JP2017039786A - Uniform vaporization mixer and uniform vaporization mixing method - Google Patents

Uniform vaporization mixer and uniform vaporization mixing method Download PDF

Info

Publication number
JP2017039786A
JP2017039786A JP2015160363A JP2015160363A JP2017039786A JP 2017039786 A JP2017039786 A JP 2017039786A JP 2015160363 A JP2015160363 A JP 2015160363A JP 2015160363 A JP2015160363 A JP 2015160363A JP 2017039786 A JP2017039786 A JP 2017039786A
Authority
JP
Japan
Prior art keywords
gas
liquefied petroleum
venturi
petroleum gas
vaporization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015160363A
Other languages
Japanese (ja)
Other versions
JP2017039786A5 (en
JP6245544B2 (en
Inventor
正己 照井
Masami Terui
正己 照井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2015160363A priority Critical patent/JP6245544B2/en
Publication of JP2017039786A publication Critical patent/JP2017039786A/en
Publication of JP2017039786A5 publication Critical patent/JP2017039786A5/ja
Application granted granted Critical
Publication of JP6245544B2 publication Critical patent/JP6245544B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Accessories For Mixers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a uniform vaporization mixer with a venturi shape capable of dealing with a wide operation range by making the operation, particularly, in the side of a low load region possible.SOLUTION: In a uniform vaporization mixer with a venturi shape, the outside of a venturi tube is formed with a jacket structure, and it is also activated as a forcedly vaporizable heat transfer area. Further, by providing the venturi tube with a demister having a gas mixed function, while capturing a liquid petroleum gas scattering in a grain state, vaporization is caused, and it is forcedly mixed uniformly with a natural gas.SELECTED DRAWING: Figure 1

Description

本発明は、ベンチュリ形状の均一気化混合装置及び方法に係り、特に、都市ガス及び/または燃料用ガスの発熱量を調整することに加圧環境下で使用される、ベンチュリ形状の均一気化混合装置及び均一気化混合方法に好適なものである。 The present invention relates to a venturi-shaped uniform vaporization mixing apparatus and method, and more particularly, to a venturi-shaped uniform vaporization mixing apparatus used in a pressurized environment for adjusting the calorific value of city gas and / or fuel gas. And suitable for the uniform vaporization mixing method.

従来の、ベンチュリ形状の均一気化混合装置を用いて製造される都市ガスの発熱量は、20℃〜80℃程度に加温、加圧されていて、かつ流量も計測されている天然ガスと、所定の発熱量になるよう流量制御され、かつ加圧されている液体状態の液化石油ガスとを、ベンチュリ管の上流側入口から下流側出口に向かって、一緒に均一気化混合装置に導入し調整されている。   The calorific value of the city gas produced using a conventional venturi-shaped uniform vaporization mixing apparatus is heated and pressurized to about 20 ° C. to 80 ° C., and the natural gas whose flow rate is measured, Liquid liquefied petroleum gas, whose flow rate is controlled and pressurized to achieve a predetermined calorific value, is introduced and adjusted together from the upstream inlet to the downstream outlet of the venturi pipe into the uniform vaporizer. Has been.

かかるベンチュリ形状の均一気化混合装置は、天然ガスが有している顕熱と、スロート部に生じさせた高速とを利用して、液体状態の液化石油ガスを微粒化(数10μm以下)させながら気化し、同時に天然ガスと均一に混合させるものである。 Such a Venturi-shaped uniform vaporizing and mixing apparatus utilizes the sensible heat of natural gas and the high speed generated in the throat part, while atomizing the liquid liquefied petroleum gas (several tens of μm or less). It is vaporized and simultaneously mixed with natural gas.

以下、本発明で使用する用語については、次の通り定義する。
(1)高速とは、ベンチュリ管に導入された液化石油ガスを微粒化させる効果に必要なスロート部速度以上を指す。
(2)低速とは、ベンチュリ管に導入された液化石油ガスを微粒化しきれなくなり始める高速未満のスロート部速度を指す。
(3)微粒化とは、ベンチュリ管に導入された液化石油ガスの粒子径が、スロート部にて数10μm以下(微粒子)になることを指す。
(4)粒化とは、ベンチュリ管に導入された液化石油ガスの粒子径が、スロート部にて微粒子を越える100μmより大きく(粒子)なっていることを指す。
(5)スロート部速度とは、スロート部に開度を調整する可変機構を備えている場合には、開度調整部を通過する速度を指す。
(6)運動エネルギーとは断り書きのない限り、スロート部を流れる単位体積当たり(m)のガス流体が有する運動エネルギーを指す。
(7)低負荷領域側とは、運動エネルギーが10000(J)未満の領域を指す。
(8)高負荷領域側とは、運動エネルギーが10000(J)以上の領域を指す。
(9)溢流とは、ベンチュリ管に導入した液化石油ガスがベンチュリ管出口から後流に液体状態及び/または粒子状態で出る状態を指す。
(10)未気化率とは、ベンチュリ管出口後流から溢流する液化石油ガスの質量流量(kg/h)を、ベンチュリ管に導入した液化石油ガスの質量流量(kg/h)で除し、これを100倍した数字を指す。パーセントを単位とする。
(11)液ガス比とは、ベンチュリ管に導入した天然ガス1mN当たりに対する、液化石油ガスの導入質量(kg)であり、下記式によるものとし、kg/mNを単位とする。
液ガス比=導入した液化石油ガス質量(kg)/導入した天然ガス量(mN)
Hereinafter, terms used in the present invention are defined as follows.
(1) The high speed refers to a throat portion speed or more necessary for the effect of atomizing the liquefied petroleum gas introduced into the venturi pipe.
(2) The low speed refers to a throat portion speed less than a high speed at which the liquefied petroleum gas introduced into the venturi pipe starts to be atomized.
(3) The atomization means that the particle diameter of the liquefied petroleum gas introduced into the venturi tube becomes several tens of μm or less (fine particles) at the throat portion.
(4) Granulation means that the particle diameter of the liquefied petroleum gas introduced into the venturi tube is larger (particles) than 100 μm exceeding the fine particles at the throat portion.
(5) The throat part speed refers to the speed at which the throat part passes through the opening degree adjusting part when the throat part is provided with a variable mechanism for adjusting the opening degree.
(6) Unless otherwise stated, kinetic energy refers to kinetic energy of a gas fluid per unit volume (m 3 ) flowing through the throat portion.
(7) The low load region side refers to a region where the kinetic energy is less than 10,000 (J).
(8) The high load region side refers to a region having a kinetic energy of 10,000 (J) or more.
(9) Overflow refers to a state in which liquefied petroleum gas introduced into the venturi pipe exits in the liquid state and / or particle state from the venturi pipe outlet to the downstream.
(10) The unvaporized rate is obtained by dividing the mass flow rate (kg / h) of liquefied petroleum gas overflowing from the wake of the venturi pipe outlet by the mass flow rate (kg / h) of liquefied petroleum gas introduced into the venturi pipe. , Refers to the number multiplied by 100. Percent.
(11) The liquid gas ratio is the introduction mass (kg) of liquefied petroleum gas per 1 m 3 N of natural gas introduced into the venturi pipe, and is according to the following formula, with kg / m 3 N as a unit.
Liquid gas ratio = mass of liquefied petroleum gas introduced (kg) / natural gas introduced (m 3 N)

液体状態の液化石油ガスを微粒化させながら気化し、同時に天然ガスと均一に混合させる、ベンチュリ形状の均一気化混合装置として、特公平6−89348号公報(特許文献1)がある。 Japanese Patent Publication No. 6-89348 (Patent Document 1) is known as a venturi-shaped uniform vaporization mixing apparatus that vaporizes a liquid petroleum gas in a liquid state while atomizing it and simultaneously uniformly mixes it with natural gas.

