   A support ring 36 is integrally coupled to the rotor 30, and a cylindrical valve shaft holder 32 is formed on the support ring 36 at a lower opening disposed on the outer periphery of the valve shaft 25 and the guide bush 26. The upper protrusion is caulked and fixed, whereby the rotor 30, the support ring 36, and the valve shaft holder 32 are integrally connected.

前記ねじ送り機構は、弁本体15にその下端部26aが圧入固定されるとともに、弁軸25(の下部大径部25a)が摺動自在に内挿された筒状のガイドブッシュ26の外周に形成された固定ねじ部(雄ねじ部)28と、前記弁軸ホルダ32の内周に形成されて前記固定ねじ部28に螺合せしめられた移動ねじ部(雌ねじ部)38とから構成されている。   The screw feed mechanism has a lower end portion 26a press-fitted and fixed to the valve body 15, and a valve shaft 25 (a lower large-diameter portion 25a thereof) is slidably inserted on the outer periphery of a cylindrical guide bush 26. The formed fixed screw portion (male screw portion) 28 and a moving screw portion (female screw portion) 38 formed on the inner periphery of the valve shaft holder 32 and screwed into the fixed screw portion 28 are configured. .

また、前記ガイドブッシュ26の上部小径部26bが弁軸ホルダ32の上部に内挿されるとともに、弁軸ホルダ32の天井部32aの中央(に形成された通し穴)に弁軸25の上部小径部25bが挿通せしめられている。弁軸25の上部小径部25bの上端部にはプッシュナット33が圧入固定されている。   The upper small diameter portion 26b of the guide bush 26 is inserted into the upper portion of the valve shaft holder 32, and the upper small diameter portion of the valve shaft 25 is formed at the center of the ceiling portion 32a of the valve shaft holder 32 (through hole formed therein). 25b is inserted. A push nut 33 is press-fitted and fixed to the upper end portion of the upper small diameter portion 25 b of the valve shaft 25.

また、前記弁軸25は、該弁軸25の上部小径部25bに外挿され、かつ、弁軸ホルダ32の天井部32aと弁軸25における下部大径部25aの上端段丘面との間に縮装された圧縮コイルばねからなる閉弁ばね34によって、常時下方(閉弁方向)に付勢されている。弁軸ホルダ32の天井部32a上でプッシュナット33の外周には、コイルばねからなる復帰ばね35が設けられている。   The valve shaft 25 is extrapolated to the upper small-diameter portion 25b of the valve shaft 25, and between the ceiling portion 32a of the valve shaft holder 32 and the upper terrace surface of the lower large-diameter portion 25a of the valve shaft 25. The valve closing spring 34 composed of a compressed compression coil spring is always urged downward (in the valve closing direction). A return spring 35 made of a coil spring is provided on the outer periphery of the push nut 33 on the ceiling portion 32 a of the valve shaft holder 32.

前記ガイドブッシュ26には、前記ロータ30が所定の閉弁位置まで回転下降せしめられた際、それ以上の回転下降を阻止するための回転下降ストッパ機構の一方を構成する下ストッパ体(固定ストッパ)27が固着され、弁軸ホルダ32には前記ストッパ機構の他方を構成する上ストッパ体(移動ストッパ)37が固着されている。   The guide bush 26 has a lower stopper body (fixed stopper) that constitutes one of rotation lowering stopper mechanisms for preventing further rotation lowering when the rotor 30 is rotated and lowered to a predetermined valve closing position. 27 is fixed, and an upper stopper body (moving stopper) 37 constituting the other of the stopper mechanism is fixed to the valve shaft holder 32.

なお、前記閉弁ばね34は、弁体24が弁口23に着座する閉弁状態において所要のシール圧を得るため(漏れ防止)、及び、弁体24が弁口23に衝接した際の衝撃を緩和するために配備されている。   The valve closing spring 34 is used to obtain a required sealing pressure in a closed state where the valve body 24 is seated on the valve port 23 (to prevent leakage), and when the valve body 24 comes into contact with the valve port 23. Deployed to mitigate impact.

このような構成とされた電動弁10’にあっては、ステータコイル53,53に第1態様で通電励磁パルスを供給することにより、弁本体15に固定されたガイドブッシュ26に対し、ロータ30及び弁軸ホルダ32が一方向に回転せしめられ、ガイドブッシュ26の固定ねじ部28と弁軸ホルダ32の移動ねじ部38とのねじ送りにより、例えば弁軸ホルダ32が下方に移動して弁体24が弁口23(弁座23A)に押し付けられて弁口23が閉じられる(全閉状態)。   In the motor-operated valve 10 ′ configured as described above, the rotor 30 is made to the guide bush 26 fixed to the valve body 15 by supplying energization excitation pulses to the stator coils 53, 53 in the first mode. The valve shaft holder 32 is rotated in one direction, and, for example, the valve shaft holder 32 is moved downward by the screw feed between the fixing screw portion 28 of the guide bush 26 and the moving screw portion 38 of the valve shaft holder 32, so that the valve body. 24 is pressed against the valve port 23 (valve seat 23A) to close the valve port 23 (fully closed state).

