JP2017034960A - Permanent magnet type rotary electric machine, and control method for permanent magnet type rotary electric machine - Google Patents

Permanent magnet type rotary electric machine, and control method for permanent magnet type rotary electric machine Download PDF

Info

Publication number
JP2017034960A
JP2017034960A JP2015233184A JP2015233184A JP2017034960A JP 2017034960 A JP2017034960 A JP 2017034960A JP 2015233184 A JP2015233184 A JP 2015233184A JP 2015233184 A JP2015233184 A JP 2015233184A JP 2017034960 A JP2017034960 A JP 2017034960A
Authority
JP
Japan
Prior art keywords
magnetization
permanent magnet
flux density
magnetic flux
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015233184A
Other languages
Japanese (ja)
Other versions
JP6610209B2 (en
Inventor
千花 杉
Chika Sugi
千花 杉
村上 亮
Ryo Murakami
亮 村上
宜郎 川下
Nobuo Kawashita
宜郎 川下
加藤 崇
Takashi Kato
崇 加藤
孝志 福重
Takashi Fukushige
孝志 福重
粕川 実
Minoru Kasukawa
実 粕川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Publication of JP2017034960A publication Critical patent/JP2017034960A/en
Application granted granted Critical
Publication of JP6610209B2 publication Critical patent/JP6610209B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a permanent magnet capable of predicting a field strength required for obtaining a desired magnetic flux density regardless of a value of a magnetic flux density of the permanent magnet at a time point of magnetization initiation.SOLUTION: A permanent magnet provided in a permanent magnet type rotary electric machine has such magnetization properties that a field strength at a point where a rate of change of magnetization becomes maximum relative to increase of the field strength in a minor loop within a first quadrant in a hysteresis curve of the permanent magnet is smaller than a field strength required for obtaining a magnetic flux density equal to the magnetic flux density at the point where the rate of change of magnetization becomes maximum, in a major loop within the first quadrant in the hysteresis curve and that the minor loop in the case of magnetization without polarity inversion with respect to a permanent magnet having a magnetic flux density smaller than a maximum residual magnetic flux density is settled on the substantially same line in a magnetization region including the point where the rate of change of magnetization becomes maximum, regardless of a magnitude of the magnetic flux density of the permanent magnet at the time point of magnetization initiation.SELECTED DRAWING: Figure 9

Description

本発明は、永久磁石式回転電機、及び、永久磁石式回転電機の制御方法に関する。   The present invention relates to a permanent magnet type rotating electrical machine and a method for controlling a permanent magnet type rotating electrical machine.

従来、回転電機の運転状態に応じて永久磁石の磁化状態を変化させる永久磁石式回転電機が知られている(特許文献1参照)。この永久磁石式回転電機は、非対称な磁化特性を有する永久磁石を備え、永久磁石への増磁制御時に必要な磁化電流を減磁制御時よりも低減することにより、回転電機の省エネルギー化を図っている。   Conventionally, a permanent magnet type rotating electrical machine that changes the magnetization state of a permanent magnet according to the operating state of the rotating electrical machine is known (see Patent Document 1). This permanent magnet type rotating electrical machine includes a permanent magnet having asymmetric magnetization characteristics, and reduces the magnetizing current required at the time of increasing magnetization to the permanent magnet than at the time of demagnetizing control, thereby saving energy of the rotating electrical machine. ing.

特開2011−172323号公報JP 2011-172323 A

しかしながら、特許文献1に開示された回転電機が備える永久磁石は、増磁制御の開始時点における永久磁石の磁束密度(磁束量)の値によって当該増磁制御に伴う増磁曲線が異なるため、所望の磁束密度を得るために必要な磁界強度を予測することが困難である。したがって、所望の磁束密度を得るためには、一度メジャーループ上の磁化飽和点に達するまで磁界強度を増大させることで、永久磁石の磁束密度が予め知得可能な飽和磁束密度となるまで増磁する必要がある。このため、増磁制御に関わる磁化電流が過剰に必要となる。   However, the permanent magnet included in the rotating electrical machine disclosed in Patent Document 1 has a magnetizing curve that varies depending on the value of the magnetic flux density (magnetic flux amount) of the permanent magnet at the start of the magnetizing control. It is difficult to predict the magnetic field strength required to obtain a magnetic flux density of. Therefore, in order to obtain the desired magnetic flux density, the magnetic field strength is increased until the magnetization saturation point on the major loop is reached once, so that the magnetic flux density of the permanent magnet is increased to a saturation magnetic flux density that can be known in advance. There is a need to. For this reason, an excessive magnetization current related to the magnetization control is required.

本発明は、増磁制御の開始時点における永久磁石の磁束密度の値によらず、所望の磁束密度を得るために必要な磁界強度を予測可能な永久磁石を提供することを目的とする。   An object of the present invention is to provide a permanent magnet capable of predicting the magnetic field strength necessary to obtain a desired magnetic flux density regardless of the value of the magnetic flux density of the permanent magnet at the start of the magnetizing control.

本発明による永久磁石式回転電機は、固定子巻線に印加される電流が形成する磁界の作用で永久磁石を磁化させることにより当該永久磁石の磁束密度を変化させる。この永久磁石は、永久磁石のヒステリシス曲線における第1象限内のマイナーループにおいて、磁界強度の増加に対する磁化変化率が最大となる点の磁界強度が、ヒステリシス曲線における第1象限内のメジャーループにおいて、磁化変化率が最大となる点の磁束密度と同じ磁束密度を得るために要する磁界強度よりも小さく、且つ、最大残留磁束密度よりも小さい磁束密度を有する永久磁石に対して極性の反転を伴わずに増磁する場合のマイナーループが、増磁の開始時点における当該永久磁石の磁束密度の大きさに関わらず、磁化変化率が最大となる点を含む増磁領域において略同一の線上に収束するような磁化特性を有する。   The permanent magnet type rotating electrical machine according to the present invention changes the magnetic flux density of the permanent magnet by magnetizing the permanent magnet by the action of the magnetic field formed by the current applied to the stator winding. This permanent magnet has a magnetic field strength at a point at which the rate of change of magnetization with respect to an increase in magnetic field strength is maximum in the minor loop in the first quadrant in the hysteresis curve of the permanent magnet, in the major loop in the first quadrant in the hysteresis curve. Without reversal of polarity for a permanent magnet having a magnetic flux density smaller than the maximum magnetic flux density required to obtain the same magnetic flux density as the magnetic flux density at the point where the rate of magnetization change is maximum. The minor loop in the case of magnetizing in the direction of magnetism converges on substantially the same line in the magnetized region including the point where the rate of magnetization change is maximum regardless of the magnitude of the magnetic flux density of the permanent magnet at the start of magnetizing. It has such a magnetization characteristic.

本発明によれば、永久磁石式回転電機が備える永久磁石のマイナーループが、少なくとも磁化変化率が最大となる点において一本の線上に収束するような増磁曲線を示す。これにより、増磁開始時点における永久磁石の磁束密度の値によらず、所望の磁束密度を得るために必要な磁界強度を予測することができるので、増磁制御に関わる磁化電流を低減することができる。   According to the present invention, the permanent magnet minor loop of the permanent magnet type rotating electrical machine exhibits a magnetizing curve that converges on a single line at least at the point where the rate of magnetization change is maximum. This makes it possible to predict the magnetic field strength necessary to obtain a desired magnetic flux density regardless of the value of the magnetic flux density of the permanent magnet at the start of magnetizing, thereby reducing the magnetizing current related to magnetizing control. Can do.

図1は、第1実施形態の永久磁石式回転電機を軸方向に垂直な断面から見た構成図である。FIG. 1 is a configuration diagram of the permanent magnet type rotating electrical machine according to the first embodiment viewed from a cross section perpendicular to the axial direction. 図2は、第1実施形態の永久磁石式回転電機が備える低保磁力磁石の磁化特性を示す図である。FIG. 2 is a diagram illustrating the magnetization characteristics of the low coercivity magnet provided in the permanent magnet type rotating electrical machine of the first embodiment. 図3は、比較例1に係る永久磁石の磁化特性を説明するための図である。FIG. 3 is a diagram for explaining the magnetization characteristics of the permanent magnet according to the first comparative example. 図4は、第1実施形態の永久磁石式回転電機が備える低保磁力磁石の磁化特性を示す図である。FIG. 4 is a diagram illustrating the magnetization characteristics of the low coercivity magnet provided in the permanent magnet type rotating electrical machine of the first embodiment. 図5は、第1実施形態の永久磁石式回転電機が備える低保磁力磁石の増磁制御に伴う制御方法、及び、比較例2に係る低保磁力磁石の増磁制御に伴う制御方法を説明するための図である。FIG. 5 illustrates a control method associated with the magnetization increase control of the low coercivity magnet provided in the permanent magnet type rotating electrical machine of the first embodiment and a control method associated with the magnetization increase control of the low coercivity magnet according to Comparative Example 2. It is a figure for doing. 図6は、比較例3に係る永久磁石の磁化特性を説明するための図である。FIG. 6 is a diagram for explaining the magnetization characteristics of the permanent magnet according to Comparative Example 3. 図7は、実施例2における低保磁力磁石を増磁する際の制御方法を説明するための図である。FIG. 7 is a diagram for explaining a control method when magnetizing the low coercivity magnet in the second embodiment. 図8は、実施例2における低保磁力磁石を増磁する際の制御方法を説明するための図である。FIG. 8 is a diagram for explaining a control method when magnetizing the low coercivity magnet in the second embodiment. 図9は、第1実施形態の永久磁石式回転電機が備える低保磁力磁石の磁化特性を示す図である。FIG. 9 is a diagram illustrating the magnetization characteristics of the low coercive force magnet included in the permanent magnet type rotating electric machine according to the first embodiment. 図10は、従来の低保磁力磁石の磁化特性を説明するための図である。FIG. 10 is a diagram for explaining the magnetization characteristics of a conventional low coercivity magnet. 図11は、実施例4に係る初期着磁を説明するための図である。FIG. 11 is a diagram for explaining initial magnetization according to the fourth embodiment. 図12は、低保磁力磁石に対して行った初期着磁の磁界強度を示す図である。FIG. 12 is a diagram showing the magnetic field strength of the initial magnetization performed on the low coercive force magnet. 図13は、低保磁力磁石に対して行った初期着磁の磁界強度と、マイナーループの角型性との関係を示す測定結果を示す図である。FIG. 13 is a diagram showing measurement results showing the relationship between the magnetic field strength of the initial magnetization performed on the low coercive force magnet and the squareness of the minor loop. 図14は、磁界強度13.5[kOe]で初期着磁を行った場合の、初期着磁後の増減磁に係るマイナーループを5回測定した測定結果である。FIG. 14 shows measurement results obtained by measuring a minor loop related to increase / decrease after initial magnetization five times when initial magnetization is performed at a magnetic field strength of 13.5 [kOe]. 図15は、実施例4における初期着磁の磁界強度を説明するための図である。FIG. 15 is a diagram for explaining the magnetic field strength of initial magnetization in the fourth embodiment.

[第1実施形態]
図1は、第1実施形態の永久磁石式回転電機1(以下、単に回転電機1ともいう)を軸方向に垂直な断面から見た構成図であって、構成全体の一部を示した図である。本実施形態の回転電機1は、円環形状をなす固定子2と、固定子2と同心円状をなし、固定子2との間にエアギャップ6を有するように配置された回転子3と、永久磁石4a、4bを磁化方向に直列となるように重ね合わせた状態で回転子3の対応箇所に嵌装された永久磁石ユニット4と、を備え、電動機或いは発電機を構成する。この永久磁石式回転電機1は、例えば電動車両の駆動源として用いられる。
[First embodiment]
FIG. 1 is a configuration diagram of a permanent magnet type rotating electrical machine 1 (hereinafter also simply referred to as a rotating electrical machine 1) according to a first embodiment as viewed from a cross section perpendicular to the axial direction, and shows a part of the entire configuration. It is. The rotating electrical machine 1 of the present embodiment includes an annular stator 2, a rotor 3 that is concentric with the stator 2, and is disposed so as to have an air gap 6 between the stator 2, And a permanent magnet unit 4 fitted in a corresponding portion of the rotor 3 in a state where the permanent magnets 4a and 4b are superposed in series in the magnetization direction to constitute an electric motor or a generator. This permanent magnet type rotating electrical machine 1 is used as a drive source of an electric vehicle, for example.