特許文献1による均一気化混合装置は、実施例において圧力が約1MPa、ベンチュリ管のスロート部流速を50m/s以上の条件にて、液体状態で導入された液化石油ガスを微粒化させながら1×10−2秒以内で気化し、同時に、天然ガスとの均一な混合を行なわせることを特徴としている。ところで、該文献には加圧化による影響が全くないと報告されている。また、天然ガスの有する運動エネルギーについては一切触れられていない。 The uniform vaporization mixing apparatus according to Patent Document 1 is 1 × while pulverizing liquefied petroleum gas introduced in a liquid state under the conditions of a pressure of about 1 MPa and a throat portion flow velocity of a venturi pipe of 50 m / s or more in the examples. It is characterized by being vaporized within 10 -2 seconds and at the same time allowing uniform mixing with natural gas. By the way, this document reports that there is no influence by pressurization. Furthermore, no mention is made of the kinetic energy of natural gas.

従来方式では、冬季夕方の都市ガス需要量が多くなる時間帯と、夏季夜間の都市ガス需要量が少なくなる時間帯とを通した需要量の変動幅に対し、特に低負荷領域側の運転をすることは、スロート部流速が低速となってしまい、液体状態で導入した液化石油ガスを微粒化できず、年間を通した都市ガス需要量の変動幅に追随できる広い運転範囲に、1基では対応できないという問題があった。更に、広い運転範囲に対応させるために、スロート部内径の異なる複数基を組合せ、切替えて運転していることから、設備費の増加と、複数基を自動的に切り替える際にそれまで例えば45MJ/mN±1%以内で安定に制御されていた都市ガスの発熱量が、制御範囲を超えて変動してしまう問題があった。 In the conventional method, the operation in the low load area side is particularly effective against the fluctuation range of the demand amount during the time period when the city gas demand amount increases in the winter evening and the time period when the city gas demand amount decreases in the summer night. The throat part flow velocity becomes low, the liquefied petroleum gas introduced in the liquid state cannot be atomized, and the wide range of operation that can follow the fluctuation range of the city gas demand throughout the year There was a problem that could not be handled. Furthermore, in order to correspond to a wide operation range, a plurality of units having different throat inner diameters are combined and switched to operate, so that when the facility cost increases and when the plurality of units are automatically switched, for example, 45 MJ / There was a problem that the calorific value of city gas that was stably controlled within m 3 N ± 1% fluctuated beyond the control range.

また、低負荷領域側において微粒化の作用を維持できなくなる低速以下のスロート部速度で運転してしまうと、ベンチュリ管内には液体状態の液化石油ガスが生じ、ベンチュリ管出口からの溢流が発生し、安定した発熱量調整の運転ができなかった。 In addition, if operation is performed at a throat speed lower than the low speed at which the atomization action cannot be maintained on the low load region side, liquid liquefied petroleum gas is generated in the venturi pipe, and overflow from the venturi pipe exit occurs. However, stable calorific value adjustment operation could not be performed.

特公平6−89348号公報Japanese Patent Publication No. 6-89348

本発明は、従来方式では運転できなかったスロート部流速が低速となってしまう特に低負荷領域側において、均一な気化と均一な混合を可能とし、1基のベンチュリ管で広い都市ガス需要量幅の運転範囲に対応できる、均一気化混合装置及び均一気化混合方法を提供する。 The present invention enables uniform vaporization and uniform mixing, particularly in the low load region where the throat flow velocity, which could not be operated by the conventional method, is low, and wide city gas demand range with one venturi pipe. A uniform vaporization mixing apparatus and a uniform vaporization mixing method that can correspond to the operating range of the above are provided.

本発明では、特許文献1において加圧化による影響が全くないと報告されている内容に対し、液化石油ガスを微粒化させる作用にはスロート部の流速だけでなく、運転圧力にも大きく影響されることを初めて見出した。そこで、運転範囲を示す指標としては、スロート部流速だけでなく運転圧力をも反映している、スロート部を流れる単位体積当たり(m)のガス流体が有する運動エネルギーを用い説明する。 In the present invention, in contrast to what is reported in Patent Document 1 that there is no influence by pressurization, the action of atomizing liquefied petroleum gas is greatly influenced not only by the flow rate of the throat part but also by the operating pressure. I found out for the first time. Therefore, as an index indicating the operation range, description will be made using the kinetic energy of the gas fluid per unit volume (m 3 ) flowing through the throat portion, which reflects not only the throat portion flow velocity but also the operation pressure.

特許文献1には、天然ガスの平均分子量が記載されていないものの、主成分であるメタン以外のエタン、プロパン、ブタン、窒素の成分を考慮し、メタンの分子量16より1.1倍程度大きい約18と推定すると、液体状態で導入された液化石油ガスを微粒化させ均一に気化混合させるためには、スロート部を流れる単位体積当たり(m)の天然ガスに10000(J)程度以上の運動エネルギーE(J)が必要なことが推定される。
流れている単位体積当たり(m)の一般ガス流体の有する運動エネルギーE(J)は、天然ガスに限らず、下記の式で求められる。
E=1/2×ρ×V
ここに、
E(J) :スロート部を流れている単位体積当たり(m)の
一般ガス流体の有する運動エネルギー
ρ(kg/m):スロート部を流れている一般ガス流体の密度
V(m/s) :スロート部を流れている一般ガス流体の流速
である。
上式E(J)は、スロート部流速と運転圧力とガス種類と混合ガスの平均分子量と天然ガスの構成成分比率との変動が、いずれも反映される公知の式である。
以下、E(J)は単に運動エネルギーと省略して記載する。
Although the average molecular weight of natural gas is not described in Patent Document 1, in consideration of the components of ethane, propane, butane, and nitrogen other than methane, which is the main component, about 1.1 times larger than the molecular weight 16 of methane. Assuming that the liquid petroleum gas introduced in the liquid state is atomized and uniformly vaporized and mixed, a motion of about 10,000 (J) or more per unit volume (m 3 ) of natural gas flowing through the throat portion It is estimated that energy E (J) is required.
The kinetic energy E (J) of the general gas fluid per unit volume (m 3 ) flowing is not limited to natural gas, and can be obtained by the following equation.
E = 1/2 × ρ × V 2
here,
E (J): Kinetic energy of a general gas fluid per unit volume (m 3 ) flowing through the throat part ρ (kg / m 3 ): Density of the general gas fluid flowing through the throat part V (m / s) ): The flow velocity of the general gas fluid flowing through the throat.
The above equation E (J) is a well-known equation in which variations in the throat part flow velocity, the operating pressure, the gas type, the average molecular weight of the mixed gas, and the constituent component ratio of natural gas are all reflected.
Hereinafter, E (J) is simply abbreviated as kinetic energy.