弁口23が閉じられた時点では、上ストッパ体37は未だ下ストッパ体27に衝接しておらず、弁体24が弁口23を閉じたままロータ30及び弁軸ホルダ32はさらに回転下降する。この場合、弁軸25(弁体24)は下降しないが、弁軸ホルダ32は下降するため、閉弁ばね34が所定量圧縮せしめられ、その結果、弁体24が弁口23に強く押し付けられるとともに、弁軸ホルダ32の回転下降により、上ストッパ体37が下ストッパ体27に衝接し、その後ステータコイル53,53に対するパルス供給が続行されても弁軸ホルダ32の回転下降は強制的に停止される。   When the valve port 23 is closed, the upper stopper body 37 is not yet in contact with the lower stopper body 27, and the rotor 30 and the valve shaft holder 32 are further rotated and lowered while the valve body 24 remains closed. . In this case, the valve shaft 25 (valve body 24) does not descend, but the valve shaft holder 32 descends, so that the valve closing spring 34 is compressed by a predetermined amount, and as a result, the valve body 24 is strongly pressed against the valve port 23. At the same time, when the valve shaft holder 32 is rotated and lowered, the upper stopper body 37 comes into contact with the lower stopper body 27 and then the rotation and lowering of the valve shaft holder 32 is forcibly stopped even if the pulse supply to the stator coils 53 and 53 is continued. Is done.

一方、ステータコイル53,53に第2態様で通電励磁パルスを供給すると、弁本体15に固定されたガイドブッシュ26に対し、ロータ30及び弁軸ホルダ32が前記と逆方向に回転せしめられ、ガイドブッシュ26の固定ねじ部28と弁軸ホルダ32の移動ねじ部38とのねじ送りにより、今度は弁軸ホルダ32が上方に移動する。この場合、弁軸ホルダ32の回転上昇開始時点(パルス供給開始時点)では、閉弁ばね34が前記のように所定量圧縮せしめられているので、閉弁ばね34が前記所定量分伸長するまでは、前記弁体24が弁口23からは離れず閉弁状態(リフト量=0)のままである。そして、閉弁ばね34が前記所定量分伸長した後、弁軸ホルダ32がさらに回転上昇せしめられると、前記弁体24が弁口23から離れて弁口23が開かれ、冷媒が弁口23を通過する。この場合、ロータ30の回転量により弁体24のリフト量、言い換えれば、弁口23の実効開口面積を任意に細かく調整することができ、ロータ30の回転量は供給パルス数により制御されるため、冷媒流量を高精度に制御することができる(詳細は、特許文献1、2等を参照)。   On the other hand, when the energization excitation pulse is supplied to the stator coils 53, 53 in the second mode, the rotor 30 and the valve shaft holder 32 are rotated in the opposite direction to the guide bush 26 fixed to the valve body 15, and the guides are guided. Due to the screw feed between the fixing screw portion 28 of the bush 26 and the moving screw portion 38 of the valve shaft holder 32, the valve shaft holder 32 is now moved upward. In this case, since the valve closing spring 34 is compressed by a predetermined amount as described above at the time when the rotation of the valve shaft holder 32 starts to rise (when pulse supply starts), until the valve closing spring 34 is extended by the predetermined amount. The valve body 24 does not leave the valve port 23 and remains in the closed state (lift amount = 0). Then, after the valve closing spring 34 is extended by the predetermined amount, when the valve shaft holder 32 is further rotated up, the valve body 24 is separated from the valve port 23, the valve port 23 is opened, and the refrigerant is supplied to the valve port 23. Pass through. In this case, the lift amount of the valve body 24, in other words, the effective opening area of the valve port 23 can be arbitrarily finely adjusted by the rotation amount of the rotor 30, and the rotation amount of the rotor 30 is controlled by the number of supplied pulses. The refrigerant flow rate can be controlled with high accuracy (for details, refer to Patent Documents 1 and 2).

ところが、前記冷暖房システム100に上記した如くの電動弁10’を採用した場合においても、次のような改善すべき課題がある。すなわち、前記冷暖房システム100では、正流れ時(冷房時)は、冷媒を第1膨張弁105を通さずに第1逆止弁108を通じて第2膨張弁106に導き、この第2膨張弁106で流量を調整し、逆流れ時(暖房時)は、冷媒を第2膨張弁106を通さずに第2逆止弁109を通じて第1膨張弁105に導き、この第1膨張弁105で流量を調整するようにされている関係上、逆止弁108、109を膨張弁105、106に並列に組み込むことが不可欠であるが、逆止弁二つを冷媒回路に組み込むことは、その分、継手類などの部品の点数が増大するとともに、配管接続作業にも余計に手間と時間がかかる。   However, even when the motor-operated valve 10 'as described above is employed in the air conditioning system 100, there are the following problems to be improved. That is, in the cooling / heating system 100, during normal flow (cooling), the refrigerant is guided to the second expansion valve 106 through the first check valve 108 without passing through the first expansion valve 105, and the second expansion valve 106 The flow rate is adjusted, and during reverse flow (heating), the refrigerant is guided to the first expansion valve 105 through the second check valve 109 without passing through the second expansion valve 106, and the flow rate is adjusted by the first expansion valve 105. Therefore, it is indispensable to incorporate the check valves 108 and 109 in parallel with the expansion valves 105 and 106. However, incorporating two check valves in the refrigerant circuit is equivalent to the joints. The number of parts such as these increases, and the pipe connection work takes extra time and effort.

そこで、特許文献2には、前記した膨張弁と逆止弁の両機能を併せ持つ電動弁、すなわち、冷媒が一方向に流されるとき(正流れ時=小流量流通時)は、流量制御を行なうべくリフト量(実効開口面積)を所定値以下の特定範囲で細かく制御するようにし、冷媒が他方向に流されるとき(逆流れ時=大流量流通時)は、圧力損失を可及的に低減すべくリフト量(実効開口面積)を最大にするようにしたものが提案されている。   Therefore, Patent Document 2 discloses a motor-operated valve having both functions of the above-described expansion valve and check valve, that is, when the refrigerant is flowed in one direction (at the time of normal flow = at the time of small flow rate flow), flow control is performed. As much as possible, the lift amount (effective opening area) is finely controlled within a specific range below a predetermined value, and when the refrigerant is flowing in the other direction (reverse flow = high flow rate), pressure loss is reduced as much as possible. A device that maximizes the lift amount (effective opening area) has been proposed.