固定子2は、リング状の固定子コア12と、固定子コア12から内周側に向けて突出する複数のティース9と、ティース9に巻き回された固定子巻線7と、からなる。固定子コア12は、例えば軟磁性材料である電磁鋼板を積層して形成される。   The stator 2 includes a ring-shaped stator core 12, a plurality of teeth 9 protruding from the stator core 12 toward the inner peripheral side, and a stator winding 7 wound around the teeth 9. The stator core 12 is formed, for example, by laminating electromagnetic steel plates that are soft magnetic materials.

回転子3は、回転子コア13を有している。回転子コア13は、透磁率の高い金属製の鋼板を円環状に打ち抜き加工して形成された多数の電磁鋼板を軸方向に積層して構成された、いわゆる積層鋼板構造により円筒形に形成されている。また、回転子コア13の、固定子2と対向する外周部には、周方向に沿って、永久磁石ユニット4により構成される磁極が互いに等間隔で、且つ、互いに隣接する磁極の極性が異極性となるように設けられている。なお、本実施形態の回転電機1に係る回転子コア13は、図1で示す部分構成から推察されるとおり、周方向に沿って6個の永久磁石ユニット4が設けられた6極構造を有する。   The rotor 3 has a rotor core 13. The rotor core 13 is formed in a cylindrical shape by a so-called laminated steel plate structure in which a large number of electromagnetic steel plates formed by punching a metal plate having a high magnetic permeability into an annular shape are laminated in the axial direction. ing. Further, on the outer peripheral portion of the rotor core 13 facing the stator 2, the magnetic poles formed by the permanent magnet unit 4 are equally spaced along the circumferential direction, and the polarities of the adjacent magnetic poles are different from each other. It is provided to be polar. Note that the rotor core 13 according to the rotating electrical machine 1 of the present embodiment has a six-pole structure in which six permanent magnet units 4 are provided along the circumferential direction as inferred from the partial configuration shown in FIG. .

また、回転子3は、各磁極間に、回転子コア13を形成する電磁鋼板を打ち抜き加工することで形成された空間部分である低透磁率層5を有する。低透磁率層5は、電磁鋼板よりも透磁率が低く、すなわち磁気抵抗が大きい。したがって、低透磁率層5は、永久磁石ユニット4が回転子3上に構成する磁気回路において、磁束(フラックス)が通りにくい磁気的障壁(フラックスバリア)として作用する。低透磁率層5は、回転子3の周方向に沿って一定の機械角毎に形成されており、上述の永久磁石ユニット4はこれら低透磁率層5の間に配置される。   Moreover, the rotor 3 has a low magnetic permeability layer 5 that is a space portion formed by punching a magnetic steel sheet forming the rotor core 13 between the magnetic poles. The low magnetic permeability layer 5 has a lower magnetic permeability than the electromagnetic steel sheet, that is, has a large magnetic resistance. Therefore, the low magnetic permeability layer 5 acts as a magnetic barrier (flux barrier) through which the magnetic flux (flux) is difficult to pass in the magnetic circuit formed by the permanent magnet unit 4 on the rotor 3. The low magnetic permeability layer 5 is formed for every fixed mechanical angle along the circumferential direction of the rotor 3, and the above-described permanent magnet unit 4 is disposed between these low magnetic permeability layers 5.

永久磁石ユニット4は、永久磁石4a、4bを回転子3の中心方向に対して垂直に重ね合わせて配置される。この永久磁石ユニット4がつくる磁束の方向がd軸であり、d軸に対して電気的磁気的に直交する方向がq軸である。すなわち、永久磁石ユニット4は、回転子3上において、二つのq軸に挟まれた範囲に配置される。   The permanent magnet unit 4 is disposed by superposing permanent magnets 4 a and 4 b perpendicularly to the center direction of the rotor 3. The direction of the magnetic flux produced by the permanent magnet unit 4 is the d axis, and the direction perpendicular to the d axis electrically and magnetically is the q axis. That is, the permanent magnet unit 4 is disposed on the rotor 3 in a range sandwiched between two q axes.

永久磁石ユニット4を構成する永久磁石4a、4bは、保磁力が異なる。永久磁石4bは、インバータ(不図示)が許容できる電流値のd軸電流を固定子巻線7に通電することにより形成される磁界によって、増磁又は減磁が可能な保磁力を有する永久磁石である。このような保磁力を有する永久磁石は、低保磁力磁石と定義される。永久磁石4b(以下、低保磁力磁石4bと呼ぶ)の保磁力は、例えば室温で8kOe未満であることが望ましいが、必ずしもこの値に限定されるものではない。他方、永久磁石4aの保磁力は、インバータ(不図示)が許容できる電流値のd軸電流により形成される磁界によっては磁化されない値であればよく、例えば室温で15.1kOe以上である。なお、このような保磁力を有する永久磁石4aは、高保磁力磁石と定義される。   The permanent magnets 4a and 4b constituting the permanent magnet unit 4 have different coercive forces. The permanent magnet 4b is a permanent magnet having a coercive force that can be increased or demagnetized by a magnetic field formed by passing a d-axis current having a current value allowable by an inverter (not shown) to the stator winding 7. It is. A permanent magnet having such a coercive force is defined as a low coercive force magnet. The coercivity of the permanent magnet 4b (hereinafter referred to as the low coercivity magnet 4b) is desirably less than 8 kOe at room temperature, for example, but is not necessarily limited to this value. On the other hand, the coercive force of the permanent magnet 4a may be a value that is not magnetized by a magnetic field formed by a d-axis current having a current value that an inverter (not shown) can accept, and is, for example, 15.1 kOe or more at room temperature. The permanent magnet 4a having such a coercive force is defined as a high coercive force magnet.

本実施形態の回転電機1は、永久磁石ユニット4を構成する低保磁力磁石4bの磁化特性に特徴がある。ここで、本実施形態に係る低保磁力磁石4bの磁化特性の詳細を説明する前に、従来の低保磁力磁石の磁化特性について、図10を参照して説明する。   The rotating electrical machine 1 of the present embodiment is characterized by the magnetization characteristics of the low coercive force magnet 4 b constituting the permanent magnet unit 4. Here, before describing the details of the magnetization characteristics of the low coercivity magnet 4b according to the present embodiment, the magnetization characteristics of the conventional low coercivity magnet will be described with reference to FIG.

従来、回転電機の運転状況に応じて低保磁力磁石の磁化状態を変化させる永久磁石式回転電機が知られている(特許文献1参照)。永久磁石の磁化状態、すなわち、永久磁石の磁束密度(磁束量)を変化させるためには、永久磁石に対して、所望の磁束密度に応じた強度の外部磁界を作用させる必要がある。所望の磁束密度が大きいほど、必要な磁界の強度も大きくなる。そして、磁化する際の磁界の強度が大きくなるほど、必要な磁化電流も大きくなり、エネルギー消費量が多くなる。そこで、特許文献1では、増磁制御時のエネルギー消費量を低減するために、図10の縦軸と横軸の交点に対して非対称な磁化特性を有する低保磁力磁石を用いることで、増磁制御に要する磁化電流を減磁動作に要する磁化電流よりも低減し、省エネルギー化を図っている。   2. Description of the Related Art Conventionally, a permanent magnet type rotating electrical machine that changes the magnetization state of a low coercive force magnet according to the operating state of the rotating electrical machine is known (see Patent Document 1). In order to change the magnetization state of the permanent magnet, that is, the magnetic flux density (magnetic flux amount) of the permanent magnet, it is necessary to apply an external magnetic field having a strength corresponding to the desired magnetic flux density to the permanent magnet. The greater the desired magnetic flux density, the greater the required magnetic field strength. And as the intensity of the magnetic field at the time of magnetization increases, the necessary magnetization current also increases and the energy consumption increases. Therefore, in Patent Document 1, in order to reduce the energy consumption during the magnetization increasing control, a low coercivity magnet having an asymmetric magnetization characteristic with respect to the intersection of the vertical axis and the horizontal axis in FIG. The magnetizing current required for the magnetic control is reduced more than the magnetizing current required for the demagnetizing operation to save energy.

図10は、従来の永久磁石式回転電機における低保磁力磁石の磁化特性に係るヒステリシス曲線を表した図である。横軸は、低保磁力磁石に与えられる外部磁界の磁界強度[kOe]を表し、縦軸は、低保磁力磁石内部の磁束密度[kG]を表す。横軸と縦軸の交点を中心に非対称に描かれた実線で表される曲線は、低保磁力磁石の磁化を部分磁化させたときの、磁界強度[kOe]に対する磁束密度[kG]の関係(磁化特性)を表した磁化曲線、いわゆるマイナーループである。横軸と縦軸の交点を中心に略対称に描かれた点線を含む曲線は、永久磁石の例えばAを起点とする磁化が、逆極性において磁束密度が飽和した状態(図中のB)を経て変化する際の磁化特性を表した磁化曲線、いわゆるメジャーループ(フルループともいう)である。   FIG. 10 is a diagram showing a hysteresis curve related to the magnetization characteristics of a low coercive force magnet in a conventional permanent magnet type rotating electrical machine. The horizontal axis represents the magnetic field strength [kOe] of the external magnetic field applied to the low coercivity magnet, and the vertical axis represents the magnetic flux density [kG] inside the low coercivity magnet. The curve represented by the solid line drawn asymmetrically around the intersection of the horizontal axis and the vertical axis is the relationship between the magnetic flux intensity [kG] and the magnetic field strength [kOe] when the magnetization of the low coercivity magnet is partially magnetized. This is a so-called minor loop, which is a magnetization curve representing (magnetization characteristics). A curve including a dotted line drawn approximately symmetrically about the intersection of the horizontal axis and the vertical axis shows a state in which the magnetization of the permanent magnet, for example, starting from A, is saturated in magnetic flux density in the opposite polarity (B in the figure). It is a so-called major loop (also referred to as a full loop) that represents the magnetization characteristics when changing over time.

図10から分かるように、従来の低保磁力磁石は、特に第1象限に表された部分のマイナーループに係る磁化曲線(増磁曲線)が、同フルループで表された増磁曲線よりも小さい磁界強度[kOe]により変化することを特徴とする。このため、従来の低保磁力磁石は、増磁制御に要する磁化電流を、図10の特に第2象限に表される磁化曲線(減磁曲線)を辿る減磁動作に要する磁化電流よりも低減することができる。   As can be seen from FIG. 10, in the conventional low coercivity magnet, the magnetization curve (magnetization curve) relating to the minor loop in the portion represented in the first quadrant is smaller than the magnetization curve represented by the full loop. It varies according to the magnetic field strength [kOe]. For this reason, the conventional low coercive force magnet reduces the magnetizing current required for the magnetizing control more than the magnetizing current required for the demagnetizing operation following the magnetization curve (demagnetization curve) shown in the second quadrant of FIG. can do.