本発明では、特に低負荷領域側の運転においてスロート部を流れる天然ガスの有する運動エネルギーが10000(J)未満になっても、ベンチュリ管内に液体状態で残留し、溢流し始める挙動を示す液化石油ガスについては、仕方のないものとあきらめず、以下の手段で均一に気化混合させる装置と方法を提供する。
(1)加温と加圧と流量計測されている天然ガスに、液体状態の液化石油ガスを所定の発熱量になるよう流量制御と加圧させて一緒に導入し、加圧環境下で都市ガス及び/または燃料用ガスの発熱量を調整させることに使用されるベンチュリ形状の均一気化混合装置において、ベンチュリ管の外側表面を温水または水蒸気または加温された空気を用いた加熱媒体により加熱し、ベンチュリ管内壁面側に接する液化石油ガスを気化させる加熱ジャケットを有する装置である。
(2)ベンチュリ管本体における縮小部の下部内側底面が、水平より、0°〜60°の範囲で、スロート部側に向かって、下り勾配になっている装置である。
(3)ベンチュリ管本体の直管部に、デミスターを設置している装置である。
(4)ベンチュリ管のスロート部を流れる単位体積当たり(m)の天然ガスの有している運動エネルギーが10000(J)未満において、ベンチュリ管内部の上流側に残留する液化石油ガスを自然重力または流れている天然ガスの力により下流側に移動させながら、ベンチュリ管の加熱媒体として15℃〜200℃を確保できる温水または水蒸気または加温された空気を用いることで、天然ガスと液化石油ガスからなる0.37(kg/mN)までの液ガス比の混合条件にある流体を、液化石油ガスの強制的な加熱による気化作用と、液化石油ガスの自然蒸発作用と、液化石油ガスの微粒化作用と粒化作用と、強制的な混合作用をも併用し均一気化混合する方法。
In the present invention, even when the kinetic energy of the natural gas flowing through the throat portion is less than 10,000 (J) especially in the operation on the low load region side, the liquefied petroleum that shows the behavior of remaining in a liquid state in the venturi pipe and starting to overflow. There is provided an apparatus and method for uniformly vaporizing and mixing gas by the following means, without giving up that which is unavoidable.
(1) Liquid gas liquefied petroleum gas is introduced into the natural gas, which is heated, pressurized and flow-measured, with flow control and pressurization to achieve a predetermined calorific value. In a venturi-shaped homogeneous vaporization mixing apparatus used for adjusting the calorific value of gas and / or fuel gas, the outer surface of the venturi tube is heated by a heating medium using warm water, steam or warmed air. The apparatus has a heating jacket for vaporizing liquefied petroleum gas in contact with the inner wall surface side of the venturi tube.
(2) The lower inner bottom surface of the reduced portion of the venturi main body is a device that is inclined downward from the horizontal toward the throat portion in the range of 0 ° to 60 °.
(3) A device in which a demister is installed in the straight pipe portion of the venturi pipe main body.
(4) When the kinetic energy of the natural gas per unit volume (m 3 ) flowing through the throat portion of the venturi pipe is less than 10,000 (J), the liquefied petroleum gas remaining on the upstream side inside the venturi pipe is naturally gravityized. Alternatively, natural gas and liquefied petroleum gas can be obtained by using warm water or steam or warmed air that can secure 15 ° C. to 200 ° C. as the heating medium of the venturi pipe while being moved downstream by the force of the flowing natural gas. A fluid in a liquid gas ratio mixing condition up to 0.37 (kg / m 3 N) consisting of a vaporization action by forced heating of liquefied petroleum gas, a natural evaporation action of liquefied petroleum gas, and a liquefied petroleum gas A method of uniform vaporization and mixing, using both the atomization action, graining action and forced mixing action.

以下、本発明を、図1〜図8を用いて説明する。 Hereinafter, the present invention will be described with reference to FIGS.

ベンチュリ管本体5は、天然ガス入口1と液化石油ガス入口2と都市ガス出口4を有しており、縮小部5a、スロート部5b、拡大部5c、直管部5dからなる部位で構成される。液化石油ガスは、天然ガスの流れる方向とほぼ同じ方向に向かって液化石油ガス放出ノズルフィルター3から噴出される。一般に、都市ガスとは発熱量が調整され、かつ付臭されているガスを指すが、本発明では、付臭される前の発熱量が調整されているガス(燃料用ガスも含む)をも都市ガスと記載する。 The venturi main body 5 has a natural gas inlet 1, a liquefied petroleum gas inlet 2, and a city gas outlet 4. The venturi main body 5 includes a portion including a reduced portion 5a, a throat portion 5b, an enlarged portion 5c, and a straight pipe portion 5d. . The liquefied petroleum gas is ejected from the liquefied petroleum gas discharge nozzle filter 3 in substantially the same direction as the flow direction of the natural gas. In general, city gas refers to a gas whose calorific value is adjusted and odorized, but in the present invention, a gas (including fuel gas) whose calorific value before odor is adjusted is also included. It is described as city gas.

従来方式において、都市ガスの発熱量を調整することに用いられるベンチュリ管5の拡大部5cは、これら4つの部位の中で最も広い内側表面積を持ちながらも、スロート部5b近傍で生じる圧力損失を回復させる効果以外の目的で利用されることはなかった。 In the conventional method, the enlarged portion 5c of the venturi pipe 5 used for adjusting the calorific value of the city gas has the largest inner surface area among these four portions, but the pressure loss generated in the vicinity of the throat portion 5b. It was never used for any purpose other than a recovery effect.

本発明では、ベンチュリ管本体5の外側表面に加熱ジャケット12構造を付加し、加熱媒体18を流せるようにすることで、拡大部5cだけでなく直管部5dをも、液化石油ガスを均一に気化させる新たな用途である伝熱面積としても活用する。 In the present invention, the heating jacket 12 structure is added to the outer surface of the Venturi tube main body 5 so that the heating medium 18 can flow, so that not only the enlarged portion 5c but also the straight pipe portion 5d can be made uniform in liquefied petroleum gas. It is also used as a heat transfer area, which is a new application for vaporization.

該伝熱面積は、圧力損失の回復効果を有する拡大部5cの円すい角度6及び/または直管部5dの長さにより決定され、特に、スロート部5bを流れる天然ガスの有する運動エネルギーが10000(J)未満になる低負荷領域側の運転において、ベンチュリ管本体5内に粒子状態及び/または液体状態にて残留し始める液化石油ガスを、強制的に加熱し均一に気化させることに利用する。 The heat transfer area is determined by the conical angle 6 of the enlarged portion 5c having a pressure loss recovery effect and / or the length of the straight pipe portion 5d. In particular, the kinetic energy of the natural gas flowing through the throat portion 5b is 10,000 ( J) In the operation on the low load region side, which is less than the liquefied petroleum gas, which starts to remain in the particulate state and / or the liquid state in the Venturi tube main body 5, it is used to forcibly heat and vaporize uniformly.

都市ガス及び/または燃料用ガスの発熱量を調整することに使用される本発明のベンチュリ管本体5は、導入される天然ガスも液化石油ガスも、更に該装置出口からの都市ガスも、運転圧力は0.3MPa以上の加圧環境下にある条件で使用されることが好ましい。 The venturi main body 5 of the present invention used for adjusting the calorific value of city gas and / or fuel gas operates both natural gas and liquefied petroleum gas introduced, and city gas from the apparatus outlet. It is preferable that the pressure is used under a pressure environment of 0.3 MPa or more.

加熱媒体18としては、一般産業分野に広く利用されている温水、水蒸気、加温された空気を用い、使用する温度は温度制御されている都市ガス側温度より+5℃程度高い15℃〜200℃の範囲で確保できる温度が好ましく、特に温水を用いる場合の温度は15℃〜99℃が好ましい。 As the heating medium 18, warm water, water vapor, or heated air widely used in the general industrial field is used, and the temperature to be used is about 15 ° C. to 200 ° C., which is about + 5 ° C. higher than the temperature of the city gas under temperature control. The temperature that can be ensured within the range is preferably 15 ° C. to 99 ° C., particularly when hot water is used.

なお、拡大部5cの円すい角度6と直管部5dの長さは、拡大部5cにおける圧力損失の回復効果と、制限される許容据付スペース、要求される伝熱面積に伴う装置費用の増加を含めた、総合的な観点から決定される。 Note that the cone angle 6 of the enlarged portion 5c and the length of the straight pipe portion 5d increase the pressure loss recovery effect in the enlarged portion 5c, the allowable installation space that is limited, and the increase in equipment cost associated with the required heat transfer area. It is determined from a comprehensive point of view.

拡大部5cの円すい角度6は4°〜50°の範囲が好ましく、装置費用と圧力損失の回復効果と許容据付スペースとを含めた総合的な観点からは6°〜20°の範囲が特に好ましい。直管部5dの軸方向長さは長いほど自然蒸発効果を生かせるが、装置費用と許容据付スペースを含めた総合的な観点からは直管部5d内径の5倍以内が好適である。 The cone angle 6 of the enlarged portion 5c is preferably in the range of 4 ° to 50 °, and in the range of 6 ° to 20 ° is particularly preferable from the comprehensive viewpoint including the cost of the apparatus, the recovery effect of the pressure loss, and the allowable installation space. . The longer the length of the straight pipe portion 5d in the axial direction, the more the natural evaporation effect can be utilized. However, from the comprehensive viewpoint including the apparatus cost and the allowable installation space, the inner diameter is preferably within 5 times the inner diameter of the straight pipe portion 5d.