しかしながら、かかる提案の電動弁においては、大流量流通時における圧力損失を低減すべく、弁口の口径を大きくすると、小流量流通時において流量制御を高精度に行なえなくなってしまうという問題がある。   However, in the proposed motor-operated valve, there is a problem that if the diameter of the valve port is increased in order to reduce the pressure loss at the time of a large flow rate, the flow control cannot be performed with high accuracy at the time of a small flow rate.

一方、大流量流通時における圧力損失の低減と小流量流通時の流量制御精度の向上の両立を図るべく、特許文献3に所載のように、第1入出口、弁室、下部室、及び第2入出口が設けられた弁本体と、前記弁室内に配在され、前記第1入出口から第2入出口へ向かう小流量用流路を形成するための主弁口が形成されるとともに、前記第2入出口から第1入出口へ向かう大流量用流路を開通・遮断するためのフロート型の逆止弁体としても機能する可動弁座体と、前記主弁口を通る流量を調整すべく前記弁室内に配在されたニードル型の弁体部を有する弁軸と、該弁軸を昇降させるためのモータと、を備え、小流量流通時には、流量制御を高精度に行なうべく、前記可動弁座体により前記大流量用流路を閉じて、流体を前記弁体部と主弁口との間からのみ流し、大流量流通時には、圧力損失を可及的に低減すべく、前記可動弁座体(逆止弁体)を浮上させて前記大流量用流路を開くように構成された双方向流通型の電動弁が提案されている。   On the other hand, in order to achieve both a reduction in pressure loss at the time of a large flow rate and an improvement in flow control accuracy at the time of a small flow rate, as described in Patent Document 3, the first inlet / outlet, the valve chamber, the lower chamber, and A valve main body provided with a second inlet / outlet and a main valve port arranged in the valve chamber for forming a small flow rate channel from the first inlet / outlet to the second inlet / outlet are formed. A movable valve seat body that also functions as a float type check valve body for opening / closing a flow passage for large flow rate from the second inlet / outlet to the first inlet / outlet, and a flow rate through the main valve port. A valve shaft having a needle-type valve element disposed in the valve chamber to be adjusted, and a motor for raising and lowering the valve shaft. The large flow passage is closed by the movable valve seat, and the fluid flows between the valve body and the main valve port. When the flow rate is large, the bidirectional valve is configured to float the movable valve seat (check valve body) and open the flow path for large flow rate in order to reduce pressure loss as much as possible. A flow-type electric valve has been proposed.

特開2001-50415号公報Japanese Patent Laid-Open No. 2001-50415 特開2009-14056号公報JP 2009-14056 A 特開2009-287913号公報JP 2009-287913 A

しかしながら、上記特許文献3に所載の電動弁では、小流量流通時には、ニードル型の弁体部のみで流量制御を行い、大流量流通時には可動弁座体(逆止弁体)が大流量用流路を自動的に開くようにされているので、小流量流通時の流量制御精度の向上と大流量流通時における圧力損失の低減の両立を図ることができるが、可動弁座体(逆止弁体)が弁軸が配在された弁室に配備され、可動弁座体は弁室の内周壁面を摺動案内面として昇降するようにされているので、可動弁座体が大きなものとなる嫌いがあるとともに、弁室に可動弁座体を昇降させるための比較的大きなスペースが必要となり、その結果、弁本体の大型化、内部構造の複雑化、加工組み立てコストの増大等を招きやすく、費用対効果が課題となっている。   However, in the motor-operated valve described in Patent Document 3, flow control is performed only with a needle-type valve body when a small flow rate is distributed, and a movable valve seat (check valve body) is used for a large flow rate when a large flow rate is distributed. Since the flow path is automatically opened, it is possible to achieve both improvement in flow rate control accuracy at low flow rate and reduction of pressure loss at high flow rate. Valve body) is arranged in the valve chamber in which the valve shaft is arranged, and the movable valve seat body is moved up and down with the inner peripheral wall surface of the valve chamber as a sliding guide surface. And a relatively large space is required in the valve chamber to move the movable valve seat up and down, resulting in an increase in the size of the valve body, a complicated internal structure, and an increase in processing and assembly costs. It is easy and cost effective.

また、この電動弁では、小流量流通時においてニードルによる流量特性に影響を与えない程度の大きさの連通孔を、可動弁座体の側面に設けなければならない。   In addition, in this motor-operated valve, a communication hole having a size that does not affect the flow rate characteristic of the needle when the flow rate is small must be provided on the side surface of the movable valve seat body.

本発明は、このような事情に鑑みてなされたもので、その目的とするところは、弁本体の大型化、内部構造の複雑化、加工組み立てコストの増大等を招くことなく、小流量流通時には流量を高精度に制御し得、大流量流通時には可及的に圧力損失が生じないように流体を流すことのできる費用対効果に優れた電動弁を提供することにある。また構成が簡単であり、流通方向の変更を速やかに安定して行うことができ、動作状態が安定して信頼性を向上させ得る電動弁を提供することにある。   The present invention has been made in view of such circumstances, and its purpose is to increase the valve body size, to increase the complexity of the internal structure, to increase the processing and assembly costs, etc. An object of the present invention is to provide a motor-driven valve that is capable of controlling the flow rate with high accuracy and is capable of flowing a fluid so that a pressure loss does not occur as much as possible when a large flow rate is distributed. It is another object of the present invention to provide a motor-operated valve that has a simple configuration, can change the flow direction quickly and stably, can stably operate, and can improve reliability.