しかしながら、従来の低保磁力磁石では、増磁制御の開始時点における磁束密度[kG]の大きさによって、増磁制御に伴う増磁曲線が異なる(図10の第1象限参照)。このため、所望の磁束密度を有する磁化状態に磁化したい場合に必要な磁界強度を正確に予測することが困難となり、低保磁力磁石の磁束量を可変する際の正確性が低下する。したがって、部分的な磁化状態Br1から、より磁化の大きい部分的な磁化状態Br2へ磁束密度を変化させたい場合、正確性を担保するためには以下のような磁化経路を通る必要がある。すなわち、(a)磁化状態Br1にある低保磁力磁石の磁束密度がフルループ上の磁化飽和点Aに達するまで外部磁界の磁界強度を増大させる。(b)低保磁力磁石に逆方向の磁界を作用させ、磁化状態Aから磁化状態Br21まで推移させる。(c)外部磁界を取り去ることにより、部分的な磁化状態Br2の低保磁力磁石を得る。   However, in the conventional low coercive force magnet, the magnetizing curve associated with the magnetizing control differs depending on the magnitude of the magnetic flux density [kG] at the start of magnetizing control (see the first quadrant in FIG. 10). For this reason, it is difficult to accurately predict the required magnetic field strength when it is desired to magnetize a magnetized state having a desired magnetic flux density, and the accuracy when changing the amount of magnetic flux of the low coercive force magnet is reduced. Therefore, when it is desired to change the magnetic flux density from the partial magnetization state Br1 to the partial magnetization state Br2 having larger magnetization, it is necessary to pass through the following magnetization path in order to ensure accuracy. That is, (a) the magnetic field strength of the external magnetic field is increased until the magnetic flux density of the low coercivity magnet in the magnetization state Br1 reaches the magnetization saturation point A on the full loop. (B) A magnetic field in the opposite direction is applied to the low coercive force magnet to cause transition from the magnetized state A to the magnetized state Br21. (C) A low coercivity magnet having a partial magnetization state Br2 is obtained by removing the external magnetic field.

このように、従来の永久磁石式回転電機が有する低保磁力磁石では、所望の磁束密度を有する磁化状態に増磁したい場合、正確性を担保するためには必ずメジャーループに達するまで磁界強度を増大させる必要がある。このため、増磁制御に関わる磁化電流がより多く必要となる。   In this way, in the low coercivity magnet of the conventional permanent magnet type rotating electrical machine, when it is desired to increase the magnetization state to have a desired magnetic flux density, the magnetic field strength must be increased until reaching the major loop in order to ensure accuracy. Need to increase. For this reason, a larger amount of magnetizing current related to the magnetization control is required.

本発明は、このような課題を解決するためになされた発明であり、増磁制御において、従来のような正確性を担保するための過剰な磁化電流を必要としない。以下、本発明に係る第1実施形態の低保磁力磁石4bの詳細について、図を参照しながら説明する。   The present invention has been made to solve such a problem, and does not require an excessive magnetizing current for ensuring accuracy as in the prior art in the magnetizing control. Hereinafter, details of the low coercive force magnet 4b according to the first embodiment of the present invention will be described with reference to the drawings.

図2は、第1実施形態の永久磁石式回転電機1が備える低保磁力磁石4bの磁化特性に係るヒステリシス曲線を示す図である。横軸は、低保磁力磁石に与えられる外部磁界の磁界強度[kOe]を表し、縦軸は、低保磁力磁石内部の磁束密度[kG]を表す。実線で表される曲線は、低保磁力磁石4bが、磁化が飽和した状態に満たない部分的な磁化状態から、図中のAで示す磁化飽和状態まで増磁した後に負の方向に磁化することで0kG以上の磁束密度を得る場合の、磁界の強度と磁束密度との関係を表すマイナーループである。点線で表される曲線は、低保磁力磁石4bが、逆の極性側において磁束密度が飽和した状態(不図示)を経て増磁される場合の、磁界の強度と磁束密度との関係を表すメジャーループである。   FIG. 2 is a diagram illustrating a hysteresis curve related to the magnetization characteristics of the low coercive force magnet 4b included in the permanent magnet type rotating electrical machine 1 according to the first embodiment. The horizontal axis represents the magnetic field strength [kOe] of the external magnetic field applied to the low coercivity magnet, and the vertical axis represents the magnetic flux density [kG] inside the low coercivity magnet. A curve represented by a solid line indicates that the low coercive force magnet 4b is magnetized in a negative direction after being magnetized from a partial magnetization state in which the magnetization is not saturated to a magnetization saturation state indicated by A in the figure. This is a minor loop representing the relationship between the magnetic field strength and the magnetic flux density when a magnetic flux density of 0 kG or more is obtained. The curve represented by the dotted line represents the relationship between the magnetic field strength and the magnetic flux density when the low coercive force magnet 4b is magnetized through a state (not shown) where the magnetic flux density is saturated on the opposite polarity side. It is a major loop.

図2中の一点鎖線は、第1象限における一つのマイナーループを微分したものであって、傾きの大きさを表したものであり、すなわち、低保磁力磁石4bに係るマイナーループにおける磁化変化率dB/dHを表す。マイナーループ上の任意の点における磁化変化率dB/dHは、下記式(1)で表される。   The alternate long and short dash line in FIG. 2 is obtained by differentiating one minor loop in the first quadrant and represents the magnitude of the inclination, that is, the magnetization change rate in the minor loop related to the low coercivity magnet 4b. It represents dB / dH. The magnetization change rate dB / dH at an arbitrary point on the minor loop is expressed by the following formula (1).

Figure 2017034960
Figure 2017034960

ただし、Bは磁束密度[kG]、Hは外部磁界の強度[kOe]を表す。また、(n)はマイナーループ上の任意の点を表す。なお、(n−1)の1は、マイナーループ上の任意の点における磁化変化率を算出する際の基準となる点を式で表す都合上用いた数字であり、整数に限定されるものではない。   However, B represents magnetic flux density [kG], and H represents external magnetic field strength [kOe]. (N) represents an arbitrary point on the minor loop. Note that 1 in (n-1) is a number used for convenience to express a point serving as a reference when calculating the magnetization change rate at an arbitrary point on the minor loop, and is not limited to an integer. Absent.

図2から分かるように、本実施形態に係る低保磁力磁石4bは、第1象限において、磁化変化率dB/dHが最大となる点における磁束密度[kG]を得られるマイナーループ上の磁界強度が、同じ磁束密度を得られるメジャーループ上の磁界強度[kOe]よりも小さい値となるように構成されている。   As can be seen from FIG. 2, the low coercivity magnet 4b according to the present embodiment has a magnetic field strength on the minor loop that can obtain the magnetic flux density [kG] at the point where the magnetization change rate dB / dH is maximum in the first quadrant. However, it is comprised so that it may become a value smaller than the magnetic field intensity [kOe] on the major loop which can obtain the same magnetic flux density.

すなわち、このような磁化特性を有する低保磁力磁石4bによれば、磁化が飽和した状態に満たない部分的な磁化状態から、より磁束密度の大きい部分的な磁化状態へ増磁する際に、メジャーループよりも少ない磁化電流により増磁することが可能となるため、増磁制御に関わる磁化電流を低減することができる。   That is, according to the low coercive force magnet 4b having such a magnetization characteristic, when the magnetization is increased from a partial magnetization state in which the magnetization is not saturated to a partial magnetization state having a higher magnetic flux density, Magnetization can be performed with a smaller magnetization current than in the major loop, so that the magnetization current related to the magnetization control can be reduced.

また、このような磁化特性を有する低保磁力磁石4bは、例えば下記一般式(2)を満たすような、保磁力を低下させたNdFeB系磁石を使用することが望ましい。   Moreover, as the low coercive force magnet 4b having such magnetization characteristics, it is desirable to use an NdFeB-based magnet having a reduced coercive force that satisfies, for example, the following general formula (2).

Figure 2017034960
Figure 2017034960

なお、保磁力を低下させるためには、Y、La、Ce等のREE(Rare Earth Elements)を用いてNdの一部を置換することが望ましい。また、磁気特性や耐食性向上の観点から、上記以外の添加元素を含ませてもよい。   In order to reduce the coercive force, it is desirable to replace a part of Nd using REE (Rare Earth Elements) such as Y, La, and Ce. Further, from the viewpoint of improving magnetic properties and corrosion resistance, additional elements other than those described above may be included.

低保磁力磁石4bの製造方法は特に限定しないが、磁化曲線がより四角形状に近い平坦なマイナーループ形状となることが望ましいことから、低保磁力磁石4bの製造過程において微小な結晶粒が得られる製造方法を選択することが望ましい。例えば、HDDR法により得られた微細結晶粒を持つ異方性磁粉を用いて、所望の磁化特性を有する低保磁力磁石を作製する。あるいは、超急冷法により得られた微細結晶粒を持つ等方性磁粉を1000℃以下の温度で熱間加工成形することにより高密度化し、同時に異方性を付与することで所望の磁化特性を有する低保磁力磁石を作製しても良い。   The manufacturing method of the low coercive force magnet 4b is not particularly limited, but it is desirable that the magnetization curve has a flat minor loop shape that is closer to a quadrangle shape, so that fine crystal grains are obtained in the manufacturing process of the low coercive force magnet 4b. It is desirable to select a manufacturing method that can be used. For example, a low coercive force magnet having desired magnetization characteristics is manufactured using anisotropic magnetic powder having fine crystal grains obtained by the HDDR method. Alternatively, the isotropic magnetic powder having fine crystal grains obtained by the ultra-quenching method is densified by hot working molding at a temperature of 1000 ° C. or less, and at the same time imparting anisotropy to obtain desired magnetization characteristics. You may produce the low coercivity magnet which has.

また、上記の方法で作成した低保磁力磁石を形成した後、熱処理を施すことによって保磁力を調整してもよい。本実施形態に係る低保磁力磁石4bは、NdFeB系磁石にREEとしてLaを用いた母合金を超急冷法にて微細結晶を持つ粉末とし、熱間加工法にて成形及び配向させた、平均結晶粒系0.1〜1μmの微細結晶磁石を使用する。なお、高保磁力を有する永久磁石4aも、NdFeB系の永久磁石を使用することが望ましい。   In addition, the coercive force may be adjusted by forming a low coercivity magnet created by the above method and then performing heat treatment. The low coercive force magnet 4b according to the present embodiment is an average obtained by forming a mother alloy using La as an REE for a NdFeB-based magnet into a powder having fine crystals by a super-quenching method, and forming and orienting it by a hot working method. A fine crystal magnet having a grain size of 0.1 to 1 μm is used. The permanent magnet 4a having a high coercive force is desirably an NdFeB-based permanent magnet.

[比較例1]
上述したような磁化特性を有する低保磁力磁石4bに対する比較例を図3に示す。比較例として用いた永久磁石は、熱処理によって保磁力を8kOe未満に調整したSmCo系磁石である。図3は、図2と同様、横軸に外部磁界の磁界強度[kOe]、縦軸に磁束密度[kG]を表す。図中の曲線は比較例に係る永久磁石の磁化特性に基づく磁化曲線を表す。そして、図中の一点鎖線は、上記式(1)に基づいて算出された磁化変化率dB/dHを表す。
[Comparative Example 1]
A comparative example for the low coercive force magnet 4b having the above-described magnetization characteristics is shown in FIG. The permanent magnet used as a comparative example is an SmCo magnet having a coercive force adjusted to less than 8 kOe by heat treatment. In FIG. 3, as in FIG. 2, the horizontal axis represents the magnetic field strength [kOe] of the external magnetic field, and the vertical axis represents the magnetic flux density [kG]. The curve in the figure represents a magnetization curve based on the magnetization characteristics of the permanent magnet according to the comparative example. The alternate long and short dash line in the figure represents the magnetization change rate dB / dH calculated based on the above formula (1).

図から分かるように、比較例に係る永久磁石の磁化曲線は、点線で示すメジャーループと実線で示すマイナーループとの増磁領域に差異がなく、磁化変化率dB/dHが最大となる点における磁界強度がマイナーループとメジャーループとでほぼ一致する。したがって、磁化が飽和した状態に満たない部分的な磁化状態から、より磁束密度の大きい部分的な磁化状態へ増磁する場合の磁化電流低減効果は少ない。   As can be seen from the figure, the magnetization curve of the permanent magnet according to the comparative example is such that there is no difference in the magnetized region between the major loop indicated by the dotted line and the minor loop indicated by the solid line, and the magnetization change rate dB / dH is maximum. The magnetic field strength is almost the same between the minor loop and the major loop. Therefore, there is little effect of reducing the magnetization current when the magnetization is increased from a partial magnetization state that is less than the saturation state to a partial magnetization state having a higher magnetic flux density.

