JP2013217408A - Motor-operated valve - Google Patents

Motor-operated valve Download PDF

Info

Publication number
JP2013217408A
JP2013217408A JP2012086773A JP2012086773A JP2013217408A JP 2013217408 A JP2013217408 A JP 2013217408A JP 2012086773 A JP2012086773 A JP 2012086773A JP 2012086773 A JP2012086773 A JP 2012086773A JP 2013217408 A JP2013217408 A JP 2013217408A
Authority
JP
Japan
Prior art keywords
valve
check valve
check
flow rate
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012086773A
Other languages
Japanese (ja)
Other versions
JP5999960B2 (en
Inventor
Teruhiko Mori
輝彦 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2012086773A priority Critical patent/JP5999960B2/en
Publication of JP2013217408A publication Critical patent/JP2013217408A/en
Application granted granted Critical
Publication of JP5999960B2 publication Critical patent/JP5999960B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

PROBLEM TO BE SOLVED: To provide a motor-operated valve capable of controlling with high accuracy a flow rate when a small flow rate circulates, decreasing a pressure loss more when a large flow rate circulates, changing a flow direction promptly and stably, and improving reliability without causing valve body enlargement.SOLUTION: Check-valve valving elements 75 as three balls are each arranged to close check valve ports 72B and 72C during normal flow and open them during reverse flow. Guide columns 73A and 73B as guide means for enabling the check-valve valving elements 75 to open and close the check valve ports 72B and 72C surely and smoothly are provided protrusively downward from a ceiling 21a of a valve chamber 21 to a predetermined height position above a valve seat body 16. A circulation gap H is formed between the lower end surfaces of the guide columns 73A and 73B and an upper surface of the valve seat body 16.

Description

本発明は、ヒートポンプ式冷暖房システム等に組み込まれて使用される電動弁に係り、特に、正流れ時(小流量流通時)は流量を高精度に制御し得、逆流れ時(大流量流通時)には圧力損失を可及的に低減できるようにした電動弁に関する。   The present invention relates to an electric valve used by being incorporated in a heat pump type air conditioning system or the like, and in particular, the flow rate can be controlled with high accuracy during normal flow (when flowing a small flow rate), and during reverse flow (when flowing a large flow rate). ) Relates to a motor-operated valve capable of reducing pressure loss as much as possible.

図8にヒートポンプ式冷暖房システムの一例を示す。この冷暖房システム100は、圧縮機101、流路切換器102、室外熱交換器(凝縮器)103、室内熱交換器(蒸発器)104の他、省エネ効率等を向上させるため、通常は1つでよい膨張弁を二つ備えている(ディストリビュータ等は図示省略)。すなわち、室外熱交換器103の近くに第1膨張弁105が配置され、室内熱交換器104の近くに第2膨張弁106が配置されている。膨張弁105、106としては感温式(機械式)のものが用いられている。また、圧力損失を可及的に低減するため、これらの第1及び第2膨張弁105、106に並列に第1及び第2逆止弁108、109が配置されている。   FIG. 8 shows an example of a heat pump type air conditioning system. This cooling / heating system 100 is usually provided with a compressor 101, a flow path switch 102, an outdoor heat exchanger (condenser) 103, an indoor heat exchanger (evaporator) 104, and in order to improve energy saving efficiency and the like. There are two expansion valves (distributors etc. are not shown). That is, the first expansion valve 105 is disposed near the outdoor heat exchanger 103, and the second expansion valve 106 is disposed near the indoor heat exchanger 104. As the expansion valves 105 and 106, temperature-sensitive (mechanical) type valves are used. Further, in order to reduce the pressure loss as much as possible, the first and second check valves 108 and 109 are arranged in parallel with the first and second expansion valves 105 and 106.

この冷暖房システム100においては、冷房時には、圧縮機101で圧縮された冷媒ガスは、図の実線矢印で示される如くに、例えば四方弁等からなる流路切換器102から室外熱交換器103に導入され、ここで外気と熱交換して凝縮し、この凝縮した冷媒が第1逆止弁108を通って(第1膨張弁105をバイパスして)、第2膨張弁106に流入し、ここで断熱膨張した後、蒸発器104に流入し、蒸発器104にて室内空気と熱交換して蒸発し、室内を冷房する。   In the cooling / heating system 100, during cooling, the refrigerant gas compressed by the compressor 101 is introduced into the outdoor heat exchanger 103 from a flow path switch 102 formed of, for example, a four-way valve, as indicated by a solid arrow in the figure. Here, heat is exchanged with the outside air to condense, and the condensed refrigerant passes through the first check valve 108 (bypassing the first expansion valve 105) and flows into the second expansion valve 106, where After adiabatic expansion, the refrigerant flows into the evaporator 104, evaporates by exchanging heat with room air in the evaporator 104, and cools the room.

それに対し、暖房時には、圧縮機101で圧縮された冷媒ガスは、図の破線矢印で示される如くに、流路切換器102から室内熱交換器104に導入され、ここで室内空気と熱交換して凝縮し、室内を暖房した後、第2逆止弁109を通って(第2膨張弁106をバイパスして)、第1膨張弁105に流入し、ここで減圧された後、ディストリビュータを介して室外熱交換器103に導入され、ここで蒸発して圧縮機101に戻る。   On the other hand, at the time of heating, the refrigerant gas compressed by the compressor 101 is introduced from the flow path switch 102 to the indoor heat exchanger 104 and exchanges heat with the indoor air, as indicated by broken line arrows in the figure. After condensing and heating the room, it passes through the second check valve 109 (bypassing the second expansion valve 106) and flows into the first expansion valve 105, where it is depressurized and then passed through the distributor. Then, it is introduced into the outdoor heat exchanger 103, where it evaporates and returns to the compressor 101.

このように、冷暖房システム100では、正流れ時(冷房時)は、冷媒を第1膨張弁105を通さずに第1逆止弁108を通じて第2膨張弁106に導き、この第2膨張弁106で流量を調整し、逆流れ時(暖房時)は、冷媒を第2膨張弁106を通さずに第2逆止弁109を通じて第1膨張弁105に導き、この第1膨張弁105で流量を調整するようにされており、逆止弁108、109を膨張弁105、106に並列に組み込むことにより、圧力損失を可及的に低減するようにしている。   As described above, in the cooling / heating system 100, during normal flow (cooling), the refrigerant is guided to the second expansion valve 106 through the first check valve 108 without passing through the first expansion valve 105, and this second expansion valve 106. In the reverse flow (heating), the refrigerant is guided to the first expansion valve 105 through the second check valve 109 without passing through the second expansion valve 106, and the flow rate is adjusted by the first expansion valve 105. By adjusting the check valves 108 and 109 in parallel with the expansion valves 105 and 106, the pressure loss is reduced as much as possible.

ところで、近年、上記した如くの冷暖房システム100においては、省エネ効率等を一層向上させるべく、上記感温式(機械式)の膨張弁105、106に代えて、リフト量、すなわち、弁口の実効開口面積を任意に制御可能な電子制御式電動弁を用いることが検討されている。   Incidentally, in recent years, in the cooling / heating system 100 as described above, in order to further improve the energy saving efficiency and the like, instead of the temperature-sensitive (mechanical) expansion valves 105 and 106, the lift amount, that is, the effectiveness of the valve port is effective. The use of an electronically controlled motor-operated valve that can arbitrarily control the opening area has been studied.

以下、電子制御式電動弁の一例を図9を参照しながら説明する。図示例の電動弁10’は、下部大径部25aと上部小径部25bを有し、前記下部大径部25aの下端部に弁体24が一体に設けられた弁軸25と、前記弁体24が接離する弁口23が形成された弁座23aが設けられるとともに、導管(継手)からなる第1入出口11及び第2入出口12が接続された弁室21を有する弁本体15と、この弁本体15に環状連結具44を介してその下端部が溶接により密封接合されたキャン40と、このキャン40の内周に所定の間隙αをあけて配在されたロータ30と、このロータ30を回転駆動すべく前記キャン40に外嵌されたステータ50Aと、前記ロータ30と前記弁体24との間に配在され、前記ロータ30の回転を利用して前記弁体24を前記弁口23に接離させるねじ送り機構とを備え、前記弁口23に対する弁体24のリフト量を変化させることにより冷媒の通過流量を制御するようになっている。   Hereinafter, an example of the electronically controlled motor-operated valve will be described with reference to FIG. The illustrated motor-operated valve 10 'has a lower large-diameter portion 25a and an upper small-diameter portion 25b, a valve shaft 25 in which a valve body 24 is integrally provided at a lower end portion of the lower large-diameter portion 25a, and the valve body. A valve body 15 having a valve chamber 23 to which a first inlet / outlet 11 and a second inlet / outlet 12 made of a conduit (joint) are connected; A can 40 whose lower end is sealed and welded to the valve main body 15 via an annular connector 44, a rotor 30 disposed with a predetermined gap α on the inner periphery of the can 40, and A stator 50A externally fitted to the can 40 to rotationally drive the rotor 30, and the rotor 30 and the valve body 24 are disposed between the rotor 30 and the valve body 24. A screw feed mechanism that contacts and separates from the valve port 23; So as to control the flow rate through the refrigerant by changing the lift amount of the valve element 24 against the serial valve port 23.