前記目的を達成すべく、本発明に係る電動弁は、基本的には、第1入出口、該第1入出口が開口する弁室、該弁室に連なる下部室、及び前記下部室に連なる第2入出口が設けられた弁本体と、前記弁室と下部室との間に配在され、前記第1入出口から第2入出口へ向かう小流量用流路を形成するための主弁口が形成された可動弁座体と、前記主弁口を通る流量を調整すべく前記弁室内に配在されたニードル型の弁体部を有する弁軸と、該弁軸を昇降させるためのモータと、を備え、前記可動弁座体は、その下部が前記下部室に摺動自在に嵌挿され、前記第2入出口から第1入出口へ向かう大流量用流路を開通・遮断するためのフロート型の逆止弁体としても機能するようにされ、前記可動弁座体は、前記大流量用流路を開通・遮断すべく、前記下部室における前記弁室側の開口端縁部にその外周部が接離する弁座板部を有し、該弁座板部は前記弁室内に配置されていることを特徴としている。 In order to achieve the object, the motor-operated valve according to the present invention basically includes a first inlet / outlet, a valve chamber in which the first inlet / outlet opens, a lower chamber connected to the valve chamber, and a lower chamber connected to the valve chamber. A main valve for forming a flow passage for small flow rate disposed between the valve body provided with the second inlet / outlet and the valve chamber and the lower chamber and going from the first inlet / outlet to the second inlet / outlet. A movable valve seat having a port, a valve shaft having a needle-type valve body disposed in the valve chamber to adjust a flow rate through the main valve port, and a valve shaft for raising and lowering the valve shaft A movable valve seat body, the lower part of which is slidably inserted into the lower chamber, and opens and shuts off the flow path for large flow from the second inlet / outlet to the first inlet / outlet. It is also functions as a check valve of the float type for the movable valve seat body, in order to open and blocking the large flow passage, before A valve seat plate portion that its outer peripheral portion to the opening edge portion of the valve chamber side of the lower chamber and moving away, the valve seat plate portion is characterized by being disposed in the valve chamber.

前記弁座板部は、好ましくは、前記弁本体の上部開口の内径よりも小さい外径に形成されたものである。 The valve seat plate portion is preferably formed to have an outer diameter smaller than the inner diameter of the upper opening of the valve body.

本発明に係る電動弁では、フロート型の逆止弁体としても機能する可動弁座体は、大流量用流路を閉じているとき、その大半(嵌挿部)が下部室に摺動自在に嵌挿されており、大流量用流路を開くとき、弁室側に浮上するようにされるので、従来のように可動弁座体の全体が弁室21に配在される場合に比して、構成の簡素化を図ることができる上、最大流通量を減らすことなく、可動弁座体を小さくすることができるとともに、弁室に可動弁座体の弁座板部を配置するため、可動弁座体を昇降させるための大きなスペースは不要となる。 In the motor-operated valve according to the present invention, the movable valve seat that also functions as a float type check valve body can be slid freely in the lower chamber when the large flow passage is closed. When the large flow passage is opened, it floats to the valve chamber side, so that the entire movable valve seat body is distributed in the valve chamber 21 as in the prior art. and, on can be simplified in construction, without reducing the maximum flow amount, it is possible to reduce the movable valve seat body, to place the valve seat plate portion of the movable valve seat body into the valve chamber Therefore, a large space for raising and lowering the movable valve seat body is unnecessary.

そのため、弁本体の小型化、部品コスト、加工組み立てコストの削減等を効果的に図ることができる。また、弁座板部は、弁本体の上部開口の内径よりも小さい外径に形成することで、弁本体内への可動弁座体の組込みを容易に行うことができ、組立性を向上できる。 For this reason, it is possible to effectively reduce the size of the valve body, reduce component costs, and reduce processing costs. Further, by forming the valve seat plate portion with an outer diameter smaller than the inner diameter of the upper opening of the valve body, the movable valve seat body can be easily incorporated into the valve body, and the assemblability can be improved. .

本発明に係る電動弁の一実施例の主要部の非流通時(全閉時)の状態を示す部分切欠断面図。The partial cutaway sectional view showing the state at the time of non-circulation (at the time of full closure) of the principal part of one example of the electric valve concerning the present invention. 本発明に係る電動弁の一実施例の主要部の正流れ時(小流量用流通時)の状態を示す部分切欠断面図。The partial notch sectional view which shows the state at the time of the positive flow (at the time of the distribution | circulation for small flow rates) of the principal part of one Example of the motor operated valve which concerns on this invention. 本発明に係る電動弁の一実施例の主要部の逆流れ時(大流量用流通時)の状態を示す部分切欠断面図。The partial notch sectional view which shows the state at the time of the reverse flow (at the time of the distribution | circulation for large flow rates) of the principal part of one Example of the motor operated valve which concerns on this invention. 図1から図3に示される電動弁に使用された可動弁座体の一例を示し、(A)は斜視図、(B)は平面図、(C)は側面図、(D)は底面図。An example of the movable valve seat used for the motor-driven valve shown in FIGS. 1 to 3 is shown, (A) is a perspective view, (B) is a plan view, (C) is a side view, and (D) is a bottom view. . 図1から図3に示される電動弁に使用される可動弁座体の他の例を示し、(A)は斜視図、(B)は平面図、(C)は側面図、(D)は底面図。FIG. 1 shows another example of a movable valve seat used in the motor-operated valve shown in FIGS. 1 to 3, (A) is a perspective view, (B) is a plan view, (C) is a side view, and (D) is a side view. Bottom view. 従来のヒートポンプ式冷暖房システムの一例を示す構成図。The block diagram which shows an example of the conventional heat pump type | formula air conditioning system. 従来の電動弁の一例を示す縦断面図。The longitudinal cross-sectional view which shows an example of the conventional motor operated valve.