液ガス比は、0.37(kg/mN)までの範囲に対応できる。 The liquid gas ratio can correspond to a range up to 0.37 (kg / m 3 N).

運動エネルギー10000(J)未満の低負荷領域側の運転において、負荷が小さくなりスロート部流速が低速になってしまうことで、液化石油ガス放出ノズルフィルター3出口から、ベンチュリ管本体5内部の上流側にある縮小部5aの下部内側底面に滴り、残留しやすくなる液化石油ガスは、縮小部5a側の下部内側底面を、縮小部5a側からスロート部5b側に向かい、水平よりも、0°〜60°の下り勾配7に傾斜させることで、スロート部側に自然重力及び/または流れている天然ガス1の力により押し流し、拡大部5cを経て、直管部5d側へ移動しながら(図1)、強制加熱され均一に気化する。 In operation on the low load region side where the kinetic energy is less than 10000 (J), the load becomes small and the throat flow velocity becomes low, so the upstream side inside the venturi main body 5 from the outlet of the liquefied petroleum gas discharge nozzle filter 3 The liquefied petroleum gas that tends to drip on the lower inner bottom surface of the contracting portion 5a in the direction of the lower inner bottom surface on the reducing portion 5a side from the reducing portion 5a side to the throat portion 5b side, is 0 ° to the horizontal. By inclining to a downward gradient 7 of 60 °, the natural gas 1 is forced to flow toward the throat portion by the force of natural gravity and / or flowing, and moves to the straight pipe portion 5d side through the enlarged portion 5c (FIG. 1). ), Forcibly heated to vaporize uniformly.

縮小部5aの下部内側底面の下り勾配7は、少なくとも縮小部5aについて同心構造にこだわらず偏心構造(図1)にすること及び/またはベンチュリ管本体5の軸心を、天然ガス入口1側から都市ガス出口4側に向かって、水平より、下り勾配になるように設置(図2)することで、ベンチュリ管本体5内に残留し始める液化石油ガスを下流側に移動させることが可能となる。 The downward slope 7 of the lower inner bottom surface of the contracting part 5a has an eccentric structure (FIG. 1) regardless of the concentric structure at least with respect to the contracting part 5a and / or the axis of the venturi main body 5 from the natural gas inlet 1 side. By installing it toward the city gas outlet 4 side so as to have a downward slope from the horizontal (FIG. 2), it becomes possible to move the liquefied petroleum gas that starts to remain in the venturi main body 5 to the downstream side. .

なお、運転圧力が0.5MPa程度未満であれば、スロート部5bの軸心がほぼ水平となるように設置されていても、例えば6MPa程度の時よりもスロート部5b内径が太くなることから、液化石油ガス放出ノズルフィルター3をスロート部内部奥まで挿入できるため(図3)、縮小部5aの下部内側底面に液化石油ガスが残留し始める現象を防げる。 If the operating pressure is less than about 0.5 MPa, the inner diameter of the throat portion 5b is larger than that at the time of, for example, about 6 MPa, even if it is installed so that the axis of the throat portion 5b is substantially horizontal. Since the liquefied petroleum gas discharge nozzle filter 3 can be inserted all the way into the throat portion (FIG. 3), it is possible to prevent the liquefied petroleum gas from starting to remain on the bottom inner bottom surface of the reduced portion 5a.

ベンチュリ管本体5の内面を伝熱面積として有効に活用するためには、ベンチュリ管の軸心が、特許文献1に示されている鉛直方向となる設置方法よりも、ベンチュリ管本体5の上流側から下流側に向かって、水平よりも、0°〜60°の下り勾配となる設置方法が好適である。なお、本発明でのベンチュリ管の軸心とは、偏心構造となっている場合の縮小部5aは含まず、スロート部5bと拡大部5cと直管部5dからなる直線の軸心によるものとする。   In order to effectively use the inner surface of the venturi tube main body 5 as a heat transfer area, the venturi tube main body 5 is located upstream of the installation method in which the axis of the venturi tube is in the vertical direction shown in Patent Document 1. An installation method with a downward gradient of 0 ° to 60 ° from the horizontal toward the downstream side is preferable. In addition, the axial center of the venturi tube in the present invention does not include the reduced portion 5a in the case of the eccentric structure, and is based on a linear shaft center composed of the throat portion 5b, the enlarged portion 5c, and the straight tube portion 5d. To do.

運動エネルギー10000(J)未満の低負荷領域側の運転においても、ベンチュリ管本体5出口から下流側へ、都市ガス4に同伴して飛び出してしまう気化しきれていない液化石油ガスの粒子は、デミスター8を設けて捕捉してから(図1)、強制加熱されている伝熱面積で気化させる。デミスター8の設置位置は、自然蒸発(揮発)作用と微粒化作用と粒化作用の効果を最も受ける後の直管部5dの出口側末端部が好適である。 Even in operation in the low load region side where the kinetic energy is less than 10000 (J), particles of liquefied petroleum gas that has not been completely vaporized and jumps out along with the city gas 4 from the outlet of the venturi main body 5 to the downstream side is the demister. 8 is provided and captured (FIG. 1), and then vaporized in a heat transfer area that is forcibly heated. The demister 8 is preferably installed at the outlet end portion of the straight pipe portion 5d after receiving the effects of natural evaporation (volatilization), atomization and granulation.

一般に、デミスター8とは網目状構造になっている加工品を指すが、本発明においては細長い板状の両端を、互いに逆方向に反転するよう捻った加工品をも、デミスター8(図1)の概念に含める。デミスター8は混合条件により複数台設置してもよい。 In general, the demister 8 refers to a processed product having a network structure. However, in the present invention, a processed product obtained by twisting both ends of an elongated plate so as to be reversed in the opposite directions is also used in the demister 8 (FIG. 1). Include in the concept. A plurality of demisters 8 may be installed depending on the mixing conditions.

なお、このような構造のデミスター8とすることで、流れている天然ガスに旋回流を形成させる効果があり、ベンチュリ管本体5の内側周囲壁面側に寄せるように捕捉された液化石油ガスの粒子は、伝熱面積と接触し強制的に気化され、同時に天然ガス1と強制的に均一に混合される効果をも得られる。 The demister 8 having such a structure has the effect of forming a swirling flow in the flowing natural gas, and the liquefied petroleum gas particles captured so as to approach the inner peripheral wall surface side of the venturi tube main body 5. Can be brought into contact with the heat transfer area and forcibly vaporized, and at the same time, can be forcibly and uniformly mixed with the natural gas 1.

仮に従来方式を用いて低負荷領域側の運転を行うと、ベンチュリ管本体5内部に液体状態で残留し始める液化石油ガスの置かれる環境条件は、5℃〜10℃に温度制御されている都市ガス4における露点成分(ブタンまたはプロパン)の飽和蒸気圧力に対し、分圧として未飽和蒸気圧力状態であることから、自然蒸発(揮発)する気化能力を有している。しかし、その気化する流量は本発明による強制加熱により気化する流量と比較し、約1/60程度と少ない。都市ガスの制御温度は0℃〜60℃までの内、高い側ほど自然蒸発する効果が高くなるが、都市ガス4を供給する導管から放散してしまうエネルギーの節約も含めた総合的な観点からは5℃〜10℃の制御範囲が好適である。 If the operation is performed on the low load region side using the conventional method, the environmental condition in which the liquefied petroleum gas that starts to remain in the liquid state inside the venturi main body 5 is placed is controlled at a temperature of 5 ° C to 10 ° C. Since it is in an unsaturated vapor pressure state as a partial pressure with respect to the saturated vapor pressure of the dew point component (butane or propane) in the gas 4, it has a vaporization capability of spontaneous evaporation (volatilization). However, the flow rate of vaporization is as low as about 1/60 compared with the flow rate of vaporization by forced heating according to the present invention. The control temperature of city gas is from 0 ° C to 60 ° C. The higher the temperature, the higher the effect of natural evaporation, but from a comprehensive point of view including the saving of energy dissipated from the city gas 4 supply pipe. The control range of 5 ° C. to 10 ° C. is suitable.