前記ステータ50Aは、ヨーク51、ボビン52、ステータコイル53,53、及び樹脂モールドカバー56等で構成され、前記ロータ30やステータ50A等でステッピングモータ50が構成され、該ステッピングモータ50やねじ送り機構等で前記弁口23に対する前記弁体24のリフト量を調整するための昇降駆動機構が構成される。   The stator 50A includes a yoke 51, a bobbin 52, stator coils 53 and 53, a resin mold cover 56, and the like. A stepping motor 50 is configured by the rotor 30, the stator 50A, and the like. Thus, an elevating drive mechanism for adjusting the lift amount of the valve body 24 with respect to the valve port 23 is configured.

前記ロータ30には、支持リング36が一体的に結合されるとともに、この支持リング36に、前記弁軸25及びガイドブッシュ26の外周に配在された下方開口で筒状の弁軸ホルダ32の上部突部がかしめ固定され、これにより、ロータ30、支持リング36及び弁軸ホルダ32が一体的に連結されている。   A support ring 36 is integrally coupled to the rotor 30, and a cylindrical valve shaft holder 32 is formed on the support ring 36 at a lower opening disposed on the outer periphery of the valve shaft 25 and the guide bush 26. The upper protrusion is caulked and fixed, whereby the rotor 30, the support ring 36, and the valve shaft holder 32 are integrally connected.

前記ねじ送り機構は、弁本体15にその下端部26aが圧入固定されるとともに、弁軸25(の下部大径部25a)が摺動自在に内挿された筒状のガイドブッシュ26の外周に形成された固定ねじ部(雄ねじ部)28と、前記弁軸ホルダ32の内周に形成されて前記固定ねじ部28に螺合せしめられた移動ねじ部(雌ねじ部)38とから構成されている。   The screw feed mechanism has a lower end portion 26a press-fitted and fixed to the valve body 15, and a valve shaft 25 (a lower large-diameter portion 25a thereof) is slidably inserted on the outer periphery of a cylindrical guide bush 26. The formed fixed screw portion (male screw portion) 28 and a moving screw portion (female screw portion) 38 formed on the inner periphery of the valve shaft holder 32 and screwed into the fixed screw portion 28 are configured. .

また、前記ガイドブッシュ26の上部小径部26bが弁軸ホルダ32の上部に内挿されるとともに、弁軸ホルダ32の天井部32aの中央(に形成された通し穴)に弁軸25の上部小径部25bが挿通せしめられている。弁軸25の上部小径部25bの上端部にはプッシュナット33が圧入固定されている。   The upper small diameter portion 26b of the guide bush 26 is inserted into the upper portion of the valve shaft holder 32, and the upper small diameter portion of the valve shaft 25 is formed at the center of the ceiling portion 32a of the valve shaft holder 32 (through hole formed therein). 25b is inserted. A push nut 33 is press-fitted and fixed to the upper end portion of the upper small diameter portion 25 b of the valve shaft 25.

また、前記弁軸25は、該弁軸25の上部小径部25bに外挿され、かつ、弁軸ホルダ32の天井部32aと弁軸25における下部大径部25aの上端段丘面との間に縮装された圧縮コイルばねからなる閉弁ばね34によって、常時下方(閉弁方向)に付勢されている。弁軸ホルダ32の天井部32a上でプッシュナット33の外周には、コイルばねからなる復帰ばね35が設けられている。   The valve shaft 25 is extrapolated to the upper small-diameter portion 25b of the valve shaft 25, and between the ceiling portion 32a of the valve shaft holder 32 and the upper terrace surface of the lower large-diameter portion 25a of the valve shaft 25. The valve closing spring 34 composed of a compressed compression coil spring is always urged downward (in the valve closing direction). A return spring 35 made of a coil spring is provided on the outer periphery of the push nut 33 on the ceiling portion 32 a of the valve shaft holder 32.

前記ガイドブッシュ26には、前記ロータ30が所定の閉弁位置まで回転下降せしめられた際、それ以上の回転下降を阻止するための回転下降ストッパ機構の一方を構成する下ストッパ体(固定ストッパ)27が固着され、弁軸ホルダ32には前記ストッパ機構の他方を構成する上ストッパ体(移動ストッパ)37が固着されている。   The guide bush 26 has a lower stopper body (fixed stopper) that constitutes one of rotation lowering stopper mechanisms for preventing further rotation lowering when the rotor 30 is rotated and lowered to a predetermined valve closing position. 27 is fixed, and an upper stopper body (moving stopper) 37 constituting the other of the stopper mechanism is fixed to the valve shaft holder 32.

なお、前記閉弁ばね34は、弁体24が弁口23に着座する閉弁状態において所要のシール圧を得るため(漏れ防止)、及び、弁体24が弁口23に衝接した際の衝撃を緩和するために配備されている。   The valve closing spring 34 is used to obtain a required sealing pressure in a closed state where the valve body 24 is seated on the valve port 23 (to prevent leakage), and when the valve body 24 comes into contact with the valve port 23. Deployed to mitigate impact.

このような構成とされた電動弁10’にあっては、ステータコイル53,53に第1態様で通電励磁パルスを供給することにより、弁本体15に固定されたガイドブッシュ26に対し、ロータ30及び弁軸ホルダ32が一方向に回転せしめられ、ガイドブッシュ26の固定ねじ部28と弁軸ホルダ32の移動ねじ部38とのねじ送りにより、例えば弁軸ホルダ32が下方に移動して弁体24が弁口23(弁座23a)に押し付けられて弁口23が閉じられる(全閉状態)。   In the motor-operated valve 10 ′ configured as described above, the rotor 30 is made to the guide bush 26 fixed to the valve body 15 by supplying energization excitation pulses to the stator coils 53, 53 in the first mode. The valve shaft holder 32 is rotated in one direction, and, for example, the valve shaft holder 32 is moved downward by the screw feed between the fixing screw portion 28 of the guide bush 26 and the moving screw portion 38 of the valve shaft holder 32, so that the valve body. 24 is pressed against the valve port 23 (valve seat 23a) to close the valve port 23 (fully closed state).

弁口23が閉じられた時点では、上ストッパ体37は未だ下ストッパ体27に衝接しておらず、弁体24が弁口23を閉じたままロータ30及び弁軸ホルダ32はさらに回転下降する。この場合、弁軸25(弁体24)は下降しないが、弁軸ホルダ32は下降するため、閉弁ばね34が所定量圧縮せしめられ、その結果、弁体24が弁口23に強く押し付けられるとともに、弁軸ホルダ32の回転下降により、上ストッパ体37が下ストッパ体27に衝接し、その後ステータコイル53,53に対するパルス供給が続行されても弁軸ホルダ32の回転下降は強制的に停止される。   When the valve port 23 is closed, the upper stopper body 37 is not yet in contact with the lower stopper body 27, and the rotor 30 and the valve shaft holder 32 are further rotated and lowered while the valve body 24 remains closed. . In this case, the valve shaft 25 (valve body 24) does not descend, but the valve shaft holder 32 descends, so that the valve closing spring 34 is compressed by a predetermined amount, and as a result, the valve body 24 is strongly pressed against the valve port 23. At the same time, when the valve shaft holder 32 is rotated and lowered, the upper stopper body 37 comes into contact with the lower stopper body 27 and then the rotation and lowering of the valve shaft holder 32 is forcibly stopped even if the pulse supply to the stator coils 53 and 53 is continued. Is done.