以下、本発明に係る電動弁の実施の形態を図面を参照しながら説明する。
図1、図2、図3は、本発明に係る電動弁の一実施例の主要部の部分切欠断面図であり、図1は非流通時(全閉時)、図2は正流れ時(小流量流通時)、図3は逆流れ時(大流量流通時)を示している。なお、本実施例では、流体(冷媒)の流れ方向が第1入出口11→第2入出口12の場合を正流れ(図2)、第2入出口12→第1入出口11の場合を逆流れ(図3)と称す。
Hereinafter, embodiments of a motor-operated valve according to the present invention will be described with reference to the drawings.
1, 2, and 3 are partially cutaway cross-sectional views of the main part of one embodiment of the motor-operated valve according to the present invention. FIG. 1 is a non-flowing state (when fully closed), and FIG. FIG. 3 shows a reverse flow (when a large flow rate is flowing). In the present embodiment, the flow direction of the fluid (refrigerant) is the first inlet / outlet 11 → the second inlet / outlet 12 is the normal flow (FIG. 2), and the second inlet / outlet 12 → the first inlet / outlet 11 is the case. This is called reverse flow (FIG. 3).

また、図示実施例の電動弁10のステッピングモータ50、弁軸25等の基本構成は、前述した図7に示される従来例の電動弁10’と略同じであるので、ここでは、図7に示される従来例の電動弁10’の各部に対応する部分には同一の符号を付して重複説明を省略し、以下は、主要部(特徴部分)を重点的に説明する。   Further, the basic configuration of the stepping motor 50, the valve shaft 25, etc. of the motor-operated valve 10 in the illustrated embodiment is substantially the same as that of the motor-operated valve 10 ′ of the conventional example shown in FIG. 7 described above. The parts corresponding to the respective parts of the conventional motor-operated valve 10 ′ shown in the figure are denoted by the same reference numerals and redundant description is omitted, and the following mainly describes the main parts (characteristic parts).

本実施例の弁本体15には、正流れ方向で見て、順次、第1入出口11、この第1入出口が開口する弁室21、この弁室21に連なる円筒状の下部室22、及び下部室22に連なる第2入出口12が設けられている。   The valve body 15 of the present embodiment includes a first inlet / outlet 11, a valve chamber 21 in which the first inlet / outlet opens, a cylindrical lower chamber 22 connected to the valve chamber 21, in the forward flow direction, And a second inlet / outlet 12 connected to the lower chamber 22.

より詳細には、弁本体15の上部には、ガイドブッシュ26の下部大径部26aが圧入固定される上面開口穴42を有する蓋状部材18が被着嵌合せしめられて溶接により接合されている。蓋状部材の下部には弁軸25が摺動自在に嵌合される案内孔19が設けられている。   More specifically, the lid-like member 18 having the upper surface opening hole 42 into which the lower large diameter portion 26a of the guide bush 26 is press-fitted and fixed is attached and fitted to the upper portion of the valve body 15 and joined by welding. Yes. A guide hole 19 into which the valve shaft 25 is slidably fitted is provided in the lower part of the lid-like member.

弁室21と下部室22との間には、可動弁座体70が配在されている。可動弁座体70には、第1入出口11から第2入出口12へ向かう小流量用流路を形成するための主弁口23が形成されている。   A movable valve seat body 70 is disposed between the valve chamber 21 and the lower chamber 22. The movable valve seat body 70 is formed with a main valve port 23 for forming a small flow rate channel from the first inlet / outlet 11 to the second inlet / outlet 12.

また、可動弁座体70は、その下部が前記下部室22に摺動自在に嵌挿され、前記第2入出口12から第1入出口11へ向かう大流量用流路を開通・遮断するためのフロート型の逆止弁体としても機能するようにされている。   In addition, the movable valve seat body 70 is slidably inserted into the lower chamber 22 so as to open and shut off the large flow passage from the second inlet / outlet 12 to the first inlet / outlet 11. It is designed to function as a float type check valve body.

より詳細には、可動弁座体70は、図1から図3に加えて、図4を参照すればよくわかるように、弁座板部72とこれに連なる円筒状の嵌挿部75とからなっている。弁座板部72は、大流量用流路を開通・遮断すべく、下部室22における弁室21側の開口端縁部22a(これが逆止弁口の弁座に相当する)にその外周部下面側に形成された逆円錐面部からなる逆止弁体部73が接離するようにされている。嵌挿部75は、弁座板部72における逆止弁体部73の下端付近から立ち下がって下部室22に摺動自在に嵌挿されている。そして、可動弁座体70の弁座板部72は弁室21内に配置され、弁座板部72の直径は、弁本体15の上部開口よりも小さい外径に形成されている。弁本体15の上部開口は、図1等に示されるように、ステッピングモータ50の下方に突出するガイドブッシュ26及び蓋状部材18で閉じられている。 More specifically, the movable valve seat body 70 includes a valve seat plate portion 72 and a cylindrical fitting insertion portion 75 connected to the valve seat plate portion 72, as can be understood by referring to FIG. 4 in addition to FIGS. It has become. The valve seat plate portion 72 has an outer peripheral portion on an opening edge portion 22a on the valve chamber 21 side in the lower chamber 22 (which corresponds to a valve seat of a check valve port) in order to open / close the flow passage for large flow rate. A check valve body portion 73 formed of an inverted conical surface portion formed on the lower surface side is configured to contact and separate. The fitting insertion portion 75 falls from the vicinity of the lower end of the check valve body portion 73 in the valve seat plate portion 72 and is slidably inserted into the lower chamber 22. The valve seat plate portion 72 of the movable valve seat body 70 is disposed in the valve chamber 21, and the diameter of the valve seat plate portion 72 is formed to be smaller than the upper opening of the valve body 15. The upper opening of the valve body 15 is closed by a guide bush 26 and a lid-like member 18 that project downward from the stepping motor 50, as shown in FIG.