本発明によれば、運動エネルギー10000(J)以上を確保して微粒化することだけにこだわるのでなく、ベンチュリ管本体5に導入された液化石油ガスの微粒化の効果に加え、10000(J)未満では強制気化と粒化と自然蒸発の効果をも生かすことができる。更に強制混合を併用する方法とすることにより、1基で低負荷領域側とこれまでの高負荷領域側をも含めた、広い運転範囲を必要とする都市ガス及び/または燃料用ガスの発熱量調整に対応できる。運転範囲を示す指標としては、ガス種類と運転圧力変動とスロート部流速変動のいずれもが反映されている運動エネルギーを用いる。 According to the present invention, in addition to the effect of atomization by securing kinetic energy of 10,000 (J) or more, in addition to the effect of atomization of liquefied petroleum gas introduced into the Venturi tube body 5, 10000 (J) Below this, the effects of forced vaporization, granulation, and natural evaporation can also be utilized. Furthermore, by using a method that uses forced mixing together, the amount of heat generated from city gas and / or fuel gas that requires a wide operating range, including the low load region side and the conventional high load region side. Can be adjusted. As an index indicating the operating range, kinetic energy in which all of the gas type, operating pressure fluctuation, and throat flow velocity fluctuation are reflected is used.

また、ベンチュリ管本体5の内側壁面側に、加熱媒体18を通せる伝熱管13を設置することで、ベンチュリ管本体5内に液体状態で残留し始める液化石油ガスを気化させてもよい(図4)。 In addition, by installing the heat transfer tube 13 through which the heating medium 18 can pass on the inner wall surface side of the venturi tube main body 5, the liquefied petroleum gas that starts to remain in the liquid state in the venturi tube main body 5 may be vaporized (see FIG. 4).

ベンチュリ管本体5と加熱ジャケット12とデミスター8と伝熱管13は、同じ材質のものが望ましく、使用する加熱媒体18にも耐食性のある、金属性材料が好ましい。 The venturi tube main body 5, the heating jacket 12, the demister 8 and the heat transfer tube 13 are preferably made of the same material, and the heating medium 18 to be used is preferably made of a metallic material having corrosion resistance.

ベンチュリ管本体5の内側を流れる天然ガス及び液化石油ガスと、外側の加熱ジャケット12側に流す加熱媒体18とは、別種類(例えば氷、水、水蒸気は相は異なるが同じ分子式のため同じ種類と見なす)の流体であり、ベンチュリ管本体5の内径と外径との差からなる肉厚部分で遮られ、混合されることはない。 Natural gas and liquefied petroleum gas flowing inside the Venturi tube main body 5 and the heating medium 18 flowing to the outer heating jacket 12 side are different types (for example, ice, water, and water vapor are different in phase but are of the same type because of the same molecular formula). And is blocked by a thick portion formed by the difference between the inner diameter and the outer diameter of the venturi main body 5 and is not mixed.

ベンチュリ管本体5と伝熱管13の伝熱面積だけでは気化しきれない液化石油ガスは、直管部5dの最下部面側に、残留液化石油ガス出口14から受入れ、残留液化石油ガス気化ガス出口15からベンチュリ管本体5に戻す熱交換器(残留液化石油ガス気化器16)を設置し(図4)、及び/またはベンチュリ管本体5出口側に熱交換器(残留液化石油ガスバックアップ気化器17)を設置して(図4)、気化しきれていない液化石油ガスを気化させてもよい。 The liquefied petroleum gas that cannot be vaporized only by the heat transfer area of the venturi tube body 5 and the heat transfer tube 13 is received from the residual liquefied petroleum gas outlet 14 on the lowermost surface side of the straight pipe portion 5d, and the residual liquefied petroleum gas vaporized gas outlet is received. A heat exchanger (residual liquefied petroleum gas vaporizer 16) returning from 15 to the venturi pipe main body 5 is installed (FIG. 4), and / or a heat exchanger (residual liquefied petroleum gas backup vaporizer 17 on the outlet side of the venturi pipe main body 5 is installed. ) May be installed (FIG. 4) to vaporize liquefied petroleum gas that has not been vaporized.

ところで、液化石油ガス供給管11が、天然ガス1の流れる方向とほぼ直交している部分の外径周囲部では、外径断面形状が円形であればカルマン渦が発生しやすく、共振現象が生じやすい。 By the way, if the liquefied petroleum gas supply pipe 11 is a portion around the outer diameter of the portion that is substantially orthogonal to the direction in which the natural gas 1 flows, Karman vortices are likely to occur if the outer diameter cross-sectional shape is circular, and a resonance phenomenon occurs. Cheap.

本発明においては、カルマン渦の発生数fs(1/s)と液化石油ガス供給管11との固有振動数fo(1/s)が、fs/fo<0.8を確保するように、流線形状のカルマン渦低減装置(図5)9及び/または10を設けることで共振現象を低減する。 In the present invention, the flow rate is such that the Karman vortex generation frequency fs (1 / s) and the natural frequency fo (1 / s) of the liquefied petroleum gas supply pipe 11 ensure fs / fo <0.8. The resonance phenomenon is reduced by providing a linear Karman vortex reduction device (FIG. 5) 9 and / or 10.

なお本発明では、天然ガスに代わる気体を使用し、かつこれまで報告されていない低い運転圧力条件下において、従来方式である微粒化作用による気化がなされるためには、スロート部を流れる単位体積当たり(m)のガス流体の有する運動エネルギーが、どの程度以上を確保されているべきかを確認するシミュレーション実験を行なった。 In the present invention, a unit volume that flows through the throat portion is used in order to vaporize by a conventional atomization action under a low operating pressure condition that has not been reported so far, instead of using natural gas. A simulation experiment was conducted to confirm how much the kinetic energy of the hit (m 3 ) gas fluid should be secured.

天然ガスの代替ガスとしては空気を用い、液化石油ガスにはブタンを主成分とする液体を用い、加熱媒体には約67℃の温水を用い、ベンチュリ管出口温度は約7℃であり、運転圧力は大気圧にて実施した。その結果、天然ガスと異なるガス種類である空気を用い、1MPaより約11倍低い大気圧環境下条件で実施しても、加熱ジャケット構造を付加していないベンチュリ管では、スロート部を流れるガス流体に、特許文献1から推定される運動エネルギーとほぼ同等の10000(J)程度以上の運動エネルギーEf(J)(この時のスロート部速度をVf(m/s)とする)を保有していないと、微粒化作用による気化がなされず、ベンチュリ管下部内面に液化石油ガスが残留し、溢流し始める結果を得た(図6の比較例参照)。 Air is used as an alternative gas for natural gas, liquid mainly composed of butane is used for liquefied petroleum gas, hot water of about 67 ° C is used as the heating medium, and the venturi outlet temperature is about 7 ° C. The pressure was carried out at atmospheric pressure. As a result, a gas fluid that flows through the throat portion in a venturi tube that does not have a heating jacket structure even if it is carried out in an atmospheric pressure environment condition that is approximately 11 times lower than 1 MPa, using air that is a different gas type from natural gas. Furthermore, it does not have kinetic energy Ef (J) of about 10000 (J) or more that is almost equivalent to the kinetic energy estimated from Patent Document 1 (the throat speed at this time is Vf (m / s)). As a result, vaporization due to atomization was not performed, and liquefied petroleum gas remained on the lower inner surface of the Venturi tube, and overflowed (see the comparative example in FIG. 6).