一方、ステータコイル53,53に第2態様で通電励磁パルスを供給すると、弁本体15に固定されたガイドブッシュ26に対し、ロータ30及び弁軸ホルダ32が前記と逆方向に回転せしめられ、ガイドブッシュ26の固定ねじ部28と弁軸ホルダ32の移動ねじ部38とのねじ送りにより、今度は弁軸ホルダ32が上方に移動する。この場合、弁軸ホルダ32の回転上昇開始時点(パルス供給開始時点)では、閉弁ばね34が前記のように所定量圧縮せしめられているので、閉弁ばね34が前記所定量分伸長するまでは、前記弁体24が弁口23からは離れず閉弁状態(リフト量=0)のままである。そして、閉弁ばね34が前記所定量分伸長した後、弁軸ホルダ32がさらに回転上昇せしめられると、前記弁体24が弁口23から離れて弁口23が開かれ、冷媒が弁口23を通過する。この場合、ロータ30の回転量により弁体24のリフト量、言い換えれば、弁口23の実効開口面積を任意に細かく調整することができ、ロータ30の回転量は供給パルス数により制御されるため、冷媒流量を高精度に制御することができる(詳細は、特許文献1、2等を参照)。   On the other hand, when the energization excitation pulse is supplied to the stator coils 53, 53 in the second mode, the rotor 30 and the valve shaft holder 32 are rotated in the opposite direction to the guide bush 26 fixed to the valve body 15, and the guides are guided. Due to the screw feed between the fixing screw portion 28 of the bush 26 and the moving screw portion 38 of the valve shaft holder 32, the valve shaft holder 32 is now moved upward. In this case, since the valve closing spring 34 is compressed by a predetermined amount as described above at the time when the rotation of the valve shaft holder 32 starts to rise (when pulse supply starts), until the valve closing spring 34 is extended by the predetermined amount. The valve body 24 does not leave the valve port 23 and remains in the closed state (lift amount = 0). Then, after the valve closing spring 34 is extended by the predetermined amount, when the valve shaft holder 32 is further rotated up, the valve body 24 is separated from the valve port 23, the valve port 23 is opened, and the refrigerant is supplied to the valve port 23. Pass through. In this case, the lift amount of the valve body 24, in other words, the effective opening area of the valve port 23 can be arbitrarily finely adjusted by the rotation amount of the rotor 30, and the rotation amount of the rotor 30 is controlled by the number of supplied pulses. The refrigerant flow rate can be controlled with high accuracy (for details, refer to Patent Documents 1 and 2).

ところが、前記冷暖房システム100に上記した如くの電動弁10’を採用した場合においても、次のような改善すべき課題がある。すなわち、前記冷暖房システム100では、正流れ時(冷房時)は、冷媒を第1膨張弁105を通さずに第1逆止弁108を通じて第2膨張弁106に導き、この第2膨張弁106で流量を調整し、逆流れ時(暖房時)は、冷媒を第2膨張弁106を通さずに第2逆止弁109を通じて第1膨張弁105に導き、この第1膨張弁105で流量を調整するようにされている関係上、逆止弁108、109を膨張弁105、106に並列に組み込むことが不可欠であるが、逆止弁二つを冷媒回路に組み込むことは、その分、継手類などの部品の点数が増大するとともに、配管接続作業にも余計に手間と時間がかかる。   However, even when the motor-operated valve 10 'as described above is employed in the air conditioning system 100, there are the following problems to be improved. That is, in the cooling / heating system 100, during normal flow (cooling), the refrigerant is guided to the second expansion valve 106 through the first check valve 108 without passing through the first expansion valve 105, and the second expansion valve 106 The flow rate is adjusted, and during reverse flow (heating), the refrigerant is guided to the first expansion valve 105 through the second check valve 109 without passing through the second expansion valve 106, and the flow rate is adjusted by the first expansion valve 105. Therefore, it is indispensable to incorporate the check valves 108 and 109 in parallel with the expansion valves 105 and 106. However, incorporating two check valves in the refrigerant circuit is equivalent to the joints. The number of parts such as these increases, and the pipe connection work takes extra time and effort.

そこで、特許文献2には、前記した膨張弁と逆止弁の両機能を併せ持つ電動弁、すなわち、冷媒が一方向に流されるとき(正流れ時=小流量流通時)は、流量制御を行なうべくリフト量(実効開口面積)を所定値以下の特定範囲で細かく制御するようにし、冷媒が他方向に流されるとき(逆流れ時=大流量流通時)は、圧力損失を可及的に低減すべくリフト量(実効開口面積)を最大にするようにしたものが提案されている。   Therefore, Patent Document 2 discloses a motor-operated valve having both functions of the above-described expansion valve and check valve, that is, when the refrigerant is flowed in one direction (at the time of normal flow = at the time of small flow rate flow), flow control is performed. As much as possible, the lift amount (effective opening area) is finely controlled within a specific range below a predetermined value, and when the refrigerant is flowing in the other direction (reverse flow = high flow rate), pressure loss is reduced as much as possible. A device that maximizes the lift amount (effective opening area) has been proposed.

しかしながら、かかる提案の電動弁においては、大流量流通時における圧力損失を低減すべく、弁口の口径を大きくすると、小流量流通時において流量制御を高精度に行なえなくなってしまうという問題がある。   However, in the proposed motor-operated valve, there is a problem that if the diameter of the valve port is increased in order to reduce the pressure loss at the time of a large flow rate, the flow control cannot be performed with high accuracy at the time of a small flow rate.

一方、大流量流通時における圧力損失の低減と小流量流通時の流量制御精度の向上の両立を図るべく、特許文献3に所載のように、ニードル型の主弁体を有する弁軸と、前記主弁体により開閉される主弁口(オリフィス)が形成された弁座を有する弁本体と、前記主弁口の実効開口面積(主弁体部のリフト量)を調整するための昇降駆動手段としてのモータとを備え、小流量流通時には、流量制御を高精度に行なうべく、流体を前記主弁体と主弁口との間からのみ流し、大流量流通時には、圧力損失を可及的に低減すべく、流体の全部ないし大半を前記主弁口を介することなく流すように構成された電動弁が提案されている。   On the other hand, a valve shaft having a needle-type main valve body, as described in Patent Document 3, in order to achieve both a reduction in pressure loss during a large flow rate and an improvement in flow rate control accuracy during a small flow rate, A valve body having a valve seat in which a main valve port (orifice) that is opened and closed by the main valve body is formed, and a lift drive for adjusting an effective opening area (lift amount of the main valve body portion) of the main valve port A motor is provided as a means, and fluid flows only from between the main valve body and the main valve port in order to control the flow rate with high accuracy when a small flow rate is distributed, and pressure loss is minimized when flowing a large flow rate. Therefore, there has been proposed a motor-operated valve configured to flow all or most of the fluid without passing through the main valve port.

この電動弁は、より詳細には、前記主弁口をバイパスする大流量用流路が形成されるとともに、該大流量用流路を小流量流通時(正流れ時)には閉じ、大流量流通時(逆流れ時)には開く逆止弁体が前記主弁座を挟んで前記主弁体部とは反対側に配備された逆止弁付きの電動弁となっている(特許文献3の図1、図2に示される第1実施例)。この電動弁は、双方向流通型の電動弁ということができる。   In more detail, the motor-operated valve has a large flow rate channel that bypasses the main valve port, and closes the large flow rate channel when the small flow rate is flowing (positive flow). A check valve body that opens at the time of circulation (at the time of reverse flow) is an electric valve with a check valve disposed on the opposite side of the main valve body portion with the main valve seat interposed therebetween (Patent Document 3). 1 and 2 of the first embodiment). This electric valve can be said to be a bidirectional flow type electric valve.

特開2001-50415号公報Japanese Patent Laid-Open No. 2001-50415 特開2009-14056号公報JP 2009-14056 A 特開2010-249246号公報JP 2010-249246 A

上記提案の逆止弁付き電動弁では、小流量流通時には、ニードル型の主弁体部のみで流量制御を行い、大流量流通時には逆止弁体が大流量用流路(バイパス流路)を自動的に開くようにされているので、小流量流通時の流量制御精度の向上と大流量流通時における圧力損失の低減の両立を図ることができるが、逆止弁体が主弁座を挟んで主弁体部とは反対側(反弁室側)に配備されているため、弁本体の大型化、弁座等の内部構造の複雑化、加工組み立てコストの増大等を招きやすく、費用対効果が課題となっている。   In the motor valve with a check valve proposed above, flow control is performed only with a needle-type main valve body part when a small flow rate is distributed, and when the flow rate is large, the check valve body has a large flow path (bypass flow path). Since it is designed to open automatically, it is possible to improve both flow control accuracy during low flow and reduce pressure loss during high flow, but the check valve body sandwiches the main valve seat. Because it is arranged on the side opposite to the main valve body (on the side of the valve chamber), it tends to increase the valve body size, complicate the internal structure of the valve seat, etc., and increase the processing and assembly costs. The effect is an issue.