可動弁座体70の弁座板部72中央には、弁棒25の下端部に設けられたニードル型の弁体部24により開閉される主弁口23が形成されるとともに、可動弁座体70の嵌挿部75における上部には、大流量用流路を形成すべく4個の円形の透孔76が等角度(90度)間隔で形成されている。   At the center of the valve seat plate portion 72 of the movable valve seat body 70, a main valve port 23 that is opened and closed by a needle type valve body portion 24 provided at the lower end portion of the valve rod 25 is formed, and the movable valve seat body. Four circular through holes 76 are formed at equiangular (90 degrees) intervals in the upper portion of the fitting insertion portion 75 of 70 to form a flow passage for large flow rate.

ここで、本実施例においては、大流量用流路は、前記下部室22、可動弁座体70の嵌挿部75に形成された4個の透孔76、及び弁室21で構成されている。   Here, in this embodiment, the flow passage for large flow rate is configured by the lower chamber 22, four through holes 76 formed in the fitting insertion portion 75 of the movable valve seat body 70, and the valve chamber 21. Yes.

このような構成とされた本実施例の電動弁10においては、図2に示される如くの小流量流通時(正流れ時)には、弁室21の圧力が下部室22の圧力より大きいので、可動弁座体70の逆止弁体部73が下部室22における弁室21側の開口端縁部22a(逆止弁口)に押し付けられ、これによって大流量用流路が閉じられ、第1入出口11から弁室21に導入された冷媒(流体)は、主弁口23と弁体部24との間に形成される隙間を介して下部室22→第2入出口12に流出する。   In the motor-operated valve 10 of the present embodiment having such a configuration, the pressure in the valve chamber 21 is larger than the pressure in the lower chamber 22 when a small flow rate is flowing (at the normal flow) as shown in FIG. The check valve body 73 of the movable valve seat 70 is pressed against the opening end edge 22a (check valve port) on the valve chamber 21 side in the lower chamber 22, thereby closing the flow passage for large flow rate. The refrigerant (fluid) introduced into the valve chamber 21 from the first inlet / outlet 11 flows out from the lower chamber 22 to the second inlet / outlet 12 through a gap formed between the main valve port 23 and the valve body portion 24. .

一方、図3に示される如くの大流量流通時(逆流れ時)には、弁軸25が例えば最大リフト位置まで上昇せしめられる。この場合、弁室21の圧力は下部室22の圧力より小さいので、流体(冷媒)圧力により可動弁座体70が蓋状部材18の下端に接当するまで押し上げられる。これにより、可動弁座体70の逆止弁体部73が下部室22における弁室21側の開口端縁部22a(逆止弁口)から離れるとともに、4個の透孔76が弁室21内へ移動して開口せしめられ、第2入出口12からの冷媒(流体)は、大流量用流路を構成する下部室22→可動弁座体70の嵌挿部75に形成された4個の透孔76→弁室21を通って第1入出口11へと流れる。   On the other hand, the valve shaft 25 is raised to, for example, the maximum lift position during a large flow rate flow (reverse flow) as shown in FIG. In this case, since the pressure in the valve chamber 21 is smaller than the pressure in the lower chamber 22, the movable valve seat body 70 is pushed up by the fluid (refrigerant) pressure until it contacts the lower end of the lid-like member 18. As a result, the check valve body 73 of the movable valve seat 70 is separated from the opening edge 22a (check valve port) on the valve chamber 21 side in the lower chamber 22, and the four through holes 76 are formed in the valve chamber 21. Four refrigerants (fluids) from the second inlet / outlet 12 are formed in the fitting portion 75 of the lower chamber 22 → movable valve seat body 70 constituting the flow passage for large flow rate. Through the valve chamber 21 to the first inlet / outlet 11.

このように本実施例の電動弁10は、小流量流通時には流量を高精度に制御し得、大流量流通時には可及的に圧力損失が生じないように流体を流すことができ、流通方向の変更を速やかに安定して行うことができ、動作状態が安定して信頼性を向上させ得る。   As described above, the motor-operated valve 10 of this embodiment can control the flow rate with high accuracy when the flow rate is small, and can flow the fluid so that pressure loss does not occur as much as possible when the flow rate is large. The change can be performed promptly and stably, and the operation state can be stabilized and the reliability can be improved.

上記に加えて、フロート型の逆止弁体としても機能する可動弁座体70は、大流量用流路を閉じているとき、その大半(嵌挿部75)が下部室22に摺動自在に嵌挿されており、大流量用流路を開くとき、弁室21側に浮上するようにされるので、従来のように可動弁座体の全体が弁室21に配在される場合に比して、構成の簡素化を図ることができる上、最大流通量を減らすことなく、可動弁座体を小さくすることができるとともに、弁室に可動弁座体を昇降させるための大きなスペースは不要となる。   In addition to the above, most of the movable valve seat 70 that also functions as a float type check valve body (the fitting insertion portion 75) is slidable into the lower chamber 22 when the flow passage for large flow rate is closed. When the flow passage for large flow rate is opened, it floats to the valve chamber 21 side. Therefore, when the entire movable valve seat body is distributed in the valve chamber 21 as in the prior art. In comparison, the structure can be simplified, the movable valve seat body can be made smaller without reducing the maximum flow rate, and a large space for raising and lowering the movable valve seat body in the valve chamber is It becomes unnecessary.