すなわち、スロート部を流れる単位体積当たり(m)のガス流体の有する運動エネルギーは、ガス種類と運転圧力とスロート部流速とが代わっても、同じ10000(J)程度以上を有していないと、液化石油ガスの微粒化による気化ができないことを見出し、これまでのスロート部流速よりも正確に、ベンチュリ管を用いた運転範囲を示すことが分った。 That is, the kinetic energy of the gas fluid per unit volume (m 3 ) flowing through the throat portion does not have the same 10000 (J) or more even if the gas type, the operating pressure, and the throat portion flow velocity are changed. As a result, it was found that vaporization due to atomization of liquefied petroleum gas could not be performed, and it was found that the operating range using the Venturi tube was more accurately shown than the flow velocity of the throat section so far.

次に、前述の同じシミュレーション実験装置に対し、ベンチュリ管の外周囲側にジャケット構造を付加し、該部に約67℃の温水を流し強制加熱している条件下で、液化石油ガスが同様に気化しきれなくなり、ベンチュリ管出口から気化されていない液化石油ガスが溢流し始める時の、スロート部を流れる空気の有する運動エネルギーEs(J)(この時のスロート部速度をVs(m/s)とする)を探す試験を実施した。Esは約540(J)まで低下しても溢流現象は認められなかった。ジャケット構造を付加していない場合との比で表わすと、Ef:Es=10000:540=19:1程度となる。この比を圧力条件は同じとしてスロート部の流速比で表わすと、Vf:Vs=(19)1/2:(1)1/2=4.3:1(図6の参考例参照)となり、特許文献1の運転範囲と言われている5:1に近い、大きな効果のある結果となった。 Next, in the same simulation experiment apparatus as described above, a jacket structure is added to the outer peripheral side of the venturi tube, and under the condition that about 67 ° C. warm water is supplied and forcedly heated, the liquefied petroleum gas is similarly produced. Kinetic energy Es (J) of the air flowing through the throat portion when the liquefied petroleum gas that has not been vaporized and is not vaporized from the venturi tube outlet starts to overflow (the velocity of the throat portion at this time is Vs (m / s) ) Was conducted. Even when Es decreased to about 540 (J), no overflow phenomenon was observed. When expressed as a ratio to the case where no jacket structure is added, Ef: Es = 10000: 540 = 19: 1. When this ratio is expressed as the flow rate ratio of the throat part under the same pressure condition, Vf: Vs = (19) 1/2 : (1) 1/2 = 4.3: 1 (see the reference example in FIG. 6), It was a result with a large effect close to 5: 1 which is said to be the operation range of Patent Document 1.

従来方式では、ベンチュリ管下部内面に液化石油ガスが残留し始めると、それ以下に負荷を下げて運転することはできない仕方のないものとあきらめられていたが、本シミュレーション実験結果により、特許文献1による従来方式のベンチュリ管に、加熱ジャケット構造を付加し強制加熱できる装置にすることで、特許文献1で報告されている50m/sというスロート部流速は、加熱ジャケット構造を付加し約67℃程度の温水でジャケット部から強制的に加熱することにより、12m/s(=50m/s/4.3)程度まで低速にしても、均一に気化できることが分かった。
〔シミュレーション実験データ図6、図7、図8〕
In the conventional method, when liquefied petroleum gas began to remain on the lower inner surface of the venturi pipe, it was given up that it was inevitable that the operation could not be performed with the load reduced below that. By adding a heating jacket structure to a conventional Venturi tube according to the above, the throat flow rate of 50 m / s reported in Patent Document 1 is about 67 ° C. It was found that by forcibly heating from the jacket portion with hot water, it can be uniformly vaporized even at a low speed of about 12 m / s (= 50 m / s / 4.3).
[Simulation Experiment Data FIG. 6, FIG. 7, FIG. 8]

本発明により、運動エネルギーが10000(J)未満の低負荷領域側においても、均一に気化されている実験結果を図6に示す。黒丸印はジャケット構造を付加していない時(比較例)の液化石油ガスの未気化率(%)を示し、白丸印はジャケット構造を付加している時(参考例)の液化石油ガスの未気化率(%)を示しており、本試験装置で実施できる試験範囲である10000(J)〜540(J)までの間では、溢流がなく均一に気化されている結果となった。すなわち本発明の均一気化効果が認められる運転範囲(A)〔4.3:1〕と、従来方式の運転範囲(B)〔5:1〕とを組み合わせた総合運転範囲〔(A)+(B)〕は22:1まで広げられる。温水温度を、本実験で採用した約67℃から85℃程度まであげると、更に広い運転範囲にも対応できる。   FIG. 6 shows the result of an experiment in which the present invention is uniformly vaporized even on the low load region side where the kinetic energy is less than 10,000 (J). Black circles indicate the liquefied petroleum gas non-evaporation rate (%) when the jacket structure is not added (comparative example), and white circles indicate that the liquefied petroleum gas is not added when the jacket structure is added (reference example). The vaporization rate (%) is shown, and in the range of 10,000 (J) to 540 (J), which is a test range that can be carried out with this test apparatus, there was no overflow and the result was vaporized uniformly. That is, the operation range (A) [4.3: 1] in which the uniform vaporization effect of the present invention is recognized, and the total operation range [(A) + ( B)] is expanded to 22: 1. Increasing the hot water temperature from about 67 ° C. to about 85 ° C. employed in this experiment can cope with a wider operating range.

図7は、液化石油ガスが自然蒸発の起きている約7℃の大気圧環境下において、1m当りの伝熱面積で、1秒間に、液化石油ガスが気化するg数を表わす気化流量〔g/(m・s)〕を示す。白丸は自然蒸発効果と温水温度による強制加熱を併用させている時の、温水温度を代えた液化石油ガスの気化流量を示し(参考例)、黒丸は温水による強制加熱のない、自然蒸発だけの気化流量を示す(比較例)。いずれのデータも、約7℃の風を約2m/s〜3m/s程度の風速で吹きつけている条件である。強制加熱がなく風を吹きつけているだけの自然蒸発効果と、約67℃の温水を用いた強制加熱とを比較すると、液化石油ガスの気化流量において約60倍もの差が生じており、強制加熱による気化効果の大きいことが分かる。 FIG. 7 shows a vaporization flow rate representing the number of grams of liquefied petroleum gas vaporized in one second in a heat transfer area per 1 m 2 in an atmospheric pressure environment of about 7 ° C. where natural evaporation of liquefied petroleum gas occurs. g / (m 2 · s)]. The white circle shows the vaporization flow rate of the liquefied petroleum gas with the hot water temperature changed when the natural evaporation effect and forced heating by the hot water temperature are used together (reference example). The black circle shows only the natural evaporation without the forced heating by the hot water. The vaporization flow rate is shown (comparative example). All the data are conditions in which a wind of about 7 ° C. is blown at a wind speed of about 2 m / s to 3 m / s. Comparing the natural evaporation effect without forced heating and only blowing air with forced heating using hot water at about 67 ° C, there is a difference of about 60 times in the vaporization flow rate of liquefied petroleum gas. It turns out that the vaporization effect by heating is large.