本発明は、このような事情に鑑みてなされたもので、その目的とするところは、弁本体の大型化、弁座等の内部構造の複雑化、加工組み立てコストの増大等を招くことなく、小流量流通時には流量を高精度に制御し得、大流量流通時には可及的に圧力損失が生じないように流体を流すことのできる費用対効果に優れた電動弁を提供することにある。また構成が簡単であり、流通方向の変更を速やかに安定して行うことができ、動作状態が安定して信頼性を向上させ得る電動弁を提供することにある。   The present invention has been made in view of such circumstances, and its purpose is to increase the size of the valve body, complicate the internal structure of the valve seat, etc., increase the processing assembly cost, etc. It is an object of the present invention to provide a cost-effective motor-operated valve that can control the flow rate with high accuracy when flowing a small flow rate, and can flow a fluid so that pressure loss does not occur as much as possible when flowing a large flow rate. It is another object of the present invention to provide a motor-operated valve that has a simple configuration, can change the flow direction quickly and stably, can stably operate, and can improve reliability.

前記目的を達成すべく、本発明に係る電動弁は、基本的には、第1入出口、弁室、及び第2入出口が設けられた弁本体と、小流量用流路を構成する弁座が形成され、前記弁本体における前記弁室と第2入出口との間に設けられた主弁口を有する弁座体と、前記弁室から前記主弁口を介して前記第2入出口へ流れる流量を調整すべく前記弁室内に配在されたニードル型の弁体部を有する弁軸と、該弁軸を昇降させるためのモータと、を備えている。   In order to achieve the above object, the motor-operated valve according to the present invention basically includes a valve body provided with a first inlet / outlet, a valve chamber, and a second inlet / outlet, and a valve constituting a small flow rate channel. A valve seat body having a main valve port provided between the valve chamber and the second inlet / outlet in the valve body, and the second inlet / outlet from the valve chamber via the main valve port. A valve shaft having a needle-type valve element disposed in the valve chamber and a motor for raising and lowering the valve shaft.

そして、前記弁本体内に、前記主弁口をバイパスする大流量用流路が形成されるとともに、該大流量用流路を正流れ時には閉じ、逆流れ時には開くフロート型の逆止弁体が前記弁室に配備され、前記大流量用流路は、少なくとも1つの逆止弁口を有し、前記逆止弁体は前記逆止弁口と同数設けられると共に、前記逆止弁が前記逆止弁口を開閉するように前記弁室内にガイド手段を備え、前記ガイド手段としてのガイド柱が前記弁室の天井部から弁座体上の所定高さ位置まで下向きに突設されて、該ガイド柱の下端面と前記弁座体の上面との間に流通間隙が形成されていることを特徴としている。   In the valve body, there is formed a flow passage for large flow rate that bypasses the main valve port, and a float type check valve body that closes the flow passage for large flow rate during normal flow and opens during reverse flow. The large flow path has at least one check valve port provided in the valve chamber, the check valve bodies are provided in the same number as the check valve ports, and the check valve is the check valve. A guide means is provided in the valve chamber so as to open and close the valve opening, and a guide column as the guide means projects downward from a ceiling portion of the valve chamber to a predetermined height position on the valve seat body, A flow gap is formed between the lower end surface of the guide column and the upper surface of the valve seat body.

好ましい態様では、前記弁室の内周壁面で前記ガイド手段の一部が構成される。
また好ましい態様では、前記逆止弁口は、前記主弁口の外周側に形成される。
In a preferred embodiment, a part of the guide means is constituted by an inner peripheral wall surface of the valve chamber.
In a preferred embodiment, the check valve port is formed on the outer peripheral side of the main valve port.

前記逆止弁体は、好ましくは、球体もしくは下端が前記逆止弁口を閉塞する柱状体で構成される。
前記弁座体は、好ましくは、前記弁本体と一体形成される。
The check valve body is preferably composed of a sphere or a columnar body whose lower end closes the check valve port.
The valve seat body is preferably formed integrally with the valve body.

本発明に係る電動弁では、主弁口をバイパスする大流量用流路が形成されるとともに、該大流量用流路を正流れ時には閉じ、逆流れ時には開くフロート型の逆止弁体が弁室に配備されるので、弁本体の大型化、弁座等の内部構造の複雑化、加工組み立てコストの増大等を招くことがなく、小流量流通時には流量を高精度に制御し得、大流量流通時には可及的に圧力損失が生じないように流体を流すことができ、費用対効果に優れるものとなる。   In the motor-operated valve according to the present invention, a flow rate check valve body that forms a flow passage for large flow rate that bypasses the main valve port and closes the flow passage for large flow rate during normal flow and opens during reverse flow is a valve. Because it is installed in the chamber, the flow rate can be controlled with high accuracy when the flow rate is small, without increasing the size of the valve body, complicating the internal structure of the valve seat, etc., and increasing the processing and assembly costs. It is possible to flow the fluid so as not to cause pressure loss as much as possible at the time of distribution, and it is excellent in cost effectiveness.

上記に加え、各逆止弁体による逆止弁口の開閉を確実かつ円滑に行わせるためのガイド手段としてのガイド柱が弁室の天井部から弁座体上の所定高さ位置まで下向きに突設されて、このガイド柱の下端面と弁座体の上面との間に流通間隙が形成されているので、逆流れ時において流体の流れがさほど阻害されなくなり、逆流れ時の圧力損失を効果的に低減できる。   In addition to the above, a guide column as a guide means for reliably and smoothly opening and closing the check valve opening by each check valve body is downward from the ceiling of the valve chamber to a predetermined height position on the valve seat body. Since it is projecting and a flow gap is formed between the lower end surface of this guide column and the upper surface of the valve seat body, the flow of fluid is not so hindered during reverse flow, and pressure loss during reverse flow is reduced. It can be effectively reduced.

本発明に係る電動弁の一実施例の構成並びに正流れ時の動作説明に供される部分切欠断面図。The partial notch sectional drawing with which the structure of one Example of the motor operated valve which concerns on this invention and operation | movement description at the time of a normal flow are provided. 本発明に係る電動弁の一実施例の構成並びに逆流れ時の動作説明に供される部分切欠断面図。The partial notch sectional drawing with which the structure of one Example of the motor operated valve concerning this invention and operation | movement description at the time of a reverse flow are provided. 逆流れ時を示す図2の要部を破断した状態の斜視図。The perspective view of the state which fractured | ruptured the principal part of FIG. 2 which shows the time of a reverse flow. (A)は図2の概ねX-X矢視線に従う断面図、(B)は図2の概ねY-Y矢視線に従う断面図。(A) is sectional drawing which follows the XX arrow line of FIG. 2 generally, (B) is sectional drawing which follows the YY arrow line of FIG. 図1に示される電動弁のガイド柱の一例とそれが設けられた蓋状部材を示す斜視図。The perspective view which shows an example of the guide pillar of the electrically operated valve shown by FIG. 1, and the lid-like member provided with it. 図1に示される電動弁のガイド柱の他の例とそれが設けられた蓋状部材を示す斜視図。The perspective view which shows the other example of the guide pillar of the electrically operated valve shown by FIG. 1, and the lid-like member provided with it. ガイド柱として図6に示されるものが用いられた場合の、図4(B)に対応する断面図。Sectional drawing corresponding to FIG.4 (B) at the time of using what is shown by FIG. 6 as a guide pillar. 従来のヒートポンプ式冷暖房システムの一例を示す構成図。The block diagram which shows an example of the conventional heat pump type | formula air conditioning system. 従来の電動弁の一例を示す縦断面図。The longitudinal cross-sectional view which shows an example of the conventional motor operated valve.

以下、本発明に係る電動弁の実施の形態を図面を参照しながら説明する。   Hereinafter, embodiments of a motor-operated valve according to the present invention will be described with reference to the drawings.

図1、図2は、本発明に係る電動弁の一実施例の主要部の部分切欠断面図であり、図1は正流れ時(小流量流通時)、図2は逆流れ時(大流量流通時)を示している。なお、本実施例では、流体(冷媒)の流れ方向が第1入出口11→第2入出口12の場合を正流れ(図1)、第2入出口12→第1入出口11の場合を逆流れ(図2)と称す。図3は、主要部(弁本体)の部分切欠斜視図(逆流れ時)である。   1 and 2 are partial cutaway cross-sectional views of the main part of one embodiment of the motor-operated valve according to the present invention. FIG. 1 shows a normal flow (when a small flow rate is flowing), and FIG. 2 shows a reverse flow (a large flow rate). During distribution). In the present embodiment, the flow direction of the fluid (refrigerant) is the first inlet / outlet 11 → the second inlet / outlet 12 is the normal flow (FIG. 1), and the second inlet / outlet 12 → the first inlet / outlet 11 is the case. This is called reverse flow (FIG. 2). FIG. 3 is a partially cutaway perspective view (during reverse flow) of the main part (valve body).

また、図示実施例の電動弁10のステッピングモータ50、弁軸25等の基本構成は、前述した図9に示される従来例の電動弁10’と略同じであるので、ここでは、図9に示される従来例の電動弁10’の各部に対応する部分には同一の符号を付して重複説明を省略し、以下は、主要部(特徴部分)である弁本体15部分を重点的に説明する。   Further, the basic configuration of the stepping motor 50, the valve shaft 25, etc. of the motor-operated valve 10 in the illustrated embodiment is substantially the same as that of the motor-operated valve 10 ′ of the conventional example shown in FIG. 9 described above. The parts corresponding to the respective parts of the conventional motor-operated valve 10 'shown in the figure are denoted by the same reference numerals and redundant description is omitted, and the following mainly focuses on the main part of the valve body 15 (characteristic part). To do.

本実施例の弁本体15には、正流れ方向で見て、順次、第1入出口11、該第1入出口が開口する弁室21、主弁口23が形成された弁座体(隔壁)16、この弁座体16を天井部とする下部空間22、及び下部空間22に連なる第2入出口12が設けられている。   The valve body 15 of the present embodiment has a valve seat body (partition wall) in which a first inlet / outlet 11, a valve chamber 21 in which the first inlet / outlet opens, and a main valve port 23 are sequentially formed in the positive flow direction. 16), a lower space 22 having the valve seat body 16 as a ceiling, and a second inlet / outlet 12 connected to the lower space 22 are provided.

より詳細には、弁本体15は、上面が開口した有底円筒状の基体部15Aと、この基体部15Aの上部に、周方向の位置決めした状態で被着嵌合せしめられて溶接により接合された蓋状部材15Bとから構成されている。   More specifically, the valve body 15 is attached by welding with a bottomed cylindrical base portion 15A having an open upper surface, and being attached and fitted to the upper portion of the base portion 15A in a circumferentially positioned state. And a lid-like member 15B.

基体部15Aの下部には、基体部15A内を上下に仕切る厚肉円板状の弁座体16が一体に設けられ、この弁座体16と蓋状部材15Bとの間が弁室21とされ、基体部15Aの底部と弁座体16との間が下部空間22となっている。ここでは、蓋状部材15Bの下端部が弁室21の天井部21aとなり、弁座体16の上面が弁室21の底面となる。図示された例では、弁座体16は弁本体15と一体的に形成されているが、弁本体15と別体であっても良い。   A thick disc-like valve seat body 16 that divides the inside of the base body portion 15A up and down is integrally provided below the base body portion 15A, and a space between the valve seat body 16 and the lid-like member 15B is connected to the valve chamber 21. The space between the bottom of the base portion 15 </ b> A and the valve seat body 16 is a lower space 22. Here, the lower end portion of the lid-like member 15 </ b> B becomes the ceiling portion 21 a of the valve chamber 21, and the upper surface of the valve seat body 16 becomes the bottom surface of the valve chamber 21. In the illustrated example, the valve seat body 16 is formed integrally with the valve body 15, but may be separate from the valve body 15.

弁座体16の中央部には、弁棒25の下端部に設けられたニードル型の弁体部24により開閉される主弁口23が形成されており、この主弁口23の外周側には、主弁口23をバイパスする大流量用流路を形成すべく、3個の円形の逆止弁口72A、72B、72Cが形成されている。   A main valve port 23 that is opened and closed by a needle-type valve body portion 24 provided at the lower end portion of the valve rod 25 is formed in the central portion of the valve seat body 16. Are formed with three circular check valve ports 72A, 72B, 72C in order to form a flow passage for large flow rate that bypasses the main valve port 23.

3個の逆止弁口72A、72B、72Cは、図4(A)を参照すればよくわかるように、前記主弁口23の中心軸線(弁棒25の回転軸線O)を中心とした同一円周上に形成されており、逆止弁口72A、72Bは、第1入出口11寄りでその中心線Cを挟んで左右対称的に配置され、逆止弁口72Cは第1入出口11とは反対側でその中心線C上に配置されている。   The three check valve ports 72A, 72B, 72C are the same with the center axis of the main valve port 23 (rotation axis O of the valve rod 25) as the center, as can be understood by referring to FIG. The check valve ports 72 </ b> A and 72 </ b> B are arranged symmetrically around the center line C near the first inlet / outlet 11, and the check valve port 72 </ b> C is the first inlet / outlet 11. Is arranged on the center line C on the opposite side.

前記3個の逆止弁口72A、72B、72Cを含んで構成される大流量用流路を正流れ時には閉じ、逆流れ時には開くべく、ボール(球体)からなる3個のフロート型の逆止弁体75、75、75がそれぞれ弁室21における逆止弁口72A、72B、72C上に配備されている。   Three float-type check valves made up of balls (spheres) are configured to close the large flow rate flow path including the three check valve ports 72A, 72B, 72C during normal flow and open during reverse flow. The valve bodies 75, 75, 75 are provided on the check valve ports 72A, 72B, 72C in the valve chamber 21, respectively.

そして、本実施例では、ボールからなる各逆止弁体75による逆止弁口72A、72B、72Cの開閉を確実かつ円滑に行わせるためのガイド手段としてのガイド柱73A、73B、73Cが弁室21の天井部21aから弁座体16上の所定高さ位置まで下向きに突設されて、このガイド柱73A、73B、73Cの下端面と弁座体16の上面との間に流通間隙H(図1、図2参照)が形成されている。このガイド柱73A、73B、73Cは、前記主弁口23の中心軸を中心とする円弧(扇形状)を描くように形成されており、隣り合う各ガイド柱の側面(円弧の両端部)と弁室の内周壁面21cとで各逆止弁体75を上下方向に摺動自在にガイドする。   In this embodiment, the guide pillars 73A, 73B, 73C as guide means for reliably and smoothly opening and closing the check valve ports 72A, 72B, 72C by the check valve bodies 75 made of balls are used as the valve. It protrudes downward from the ceiling 21 a of the chamber 21 to a predetermined height position on the valve seat body 16, and a flow gap H is formed between the lower end surfaces of the guide pillars 73 A, 73 B, 73 C and the upper surface of the valve seat body 16. (See FIGS. 1 and 2). The guide columns 73A, 73B, 73C are formed so as to draw an arc (fan shape) centered on the central axis of the main valve port 23, and the side surfaces (both ends of the arc) of the adjacent guide columns. Each check valve body 75 is slidably guided in the vertical direction by the inner peripheral wall surface 21c of the valve chamber.

より詳細には、図1〜図3に加えて図4(B)を参照すればよくわかるように、逆止弁口72Aと72Bとの間、つまり、第1入出口11の開口面の対面には、比較的広幅の横断面扇形状のガイド柱73Aが配置され、逆止弁口72Bと72Cとの間、及び、逆止弁口72Cと72Aとの間には、比較的狭幅の横断面扇形状のガイド柱73Bと73Cが配置されている。   More specifically, as can be understood by referring to FIG. 4 (B) in addition to FIGS. 1 to 3, between the check valve ports 72 </ b> A and 72 </ b> B, that is, the opening face of the first inlet / outlet 11. Is provided with a relatively wide cross-sectional fan-shaped guide column 73A, and a relatively narrow width between the check valve ports 72B and 72C and between the check valve ports 72C and 72A. Guide pillars 73B and 73C having a cross-sectional fan shape are arranged.

各ガイド柱73A、73B、73Cの基端部側(天井部21a側)には、半径方向に厚みを増すように横断面扇形状の補強部73dが設けられている。ガイド柱73A、73B、73Cの両側面は、ボールからなる逆止弁体75より若干大径の円筒面で形成され、ガイド柱73A、73B、73Cの内方側の面は、蓋状部材15Bの中央部を縦貫する弁棒25の挿通孔19の一部を形成している。なお、この補強部73dは特に設けられなくても良い。   On the base end side (ceiling part 21a side) of each of the guide pillars 73A, 73B, 73C, a reinforcing part 73d having a fan-shaped cross section is provided so as to increase the thickness in the radial direction. Both side surfaces of the guide columns 73A, 73B, 73C are formed as cylindrical surfaces having a slightly larger diameter than the check valve body 75 made of a ball, and the inner surfaces of the guide columns 73A, 73B, 73C are the lid-like member 15B. A part of the insertion hole 19 of the valve rod 25 that vertically passes through the central part of the valve rod 25 is formed. In addition, this reinforcement part 73d does not need to be provided in particular.

したがって、ボールからなる逆止弁体75は、周方向には、隣り合うガイド柱(72A-72B)、(72B-72C)、(72C-72A)の側面でその動きが規制され、半径方向内方側は、ガイド柱73A、73B、73Cの側面内周側、あるいは該側面内周側と弁棒25とでその動きが規制され、半径方向外方側は弁室21の内周壁面21cでその動きが規制される。言い換えれば、本実施例では、各逆止弁口72A、72B、72C上に、弁軸25と弁室21の内周壁面21cと隣り合うガイド柱(72A-72B)、(72B-72C)、(72C-72A)とで囲まれた3つの柱状空間が画成され、各逆止弁体75は前記各柱状空間から飛び出すことなくその中で流体の流れ方向に合わせて上下動、つまり、正流れ時には第1入出口11からの流体により下向きに押さえ付けられて逆止弁口72A、72B、72Cをしっかりと閉じ、逆流れ時には第2入出口12からの流体により、弁室21の天井部21aに接当するまで押し上げられて逆止弁口72A、72B、72Cを全開にするようにされる。   Therefore, the check valve body 75 made of a ball is restricted in movement in the radial direction by the side surfaces of the adjacent guide columns (72A-72B), (72B-72C), (72C-72A) in the circumferential direction. The movement on the side is regulated by the inner side of the side surfaces of the guide pillars 73A, 73B, 73C, or by the inner side of the side and the valve rod 25, and the outer side in the radial direction is the inner wall surface 21c of the valve chamber 21. That movement is regulated. In other words, in this embodiment, the guide pillars (72A-72B), (72B-72C) adjacent to the valve shaft 25 and the inner peripheral wall surface 21c of the valve chamber 21 on the check valve ports 72A, 72B, 72C, (72C-72A) are defined, and each check valve body 75 moves up and down in accordance with the flow direction of the fluid without jumping out from each of the columnar spaces. The check valve ports 72A, 72B, and 72C are closed tightly by the fluid from the first inlet / outlet 11 when flowing, and the check valve ports 72A, 72B, and 72C are tightly closed during the reverse flow, and the ceiling of the valve chamber 21 by the fluid from the second inlet / outlet 12 The check valve ports 72A, 72B, 72C are fully opened by being pushed up until they contact 21a.

なお、上記のように、本実施例では、弁室21の内周壁面21cを、各逆止弁体75よる逆止弁口72A、72B、72Cの開閉を確実かつ円滑に行わせるためのガイド手段の一部として利用しているので、第1入出口11が開口している側には逆止弁口及び逆止弁体を配置していない。そのため、第1入出口11の開口面の対面には、比較的広幅の断面扇形状のガイド柱73Aが配置され、逆止弁口72Aと72Bとの角度間隔は例えば150〜180度と広く設定されているのに対し、逆止弁口72Bと72Cとの角度間隔及び逆止弁口72Cと72Aとの角度間隔は例えば90〜110度と狭く設定されている。   As described above, in this embodiment, the guide for causing the inner peripheral wall surface 21c of the valve chamber 21 to open and close the check valve ports 72A, 72B, 72C by the check valve bodies 75 reliably and smoothly. Since it is used as a part of the means, the check valve port and the check valve body are not arranged on the side where the first inlet / outlet 11 is open. Therefore, a relatively wide cross-sectional fan-shaped guide column 73A is disposed on the opposite side of the opening surface of the first inlet / outlet 11, and the angular interval between the check valve ports 72A and 72B is set wide, for example, 150 to 180 degrees. In contrast, the angle interval between the check valve ports 72B and 72C and the angle interval between the check valve ports 72C and 72A are set to be narrow, for example, 90 to 110 degrees.

ガイド柱73A、73B、73Cの下端面と弁座体16の上面との間に形成される前記流通間隙Hは、逆流れ時の圧力損失を考えると、大きい方が好ましいが、大きくし過ぎると、ボールからなる逆止弁体75とガイド柱73A、73B、73Cとの間に大きな隙間が形成されることになるので、ボールからなる各逆止弁体75による逆止弁口72A、72B、72Cの開閉を安定して行えなくなるおそれがある。したがって、前記流通間隙Hは、前記ボールで構成された逆止弁体75の直径の概略2/3より小さく、概略1/5より大きい程度が好ましい。   The flow gap H formed between the lower end surfaces of the guide pillars 73A, 73B, 73C and the upper surface of the valve seat body 16 is preferably larger in view of the pressure loss during reverse flow. Since a large gap is formed between the check valve body 75 made of balls and the guide pillars 73A, 73B, 73C, check valve ports 72A, 72B by the check valve bodies 75 made of balls There is a risk that the opening and closing of 72C cannot be performed stably. Therefore, the flow gap H is preferably smaller than about 2/3 of the diameter of the check valve body 75 made of the ball and larger than about 1/5.

このような構成とされた本実施例の電動弁10においては、図1に示される如くの小流量流通時(正流れ時)には、弁室21の圧力が下部空間22の圧力より大きいので、ボールからなる逆止弁体75が逆止弁口72A、72B、72Cの上面開口端縁部に押し付けられて逆止弁口72A、72B、72Cが閉じられ、第1入出口11から弁室21に導入された冷媒(流体)は、前記流通間隙H、ガイド柱73A、73B、73Cの間に形成される隙間やガイド柱73A、73B、73Cと内周壁面21cとの間の部分から主弁口23と弁体部24との間に形成される隙間を介して下部空間22→第2入出口12に流出する。   In the motor-operated valve 10 of the present embodiment having such a configuration, the pressure in the valve chamber 21 is larger than the pressure in the lower space 22 when the small flow rate is flowing (at the normal flow) as shown in FIG. The check valve body 75 made of a ball is pressed against the upper opening edge of the check valve ports 72A, 72B, 72C to close the check valve ports 72A, 72B, 72C. The refrigerant (fluid) introduced into the main body 21 mainly flows from the flow gap H, the gap formed between the guide pillars 73A, 73B, 73C, and the portion between the guide pillars 73A, 73B, 73C and the inner peripheral wall surface 21c. It flows out from the lower space 22 to the second inlet / outlet 12 through a gap formed between the valve port 23 and the valve body 24.

一方、図2に示される如くの大流量流通時(逆流れ時)には、弁室21の圧力が下部空間22の圧力より小さいので、逆止弁体75が弁室21の天井部21aに接当するまで押し上げられて、逆止弁口72A、72B、72C(大流量用通路)が開かれ、第2入出口12からの冷媒(流体)は、下部空間22→逆止弁口72A、72B、72C→弁室21→前記流通間隙H、ガイド柱73A、73B、73Cの間に形成される隙間、ガイド柱73A、73B、73Cと内周壁面21cとの間の部分等を通って第1入出口11へと流れる。   On the other hand, at the time of a large flow rate flow (reverse flow) as shown in FIG. 2, the pressure in the valve chamber 21 is smaller than the pressure in the lower space 22, so the check valve body 75 is placed on the ceiling 21 a of the valve chamber 21. The check valve ports 72A, 72B, 72C (large flow passages) are opened until they come into contact with each other, and the refrigerant (fluid) from the second inlet / outlet 12 flows into the lower space 22 → the check valve ports 72A, 72B, 72C → valve chamber 21 → the flow gap H, the gap formed between the guide pillars 73A, 73B, 73C, the part between the guide pillars 73A, 73B, 73C and the inner peripheral wall surface 21c, etc. It flows to 1 entrance / exit 11.

このように本実施例の電動弁10は、主弁口23をバイパスするように逆止弁口72A、72B、72Cが形成されるとともに、逆止弁口72A、72B、72Cを正流れ時には閉じ、逆流れ時には開くフロート型の逆止弁体75が弁室21に配備されているので、弁本体の大型化、内部構造の複雑化、加工組み立てコストの増大等を招くことがなく、小流量流通時には流量を高精度に制御し得、大流量流通時には可及的に圧力損失が生じないように流体を流すことができ、費用対効果に優れるものとなる。   As described above, the motor-operated valve 10 according to the present embodiment is formed with the check valve ports 72A, 72B, and 72C so as to bypass the main valve port 23, and closes the check valve ports 72A, 72B, and 72C during normal flow. Since the float type check valve body 75 that opens at the time of reverse flow is provided in the valve chamber 21, there is no increase in the size of the valve body, the internal structure is complicated, the processing and assembly costs are increased, and the like. The flow rate can be controlled with high accuracy during the flow, and the fluid can be flowed so as not to cause a pressure loss as much as possible during the flow of the large flow rate, which is excellent in cost effectiveness.

また、ボールからなる逆止弁体75は、材料として、プラスチック、アルミニウム等の軽量金属、及びゴムのうちの一つもしくは複数を用いて(例えば内部が空洞の硬質プラスチックからなる球体の表面に弾力性を持つゴムを被覆するなどして)比較的軽量に作製されることができる。また逆止弁体75は、ステンレス等の金属、樹脂、セラミック等により作製されることもできる。この逆止弁体75は、中実または中空に作製される。   The check valve body 75 made of a ball is made of one or more of plastic, lightweight metal such as aluminum, and rubber (for example, elastically applied to the surface of a sphere made of hard plastic with a hollow inside). It can be made relatively lightweight (for example, by covering a rubber having a property). The check valve body 75 can also be made of a metal such as stainless steel, a resin, a ceramic, or the like. The check valve body 75 is made solid or hollow.

ボールからなる逆止弁体75は、それ自体が調芯機能を持っているので、いかなる姿勢でも逆止弁口72A、72B、72Cを閉塞可能であり、閉塞可能面積の割には体積が小さく、単純な球状であるから流体抵抗が少ないことに加えて、ガイド柱73A、73B、73C等によりその上下動がガイドされるので、流体の流れ方向(圧力の変化)に対する応答性が良好で、逆止弁口72A、72B、72Cの開閉、つまり、流れ方向の変更を速やかに安定して行うことができ、信頼性が向上する。また、逆止弁体75を比較的軽量に作成すれば、流体の圧力変化に対する応答性がさらに良好となる。   Since the check valve body 75 made of a ball itself has a centering function, the check valve ports 72A, 72B, 72C can be closed in any posture, and the volume is small for the blockable area. In addition to the simple spherical shape, in addition to low fluid resistance, the vertical movement is guided by the guide pillars 73A, 73B, 73C, etc., so the responsiveness to the fluid flow direction (change in pressure) is good, The check valve ports 72A, 72B, 72C can be opened and closed, that is, the flow direction can be changed quickly and stably, and the reliability is improved. Further, if the check valve body 75 is made relatively light, the response to a change in the pressure of the fluid is further improved.

上記に加え、各逆止弁体75による逆止弁口72A、72B、72Cの開閉を確実かつ円滑に行わせるためのガイド手段としてのガイド柱73A、73B、73Cが弁室21の天井部21aから弁座体16上の所定高さ位置まで下向きに突設されて、このガイド柱73A、73B、73Cの下端面と弁座体16の上面との間に流通間隙Hが形成されているので、弁座体16に複数個のガイド柱を上向きに立設したものや、弁座体16から天井部21aに至るまで間隙なく延びるようにガイド柱を配置したものに比して、逆流れ時において流体の流れがさほど阻害されなくなり、逆流れ時の圧力損失を効果的に低減できる。   In addition to the above, the guide columns 73A, 73B, 73C as guide means for reliably and smoothly opening and closing the check valve ports 72A, 72B, 72C by the check valve bodies 75 are the ceiling portions 21a of the valve chamber 21. From the lower end surface of the guide pillars 73A, 73B, 73C and the upper surface of the valve seat body 16 so as to project downward from the valve seat body 16 to a predetermined height position. Compared to the case where a plurality of guide columns are erected upward on the valve seat body 16 and the case where the guide columns are arranged so as to extend without gap from the valve seat body 16 to the ceiling portion 21a, In this case, the flow of the fluid is not so hindered, and the pressure loss during the reverse flow can be effectively reduced.

以上、本発明の実施例について詳述したが、本発明は、前記の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行なうことができるものである。例えば、第1実施例において、逆止弁口、逆止弁体、ガイド柱が3個ずつ設けられている例を示したが、それらの個数は適宜変更することができる。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed. For example, in the first embodiment, an example in which three check valve ports, check valve bodies, and three guide columns are provided is shown, but the number of them can be changed as appropriate.

例えば、図6、図7に示される例のように、弁室21の天井部21a(蓋状部材15Bの下端部)に90度間隔で、比較的背丈の低い断面細幅台形状の4つのガイド柱74A、74B、74C、74Dが下向きに突設され、また、ガイド柱74Aと74Dとの間に逆止弁口72Aが、ガイド柱74Bと74Cとの間に逆止弁口72Bが、ガイド柱74Cと74Dとの間に逆止弁口72Cがそれぞれ位置するようにし、かつ第1入出口11の開口面の対面であるガイド柱74Aと74Bとの間には逆止弁口72を設けないようにしても良い。   For example, as shown in FIG. 6 and FIG. 7, there are four sections having a narrow trapezoidal cross section with a relatively low height at intervals of 90 degrees on the ceiling portion 21a of the valve chamber 21 (the lower end portion of the lid-like member 15B). Guide columns 74A, 74B, 74C, 74D are provided to project downward, and a check valve port 72A is provided between the guide columns 74A and 74D, and a check valve port 72B is provided between the guide columns 74B and 74C. A check valve port 72C is positioned between the guide columns 74C and 74D, and a check valve port 72 is provided between the guide columns 74A and 74B, which are opposed to the opening surface of the first inlet / outlet 11. It may not be provided.

かかる例でも、ガイド柱74A、74B、74C、74Dが弁室21の天井部21aから弁座体16上の所定高さ位置まで下向きに突設されて、このガイド柱74A、74B、74C、74Dの下端面と弁座体16の上面との間に流通間隙Hが形成されるので、従前提案のように、弁座体に複数個のガイド柱を上向きに立設したものに比して、逆流れ時において流体の流れがさほど阻害されなくなり、逆流れ時の圧力損失を効果的に低減できる。   Also in this example, the guide pillars 74A, 74B, 74C, 74D are projected downward from the ceiling portion 21a of the valve chamber 21 to a predetermined height position on the valve seat body 16, and the guide pillars 74A, 74B, 74C, 74D. Since a flow gap H is formed between the lower end surface of the valve seat 16 and the upper surface of the valve seat body 16, as compared to the case where a plurality of guide columns are erected upward on the valve seat body, as previously proposed, The fluid flow is not so hindered during the reverse flow, and the pressure loss during the reverse flow can be effectively reduced.

また、逆止弁体は、3個に限らず、1個若しくは2個又は4個以上であっても良いことは当然である。   Of course, the number of check valve elements is not limited to three, but may be one, two, or four or more.

さらに、ガイド柱の形状も適宜変更することができる。すなわち、図5又は図6に示したガイド柱は、弁棒25の周囲(挿通孔19の周囲)に複数設けられ、隣接するガイド柱の側面間と弁室内壁との間で各逆止弁体75をガイドするが、本発明は特にこれのみに限定されることはなく、例えば、各逆止弁体75のそれぞれをその両側から挟むようにしてこれをガイドするように、各逆止弁体毎にそれぞれ一対の横断面円弧状のガイド柱を天井部21aから下向きに突設し、弁室21の内周壁面21cを利用することなく、この一対のガイド柱のみで逆止弁をガイドするようにしても良い。すなわち、逆止弁体75が3個の場合は、ガイド部材は6個となる。
この場合、各ガイド柱は、各逆止弁体75の配列方向(円周方向)に設けることができる。
Furthermore, the shape of the guide column can be changed as appropriate. That is, a plurality of guide columns shown in FIG. 5 or FIG. 6 are provided around the valve rod 25 (around the insertion hole 19), and each check valve is provided between the side surfaces of the adjacent guide columns and between the valve chamber walls. Although the body 75 is guided, the present invention is not particularly limited to this. For example, each check valve body 75 is guided so as to guide each check valve body 75 from both sides. A pair of arc-shaped guide columns each having a cross-sectional shape projecting downward from the ceiling portion 21a so that the check valve is guided only by the pair of guide columns without using the inner peripheral wall surface 21c of the valve chamber 21. Anyway. That is, when there are three check valve bodies 75, there are six guide members.
In this case, each guide column can be provided in the arrangement direction (circumferential direction) of each check valve body 75.

また、上記実施例では、逆止弁体がボールとされているが、逆止弁体は必ずしもボールである必要はなく、シール面が球面、楕球面、円錐面等の逆止弁口の開口縁部に対して実質的に線接触する曲面で構成されているものであれば円柱状や角柱状等、いかなる形状であってもよい。   In the above embodiment, the check valve body is a ball. However, the check valve body does not necessarily have to be a ball, and the opening of the check valve port such as a spherical surface, an elliptical surface, or a conical surface is used. Any shape such as a columnar shape or a prismatic shape may be used as long as it is composed of a curved surface that is substantially in line contact with the edge.

さらに、上記実施例では、弁座体16に主弁口や逆止弁口が形成されているが、該主弁口及び/又は逆止弁口を、弁座体16とは別の弁シートに設け、該弁シートを弁座体16に取り付けるようにしても良い。   Further, in the above embodiment, the main valve port and the check valve port are formed in the valve seat body 16, but the main valve port and / or the check valve port is a valve seat different from the valve seat body 16. The valve seat may be attached to the valve seat body 16.

さらにまた、本発明に係る電動弁は、ヒートポンプ式冷暖房システムに適用されるだけではなく、他のシステムにも適用できることは言うまでもない。   Furthermore, it goes without saying that the motor-operated valve according to the present invention can be applied not only to a heat pump air conditioning system but also to other systems.

10 電動弁
11 第1入出口
12 第2入出口
15 弁本体
16 弁座体
21 弁室
21a 天井部
21c 内周壁面
22 下部空間
23 主弁口
24 弁体部
25 弁軸
50 モータ
72 逆止弁口
73、74 ガイド柱
75 逆止弁体(ボール)
DESCRIPTION OF SYMBOLS 10 Electric valve 11 1st inlet / outlet 12 2nd inlet / outlet 15 Valve main body 16 Valve seat body 21 Valve chamber 21a Ceiling part 21c Inner peripheral wall surface 22 Lower space 23 Main valve port 24 Valve body part 25 Valve shaft 50 Motor 72 Check valve Mouth 73, 74 Guide column 75 Check valve body (ball)

Claims (5)

第1入出口、弁室、及び第2入出口が設けられた弁本体と、小流量用流路を構成する弁座が形成され、前記弁本体における前記弁室と第2入出口との間に設けられた主弁口を有する弁座体と、前記弁室から前記主弁口を介して前記第2入出口へ流れる流量を調整すべく前記弁室内に配在されたニードル型の弁体部を有する弁軸と、該弁軸を昇降させるためのモータと、を備え、
前記弁本体内に、前記主弁口をバイパスする大流量用流路が形成されるとともに、該大流量用流路を正流れ時には閉じ、逆流れ時には開くフロート型の逆止弁体が前記弁室に配備され、
前記大流量用流路は、少なくとも1つの逆止弁口を有し、
前記逆止弁体は前記逆止弁口と同数設けられると共に、前記逆止弁が前記逆止弁口を開閉するように前記弁室内にガイド手段を備え、
前記ガイド手段としてのガイド柱が前記弁室の天井部から弁座体上の所定高さ位置まで下向きに突設されて、該ガイド柱の下端面と前記弁座体の上面との間に流通間隙が形成されていることを特徴とする電動弁。
A valve main body provided with a first inlet / outlet, a valve chamber, and a second inlet / outlet, and a valve seat constituting a flow passage for small flow rate are formed, and between the valve chamber and the second inlet / outlet in the valve main body. A valve seat body having a main valve port provided in the valve chamber, and a needle-type valve body disposed in the valve chamber so as to adjust a flow rate flowing from the valve chamber to the second inlet / outlet through the main valve port A valve shaft having a portion, and a motor for raising and lowering the valve shaft,
In the valve body, there is formed a flow passage for large flow rate that bypasses the main valve port, and a float type check valve body that closes the flow passage for large flow rate during normal flow and opens during reverse flow is the valve. Deployed in the room,
The large flow path has at least one check valve port,
The check valve body is provided in the same number as the check valve port, and includes a guide means in the valve chamber so that the check valve opens and closes the check valve port,
A guide column as the guide means protrudes downward from the ceiling of the valve chamber to a predetermined height position on the valve seat body, and flows between the lower end surface of the guide column and the upper surface of the valve seat body. A motor-operated valve in which a gap is formed.
前記弁室の内周壁面が前記ガイド手段の一部を構成していることを特徴とする請求項1に記載の電動弁。   The motor-operated valve according to claim 1, wherein an inner peripheral wall surface of the valve chamber constitutes a part of the guide means. 前記逆止弁口は、前記主弁口の外周側に形成されることを特徴とする請求項1又は2に記載の電動弁。   The motor-operated valve according to claim 1, wherein the check valve port is formed on an outer peripheral side of the main valve port. 前記逆止弁体は、球体もしくは下端が前記逆止弁口を閉塞する柱状体であることを特徴とする請求項1から3のいずれかに記載の電動弁。   The motor-operated valve according to any one of claims 1 to 3, wherein the check valve body is a sphere or a columnar body whose lower end closes the check valve port. 前記弁座体は、前記弁本体と一体形成されていることを特徴とする請求項1から3のいずれかに記載の電動弁。   The electric valve according to any one of claims 1 to 3, wherein the valve seat body is formed integrally with the valve body.
JP2012086773A 2012-04-05 2012-04-05 Motorized valve Active JP5999960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012086773A JP5999960B2 (en) 2012-04-05 2012-04-05 Motorized valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012086773A JP5999960B2 (en) 2012-04-05 2012-04-05 Motorized valve

Publications (2)

Publication Number Publication Date
JP2013217408A true JP2013217408A (en) 2013-10-24
JP5999960B2 JP5999960B2 (en) 2016-09-28

Family

ID=49589750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012086773A Active JP5999960B2 (en) 2012-04-05 2012-04-05 Motorized valve

Country Status (1)

Country Link
JP (1) JP5999960B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017044347A (en) * 2016-11-21 2017-03-02 株式会社不二工機 Motor valve
US11156296B2 (en) 2017-06-30 2021-10-26 Zhejiang Sanhua Automotive Components Co., Ltd. Flow control valve
JP2022502620A (en) * 2018-10-27 2022-01-11 浙江三花智能控制股▲ふん▼有限公司Zhejiang Sanhua Intelligent Controls CO., Ltd Electronic expansion valve

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287913A (en) * 2008-05-29 2009-12-10 Saginomiya Seisakusho Inc Expansion valve, heat pump type refrigerating cycle, and air conditioner
JP2010249247A (en) * 2009-04-16 2010-11-04 Fuji Koki Corp Motor-operated valve and refrigeration cycle using the same
JP2013036487A (en) * 2011-08-04 2013-02-21 Fuji Koki Corp Electric-operated valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287913A (en) * 2008-05-29 2009-12-10 Saginomiya Seisakusho Inc Expansion valve, heat pump type refrigerating cycle, and air conditioner
JP2010249247A (en) * 2009-04-16 2010-11-04 Fuji Koki Corp Motor-operated valve and refrigeration cycle using the same
JP2013036487A (en) * 2011-08-04 2013-02-21 Fuji Koki Corp Electric-operated valve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017044347A (en) * 2016-11-21 2017-03-02 株式会社不二工機 Motor valve
US11156296B2 (en) 2017-06-30 2021-10-26 Zhejiang Sanhua Automotive Components Co., Ltd. Flow control valve
JP2022502620A (en) * 2018-10-27 2022-01-11 浙江三花智能控制股▲ふん▼有限公司Zhejiang Sanhua Intelligent Controls CO., Ltd Electronic expansion valve
US11906217B2 (en) 2018-10-27 2024-02-20 Zhejiang Sanhua Intelligent Controls Co., Ltd. Electronic expansion valve

Also Published As

Publication number Publication date
JP5999960B2 (en) 2016-09-28

Similar Documents

Publication Publication Date Title
JP6194157B2 (en) Motorized valve
JP5572330B2 (en) Motorized valve
JP4570473B2 (en) Valve device and refrigeration cycle device
JP5390181B2 (en) Expansion valve, heat pump refrigeration cycle and air conditioner
JP5022120B2 (en) Motorized valves for air conditioning systems
JP5480753B2 (en) Motorized valve
JP5395775B2 (en) Motorized valve
JP6845817B2 (en) Electric valve and refrigeration cycle system
JP6370269B2 (en) Motorized valve and refrigeration cycle
JP2013234726A (en) Electric valve
JP6857624B2 (en) Electric valve and refrigeration cycle system
WO2013189120A1 (en) Electronic expansion valve
JP5836689B2 (en) Motorized valve
CN103245138A (en) Expansion valve
KR102139095B1 (en) Electronic expansion valve
CN109114237A (en) Motor-driven valve and refrigerating circulation system
JP2009052742A (en) Needle valve and refrigerating cycle device having the needle valve
JP5627612B2 (en) Expansion valve
CN112128409B (en) Fluid management assembly
JP5999960B2 (en) Motorized valve
JP4570484B2 (en) Composite valve, heat pump type air conditioner and control method thereof
EP2479520B1 (en) Three-way electromagnetic valve
CN112443679B (en) thermal management system
JP5921821B2 (en) Motorized valve
JP2010249247A (en) Motor-operated valve and refrigeration cycle using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160830

R150 Certificate of patent or registration of utility model

Ref document number: 5999960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250