そのため、弁本体の小型化、部品コスト、加工組み立てコストの削減等を効果的に図ることができる。また、可動弁座体70の弁座板部72は、弁本体15の上部開口の内径よりも小さい外径に形成されているため、上部開口より挿入することができ、組立性の向上と構成の簡略化を達成できる。 For this reason, it is possible to effectively reduce the size of the valve body, reduce component costs, and reduce processing costs. Further, since the valve seat plate portion 72 of the movable valve seat body 70 is formed to have an outer diameter smaller than the inner diameter of the upper opening of the valve main body 15, it can be inserted from the upper opening, improving the assembly and the configuration. Simplification can be achieved.

なお、可動弁座体70は、材料として、ステンレスや真鍮等の金属で作製されることができる。また可動弁座体70は、プラスチック、アルミニウム等の軽量金属、セラミック、及びゴム等のうちの一つもしくは複数を用いて(例えば硬質プラスチック等で可動弁座体を形成し、その表面に弾力性を持つゴムを被覆するなどして)比較的軽量に作製することも可能である。   The movable valve seat body 70 can be made of a metal such as stainless steel or brass as a material. The movable valve seat body 70 is made of one or a plurality of plastics, lightweight metals such as aluminum, ceramics, rubber, etc. (for example, the movable valve seat body is made of hard plastic or the like, and its surface has elasticity. It can also be made relatively lightweight (for example, by coating rubber with

以上、本発明の実施例について詳述したが、本発明は、前記の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行なうことができるものである。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed.

例えば、上記実施例においては、可動弁座体70の嵌挿部75における上部に大流量用流路を形成すべく4個の円形の透孔76が等角度(90度)間隔で形成されているが、図5に示される如くに、前記透孔76に代えて、嵌挿部75に下側が開口する半レーストラック形の切欠77を形成するようにしてもよい。透孔76や切欠77の個数や形状は適宜変更することができる。また、透孔76や切欠77に代えて縦溝等を形成するようにしてもよい。すなわち、嵌挿部75には、可動弁座体70が上昇したときに下部室22と弁室21とを連通する連通路が設けられれば良く、この連通路の形状は上記の透孔76、切欠77、縦溝等に限定されず、またその個数もいくつであっても良い。   For example, in the above embodiment, four circular through-holes 76 are formed at equiangular (90 degrees) intervals so as to form a flow passage for large flow rate in the upper part of the fitting insertion portion 75 of the movable valve seat body 70. However, as shown in FIG. 5, instead of the through-hole 76, a semi-race track-shaped notch 77 whose lower side opens may be formed in the fitting insertion portion 75. The number and shape of the through holes 76 and the notches 77 can be changed as appropriate. Further, a vertical groove or the like may be formed in place of the through hole 76 and the notch 77. That is, it is only necessary to provide the insertion portion 75 with a communication path that communicates the lower chamber 22 and the valve chamber 21 when the movable valve seat 70 is raised. The number is not limited to the notch 77, the longitudinal groove, and the like.

また、本発明に係る電動弁は、ヒートポンプ式冷暖房システムに適用されるだけではなく、他のシステムにも適用できることは言うまでもない。   Moreover, it cannot be overemphasized that the motor operated valve which concerns on this invention is applicable not only to a heat pump type | formula air conditioning system but to another system.

10 電動弁
11 第1入出口
12 第2入出口
15 弁本体
21 弁室
22 下部室
22a 開口端縁部
23 主弁口
24 弁体部
25 弁軸
50 モータ
70 可動弁座体
72 弁座板部
73 逆止弁体部
75 嵌挿部
76 透孔(連通路)
77 切欠(連通路)
DESCRIPTION OF SYMBOLS 10 Motorized valve 11 1st inlet / outlet 12 2nd inlet / outlet 15 Valve main body 21 Valve chamber 22 Lower chamber 22a Open end edge part 23 Main valve opening 24 Valve body part 25 Valve shaft 50 Motor 70 Movable valve seat body 72 Valve seat board part 73 Check valve body part 75 Insertion part 76 Through hole (communication path)
77 Notch (communication passage)

Claims (2)