図8は、大気圧環境下において発砲スチロール製の断熱容器に液化石油ガスを満たし、約30℃の風を約2m/s〜3m/s程度の速度で吹きつけながら液化石油ガスを自然蒸発させている時の液化石油ガス自身の温度を測定した参考データである。ベンチュリ管に保温工事を施工しながら強制加熱をしていない状態に近い環境を模擬しているものである。気化潜熱に必要な加熱源が与えられない状態にある自然蒸発効果により、液自身の顕熱までもが奪われてしまい、この実験の時の外気側空気温度である約30℃より大きく温度降下し−40.3℃以下まで低下する結果となった。なお、約7℃の風を用いた実験でもほぼ同程度の温度まで低下する結果を得ている。従来方式において、ベンチュリ管内に残留液化石油ガスが生じてしまうと、該残留液体が逆に冷熱発生源となり、ベンチュリ管の金属材料をも冷やしてしまい、残留液化石油ガスの自然蒸発作用の効果が薄くなり、溢流が生じやすくなる原因になることが分かった。ジャケット構造を付加した強制加熱による本発明は、自然蒸発する残留液化石油ガスの気化潜熱を補うことから、気化流量に与える効果の大きいことが分かった。   FIG. 8 shows that a thermal insulation container made of foamed polystyrene is filled with liquefied petroleum gas in an atmospheric pressure environment, and the liquefied petroleum gas is naturally evaporated while blowing a wind of about 30 ° C. at a speed of about 2 m / s to 3 m / s. It is reference data that measured the temperature of the liquefied petroleum gas itself. It simulates an environment that is similar to a state in which forced heating is not performed while constructing heat insulation work on a Venturi tube. Due to the natural evaporation effect in a state where the heat source necessary for the latent heat of vaporization is not given, even the sensible heat of the liquid itself is deprived, and the temperature drop is larger than about 30 ° C., which is the outside air temperature during this experiment. As a result, the temperature decreased to −40.3 ° C. or lower. In addition, even in an experiment using a wind of about 7 ° C., a result that the temperature drops to almost the same level is obtained. In the conventional method, when residual liquefied petroleum gas is generated in the venturi pipe, the residual liquid becomes a source of cold heat, and the metal material of the venturi pipe is also cooled, and the effect of natural evaporation of the residual liquefied petroleum gas is obtained. It turned out that it became thin and became the cause of overflow. It has been found that the present invention by forced heating with a jacket structure supplements the latent heat of vaporization of the residual liquefied petroleum gas that spontaneously evaporates, and thus has a great effect on the vaporization flow rate.

本発明によれば、従来方式による高負荷領域側の運転だけでなく、特に低負荷領域側の運転において、スロート部を流れる単位体積当たり(m)の天然ガスの有する運動エネルギーが10000(J)未満になっていても均一に気化混合ができ、1基のベンチュリ管で低負荷領域側と従来方式の高負荷領域側とを組み合わせた広い運転範囲に対応できる均一気化混合装置を提供できる。 According to the present invention, the kinetic energy of the natural gas per unit volume (m 3 ) flowing through the throat portion is 10,000 (J (J)) not only in the operation on the high load region side in the conventional method but also in the operation on the low load region side. ), The vaporization and mixing can be performed uniformly, and a uniform vaporization and mixing apparatus capable of supporting a wide operation range by combining the low load region side and the conventional high load region side with a single venturi tube can be provided.

縮小部を偏心構造とすることで縮小部の下部内側底面がスロート部側に向かって下り勾配になっていることを示すベンチュリ形状の均一気化混合装置図Venturi-shaped uniform vaporization mixing device diagram showing that the lower inner bottom surface of the reduced portion is inclined downward toward the throat portion side by making the reduced portion an eccentric structure ベンチュリ管の軸心を後流側に向かって下り勾配になるように設置することで、縮小部の下部内側底面がスロート部側に向かって下り勾配になっていることを示すベンチュリ形状の均一気化混合装置図Venturi-shaped uniform vaporization that indicates that the lower inner bottom surface of the shrinking part is inclined downward toward the throat part by installing the venturi tube axis downwardly toward the wake side Mixing equipment diagram スロート部内部奥まで液化石油ガス放出ノズルフィルターが挿入されていることを示すベンチュリ形状の均一気化混合装置図Venturi-shaped uniform vaporization mixing device diagram showing that a liquefied petroleum gas discharge nozzle filter is inserted deep inside the throat カルマン渦低減装置が流線形状になっていることを示す概要図Schematic diagram showing that the Karman vortex reduction device is streamlined ベンチュリ管内に伝熱管を設置する、またはベンチュリ管直管部に残留液化石油ガス気化器を設置する、またはベンチュリ管出口側に残留液化石油ガスバックアップ気化器を設置していることを示す概要図Schematic diagram showing that a heat transfer tube is installed in the venturi pipe, a residual liquefied petroleum gas vaporizer is installed in the venturi pipe straight pipe section, or a residual liquefied petroleum gas backup vaporizer is installed on the venturi pipe outlet side スロート部を通過するガス流体が有する運動エネルギー(J)に対する未気化率(%)を示す参考データ図Reference data diagram showing the unvaporized rate (%) relative to the kinetic energy (J) of the gas fluid passing through the throat 液化石油ガスに風を吹き付けただけの自然蒸発効果による気化流量と、風を吹き付けながら温水を用いた強制加熱による気化効果をも併用させた、温水温度に対する液化石油ガスの気化流量を示す参考データ図Reference data showing the vaporization flow rate of liquefied petroleum gas with respect to hot water temperature, using both the vaporization flow rate by the natural evaporation effect just by blowing wind on the liquefied petroleum gas and the vaporization effect by forced heating with hot water while blowing the wind Figure 液化石油ガスを強制加熱することなく、風を吹き付けた自然蒸発効果だけで温度降下していることを示す参考データ図Reference data diagram showing that the temperature of the liquefied petroleum gas is lowered only by the natural evaporation effect of blowing wind without forcibly heating the liquefied petroleum gas.

1 天然ガス入口
2 液化石油ガス入口
3 液化石油ガス放出ノズルフィルター
4 都市ガス出口
5 ベンチュリ管本体
5a 縮小部(同心構造または偏心構造)
5b スロート部
5c 拡大部
5d 直管部
6 拡大部の円すい角度(°)
7 縮小部の下部内側底面が拡大部側に向かって水平より下り勾配に傾斜(°)していることを示す。
8 デミスター
9 カルマン渦低減装置(上流側)
10 カルマン渦低減装置(下流側)
11 液化石油ガス供給管
12 加熱ジャケット
13 伝熱管
14 残留液化石油ガス出口
15 残留液化石油ガス気化ガス出口
16 残留液化石油ガス気化器
17 残留液化石油ガスバックアップ気化器
18 加熱媒体入口
19 加熱媒体出口
20 加熱媒体出口
21 加熱媒体入口
22 加熱媒体出口
23 加熱媒体入口
24 加熱媒体出口
DESCRIPTION OF SYMBOLS 1 Natural gas inlet 2 Liquefied petroleum gas inlet 3 Liquefied petroleum gas discharge nozzle filter 4 City gas outlet 5 Venturi pipe main body 5a Reduction part (concentric structure or eccentric structure)
5b Throat part 5c Enlarged part 5d Straight pipe part 6 Conical angle of enlarged part (°)
7 Indicates that the lower inner bottom surface of the reduced portion is inclined downward (°) from the horizontal toward the enlarged portion side.
8 Demister 9 Karman vortex reduction device (upstream side)
10 Karman vortex reduction device (downstream)
11 liquefied petroleum gas supply pipe 12 heating jacket 13 heat transfer pipe 14 residual liquefied petroleum gas outlet 15 residual liquefied petroleum gas vaporized gas outlet 16 residual liquefied petroleum gas vaporizer 17 residual liquefied petroleum gas backup vaporizer 18 heating medium inlet 19 heating medium outlet 20 Heating medium outlet 21 Heating medium inlet 22 Heating medium outlet 23 Heating medium inlet 24 Heating medium outlet

Claims (4)