次に、第1実施形態の低保磁力磁石4bに特徴的な磁化特性について、図4を参照して説明する。図4は、図2と同様、横軸に外部磁界の磁界強度[kOe]、縦軸に磁束密度[kG]を表す。図中の実線で示す曲線は低保磁力磁石4bの磁化特性に基づくマイナーループを表し、点線で示す曲線はメジャーループを表している。そして、図中の一点鎖線は、低保磁力磁石4bの、ある一つのマイナーループに係る増磁曲線に基づいて、上記式(1)を用いて算出された磁化変化率dB/dHを表す。   Next, the magnetization characteristic characteristic of the low coercive force magnet 4b of the first embodiment will be described with reference to FIG. In FIG. 4, as in FIG. 2, the horizontal axis represents the magnetic field strength [kOe] of the external magnetic field, and the vertical axis represents the magnetic flux density [kG]. A curve indicated by a solid line in the figure represents a minor loop based on the magnetization characteristics of the low coercive force magnet 4b, and a curve indicated by a dotted line represents a major loop. Then, the alternate long and short dash line in the figure represents the magnetization change rate dB / dH calculated by using the above formula (1) based on the magnetizing curve related to a certain minor loop of the low coercive force magnet 4b.

本実施形態の低保磁力磁石4bは、その磁化特性を表した第1象限内のマイナーループにおいて傾きが最大となる点、すなわち、磁化変化率dB/dHが最大となる点が、増磁制御の開始時点における磁束密度の大小によらず、同一線上(図中の線分EF上)に位置するような磁化特性を有することを特徴とする。なお、第1象限内における磁化曲線において、少なくとも磁化変化率dB/dHが最大となる点を含んだ、縦軸に略並走して描かれた領域を増磁領域と定義する。   The low coercive force magnet 4b of the present embodiment has the point that the inclination becomes maximum in the minor loop in the first quadrant representing the magnetization characteristic, that is, the point where the magnetization change rate dB / dH becomes maximum. It has a magnetization characteristic such that it is located on the same line (on the line segment EF in the figure) regardless of the magnitude of the magnetic flux density at the start of. In addition, in the magnetization curve in the first quadrant, a region drawn at approximately the vertical axis and including at least a point where the magnetization change rate dB / dH is maximum is defined as a magnetized region.

より具体的に言うと、0kG以上であって、且つ、最大残留磁束密度に満たない範囲の磁束密度を増磁制御の開始時点の磁束密度とするマイナーループを無数に描いた場合に、各マイナーループは、同一線上(図中の線分EF上)に収束する。換言すると、無数に描いた各マイナーループの増磁曲線における磁化変化率dB/dHが最大となる点をそれぞれプロットすると、その点の集合が描く曲線は、マイナーループにおける増磁曲線上の一本の線(線分EF)となる。   More specifically, when an infinite number of minor loops having a magnetic flux density of 0 kG or more and less than the maximum residual magnetic flux density as the magnetic flux density at the start of the magnetizing control are drawn, The loops converge on the same line (on the line segment EF in the figure). In other words, when each of the points at which the magnetization change rate dB / dH in the magnetizing curve of each minor loop drawn innumerably is plotted, the curve drawn by the set of points is one on the magnetizing curve in the minor loop. (Line segment EF).

また、磁化変化率dB/dHが最大となる点の磁界の強度は、低保磁力磁石4bの保磁力に対して20%程度の所定の磁界強度範囲に収まる。例えば、本実施形態の低保磁力磁石4bにおいては、約2.1kOeの保磁力に対して、磁化変化率dB/dHが最大となる点が、0.4[kOe]程度(約1.8[kOe]〜2.2[kOe])の範囲内に収まるような磁化特性を有する。   Further, the strength of the magnetic field at the point where the magnetization change rate dB / dH is maximum falls within a predetermined magnetic field strength range of about 20% with respect to the coercive force of the low coercive force magnet 4b. For example, in the low coercive force magnet 4b of the present embodiment, the point at which the magnetization change rate dB / dH is maximum for a coercive force of about 2.1 kOe is about 0.4 [kOe] (about 1.8 kOe). [kOe] to 2.2 [kOe]).

なお、本実施形態に係る低保磁力磁石4bに係る増磁曲線における、特に線分EFの部分は、同一の磁束密度における磁界強度が、出発の磁化の大きさ(例えばBr1〜Br4)に関わらず、±5%の範囲内に収まるような磁化特性を有する。   It should be noted that the magnetic field strength at the same magnetic flux density is related to the magnitude of the starting magnetization (for example, Br1 to Br4) in the magnetizing curve of the low coercive force magnet 4b according to the present embodiment, particularly in the line segment EF. It has a magnetization characteristic that falls within a range of ± 5%.

このように、低保磁力磁石4bが、マイナーループの増磁領域において略同一の線上に収束するような磁化特性を有することにより、増磁制御の開始時点における低保磁力磁石4bの磁束密度がいかなる値であっても、予め検知可能な線分EFに係る増磁曲線を基準として、所望の磁束密度を得るのに必要な磁界強度を知得することができる。したがって、増磁制御開始時点における磁束密度の値によらず、所望の磁束密度に磁化するのに必要な磁界強度を正確に予測することが可能となる。   As described above, the low coercivity magnet 4b has a magnetization characteristic that converges on substantially the same line in the minor loop magnetizing region, so that the magnetic flux density of the low coercivity magnet 4b at the start of the magnetizing control is increased. Whatever the value, the magnetic field strength necessary to obtain a desired magnetic flux density can be obtained on the basis of the magnetizing curve relating to the line segment EF that can be detected in advance. Therefore, it is possible to accurately predict the magnetic field strength required to magnetize to a desired magnetic flux density, regardless of the value of the magnetic flux density at the start of the magnetization increasing control.

以上、第1実施形態に係る永久磁石式回転電機は、固定子巻線7に印加される電流が形成する磁界の作用で低保磁力磁石4bを磁化させることにより低保磁力磁石4bの磁束密度を変化させる。この低保磁力磁石4bは、低保磁力磁石4bのヒステリシス曲線(磁化曲線)における第1象限内のマイナーループにおいて、磁界強度[kOe]の増加に対する磁化変化率dB/dHが最大となる点の磁界強度が、ヒステリシス曲線における第1象限内のメジャーループにおいて、磁化変化率dB/dHが最大となる点の磁束密度と同じ磁束密度を得るために要する磁界強度よりも小さい。また、最大残留磁束密度よりも小さい磁束密度[kG]を有する永久磁石に対して極性の反転を伴わずに増磁する場合のマイナーループが、増磁制御の開始時点における低保磁力磁石4bの磁束密度の大きさに関わらず、増磁領域において略同一の線上に収束する。   As described above, the permanent magnet type rotating electrical machine according to the first embodiment magnetizes the low coercive force magnet 4b by the action of the magnetic field formed by the current applied to the stator winding 7, thereby magnetic flux density of the low coercive force magnet 4b. To change. The low coercivity magnet 4b has a maximum magnetization change rate dB / dH with respect to an increase in magnetic field strength [kOe] in a minor loop in the first quadrant of the hysteresis curve (magnetization curve) of the low coercivity magnet 4b. The magnetic field strength is smaller than the magnetic field strength required to obtain the same magnetic flux density as the magnetic flux density at the point where the magnetization change rate dB / dH becomes maximum in the major loop in the first quadrant in the hysteresis curve. In addition, a minor loop in the case of magnetizing a permanent magnet having a magnetic flux density [kG] smaller than the maximum residual magnetic flux density without reversing the polarity of the low coercive force magnet 4b at the start of magnetizing control. Regardless of the magnitude of the magnetic flux density, they converge on substantially the same line in the magnetized region.

これにより、磁化が飽和した状態に満たない部分的な磁化状態から、より磁束密度の大きい部分的な磁化状態へ増磁する際に、メジャーループよりも少ない磁化電流により増磁することが可能となるため、増磁制御に関わる磁化電流を低減することができる。   As a result, when magnetizing from a partially magnetized state in which the magnetization is less than a saturated state to a partially magnetized state having a higher magnetic flux density, it is possible to increase the magnetization with a smaller magnetizing current than in the major loop. Therefore, it is possible to reduce the magnetization current related to the magnetization increase control.

また、増磁制御開始時点における磁束密度の値によらず、所望の磁束密度に磁化するのに必要な磁界強度を正確に予測することができ、増磁制御の度に磁化が飽和した状態まで増磁する必要がなくなるため、増磁制御に関わる磁化電流を大幅に低減することができる。   In addition, it is possible to accurately predict the magnetic field intensity required to magnetize to a desired magnetic flux density regardless of the value of the magnetic flux density at the start of the magnetizing control, and until the magnetization is saturated every time the magnetizing control is performed. Since it is not necessary to increase the magnetization, the magnetization current related to the magnetization control can be greatly reduced.

[第1実施形態に係る永久磁石式回転電機の制御方法]
[実施例1]
次に、これまで説明した磁気特性を有する低保磁力磁石4bを備える永久磁石式回転電機1において、低保磁力磁石4bの増磁制御に伴う制御方法について説明する。
[Control Method for Permanent Magnet Type Rotating Electric Machine According to First Embodiment]
[Example 1]
Next, in the permanent magnet type rotating electrical machine 1 including the low coercive force magnet 4b having the magnetic characteristics described so far, a control method associated with the magnetization increase control of the low coercive force magnet 4b will be described.

図5は、低保磁力磁石4bの増磁制御に伴う制御方法を具体的に説明するための図である。本制御方法では、低保磁力磁石4bの磁化が飽和した状態を経ずに増磁することを特徴とする。ただし、本実施形態における「磁化が飽和した状態」とは、100%の磁化状態、すなわち低保磁力磁石4bの磁束密度が飽和磁束密度となる図中のA点に限定されず、図中のD点で示す90%の磁化状態以上の磁化状態を含むものとする。   FIG. 5 is a diagram for specifically explaining a control method associated with the magnetization increase control of the low coercive force magnet 4b. This control method is characterized in that the magnetization is increased without passing through the state where the magnetization of the low coercive force magnet 4b is saturated. However, the “state in which the magnetization is saturated” in the present embodiment is not limited to the 100% magnetization state, that is, the point A in the figure in which the magnetic flux density of the low coercive force magnet 4b is the saturation magnetic flux density. It shall include a magnetization state equal to or greater than 90% of the magnetization state indicated by point D.

したがって、本制御方法においては、磁化が飽和した状態に満たない部分的な磁化状態Br1から、より磁束密度の大きい部分的な磁化状態Br2へ増磁する場合の増磁制御は、その動作履歴が図5中の一点鎖線で示す矢印を辿るように制御される。   Therefore, in this control method, the operation history of the magnetization control when the magnetization is increased from the partial magnetization state Br1 that is less than the saturation state to the partial magnetization state Br2 having a higher magnetic flux density is as follows. Control is performed so as to follow an arrow indicated by a one-dot chain line in FIG.