第1入出口、該第1入出口が開口する弁室、該弁室に連なる下部室、及び前記下部室に連なる第2入出口が設けられた弁本体と、前記弁室と下部室との間に配在され、前記第1入出口から第2入出口へ向かう小流量用流路を形成するための主弁口が形成された可動弁座体と、前記主弁口を通る流量を調整すべく前記弁室内に配在されたニードル型の弁体部を有する弁軸と、該弁軸を昇降させるためのモータと、を備え、
前記可動弁座体は、その下部が前記下部室に摺動自在に嵌挿され、前記第2入出口から第1入出口へ向かう大流量用流路を開通・遮断するためのフロート型の逆止弁体としても機能するようにされ、
前記可動弁座体は、前記大流量用流路を開通・遮断すべく、前記下部室における前記弁室側の開口端縁部にその外周部が接離する弁座板部を有し、該弁座板部は前記弁室内に配置されていることを特徴とする電動弁。
A valve body provided with a first inlet / outlet, a valve chamber in which the first inlet / outlet opens, a lower chamber connected to the valve chamber, and a second inlet / outlet connected to the lower chamber; and the valve chamber and the lower chamber A movable valve seat body formed with a main valve port for forming a flow passage for small flow rate that is arranged between the first inlet port and the second inlet port and adjusts the flow rate through the main valve port. A valve shaft having a needle-type valve element disposed in the valve chamber, and a motor for raising and lowering the valve shaft,
The movable valve seat body is slidably inserted into the lower chamber, and is a reverse of a float type for opening / closing a flow path for large flow from the second inlet / outlet to the first inlet / outlet. It is designed to function as a stop body,
The movable valve seat body has a valve seat plate portion whose outer peripheral portion is in contact with and separated from an opening edge portion on the valve chamber side in the lower chamber in order to open / close the flow passage for large flow rate, The motor-operated valve characterized in that the valve seat plate portion is disposed in the valve chamber.
前記弁座板部は、前記弁本体の上部開口の内径よりも小さい外径に形成されたことを特徴とする請求項1に記載の電動弁。   The motor-operated valve according to claim 1, wherein the valve seat plate portion has an outer diameter smaller than an inner diameter of an upper opening of the valve body.
JP2016225871A 2016-11-21 2016-11-21 Motorized valve Active JP6194403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016225871A JP6194403B2 (en) 2016-11-21 2016-11-21 Motorized valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016225871A JP6194403B2 (en) 2016-11-21 2016-11-21 Motorized valve

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012114266A Division JP6194157B2 (en) 2012-05-18 2012-05-18 Motorized valve

Publications (2)

Publication Number Publication Date
JP2017044347A true JP2017044347A (en) 2017-03-02
JP6194403B2 JP6194403B2 (en) 2017-09-06

Family

ID=58211641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016225871A Active JP6194403B2 (en) 2016-11-21 2016-11-21 Motorized valve

Country Status (1)

Country Link
JP (1) JP6194403B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019138387A (en) * 2018-02-13 2019-08-22 株式会社鷺宮製作所 Motor valve and refrigeration cycle system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002120547A (en) * 2000-08-11 2002-04-23 Denso Corp Refrigerating cycle device and valve device used therefor
JP2004069152A (en) * 2002-08-06 2004-03-04 Izumi Giken:Kk Valve device used for freezing cycle
JP2010249246A (en) * 2009-04-16 2010-11-04 Fuji Koki Corp Motor-operated valve and refrigeration cycle using the same
JP2010249247A (en) * 2009-04-16 2010-11-04 Fuji Koki Corp Motor-operated valve and refrigeration cycle using the same
JP2013036487A (en) * 2011-08-04 2013-02-21 Fuji Koki Corp Electric-operated valve
JP2013217408A (en) * 2012-04-05 2013-10-24 Fuji Koki Corp Motor-operated valve

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002120547A (en) * 2000-08-11 2002-04-23 Denso Corp Refrigerating cycle device and valve device used therefor
JP2004069152A (en) * 2002-08-06 2004-03-04 Izumi Giken:Kk Valve device used for freezing cycle
JP2010249246A (en) * 2009-04-16 2010-11-04 Fuji Koki Corp Motor-operated valve and refrigeration cycle using the same
JP2010249247A (en) * 2009-04-16 2010-11-04 Fuji Koki Corp Motor-operated valve and refrigeration cycle using the same
JP2013036487A (en) * 2011-08-04 2013-02-21 Fuji Koki Corp Electric-operated valve
JP2013217408A (en) * 2012-04-05 2013-10-24 Fuji Koki Corp Motor-operated valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019138387A (en) * 2018-02-13 2019-08-22 株式会社鷺宮製作所 Motor valve and refrigeration cycle system
JP2021179257A (en) * 2018-02-13 2021-11-18 株式会社鷺宮製作所 Motor valve and refrigeration cycle system
JP7164681B2 (en) 2018-02-13 2022-11-01 株式会社鷺宮製作所 Electric valve and refrigeration cycle system

Also Published As

Publication number Publication date
JP6194403B2 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
JP6194157B2 (en) Motorized valve
JP5572330B2 (en) Motorized valve
US8763419B2 (en) Motor-operated valve and refrigeration cycle using the same
JP6845817B2 (en) Electric valve and refrigeration cycle system
JP5022120B2 (en) Motorized valves for air conditioning systems
JP5019862B2 (en) Pilot type control valve
KR102139095B1 (en) Electronic expansion valve
US8720486B2 (en) Valve apparatus
JP6857624B2 (en) Electric valve and refrigeration cycle system
JP6209231B2 (en) Motorized valve
JP4570484B2 (en) Composite valve, heat pump type air conditioner and control method thereof
JP5818509B2 (en) Valve device
KR20080013701A (en) Pilot type control valve
JP2012172836A (en) Motor-operated valve
JP7383774B2 (en) Electric valve and refrigeration cycle system
JP5836689B2 (en) Motorized valve
JP2022095807A (en) Motor-operated valve and refrigerating cycle system
JP2010249247A (en) Motor-operated valve and refrigeration cycle using the same
JP6194403B2 (en) Motorized valve
JP7509961B2 (en) Motor-operated valve and refrigeration cycle system
JP7107881B2 (en) Electric valve and refrigeration cycle system
JP5921821B2 (en) Motorized valve
JP5999960B2 (en) Motorized valve
JP6442424B2 (en) Heat pump equipment
JP7491734B2 (en) Motor-operated valve and refrigeration cycle system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170814

R150 Certificate of patent or registration of utility model

Ref document number: 6194403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250