加温と加圧と流量計測されている天然ガスに、液体状態の液化石油ガスを所定の発熱量になるよう流量制御と加圧させて、一緒に導入し、加圧環境下で都市ガス及び/または燃料用ガスの発熱量を調整させることに使用されるベンチュリ形状の均一気化混合装置において、ベンチュリ管の外側表面を温水または水蒸気または加温された空気を用いた加熱媒体により加熱し、ベンチュリ管内壁面側に接する液化石油ガスを気化させる加熱ジャケットを有することを特徴とする均一気化混合装置。 Liquid gas liquefied petroleum gas is flow-controlled and pressurized to a predetermined calorific value and introduced together with natural gas that has been heated, pressurized and flow-measured. In a venturi-shaped uniform vaporization mixing apparatus used for adjusting the calorific value of fuel gas, the outer surface of the venturi tube is heated with a heating medium using warm water, steam or warmed air, and the venturi A uniform vaporizing and mixing apparatus having a heating jacket for vaporizing liquefied petroleum gas in contact with the inner wall surface of the pipe. ベンチュリ管本体における縮小部の下部内側底面が、水平より、0°〜60°の範囲で、スロート部側に向かって、下り勾配になっていることを特徴とする請求項1記載の均一気化混合装置。 2. The uniform vaporization mixing according to claim 1, wherein the lower inner bottom surface of the reduced portion of the venturi main body is inclined downward toward the throat portion in the range of 0 ° to 60 ° from the horizontal. apparatus. ベンチュリ管本体の直管部に、デミスターを設置していることを特徴とする請求項1記載の均一気化混合装置。 The uniform vapor mixing apparatus according to claim 1, wherein a demister is installed in a straight pipe portion of the venturi main body. ベンチュリ管のスロート部を流れる単位体積当たり(m)の天然ガスの有している運動エネルギーが10000(J)未満において、ベンチュリ管内部の上流側に残留する液化石油ガスを自然重力または流れている天然ガスの力により下流側に移動させながら、ベンチュリ管の加熱媒体として15℃〜200℃を確保できる温水または水蒸気または加温された空気を用いることで、天然ガスと液化石油ガスからなる0.37(kg/mN)までの液ガス比の混合条件にある流体を、液化石油ガスの強制的な加熱による気化作用と、液化石油ガスの自然蒸発作用と、液化石油ガスの微粒化作用と粒化作用と、強制的な混合作用をも併用し均一気化混合する方法。 When the kinetic energy of the natural gas per unit volume (m 3 ) flowing through the throat portion of the venturi pipe is less than 10,000 (J), the liquefied petroleum gas remaining upstream in the venturi pipe is naturally gravity or flowing. By using warm water or steam or warmed air that can secure 15 ° C. to 200 ° C. as the heating medium of the venturi pipe while being moved to the downstream side by the force of the natural gas, the natural gas and liquefied petroleum gas are used. Liquids with mixing ratios up to 37 (kg / m 3 N) can be used to vaporize the liquefied petroleum gas by forced heating, naturally evaporate the liquefied petroleum gas, and atomize the liquefied petroleum gas. A method of uniform vaporization and mixing of action, granulation and forced mixing.
JP2015160363A 2015-08-17 2015-08-17 Uniform vaporization mixing apparatus and uniform vaporization mixing method Expired - Fee Related JP6245544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015160363A JP6245544B2 (en) 2015-08-17 2015-08-17 Uniform vaporization mixing apparatus and uniform vaporization mixing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015160363A JP6245544B2 (en) 2015-08-17 2015-08-17 Uniform vaporization mixing apparatus and uniform vaporization mixing method

Publications (3)

Publication Number Publication Date
JP2017039786A true JP2017039786A (en) 2017-02-23
JP2017039786A5 JP2017039786A5 (en) 2017-03-30
JP6245544B2 JP6245544B2 (en) 2017-12-13

Family

ID=58203280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015160363A Expired - Fee Related JP6245544B2 (en) 2015-08-17 2015-08-17 Uniform vaporization mixing apparatus and uniform vaporization mixing method

Country Status (1)

Country Link
JP (1) JP6245544B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108144464A (en) * 2018-03-01 2018-06-12 佛山市骏渔信息科技有限公司 A kind of gas of gas range mixing arrangement
CN111471499A (en) * 2020-04-14 2020-07-31 北京石油化工学院 Tubular parallel flow type gas-liquid contact absorber
CN113280354A (en) * 2021-05-19 2021-08-20 光大环境科技(中国)有限公司 Process method for introducing high-temperature tail gas into furnace through gas merging coupling in activated carbon preparation process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112546889B (en) * 2020-11-16 2021-07-20 哈尔滨工业大学 Gas mixing device for thermal stability output of heat storage and release system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150430A (en) * 2006-12-14 2008-07-03 Hitachi Plant Technologies Ltd Apparatus for producing city gas
JP2010160672A (en) * 2009-01-08 2010-07-22 Jfe Engineering Corp Method and device for calorific value adjustment
JP2011025171A (en) * 2009-07-27 2011-02-10 Jfe Engineering Corp Fluid-mixing method using venturi tube and venturi-type mixing device
JP2011200807A (en) * 2010-03-26 2011-10-13 Jfe Engineering Corp Method for mixing fluid and apparatus for mixing the fluid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150430A (en) * 2006-12-14 2008-07-03 Hitachi Plant Technologies Ltd Apparatus for producing city gas
JP2010160672A (en) * 2009-01-08 2010-07-22 Jfe Engineering Corp Method and device for calorific value adjustment
JP2011025171A (en) * 2009-07-27 2011-02-10 Jfe Engineering Corp Fluid-mixing method using venturi tube and venturi-type mixing device
JP2011200807A (en) * 2010-03-26 2011-10-13 Jfe Engineering Corp Method for mixing fluid and apparatus for mixing the fluid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108144464A (en) * 2018-03-01 2018-06-12 佛山市骏渔信息科技有限公司 A kind of gas of gas range mixing arrangement
CN111471499A (en) * 2020-04-14 2020-07-31 北京石油化工学院 Tubular parallel flow type gas-liquid contact absorber
CN113280354A (en) * 2021-05-19 2021-08-20 光大环境科技(中国)有限公司 Process method for introducing high-temperature tail gas into furnace through gas merging coupling in activated carbon preparation process
CN113280354B (en) * 2021-05-19 2023-07-04 光大环境科技(中国)有限公司 Process method for coupling high-temperature tail gas and gas into furnace in active carbon preparation process

Also Published As

Publication number Publication date
JP6245544B2 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
JP6245544B2 (en) Uniform vaporization mixing apparatus and uniform vaporization mixing method
Shin et al. Spherical-shaped ice particle production by spraying water in a vacuum chamber
Tang et al. Visualization experimental study of the condensing flow regime in the transonic mixing process of desalination-oriented steam ejector
Konstantinov et al. Effervescent atomization for industrial energy− technology review
Kharkov Mathematical modelling of thermolabile solutions concentration in vortex chamber
RU2377462C1 (en) Cryogenic liquid evaporator
JP5855298B1 (en) LNG evaporator and LNG evaporation method using LNG evaporator
JP2017039786A5 (en)
JP6042061B2 (en) Spray nozzle, fluid atomizer using the spray nozzle
Karnawat et al. Controlled atomization using a twin-fluid swirl atomizer
US20160010800A1 (en) Liquid Natural Gas Vaporization
WO2017188395A1 (en) Fluid adjustment device
Gadgil et al. Effect of skewness on the characteristics of impinging jet atomizers
Busov et al. Atomization of a Sheet Jet of Superheated Water Using a Passive Swirler
JP2017040459A (en) Heat source unit of refrigeration device
JP5708702B2 (en) Evaporative gas reliquefaction method
JP2007277346A (en) Town gas feeder
Panaitescu et al. Free Jet of Mist Water use for Fire Heat Absorption
Joseph et al. Effect of orifice recess on the droplet size distribution of sprays discharging from gas-centered swirl coaxial atomizers
EP3710743B1 (en) Cryogenic fluid vaporizer
Zeigarnik et al. Using Flow Swirlers to Enhance Heat Transfer in Apparatuses of Wet Regeneration of Waste-Gases Heat
Hocquet et al. Loss of containment: experimental aerosol rain-out assessment
Yang et al. Experimental study on the combustion characteristics of liquid fuel in the straight tubes
Walton et al. The effects of free stream air velocity on water droplet size and distribution for an impaction spray nozzle
Pavel et al. Thermal-fluidics behaviour of water mist and gas fuel flame jets based on experimental results

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171103

R150 Certificate of patent or registration of utility model

Ref document number: 6245544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees