JP5334295B2 - Permanent magnet motor and hermetic compressor - Google Patents

Permanent magnet motor and hermetic compressor Download PDF

Info

Publication number
JP5334295B2
JP5334295B2 JP2008330632A JP2008330632A JP5334295B2 JP 5334295 B2 JP5334295 B2 JP 5334295B2 JP 2008330632 A JP2008330632 A JP 2008330632A JP 2008330632 A JP2008330632 A JP 2008330632A JP 5334295 B2 JP5334295 B2 JP 5334295B2
Authority
JP
Japan
Prior art keywords
permanent magnet
rotor
permanent
magnetic flux
magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008330632A
Other languages
Japanese (ja)
Other versions
JP2010154676A (en
Inventor
俊彦 二見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2008330632A priority Critical patent/JP5334295B2/en
Publication of JP2010154676A publication Critical patent/JP2010154676A/en
Application granted granted Critical
Publication of JP5334295B2 publication Critical patent/JP5334295B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a current capacity of a drive device by reducing a current required for magnetization. <P>SOLUTION: A permanent magnet motor 21 has two or more kinds of permanent magnets 33, 34, having different characteristics, inside a rotor 24. A current is made to flow in each stator winding 37 by a drive device. One permanent magnet 34 is magnetized and demagnetized by a magnetic field generated by each winding 37 so as to make a magnetic-flux amount variable, thereby operating the permanent magnet motor. The permanent magnets 33, 34 are configured, by using a rare-earth magnet; and the thickness of one permanent magnet 34, making the magnetic-flux amount variable by being magnetized and demagnetized, is set smaller than that of the other permanent magnet 33 so as to reduce the coercive force. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、永久磁石電動機及び密閉型圧縮機に係り、磁束量を可変して運転可能なものに関する。   The present invention relates to a permanent magnet motor and a hermetic compressor, and more particularly to a motor that can be operated with a variable amount of magnetic flux.

密閉型圧縮機に用いられる永久磁石電動機において、磁性材のステータ鉄心にコイルを巻回して電機子を構成する固定子と、磁性材のロータ鉄心の周面に主界磁用の複数の永久磁石を等間隔に配置した回転子を備え、回転子における主界磁と極間に2種類の永久磁石を具備したものが知られている(例えば、特許文献1参照)。例えば主界磁の永久磁石としては希土類(NdFeB)が用いられ、極間の磁石にはアルニコまたはFeCrCoが用いられている。この永久磁石電動機では負荷トルクの小さい高速運転時に電機子d軸電流によって弱めに界磁を行い、アルニコ磁石を主界磁の磁束を減少させる方向に磁化し、電機子コイルと鎖交する磁束を増加させる。   In a permanent magnet motor used for a hermetic compressor, a stator that constitutes an armature by winding a coil around a stator core made of magnetic material, and a plurality of permanent magnets for main field on the peripheral surface of the rotor core made of magnetic material Are arranged at equal intervals, and two types of permanent magnets are provided between the main field and poles of the rotor (see, for example, Patent Document 1). For example, rare earth (NdFeB) is used as the permanent magnet of the main field, and alnico or FeCrCo is used as the magnet between the poles. In this permanent magnet motor, the field is weakened by the armature d-axis current during high-speed operation with a small load torque, the alnico magnet is magnetized in the direction to reduce the magnetic flux of the main field, and the magnetic flux interlinking with the armature coil is generated. increase.