まず、磁化状態Br1(磁束密度:4.9[kG])にある低保磁力磁石4bに対して正の磁界を作用させることで、磁化状態を図中のb点まで推移させる。より具体的に言えば、増磁制御開始時点においてBr1にある当該増磁制御における動作点は、低保磁力磁石4bに対して正の磁界を作用させることで、a点に向かって平坦な磁化曲線を辿りながら推移する。そして、a点にある動作点は、b点に向かって急峻に立ち上がる。このa点からb点に向かう動作点の軌跡は、上述の図4における線分EFと重なる線であり、すなわち、磁化変化率dB/dHが最大となる点を含む増磁領域である。   First, by applying a positive magnetic field to the low coercive force magnet 4b in the magnetization state Br1 (magnetic flux density: 4.9 [kG]), the magnetization state is shifted to the point b in the figure. More specifically, the operating point in the magnetizing control in Br1 at the start of magnetizing control is that a positive magnetic field is applied to the low coercive force magnet 4b so that the magnetization is flat toward the point a. It changes while following the curve. The operating point at point a rises steeply toward point b. The locus of the operating point from the point a to the point b is a line that overlaps the line segment EF in FIG. 4 described above, that is, a magnetized region including a point where the magnetization change rate dB / dH is maximum.

b点は、磁束密度が11.1[kG]であって、磁化状態Br2の磁束密度と略同一であり、且つ、磁界の強度は2.2[kOe]である。したがって、低保磁力磁石4bに対して2.2[kOe]の磁界を作用させることで、磁化状態を図中のBr1からb点まで推移させることができる。そして、低保磁力磁石4bに作用する外部磁界を取り去ることで(磁界強度を0[kOe]にすることで)、動作点は再び平坦な磁化曲線を辿りながら磁化状態Br2へ向かう。これにより、所望の磁束密度(11.1[kG])を有する低保磁力磁石4bを得ることができる。なお、当該磁化に要する磁界の磁界強度[kOe]を、起磁力[kA/m]に換算すると、磁化状態Br1から磁化状態Br2への増磁制御に要する起磁力は、2.2kOe≒175.0kA/mとなる。   The point b has a magnetic flux density of 11.1 [kG], which is substantially the same as the magnetic flux density in the magnetized state Br2, and the magnetic field strength is 2.2 [kOe]. Accordingly, by applying a magnetic field of 2.2 [kOe] to the low coercive force magnet 4b, the magnetization state can be shifted from Br1 to point b in the figure. Then, by removing the external magnetic field that acts on the low coercive force magnet 4b (by setting the magnetic field strength to 0 [kOe]), the operating point moves toward the magnetization state Br2 while following the flat magnetization curve again. Thereby, the low coercive force magnet 4b having a desired magnetic flux density (11.1 [kG]) can be obtained. When the magnetic field strength [kOe] of the magnetic field required for the magnetization is converted into a magnetomotive force [kA / m], the magnetomotive force required for the magnetization control from the magnetization state Br1 to the magnetization state Br2 is 2.2 kOe≈175. 0 kA / m.

[比較例2]
一方で、同じ低保磁力磁石4bを備える永久磁石式回転電機1であっても、磁化状態Br1から、磁化が90%の磁化状態であるD点を経由して磁化状態Br2へ増磁するように制御した場合は、以下のような増磁制御が必要となる。まず、磁化状態Br1にある低保磁力磁石4bに対して、4.178[kOe]の正の磁界を作用させ、磁化状態を図中のD点まで推移させる。次に、−1.43[kOe]の負の磁界を作用させることで、低保磁力磁石4bの磁化状態を磁束密度が磁化状態Br2と略同一となるc点まで推移させる。そして、低保磁力磁石4bに作用する外部磁界を取り去ることで、磁化状態Br2を有する低保磁力磁石4bを得る。
[Comparative Example 2]
On the other hand, even in the permanent magnet type rotating electrical machine 1 having the same low coercive force magnet 4b, the magnetization state is increased from the magnetization state Br1 to the magnetization state Br2 via the point D where the magnetization is 90%. When the control is performed, the following magnetization control is required. First, a positive magnetic field of 4.178 [kOe] is applied to the low coercive force magnet 4b in the magnetization state Br1, and the magnetization state is shifted to point D in the figure. Next, by applying a negative magnetic field of −1.43 [kOe], the magnetization state of the low coercive force magnet 4b is shifted to a point c at which the magnetic flux density is substantially the same as the magnetization state Br2. And the low coercive force magnet 4b which has magnetization state Br2 is obtained by removing the external magnetic field which acts on the low coercive force magnet 4b.

このような増磁方法に伴う総起磁力は、4.178[kOe](≒332.5kA/m;正の方向)+|−1.43[kOe]|(≒113.8kA/m;負の方向)=446.3kA/mとなる。したがって、比較例2に係る制御方法では、磁化が飽和した状態を経由せずに増磁する実施例1に係る制御方法に要した起磁力175.0kA/mに比べて、2倍以上の大きな起磁力を要することが分かる。   The total magnetomotive force associated with such a magnetizing method is 4.178 [kOe] (≈332.5 kA / m; positive direction) + | −1.43 [kOe] | (≈113.8 kA / m; negative) Direction) = 446.3 kA / m. Therefore, in the control method according to Comparative Example 2, the magnetomotive force of 175.0 kA / m required for the control method according to Example 1 in which the magnetization is increased without going through the state where the magnetization is saturated is twice as large as that of the control method. It can be seen that magnetomotive force is required.

[比較例3]
図6を参照して、飽和状態を経由せずに増磁する上記制御方法と同様の制御を行った場合であっても、低保磁力磁石4bとは磁化特性の異なる永久磁石を使用した場合の比較例3について説明する。なお、本比較例で用いる永久磁石は、比較例1で使用したのと同じ、熱処理によって保磁力を8kOe未満に調整したSmCo系磁石である。
[Comparative Example 3]
Referring to FIG. 6, even when a control similar to the above control method of increasing the magnetism without going through a saturation state is performed, a permanent magnet having a different magnetization characteristic from that of the low coercive force magnet 4 b is used. Comparative Example 3 will be described. The permanent magnet used in this comparative example is the same SmCo-based magnet as used in comparative example 1, with the coercive force adjusted to less than 8 kOe by heat treatment.

図6は、比較例3における永久磁石の制御方法を示す図である。本比較例において使用する永久磁石の磁化曲線は、比較例1で説明したとおり、メジャーループとマイナーループとで差異がなく、磁化変化率が最大となる点における磁界強度[kOe]がマイナーループとメジャーループとでほぼ一致する。   FIG. 6 is a diagram illustrating a method for controlling the permanent magnet in the third comparative example. As described in Comparative Example 1, the magnetization curve of the permanent magnet used in this comparative example has no difference between the major loop and the minor loop, and the magnetic field strength [kOe] at the point where the magnetization change rate is maximum is the minor loop. Almost matches with major loop.

したがって、図6に示す磁化状態Br1(磁束密度:2.4[kG])から磁化状態Br2(磁束密度:6.36[kG])へ増磁させる場合は、磁界強度が2.2[kOe]の正の磁界を作用させる必要がある。実施例1に係る制御方法では、磁界強度2.2[kOe]により得られる磁束密度が11.1[kG]であることを鑑みると、比較例3に係る単位起磁力あたりの磁化効率は、実施例1の制御方法に係る単位起磁力あたりの磁化効率のおよそ2/3である。なお、ここでの磁化効率とは、磁化の変化分を、作用させた磁界を形成するのに要する起磁力で除した値とする。各磁化効率は、下記表1に示す。   Therefore, when the magnetization state Br1 (magnetic flux density: 2.4 [kG]) shown in FIG. 6 is increased to the magnetization state Br2 (magnetic flux density: 6.36 [kG]), the magnetic field strength is 2.2 [kOe. It is necessary to apply a positive magnetic field. In the control method according to Example 1, considering that the magnetic flux density obtained by the magnetic field strength of 2.2 [kOe] is 11.1 [kG], the magnetization efficiency per unit magnetomotive force according to Comparative Example 3 is This is about 2/3 of the magnetization efficiency per unit magnetomotive force according to the control method of the first embodiment. Here, the magnetization efficiency is a value obtained by dividing the change in magnetization by the magnetomotive force required to form the applied magnetic field. Each magnetization efficiency is shown in Table 1 below.

Figure 2017034960
Figure 2017034960

すなわち、実施例1は、磁化が飽和している状態に満たない部分的な磁化状態から、より磁束密度の大きい部分的な磁化状態へ、保磁力の低下を伴うことなく、かつ、磁化が飽和した状態を経ずに磁化を可変できる磁化特性を有する低保磁力磁石4bを用いることにより、部分的な磁化状態から部分的な磁化状態への磁化を繰り返しながら回転電機1を作動させる。これにより、磁化が飽和した状態を経由する比較例2と比べて、一回の増磁制御あたり約60%の起磁力低減を実現することができる。   That is, in Example 1, the magnetization is saturated without a decrease in coercive force from a partial magnetization state in which the magnetization is not saturated to a partial magnetization state having a higher magnetic flux density. By using the low coercive force magnet 4b having a magnetization characteristic that can change the magnetization without going through the above state, the rotating electrical machine 1 is operated while repeating the magnetization from the partial magnetization state to the partial magnetization state. Thereby, compared with the comparative example 2 which passes through the state where magnetization was saturated, the magnetomotive force reduction of about 60% can be realized per one magnetizing control.

[実施例2]
続いて、第1実施形態に係る永久磁石式回転電機の制御方法において、低保磁力磁石4bの増磁制御に係る実施例2について説明する。
[Example 2]
Next, Example 2 relating to the magnetizing control of the low coercive force magnet 4b in the control method for the permanent magnet type rotating electrical machine according to the first embodiment will be described.

実施例2は、いかなる部分的な磁化状態からであっても、より磁束密度の大きい部分的な磁化状態へ、磁化が飽和した状態を経ずに、同一の増磁曲線上を経由して増磁制御を行う点に特徴がある。以下、図7を参照して具体的に説明する。   In Example 2, from any partial magnetization state, the magnetization is increased to the partial magnetization state having a higher magnetic flux density via the same magnetization curve without passing through the saturation state. It is characterized in that magnetic control is performed. Hereinafter, a specific description will be given with reference to FIG.

図7は、実施例2における低保磁力磁石4bを増磁する際の制御方法を具体的に説明するための図である。実施例2に係る制御方法では、図の実線で示す低保磁力磁石4bの磁化曲線に係るマイナーループにおいて、磁化状態Br1から磁化状態Br2へ磁化する場合、磁化状態Br3から磁化状態Br2へ磁化する場合、及び、磁化状態Br3から磁化状態Br1へ磁化する場合のいずれの場合であっても、同一の増磁曲線上(線分EF上)を経由して増磁するように制御する。このように制御することにより、線分EFに係る増磁曲線を基準として、所望の磁束密度を得るのに必要な磁界強度を知得することができるので、いかなる磁化状態からであっても、所望の磁束密度を得るのに必要な磁界強度を正確に予測することが可能となる。   FIG. 7 is a diagram for specifically explaining a control method when magnetizing the low coercive force magnet 4b in the second embodiment. In the control method according to the second embodiment, in the minor loop related to the magnetization curve of the low coercive force magnet 4b shown by the solid line in the figure, when the magnetization state Br1 is magnetized to the magnetization state Br2, the magnetization state Br3 is magnetized to the magnetization state Br2. In both cases, and in the case of magnetizing from the magnetized state Br3 to the magnetized state Br1, control is performed so as to increase the magnetization via the same magnetizing curve (on the line segment EF). By controlling in this way, it is possible to know the magnetic field strength necessary to obtain a desired magnetic flux density with reference to the magnetizing curve related to the line segment EF. Therefore, it is possible to accurately predict the magnetic field strength necessary to obtain the magnetic flux density of the first magnetic field.

すなわち、実施例2に係る制御方法によれば、増磁制御の開始時点における低保磁力磁石の磁束密度の大きさに関わらず、増磁制御に伴う磁化電流を予測することができる。このため、増磁制御の開始時点における低保磁力磁石4bの磁束密度を知得できない場合であっても、所望の磁化状態に磁化するのに必要な磁化電流を正確に供給することができるので、低保磁力磁石4bの磁束密度を可変する際の正確性を担保でき、回転電機1の信頼性を向上することができる。   That is, according to the control method according to the second embodiment, it is possible to predict the magnetization current associated with the magnetization increasing control regardless of the magnitude of the magnetic flux density of the low coercivity magnet at the start of the magnetization increasing control. For this reason, even when the magnetic flux density of the low coercive force magnet 4b at the start of the magnetizing control cannot be obtained, it is possible to accurately supply the magnetizing current necessary for magnetizing to the desired magnetization state. And the accuracy at the time of changing the magnetic flux density of the low coercive force magnet 4b can be ensured, and the reliability of the rotary electric machine 1 can be improved.

このような制御が可能となる理由としては、制御対象である低保磁力磁石4bが、係るマイナーループ上において、上記式(1)で示される磁化変化率dB/dHが最大となる点における磁束密度を得られる外部磁界の磁界強度が、第1象限内のメジャーループにおいて、同じ磁束密度を得られる外部磁界の磁界強度よりも小さくなる磁気特性と、マイナーループにおいて磁化変化率dB/dHが最大となる点を含む増磁領域が略同一の一本の線上に収束する磁化特性が挙げられる。このような磁気特性を得られる要因としては、第1実施形態に係る永久磁石式回転電機の説明において述べたとおり、低保磁力磁石4bが、微細且つ均一な結晶組織から構成されていることが挙げられる。   The reason why such control is possible is that the low coercive force magnet 4b to be controlled has a magnetic flux at the point where the magnetization change rate dB / dH represented by the above formula (1) is maximum on the minor loop. The magnetic field strength of the external magnetic field that can obtain the density is smaller than the magnetic field strength of the external magnetic field that can obtain the same magnetic flux density in the major loop in the first quadrant, and the magnetization change rate dB / dH is the maximum in the minor loop. There is a magnetization characteristic in which the magnetized region including the point is converged on substantially the same single line. As a factor for obtaining such magnetic characteristics, as described in the description of the permanent magnet type rotating electric machine according to the first embodiment, the low coercive force magnet 4b is composed of a fine and uniform crystal structure. Can be mentioned.

また、サブミクロンオーダーの微細な結晶粒子によって構成された永久磁石は、磁壁移動によりなされる磁化に一定値以上の磁界強度を有する磁場(磁界)が必要なピニング型の磁化変動を示すことが知られている(例えばSmCo系磁石)。このような永久磁石が示すマイナーループは、傾きが小さい平坦な形状となる。しかしながら、外部磁界の印加に対する磁束密度の磁化変化率dB/dHが最大となるときには、磁壁のピニングが外れて急激な磁壁移動が起きていると考えられる。このような急激な磁壁移動が起きる際は、磁化が急激に変化するとともに、マイナーループの傾きも大きくなる。   In addition, it is known that a permanent magnet composed of fine crystal particles of submicron order exhibits pinning-type magnetization fluctuations that require a magnetic field (magnetic field) having a magnetic field strength of a certain value or more for magnetization caused by domain wall movement. (For example, SmCo magnet). The minor loop indicated by such a permanent magnet has a flat shape with a small inclination. However, when the magnetization change rate dB / dH of the magnetic flux density with respect to the application of the external magnetic field becomes maximum, it is considered that the domain wall pinning is removed and a sudden domain wall movement occurs. When such a sudden domain wall movement occurs, the magnetization changes rapidly and the inclination of the minor loop also increases.

本実施形態に使用した低保磁力磁石4bの磁化機構は、上述のように結晶粒界(磁壁)によるピニングが支配的である。特に、ピニングが外れて急激に磁壁移動が起きる磁界強度は、第1象限内のメジャーループにおいて同一の磁束密度が得られる磁界強度よりも小さいことが特徴である。結晶粒径が小さくピニング力が強いと、磁化履歴(増磁制御開始時の磁化状態)に関わらず、マイナーループの傾きは小さくなり、形状は直線的になる。さらに、結晶の均一性が高いことから、磁化履歴が異なっても磁化変化率dB/dHの最大値の軌跡は磁化と比例して増減すると予測でき、増磁曲線上の一本の線上に収束されると考えられる。   As described above, the pinning by the crystal grain boundary (domain wall) is dominant in the magnetization mechanism of the low coercive force magnet 4b used in the present embodiment. In particular, the magnetic field strength at which domain wall movement suddenly occurs after pinning is removed is smaller than the magnetic field strength at which the same magnetic flux density is obtained in the major loop in the first quadrant. When the crystal grain size is small and the pinning force is strong, the inclination of the minor loop becomes small and the shape becomes linear regardless of the magnetization history (magnetization state at the start of magnetization increasing control). Furthermore, since the crystal is highly uniform, the locus of the maximum value of the magnetization change rate dB / dH can be predicted to increase or decrease in proportion to the magnetization even if the magnetization histories are different, and it converges on a single line on the magnetizing curve. It is thought that it is done.

このような結晶組織を有する永久磁石を使用することにより、磁化履歴が異なる永久磁石であっても、所望の磁束密度に磁化するのに必要な磁界強度を予測して増磁を制御することが可能となるため、回転電機の信頼性を向上することができる。また、磁化履歴によらず制御が可能なため、増磁制御の度に磁化が飽和した状態まで増磁する必要がなくなるため、磁化電流を大幅に低減することができる。   By using a permanent magnet having such a crystal structure, it is possible to control the magnetizing by predicting the magnetic field strength necessary to magnetize to a desired magnetic flux density even if the permanent magnet has a different magnetization history. Therefore, the reliability of the rotating electrical machine can be improved. In addition, since control is possible regardless of the magnetization history, it is not necessary to increase the magnetization until the magnetization is saturated every time the magnetization control is performed, so that the magnetization current can be greatly reduced.

一方で、焼結法によって製造された一般的なNdFeB(結晶粒径5〜10μm)の場合は、ピニング力が弱く、磁壁移動が連続的に起こるため、磁化変化率dB/dHの最大値の軌跡を増磁曲線上における一本の線上で近似することは難しい。   On the other hand, in the case of general NdFeB (crystal grain size of 5 to 10 μm) manufactured by the sintering method, the pinning force is weak and the domain wall movement continuously occurs, so the maximum value of the magnetization change rate dB / dH is It is difficult to approximate the locus on a single line on the magnetizing curve.

以上、第1実施形態に係る永久磁石式回転電機の制御方法は、最大残留磁束密度よりも小さい磁束密度を有する低保磁力磁石4bに対する増磁制御において、低保磁力磁石4bの磁化が飽和した状態を経ずに増磁する。これにより、低保磁力磁石4bの磁化を変化させたい場合に、部分的な磁化状態から部分的な磁化状態への磁化を磁化が飽和した状態を経ずに、推移させることができるので、一回の増磁制御あたりの起磁力を大幅に低減することができる。   As described above, in the control method of the permanent magnet type rotating electrical machine according to the first embodiment, the magnetization of the low coercive force magnet 4b is saturated in the magnetization increasing control for the low coercive force magnet 4b having a magnetic flux density smaller than the maximum residual magnetic flux density. Magnetize without going through the state. Thereby, when it is desired to change the magnetization of the low coercive force magnet 4b, the magnetization from the partial magnetization state to the partial magnetization state can be shifted without passing through the saturation state. The magnetomotive force per magnetizing control can be greatly reduced.

[実施例3]
第1実施形態に係る永久磁石式回転電機の制御方法において、低保磁力磁石4bの増磁制御に係る実施例3について説明する。
[Example 3]
In the control method of the permanent magnet type rotating electrical machine according to the first embodiment, Example 3 relating to the magnetization increase control of the low coercive force magnet 4b will be described.

実施例3は、低保磁力磁石4bの増磁制御に係る制御方法を具体的に示すものである。図9に示すように、実施例3では、低保磁力磁石4bの増磁制御を、極性反転を伴わない領域でのみ行うことを特徴とする。その理由について図8を参照して説明する。   The third embodiment specifically shows a control method related to the magnetization increase control of the low coercive force magnet 4b. As shown in FIG. 9, the third embodiment is characterized in that the magnetization increase control of the low coercive force magnet 4b is performed only in a region not accompanied by polarity reversal. The reason will be described with reference to FIG.

図8は、実施例3における低保磁力磁石4bの制御方法を説明するための図である。図8で示す一点鎖線は、部分的な磁化状態Br2から、逆の極性である部分的な磁化状態Br4へ磁化を変化させた後に、再び極性を反転させて部分的な磁化状態Br1へ磁化を変化させる場合の磁化履歴を示している。   FIG. 8 is a diagram for explaining a method of controlling the low coercivity magnet 4b in the third embodiment. The one-dot chain line shown in FIG. 8 changes the magnetization from the partial magnetization state Br2 to the partial magnetization state Br4 having the opposite polarity, and then reverses the polarity again to cause the magnetization to the partial magnetization state Br1. The magnetization history in the case of changing is shown.

このような磁化履歴を辿る場合の低保磁力磁石4bの磁化状態は、以下の通りである。すなわち、(a)部分的な磁化状態Br2から部分的な磁化状態Br4へ磁化するべく、負の方向の磁界を作用させ、磁界強度が磁化状態Br4における磁束密度を得るのに必要な強度(磁界強度:約−3.5[kOe])に達した後、磁界を取り去る。(b)部分的な磁化状態Br4から部分的な磁化状態Br1へ磁化するべく、正の方向の磁界を作用させ、磁界強度が磁化状態Br1における磁束密度を得るのに必要な強度(磁界強度:約2.15[kOe])に達した後、磁界を取り去る。   The magnetization state of the low coercive force magnet 4b when following such a magnetization history is as follows. That is, (a) a magnetic field in a negative direction is applied to magnetize from the partial magnetization state Br2 to the partial magnetization state Br4, and the magnetic field strength is a strength (magnetic field) required to obtain a magnetic flux density in the magnetization state Br4. After reaching the intensity: about −3.5 [kOe]), the magnetic field is removed. (B) In order to magnetize from the partial magnetization state Br4 to the partial magnetization state Br1, a magnetic field in the positive direction is applied, and the magnetic field strength is the strength necessary to obtain the magnetic flux density in the magnetization state Br1 (magnetic field strength: After reaching 2.15 [kOe]), the magnetic field is removed.

図から分かるように、極性反転を伴う領域を使用して低保磁力磁石4bの磁化を行うと、上記(b)の増磁制御における増磁曲線が、極性反転を伴わない場合の増磁曲線(破線で示す線分EF)と、メジャーループとの間を通る。このため、上述の実施例1、2と同様、部分的な磁化状態からより大きな磁化状態へ、磁化が飽和した状態(A、B)を経ずに増磁できる特徴は変わらないものの、増磁制御に伴う増磁曲線がよりメジャーループ側へシフトするので、実施例1、2に係る制御と比べて、磁化電流の低減効果が低下する。   As can be seen from the figure, when the magnetization of the low coercive force magnet 4b is performed using a region with polarity reversal, the magnetizing curve in the magnetizing control of (b) above is a magnetizing curve when there is no polarity reversal. (The line segment EF indicated by a broken line) passes between the major loop. For this reason, as in the first and second embodiments described above, although the characteristic that the magnetization can be increased from the partially magnetized state to the larger magnetized state without going through the saturation state (A, B) is not changed, Since the magnetizing curve accompanying the control is shifted to the major loop side, the effect of reducing the magnetizing current is reduced as compared with the control according to the first and second embodiments.

また、極性反転を伴う領域を使用した場合の増磁曲線は、極性反転を伴わない場合の増磁曲線(点線で示す線分EF)と、メジャーループとの間のどの位置を通るのかが磁化履歴によって変わる。このため、磁化履歴が異なる永久磁石に対して増磁制御を行う際の増磁曲線を予測することが困難となり、すなわち、所望の磁束密度を得るのに要する外部磁界の強度を正確に予測することが困難となるので、磁束量を可変する際の正確性が損なわれ、回転電機1の信頼性が低下する。   In addition, the magnetizing curve when the region with polarity reversal is used is the magnetizing curve that passes between the magnetizing curve without the polarity reversal (segment EF indicated by a dotted line) and the major loop. Varies with history. For this reason, it is difficult to predict a magnetizing curve when performing magnetizing control on a permanent magnet having a different magnetization history, that is, accurately predicting the intensity of an external magnetic field required to obtain a desired magnetic flux density. Therefore, the accuracy when changing the amount of magnetic flux is impaired, and the reliability of the rotating electrical machine 1 is lowered.

したがって、低保磁力磁石4bに対する増磁を制御する際、低保磁力磁石4bの磁化曲線において、極性反転を伴わない領域のみを使用するように制御することが望ましい。   Therefore, when controlling the magnetization of the low coercive force magnet 4b, it is desirable to control so that only the region without polarity reversal is used in the magnetization curve of the low coercive force magnet 4b.

したがって、第1実施形態に係る永久磁石式回転電機の制御方法では、低保磁力磁石4bを磁化する際の磁化曲線は、図9の実線で示すマイナーループのとおりとなり、特に、増磁する際の極性反転を伴わない増磁曲線は、最大残留磁束密度未満のいかなる磁化履歴を起点とする場合であっても、当該マイナーループの線分EF上を通ることを特徴とする。   Therefore, in the control method of the permanent magnet type rotating electrical machine according to the first embodiment, the magnetization curve when magnetizing the low coercive force magnet 4b is as shown in the minor loop shown by the solid line in FIG. The magnetizing curve without the polarity reversal is characterized by passing on the line segment EF of the minor loop, regardless of the origin of any magnetization history less than the maximum residual magnetic flux density.

以上、実施例3に係る第1実施形態に係る永久磁石式回転電機の制御方法によれば、低保磁力磁石4bに対する磁化を、低保磁力磁石4bの極性符号が同一の領域でのみ行う。これにより、増磁制御の開始時点における低保磁力磁石4bの磁束密度[kG]の大きさに関わらず、増磁領域において略同一の線上に常に収束するので、所望の磁束密度を得るのに要する外部磁界の強度を正確に予測することが可能となり、磁束量を可変する際の正確性が担保される。   As described above, according to the control method of the permanent magnet type rotating electric machine according to the first embodiment of Example 3, the magnetization of the low coercive force magnet 4b is performed only in the region where the polarity code of the low coercive force magnet 4b is the same. Thus, regardless of the magnitude of the magnetic flux density [kG] of the low coercive force magnet 4b at the start of the magnetizing control, it always converges on substantially the same line in the magnetizing region, so that a desired magnetic flux density can be obtained. The required strength of the external magnetic field can be accurately predicted, and accuracy when changing the amount of magnetic flux is ensured.

[実施例4]
次に、これまで説明した磁気特性を有する低保磁力磁石4bを備える永久磁石式回転電機1において、特に、無着磁の状態の低保磁力磁石4bに対して初めて着磁を行う初回時の着磁(以下、初期着磁と称する)の増磁制御について説明する。
[Example 4]
Next, in the permanent magnet type rotating electrical machine 1 including the low coercive force magnet 4b having the magnetic characteristics described so far, in particular, at the first time when the low coercivity magnet 4b in a non-magnetized state is first magnetized. Magnetization control of magnetization (hereinafter referred to as initial magnetization) will be described.

上述の通り、本発明に係る永久磁石式回転電機1は、電動機或いは発電機を構成し、例えば電動車両の駆動源として用いられる。永久磁石式回転電機1が電動車両の駆動源として用いられる場合は、永久磁石式回転電機1は、いわゆる可変磁力モータ等と呼ばれる。可変磁力モータは、上述した実施例1から3で説明した制御方法により低保磁力磁石4bを増磁或いは減磁することにより、電動車両の走行中に、電動車両の走行状態に合わせて、低保磁力磁石4bの磁力を好適に変化させることができる。   As described above, the permanent magnet type rotating electrical machine 1 according to the present invention constitutes an electric motor or a generator, and is used, for example, as a drive source for an electric vehicle. When the permanent magnet type rotating electrical machine 1 is used as a drive source for an electric vehicle, the permanent magnet type rotating electrical machine 1 is called a so-called variable magnetic force motor or the like. The variable magnetic force motor is reduced in accordance with the traveling state of the electric vehicle while the electric vehicle is traveling by increasing or decreasing the magnetism of the low coercive force magnet 4b by the control method described in the first to third embodiments. The magnetic force of the coercive force magnet 4b can be suitably changed.

しかしながら、本発明に係る低保磁力磁石4bでは、無着磁の状態からの初期着磁の際、低保磁力磁石4bの磁束が飽和しない程度の小さい磁界で増磁を行った場合には、マイナーループの角型性が悪くなるという問題がある。当該問題を図11〜13を用いて説明する。   However, in the low coercivity magnet 4b according to the present invention, when the magnetization is performed with a small magnetic field that does not saturate the magnetic flux of the low coercivity magnet 4b during the initial magnetization from the non-magnetized state, There is a problem that the squareness of the minor loop is deteriorated. The problem will be described with reference to FIGS.

なお、角型性とは、減磁曲線が四角形になる度合を表す言葉であり、第2象限に表される磁化曲線(減磁曲線)において、所定の割合以上(例えば90%以上)の残留磁束密度(磁界の強さを0[kOe]にした場合の磁束密度[kG]の値)に対応する磁界と保磁力との比率で表される永久磁石の特性である。   Note that the squareness is a word representing the degree to which the demagnetization curve becomes a square, and in the magnetization curve (demagnetization curve) represented in the second quadrant, a residual ratio of a predetermined ratio or more (for example, 90% or more). This is a characteristic of the permanent magnet represented by the ratio of the magnetic field and the coercive force corresponding to the magnetic flux density (the value of the magnetic flux density [kG] when the magnetic field strength is 0 [kOe]).

図11は、初期着磁を説明するための図である。図中の実線で示す曲線は、実施例1から3で説明したのと同様のマイナーループを表す。初期着磁は、原則として、無着磁の状態の低保磁力磁石4bに対して初めて行う着磁なので、図中のGが増磁の出発点となる。そして、初期着磁の増磁曲線は、図中のGから設定した着磁磁界までの、低保磁力磁石4bのフルループ上を辿る曲線(G−A)で表される。初期着磁後、2回目以降の増磁曲線は、実施例1から3で説明したのと同様に、フルループに係る磁界強度よりも小さい磁界で行われ、マイナーループのF−E上を辿る。なお、初期着磁は、モータ4の組立後、モータ4の組立前(ロータアッシーの状態)の何れに行っても良い。   FIG. 11 is a diagram for explaining the initial magnetization. A curve indicated by a solid line in the figure represents a minor loop similar to that described in the first to third embodiments. In principle, the initial magnetization is performed for the first time on the non-magnetized low coercive force magnet 4b, and therefore G in the figure is the starting point of the magnetization. The magnetizing curve of the initial magnetization is represented by a curve (GA) that follows the full loop of the low coercive force magnet 4b from G in the figure to the set magnetic field. After the initial magnetization, the second and subsequent magnetizing curves are performed with a magnetic field smaller than the magnetic field strength related to the full loop, as described in the first to third embodiments, and follow the minor loop FE. The initial magnetization may be performed either after the motor 4 is assembled or before the motor 4 is assembled (rotor assembly state).

図12、13は、低保磁力磁石4bに対して行った初期着磁の磁界強度と、マイナーループの角型性との関係を示す測定結果を説明するための図である。なお、当該測定結果は、φ2.5×4mmの低保磁力磁石4bを使用して、パーミアンス係数7.91に基づく反磁界補正を加えて測定されたものである。   12 and 13 are diagrams for explaining the measurement results showing the relationship between the magnetic field intensity of the initial magnetization performed on the low coercive force magnet 4b and the squareness of the minor loop. The measurement result was measured by using a low coercivity magnet 4b of φ2.5 × 4 mm and applying a demagnetizing field correction based on a permeance coefficient of 7.91.

図12は、初期着磁の磁界強度を表した図である。測定は、4パターンの磁界強度で行われた。すなわち、低保磁力磁石4bに飽和磁束密度以下の磁束を発生させる磁界強度(3.7[kOe]、5.6[kOe]、8.5[kOe])と、図中には示されていないが、低保磁力磁石4bに飽和磁束密度以上の磁束密度を発生させる磁界強度(13.5[kOe])である。   FIG. 12 is a diagram showing the magnetic field strength of the initial magnetization. The measurement was performed with four patterns of magnetic field strength. In other words, the magnetic field strength (3.7 [kOe], 5.6 [kOe], 8.5 [kOe]) for generating a magnetic flux below the saturation magnetic flux density in the low coercive force magnet 4b is shown in the figure. Although there is no magnetic field strength (13.5 [kOe]), the low coercive force magnet 4b generates a magnetic flux density equal to or higher than the saturation magnetic flux density.

なお、ここで言う飽和磁束密度は、磁界を増加させたときに低保磁力磁石4bの磁束密度が飽和に達した時点における磁束密度を基準として、当該磁束密度の90%以上、好ましくは95%以上の磁束密度を示すものと定義する。   The saturation magnetic flux density referred to here is 90% or more, preferably 95% of the magnetic flux density based on the magnetic flux density when the magnetic flux density of the low coercivity magnet 4b reaches saturation when the magnetic field is increased. It is defined as showing the above magnetic flux density.

図13は、図12で示した磁界強度により初期着磁を行った場合の、それぞれのマイナーループの角型性を比較するための図であって、各マイナーループの第2象限を示す図である。図13の測定結果から、低保磁力磁石4bの角型性は、低保磁力磁石4bに飽和磁束密度以上の磁束密度を発生させる磁界強度(13.5[kOe])で初期着磁を行った場合がもっとも良く、初期着磁にかかる磁界強度が小さいほど、悪くなることが分かる。例えば、初期着磁を磁界強度3.7[kOe]で行ったのち、車両の走行中等に低保磁力磁石4bに対して−1[kOe]の逆磁界を作用させると、低保磁力磁石4bの磁束密度は、初期着磁を13.5[kOe]で行った場合に比べて、約1[kG]も低下している。これは、電動車両の走行中に減磁を行った場合に、角型性の悪化によって所望の磁束密度よりも過剰な減磁がなされてしまい、トルクが低下してしまう場合があることを意味する。実測したデータによれば、車両走行中の増磁磁界強度を2[kOe]とした場合の最大トルク運転時では、車両走行中の増磁磁界強度よりも大きな磁界強度による初期着磁を行っていない低保磁力磁石4bは、飽和磁束密度以上の磁束を発生させる磁界強度(10[kOe])により初期着磁を行った低保磁力磁石4bに比べて、30%以上も減磁する。   FIG. 13 is a diagram for comparing the squareness of the minor loops when the initial magnetization is performed with the magnetic field strength shown in FIG. 12, and showing the second quadrant of each minor loop. is there. From the measurement result of FIG. 13, the squareness of the low coercive force magnet 4b indicates that the low coercive force magnet 4b is initially magnetized with a magnetic field strength (13.5 [kOe]) that generates a magnetic flux density higher than the saturation magnetic flux density. It is clear that the lower the magnetic field strength applied to the initial magnetization, the worse the case. For example, after the initial magnetization is performed with a magnetic field strength of 3.7 [kOe] and a reverse magnetic field of −1 [kOe] is applied to the low coercive force magnet 4b while the vehicle is traveling, the low coercive force magnet 4b. The magnetic flux density is lower by about 1 [kG] than when the initial magnetization is performed at 13.5 [kOe]. This means that when demagnetization is performed while the electric vehicle is running, the demagnetization may cause excessive demagnetization beyond the desired magnetic flux density, resulting in a decrease in torque. To do. According to the measured data, during the maximum torque operation when the magnetizing magnetic field strength during vehicle running is 2 [kOe], initial magnetization is performed with a magnetic field strength larger than the magnetizing magnetic field strength during vehicle running. The low coercive force magnet 4b is demagnetized by 30% or more compared to the low coercive force magnet 4b that has been initially magnetized with a magnetic field strength (10 [kOe]) that generates a magnetic flux that is equal to or higher than the saturation magnetic flux density.

一方で、初期着磁を13.5[kOe]の磁界強度で行った場合は、図14で示す通り、マイナーループの角型性の悪化は生じない。   On the other hand, when the initial magnetization is performed at a magnetic field strength of 13.5 [kOe], the squareness of the minor loop does not deteriorate as shown in FIG.

図14は、磁界強度13.5[kOe]で初期着磁を行った場合の、初期着磁後の増減磁に係るマイナーループを5回測定した測定結果である。図で示す通り、5回の測定結果に係るマイナーループは重なっており、角型性の悪化は見られない。すなわち、マイナーループの角型性の観点から、低保磁力磁石4bの初期着磁は、低保磁力磁石4bに飽和磁束密度以上の磁束密度を発生させる磁界強度を作用させて行うことが好ましいことが分かる。   FIG. 14 shows measurement results obtained by measuring a minor loop related to increase / decrease after initial magnetization five times when initial magnetization is performed at a magnetic field strength of 13.5 [kOe]. As shown in the figure, the minor loops related to the five measurement results overlap, and no deterioration in squareness is observed. That is, from the viewpoint of the squareness of the minor loop, the initial magnetization of the low coercive force magnet 4b is preferably performed by applying a magnetic field strength that generates a magnetic flux density higher than the saturation magnetic flux density to the low coercive force magnet 4b. I understand.

したがって、実施例4では、図15で一例を示す通り、初期着磁の磁界強度を、低保磁力磁石4bに飽和磁束密度以上の磁束密度を発生させる磁界強度以上に設定する。   Therefore, in Example 4, as shown in FIG. 15, the initial magnetization magnetic field strength is set to be equal to or higher than the magnetic field strength that causes the low coercive force magnet 4 b to generate a magnetic flux density higher than the saturation magnetic flux density.

以上、実施例4に係る第1実施形態に係る永久磁石式回転電機の制御方法によれば、低保磁力磁石4bに対する増磁制御において、初回時の前記増磁制御(初期着磁)では、低保磁力磁石4bに、低保磁力磁石4bの飽和磁束密度を超える磁束密度を発生させる磁界を作用させ、2回目以降の増磁制御では、低保磁力磁石4bに、初期着磁における磁界よりも小さい磁界を作用させる。これにより、例えば車両走行中において低保磁力磁石4bが過剰に減磁されることを防止することができるので、トルクを向上させることができる。   As described above, according to the control method of the permanent magnet type rotating electrical machine according to the first embodiment of Example 4, in the magnetizing control for the low coercive force magnet 4b, in the magnetizing control (initial magnetization) at the first time, A magnetic field that generates a magnetic flux density exceeding the saturation magnetic flux density of the low coercive force magnet 4b is applied to the low coercive force magnet 4b. Even a small magnetic field acts. Thereby, for example, it is possible to prevent the low coercive force magnet 4b from being demagnetized excessively during traveling of the vehicle, and thus the torque can be improved.

本発明は、上述した一実施の形態に限定されることはない。例えば、永久磁石式回転電機1は、低保磁力磁石4b、4aからなる永久磁石ユニット4により一磁極を構成しているが、必ずしも2種類の永久磁石からなる永久磁石ユニットにより構成する必要はなく、低保磁力磁石4bの上述した磁化特性と同様の磁化特性を有する一つの永久磁石により構成してもよい。また、低保磁力磁石4bは、電動車両用の回転電機への適用に限らず、洗濯機等、永久磁石を備える装置であって、使用中、もしくは製造中において永久磁石の磁化を変化させ得る種々の装置に適用することができる。   The present invention is not limited to the embodiment described above. For example, the permanent magnet type rotating electrical machine 1 is configured with one magnetic pole by the permanent magnet unit 4 including the low coercive force magnets 4b and 4a, but is not necessarily configured by the permanent magnet unit including two types of permanent magnets. The low coercive force magnet 4b may be composed of a single permanent magnet having the same magnetization characteristics as those described above. The low coercive force magnet 4b is not limited to application to a rotating electrical machine for an electric vehicle, and is a device including a permanent magnet, such as a washing machine, and can change the magnetization of the permanent magnet during use or manufacture. It can be applied to various devices.

1…永久磁石式回転電機
2…固定子
3…回転子
4…永久磁石ユニット
4b…低保磁力磁石
7…固定子巻線
DESCRIPTION OF SYMBOLS 1 ... Permanent magnet type rotary electric machine 2 ... Stator 3 ... Rotor 4 ... Permanent magnet unit 4b ... Low coercive force magnet 7 ... Stator winding

Claims (4)

固定子巻線を有する固定子と、
複数の永久磁石を有する回転子とから構成され、
前記固定子巻線に印加される電流が形成する磁界の作用で前記永久磁石を磁化させることにより当該永久磁石の磁束密度を変化させる永久磁石式回転電機において、
前記永久磁石の磁化特性は、
当該永久磁石のヒステリシス曲線における第1象限内のマイナーループにおいて、前記磁界の磁界強度の増加に対する磁化変化率が最大となる点の磁界強度が、前記ヒステリシス曲線における第1象限内のメジャーループにおいて、前記磁化変化率が最大となる点の磁束密度と同じ磁束密度を得るために要する磁界強度よりも小さく、且つ、
最大残留磁束密度よりも小さい磁束密度を有する前記永久磁石に対して極性の反転を伴わずに増磁する場合の前記マイナーループが、当該増磁の開始時点における前記永久磁石の磁束密度の大きさに関わらず、前記磁化変化率が最大となる点を含む増磁領域において略同一の線上に収束する、
ことを特徴とする永久磁石式回転電機。
A stator having a stator winding;
A rotor having a plurality of permanent magnets,
In the permanent magnet type rotating electrical machine that changes the magnetic flux density of the permanent magnet by magnetizing the permanent magnet by the action of the magnetic field formed by the current applied to the stator winding,
The magnetization characteristics of the permanent magnet are:
In the minor loop in the first quadrant in the hysteresis curve of the permanent magnet, the magnetic field strength at the point where the rate of change of magnetization with respect to the increase in the magnetic field strength of the magnetic field is the maximum in the major loop in the first quadrant in the hysteresis curve, Smaller than the magnetic field strength required to obtain the same magnetic flux density as the magnetic flux density at the point where the rate of change of magnetization is maximum, and
The minor loop in the case where the permanent magnet having a magnetic flux density smaller than the maximum residual magnetic flux density is magnetized without reversing the polarity is the magnitude of the magnetic flux density of the permanent magnet at the start of the magnetizing. Regardless, converge on substantially the same line in the magnetized region including the point where the rate of magnetization change is maximum,
A permanent magnet type rotating electrical machine.
請求項1に記載の永久磁石式回転電機が備える永久磁石の磁束密度を制御する永久磁石式回転電機の制御方法であって、
最大残留磁束密度よりも小さい磁束密度を有する前記永久磁石に対する増磁制御において、
前記増磁制御は、前記永久磁石の磁化が飽和した状態を経ずに増磁する、
ことを特徴とする永久磁石式回転電機の制御方法。
A control method for a permanent magnet type rotating electrical machine for controlling the magnetic flux density of a permanent magnet provided in the permanent magnet type rotating electrical machine according to claim 1,
In the magnetization control for the permanent magnet having a magnetic flux density smaller than the maximum residual magnetic flux density,
The magnetization control is performed without increasing the magnetization of the permanent magnet without saturation.
A control method for a permanent magnet type rotating electrical machine.
請求項1に記載の永久磁石式回転電機が備える永久磁石の磁束密度を制御する永久磁石式回転電機の制御方法であって、
前記永久磁石に対する磁化は、当該永久磁石の極性符号が同一の領域でのみ行われる、
ことを特徴とする永久磁石式回転電機の制御方法。
A control method for a permanent magnet type rotating electrical machine for controlling the magnetic flux density of a permanent magnet provided in the permanent magnet type rotating electrical machine according to claim 1,
Magnetization of the permanent magnet is performed only in a region where the polarity code of the permanent magnet is the same.
A control method for a permanent magnet type rotating electrical machine.
請求項2または3に記載の永久磁石式回転電機が備える永久磁石の磁束密度を制御する永久磁石式回転電機の制御方法であって、
前記永久磁石に対する増磁制御において、
初回時の前記増磁制御では、前記永久磁石に、当該永久磁石の飽和磁束密度を超える磁束密度を当該永久磁石に発生させる磁界を作用させ、
2回目以降の前記増磁制御では、前記永久磁石に、初回時の前記増磁制御における磁界よりも小さい磁界を作用させる、
ことを特徴とする永久磁石式回転電機の制御方法。
A control method for a permanent magnet type rotating electrical machine for controlling the magnetic flux density of a permanent magnet provided in the permanent magnet type rotating electrical machine according to claim 2,
In the magnetization control for the permanent magnet,
In the magnetizing control at the first time, a magnetic field that causes the permanent magnet to generate a magnetic flux density exceeding the saturation magnetic flux density of the permanent magnet is applied to the permanent magnet,
In the second and subsequent magnetizing control, a magnetic field smaller than the magnetic field in the first magnetizing control is applied to the permanent magnet.
A control method for a permanent magnet type rotating electrical machine.
JP2015233184A 2015-07-29 2015-11-30 Permanent magnet type rotating electrical machine and control method of permanent magnet type rotating electrical machine Active JP6610209B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015149797 2015-07-29
JP2015149797 2015-07-29

Publications (2)

Publication Number Publication Date
JP2017034960A true JP2017034960A (en) 2017-02-09
JP6610209B2 JP6610209B2 (en) 2019-11-27

Family

ID=57989104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015233184A Active JP6610209B2 (en) 2015-07-29 2015-11-30 Permanent magnet type rotating electrical machine and control method of permanent magnet type rotating electrical machine

Country Status (1)

Country Link
JP (1) JP6610209B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742880A (en) * 2019-02-20 2019-05-10 哈尔滨工业大学 Built-in V-type-with anti-salient pole nature "-" type hybrid permanent magnet is adjustable flux electric machine
JP2021129438A (en) * 2020-02-14 2021-09-02 マツダ株式会社 Motor control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742880A (en) * 2019-02-20 2019-05-10 哈尔滨工业大学 Built-in V-type-with anti-salient pole nature "-" type hybrid permanent magnet is adjustable flux electric machine
JP2021129438A (en) * 2020-02-14 2021-09-02 マツダ株式会社 Motor control device
JP7363554B2 (en) 2020-02-14 2023-10-18 マツダ株式会社 motor control device

Also Published As

Publication number Publication date
JP6610209B2 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
US8674575B2 (en) Permanent magnet electric motor inducing short circuit current in short circuit coil
JP5085071B2 (en) Permanent magnet type rotating electrical machine rotor
US8624457B2 (en) Permanent magnet electric motor
JP5361261B2 (en) Permanent magnet rotating electric machine
JP5398103B2 (en) Permanent magnet rotating electric machine
JP5787673B2 (en) Permanent magnet type rotating electric machine
JP4697736B2 (en) Magnetization method of permanent magnet
JP5506234B2 (en) Anisotropic magnet, motor, and method for manufacturing anisotropic magnet
JP5355055B2 (en) Permanent magnet rotating electric machine
JP2010004671A (en) Permanent magnet type electric rotating machine
JP5178488B2 (en) Permanent magnet rotating electric machine
JP2019068577A (en) Variable magnetic force motor
JP6610209B2 (en) Permanent magnet type rotating electrical machine and control method of permanent magnet type rotating electrical machine
JP2006115663A (en) Permanent magnet rotor
JP2012029563A (en) Permanent magnet type rotary electric machine
JP5334295B2 (en) Permanent magnet motor and hermetic compressor
Akune et al. Study of high torque density interior permanent magnet synchronous motor with flexible orientation Nd 2 Fe 14 B sintered magnet
JP5544738B2 (en) Permanent magnet rotating electric machine
KR101367222B1 (en) Permanent magnet syschronous motor
JP2015035558A (en) Demagnetization method and demagnetizer
JP2011172323A (en) Permanent magnet type rotary electric machine
JP5390314B2 (en) Permanent magnet rotating electric machine
JP2019140818A (en) motor
JP2014165971A (en) Rotor structure of permanent magnet motor
JP6021829B2 (en) Demagnetizer for permanent magnet

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191014

R151 Written notification of patent or utility model registration

Ref document number: 6610209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151