一方、永久磁石電動機において、回転子を軸方向に分割し、分割したブロック毎にそれぞれ特性の異なる1種類の永久磁石を装着する技術が知られている(例えば、特許文献2参照)。この永久磁石電動機は、磁石の保磁力を異ならしめ、固定子巻線の電流によって低保磁力の永久磁石の着磁量を可変し、電機子コイルと鎖交する磁束を可変させるものである。例えば一方の永久磁石を希土類で構成し、他方の永久磁石をアルニコで構成することにより、その特性を異ならしめている。この技術においては、固定子から発生する回転磁束のd軸成分を負方向に増大させると、低保磁力永久磁石で磁石磁束と逆方向の起磁力が増加するので磁石の磁力が低下し、d軸成分を正方向に増大させると低保磁力磁石では磁石磁束と同じ方向の起磁力が増加するので磁石の磁力が増加するものとし、高保磁力永久磁石は固定子磁束より高い保磁力特性を有しているので磁石の磁力は一定に保たれるとしている。   On the other hand, in a permanent magnet motor, a technique is known in which a rotor is divided in the axial direction and one type of permanent magnet having different characteristics is attached to each divided block (for example, see Patent Document 2). In this permanent magnet motor, the coercive force of the magnet is made different, the amount of magnetization of the low coercive permanent magnet is varied by the current of the stator winding, and the magnetic flux linked to the armature coil is varied. For example, one permanent magnet is made of rare earth and the other permanent magnet is made of alnico so that the characteristics are made different. In this technique, when the d-axis component of the rotating magnetic flux generated from the stator is increased in the negative direction, the magnetomotive force in the direction opposite to the magnet magnetic flux is increased by the low coercive force permanent magnet, so that the magnetic force of the magnet is reduced, and d When the axial component is increased in the positive direction, the low coercivity magnet increases the magnetomotive force in the same direction as the magnetic flux of the magnet, so that the magnetic force of the magnet increases, and the high coercivity permanent magnet has higher coercivity characteristics than the stator flux. Therefore, the magnetic force of the magnet is said to be kept constant.

永久磁石の動作は図9に示すような第2象限のB−H特性曲線を用いて説明され、磁気回路中の永久磁石の動作は永久磁石のB−H特性曲線と、磁気回路及び磁石の寸法によって定まるパーミアンス係数Pcによって決まり、パーミアンス線との交点pで動作する。   The operation of the permanent magnet is explained using the BH characteristic curve in the second quadrant as shown in FIG. 9, and the operation of the permanent magnet in the magnetic circuit is the same as the BH characteristic curve of the permanent magnet, the magnetic circuit and the magnet. It is determined by the permeance coefficient Pc determined by the dimensions, and operates at the intersection point p with the permeance line.

このとき、固定子から発生する回転磁束のd軸成分を負方向に増加させると、永久磁石に負方向の磁化力がかかり、パーミアンス線が負(図9中左)方向に平行移動して動作点がp1に移動し、磁束密度はB1に低下する。一方、固定子から発生する回転磁束のd軸成分を正方向に増加させると、永久磁石に正方向の磁化力がかかり、パーミアンス線が正(図9中右)方向に平行移動して動作点がp2に移動し、磁束密度はB2に上昇する。   At this time, if the d-axis component of the rotating magnetic flux generated from the stator is increased in the negative direction, negative magnetizing force is applied to the permanent magnet, and the permeance line moves in the negative (left in FIG. 9) direction to operate. The point moves to p1, and the magnetic flux density decreases to B1. On the other hand, if the d-axis component of the rotating magnetic flux generated from the stator is increased in the positive direction, a positive magnetizing force is applied to the permanent magnet, and the permeance line is translated in the positive (right side in FIG. 9) operating point. Moves to p2, and the magnetic flux density rises to B2.

またこの技術は、基本的に永久磁石のB−H曲線の直線部(リコイル線)における動作を利用したもので、図9に示されるように、動作は可逆的である(可逆的な減磁及び増磁)。
特開平8−9610号公報 特開2005−304204号公報
Further, this technique basically uses the operation in the straight line portion (recoil wire) of the BH curve of the permanent magnet. As shown in FIG. 9, the operation is reversible (reversible demagnetization). And increased magnetization).
JP-A-8-9610 JP-A-2005-304204

しかしながら、上記の技術には以下のような問題がある。すなわち、上記アルニコ磁石を用いる技術において、アルニコ磁石は磁化力が小さいとはいえ、磁化(着磁)のためにはかなり大きな磁化力を必要とし、通常運転のd軸あるいはq軸電流で磁化することは困難である。したがって、磁化のためには大きな電流を流す必要があり、駆動装置の電流容量が大きいという問題がある。またアルニコ磁石は保磁力が小さく、通常運転電流によっても部分的な減磁が発生してしまう。減磁を防止するために永久磁石の厚さを厚くすると、d軸あるいはq軸電流による磁化がさらに困難になる。   However, the above technique has the following problems. That is, in the technique using the alnico magnet, although the alnico magnet has a small magnetizing force, it requires a considerably large magnetizing force for magnetization (magnetization) and is magnetized by a d-axis or q-axis current in normal operation. It is difficult. Therefore, it is necessary to pass a large current for magnetization, and there is a problem that the current capacity of the driving device is large. Alnico magnets have a small coercive force, and partial demagnetization occurs even with normal operating current. If the thickness of the permanent magnet is increased to prevent demagnetization, magnetization by d-axis or q-axis current becomes more difficult.

また、分割したブロック毎にそれぞれ特性の異なる材質の永久磁石を装着した上記技術において、d軸成分の増減に磁束密度を変化させて磁束量を増減する現象は低保磁力永久磁石のみに起こるのではなく、高保磁力永久磁石にも同様に起こるため、低保磁力永久磁石と高保磁力永久磁石とを併用したからといって効果を得られるものではない。また、動作が可逆的であるため、磁化力を取り去ると永久磁石はもとのB−H曲線上を戻るため、磁束密度を大きく変化させることはできない。   Further, in the above technique in which permanent magnets having different characteristics are attached to each divided block, the phenomenon of increasing or decreasing the amount of magnetic flux by changing the magnetic flux density to increase or decrease the d-axis component occurs only in the low coercive force permanent magnet. However, since it occurs in the same way in the high coercivity permanent magnet, it is not possible to obtain an effect simply by using the low coercivity permanent magnet and the high coercivity permanent magnet in combination. Further, since the operation is reversible, the permanent magnet returns to the original BH curve when the magnetizing force is removed, so that the magnetic flux density cannot be changed greatly.

この発明は、上記の事情を考慮したもので、磁化のために必要な電流を小さくし、駆動装置の電流容量を小さくすることを可能とした永久磁石電動機及び密閉型圧縮機を提供することを目的とする。   In view of the above circumstances, the present invention provides a permanent magnet motor and a hermetic compressor that can reduce the current required for magnetization and reduce the current capacity of the driving device. Objective.

本発明の一形態に係る永久磁石電動機は、特性の異なる2種類以上の永久磁石を回転子内に備え、駆動装置によって固定子巻線に電流を流し、上記固定子巻線の作る磁界によって一方の永久磁石を着磁及び減磁させ、磁束量を可変して運転してなる永久磁石電動機であって、上記永久磁石は希土類磁石を用いて構成されるとともに、着磁及び減磁させて磁束量を可変する一方の上記永久磁石は他方の上記永久磁石よりも厚さを小さくし、保磁力を小さくし、上記回転子の回転子鉄心は、永久磁石を収容する永久磁石収容穴の寸法が異なる抜板を有する2種類以上のブロックを上記回転子の軸方向において組み合わせて備えるとともに、上記各ブロックの複数の永久磁石収容穴にそれぞれ1種類の永久磁石を収容してなり、 上記回転子の回転子鉄心における永久磁石の外周側にスリット穴が設けられ、 上記2種類の永久磁石の外周側の位置は回転子の軸方向から見て同位置に配されたことを特徴とするA permanent magnet motor according to an embodiment of the present invention includes two or more types of permanent magnets having different characteristics in a rotor, and a current is passed through the stator winding by a driving device, and a magnetic field generated by the stator winding Is a permanent magnet motor that is operated by magnetizing and demagnetizing the permanent magnet and varying the amount of magnetic flux, and the permanent magnet is composed of rare earth magnets, and is magnetized and demagnetized to generate a magnetic flux. One of the permanent magnets whose amount is variable has a smaller thickness than the other permanent magnet and has a smaller coercive force. The rotor core of the rotor has a size of a permanent magnet housing hole for housing the permanent magnet. Two or more types of blocks having different punch plates are provided in combination in the axial direction of the rotor, and one type of permanent magnet is accommodated in each of the plurality of permanent magnet accommodation holes of each block, Rotor A slit hole is provided on the outer peripheral side of the permanent magnet in the iron core, and the positions on the outer peripheral side of the two types of permanent magnets are arranged at the same position when viewed from the axial direction of the rotor .

この発明によれば、磁化のために必要な電流を小さくし、駆動装置の電流容量を小さくすることが可能となる。   According to the present invention, the current required for magnetization can be reduced, and the current capacity of the drive device can be reduced.

以下、本発明の第1実施形態に係る永久磁石電動機21及び圧縮機について、図1及び図2を参照して説明する。図中矢印X,Y,Zは互いに直交する3方向を示す。ここでは矢印Zは回転子24の軸方向、矢印X,Yは径方向をそれぞれ示している。   Hereinafter, the permanent magnet motor 21 and the compressor according to the first embodiment of the present invention will be described with reference to FIGS. 1 and 2. In the figure, arrows X, Y, and Z indicate three directions orthogonal to each other. Here, the arrow Z indicates the axial direction of the rotor 24, and the arrows X and Y indicate the radial direction.

冷凍サイクル装置1は、圧縮機10と、圧縮機10に接続される凝縮器11と、凝縮器11に接続された膨張装置12と、膨張装置12に接続された蒸発器13と、蒸発器13に接続されるアキュムレータ14と、を備えて構成される。   The refrigeration cycle apparatus 1 includes a compressor 10, a condenser 11 connected to the compressor 10, an expansion device 12 connected to the condenser 11, an evaporator 13 connected to the expansion device 12, and an evaporator 13. And an accumulator 14 connected to.

圧縮機10は、永久磁石電動機21と、永久磁石電動機21により駆動される圧縮機構部22と、を密閉容器23内に収納して構成される密閉型圧縮機10である。永久磁石電動機21は、回転子24と、固定子25とを備えている。回転子24は圧縮機構部22に延びるシャフト26に固定されて固定子25内に回転可能に配置されている。   The compressor 10 is a hermetic compressor 10 configured by housing a permanent magnet motor 21 and a compression mechanism unit 22 driven by the permanent magnet motor 21 in a sealed container 23. The permanent magnet motor 21 includes a rotor 24 and a stator 25. The rotor 24 is fixed to a shaft 26 extending to the compression mechanism portion 22 and is rotatably disposed in the stator 25.

永久磁石電動機21は、特性の異なる2種類以上の永久磁石33、34を回転子24内に備え、駆動装置によって固定子巻線37に電流を流し、巻線の作る磁界によって一方の永久磁石34を着磁・減磁させ、磁束量を可変して運転してなる永久磁石電動機21である。   The permanent magnet motor 21 includes two or more kinds of permanent magnets 33 and 34 having different characteristics in the rotor 24, and a current is passed through the stator winding 37 by the driving device, and one permanent magnet 34 is generated by a magnetic field generated by the winding. Is a permanent magnet motor 21 that is operated by magnetizing and demagnetizing the magnetic flux and varying the amount of magnetic flux.

回転子24は、シャフト26の外周に配される磁極鉄心としての円筒状の回転子鉄心31と、この回転子鉄心31にシャフト26の外周を囲むように4箇所に設けられる複数の永久磁石部32と、を備えて構成されている。   The rotor 24 includes a cylindrical rotor core 31 as a magnetic pole core disposed on the outer periphery of the shaft 26, and a plurality of permanent magnet portions provided at four locations on the rotor core 31 so as to surround the outer periphery of the shaft 26. 32.

すなわち、回転子24の回転子鉄心31の外周側に、例えばシャフト26に沿って、シャフト26を囲むように、永久磁石を収容するための4つの永久磁石収容穴31aが設けられており、この4つの永久磁石収容穴31aにそれぞれ複数の永久磁石33,34から構成される永久磁石部32が配置されている。   That is, on the outer peripheral side of the rotor core 31 of the rotor 24, for example, along the shaft 26, four permanent magnet housing holes 31a for housing the permanent magnet are provided so as to surround the shaft 26. Permanent magnet portions 32 each including a plurality of permanent magnets 33 and 34 are disposed in the four permanent magnet accommodation holes 31a.

図2に示すように、永久磁石部32は、特性の異なる2種類の第1の永久磁石33と第2の永久磁石34とを組み合わせて構成されている。磁束量が固定される第1の永久磁石33は高保磁力永久磁石であり、磁束量が可変される第2の永久磁石34は低保磁力永久磁石である。第1の永久磁石33及び第2の永久磁石34はいずれも希土類磁石を用いて矩形の板状に構成されている。   As shown in FIG. 2, the permanent magnet portion 32 is configured by combining two types of first permanent magnets 33 and second permanent magnets 34 having different characteristics. The first permanent magnet 33 to which the amount of magnetic flux is fixed is a high coercive force permanent magnet, and the second permanent magnet 34 whose amount of magnetic flux is variable is a low coercive force permanent magnet. Both the first permanent magnet 33 and the second permanent magnet 34 are formed in a rectangular plate shape using a rare earth magnet.

永久磁石部32は、中央に第1の永久磁石33を配し、その第1の永久磁石33の両端にそれぞれ第2の永久磁石34を配して構成される。一方の第2の永久磁石34を着磁・減磁させて磁束量を可変する。着磁・減磁させて磁束量を可変する方の第2の永久磁石34は、他方の第1の永久磁石33よりも厚さを薄くし(磁化方向の寸法を小さくし)、着磁・減磁されやすいようにしている。すなわち、本実施形態においては厚さの違いにより着磁・減磁性を異ならしめている。   The permanent magnet portion 32 is configured by arranging a first permanent magnet 33 in the center and arranging second permanent magnets 34 at both ends of the first permanent magnet 33. One second permanent magnet 34 is magnetized and demagnetized to vary the amount of magnetic flux. The second permanent magnet 34, which is magnetized / demagnetized to change the amount of magnetic flux, is thinner than the other first permanent magnet 33 (the size in the magnetization direction is reduced). It is easy to be demagnetized. That is, in this embodiment, the magnetization / demagnetization is made different depending on the thickness.

図3に示す固定子25は、固定子コア36に固定子巻線37が集中巻されて構成されている。   The stator 25 shown in FIG. 3 has a configuration in which a stator winding 37 is concentratedly wound around a stator core 36.

上記のように構成された圧縮機10においては、駆動装置によって固定子巻線37に電流を流し、固定子巻線37の作る磁界によって磁束可変させる一方の永久磁石としての第2の永久磁石34を着磁・減磁させ、磁束量を可変して運転する。   In the compressor 10 configured as described above, a second permanent magnet 34 serving as one permanent magnet that causes a current to flow through the stator winding 37 by the driving device and varies the magnetic flux by the magnetic field generated by the stator winding 37. Is operated by varying the amount of magnetic flux.

図4に、固定子巻線37に永久磁石の磁束を変えるための電流を流したときに永久磁石に加わる磁化力と、永久磁石の厚さの関係について示す。永久磁石に加わる磁化力は、永久磁石の厚さが薄いほど大きくなることがわかる。したがって、厚さが薄いほどより少ない電流で永久磁石の着磁、及び減磁が行える。   FIG. 4 shows the relationship between the magnetizing force applied to the permanent magnet when a current for changing the magnetic flux of the permanent magnet is passed through the stator winding 37 and the thickness of the permanent magnet. It can be seen that the magnetizing force applied to the permanent magnet increases as the thickness of the permanent magnet decreases. Therefore, as the thickness is thinner, the permanent magnet can be magnetized and demagnetized with less current.

図5は本実施形態に係る永久磁石の動作を説明するグラフである。縦軸に磁束密度(T)、横軸に磁化力(A/m)を示す。永久磁石の動作は図5に示すような第2象限のB−H特性曲線を用いて説明される。磁気回路中の永久磁石の動作は永久磁石のB−H特性曲線と、磁気回路及び磁石の寸法によって定まるパーミアンス係数Pcによって決まり、パーミアンス線との交点pで動作する。すなわち、永久磁石はこの動作点pにおける磁束密度B0で磁化される。   FIG. 5 is a graph for explaining the operation of the permanent magnet according to the present embodiment. The vertical axis represents magnetic flux density (T), and the horizontal axis represents magnetizing force (A / m). The operation of the permanent magnet will be described using a BH characteristic curve in the second quadrant as shown in FIG. The operation of the permanent magnet in the magnetic circuit is determined by the BH characteristic curve of the permanent magnet and the permeance coefficient Pc determined by the dimensions of the magnetic circuit and the magnet, and operates at the intersection point p with the permeance line. That is, the permanent magnet is magnetized at the magnetic flux density B0 at this operating point p.

図5に示されるように、パーミアンス係数Pcは、磁気回路及び磁石の磁化方向の寸法によって定まるため、低保磁力永久磁石の厚さ、すなわち磁化方向の寸法を小さくすると、パーミアンス係数Pcは小さくなり、パーミアンス線は通常厚さのPc1からPc2になる。   As shown in FIG. 5, the permeance coefficient Pc is determined by the size of the magnetization direction of the magnetic circuit and the magnet. Therefore, if the thickness of the low coercive force permanent magnet, that is, the size of the magnetization direction is decreased, the permeance coefficient Pc is decreased. The permeance line is normally changed from Pc1 to Pc2.

すなわち、図5からわかるように、パーミアンス線Pc2では、パーミアンス線Pc1に比べてB−H曲線の屈曲点を超えやすい傾斜となっている。このため、少ない磁化力で非可逆減磁が発生することとなり、永久磁石の磁化を非可逆的に変化させやすい。   That is, as can be seen from FIG. 5, the permeance line Pc2 has an inclination that easily exceeds the bending point of the BH curve as compared with the permeance line Pc1. For this reason, irreversible demagnetization occurs with a small magnetization force, and the magnetization of the permanent magnet is easily changed irreversibly.

永久磁石の磁化を非可逆的にさせれば大きな磁束量の変化が得られるので、永久磁石の非可逆減磁及び再着磁を利用することができる。   If the magnetization of the permanent magnet is made irreversible, a large change in the amount of magnetic flux can be obtained, so that irreversible demagnetization and remagnetization of the permanent magnet can be used.

図5に示すように、低保磁力永久磁石である第2の永久磁石34に磁化力を加えると動作点はB−H曲線の屈曲点を越えて移動する。このようにすると、負の磁化力を取り去っても永久磁石は元のB−H曲線上を戻らず、非可逆減磁が発生して、動作点はp’点になり、磁束密度が大きく減少し、B’で磁化される。   As shown in FIG. 5, when a magnetizing force is applied to the second permanent magnet 34, which is a low coercive force permanent magnet, the operating point moves beyond the inflection point of the BH curve. In this way, even if the negative magnetizing force is removed, the permanent magnet does not return to the original BH curve, irreversible demagnetization occurs, the operating point becomes the p 'point, and the magnetic flux density is greatly reduced. And it is magnetized by B ′.

一方、高保磁力永久磁石である第1の永久磁石33では、磁化力を加えても動作点が屈曲点を越えないので非可逆減磁は発生せず元の磁束密度に戻る。   On the other hand, in the first permanent magnet 33, which is a high coercive force permanent magnet, the operating point does not exceed the bending point even when a magnetizing force is applied, so that irreversible demagnetization does not occur and the original magnetic flux density is restored.

このような非可逆減磁を発生するためには短時間の負の磁化力を加える。すなわち電流を流せばよい。この後永久磁石の磁束密度を増大させたいときは短時間の正の磁化力を加えて再着磁を行えばよい。   In order to generate such irreversible demagnetization, a short negative magnetizing force is applied. That is, a current may be passed. Thereafter, when it is desired to increase the magnetic flux density of the permanent magnet, re-magnetization may be performed by applying a short positive magnetizing force.

以上により、永久磁石の着磁・減磁性の違いを利用し、着磁・減磁されやすい永久磁石である第2の永久磁石34のみに非可逆減磁を発生させることで一定の磁量を確保した上で大きな磁束量の変化を得ることが出来る。   As described above, by utilizing the difference between the magnetization and demagnetization of the permanent magnet, by generating irreversible demagnetization only in the second permanent magnet 34 which is a permanent magnet that is easily magnetized and demagnetized, a certain amount of magnetism can be obtained. A large change in the amount of magnetic flux can be obtained after securing.

ここで比較例1として、上述した回転子24を軸方向に分割し、分割したブロック毎にそれぞれ特性の異なる材料の永久磁石を装着した永久磁石電動機について、図9及び図10を参照して説明する。   Here, as Comparative Example 1, a permanent magnet motor in which the above-described rotor 24 is divided in the axial direction and a permanent magnet made of a material having different characteristics is provided for each divided block will be described with reference to FIGS. 9 and 10. To do.

この比較例1の永久磁石の動作は図9に示すような第2象限のB−H特性曲線を用いて説明される。磁気回路中の永久磁石の動作は永久磁石のB−H特性曲線と、磁気回路及び磁石の寸法によって定まるパーミアンス係数Pcによって決まり、パーミアンス線との交点pで動作する。すなわち、永久磁石はこの動作点pにおける磁束密度B0で磁化される。   The operation of the permanent magnet of Comparative Example 1 will be described using a BH characteristic curve in the second quadrant as shown in FIG. The operation of the permanent magnet in the magnetic circuit is determined by the BH characteristic curve of the permanent magnet and the permeance coefficient Pc determined by the dimensions of the magnetic circuit and the magnet, and operates at the intersection point p with the permeance line. That is, the permanent magnet is magnetized at the magnetic flux density B0 at this operating point p.

このとき、固定子25から発生する回転磁束のd軸成分を負方向に増加させると、永久磁石に負方向の磁化力がかかり、パーミアンス線が負(図9中左)方向に平行移動して動作点がp1に移動し、磁束密度はB1に低下する。一方、固定子25から発生する回転磁束のd軸成分を正方向に増加させると、永久磁石に正方向の磁化力がかかり、パーミアンス線が正(図9中右)方向に平行移動して動作点がp2に移動し、磁束密度はB2に上昇する。   At this time, if the d-axis component of the rotating magnetic flux generated from the stator 25 is increased in the negative direction, negative magnetizing force is applied to the permanent magnet, and the permeance line is translated in the negative (left side in FIG. 9) direction. The operating point moves to p1, and the magnetic flux density decreases to B1. On the other hand, when the d-axis component of the rotating magnetic flux generated from the stator 25 is increased in the positive direction, a permanent magnetizing force is applied to the permanent magnet, and the permeance line moves in parallel in the positive (right side in FIG. 9) operation. The point moves to p2, and the magnetic flux density rises to B2.

このように、固定子25から発生する回転磁束のd軸成分の増減によって永久磁石の磁束密度を変化させ、磁束量を増減できる。しかしながらこの現象は低保磁力永久磁石のみに起こるのではなく、高保磁力永久磁石にも同様に起こる。すなわち、永久磁石全般に起こることで、保磁力とは関係がない。   As described above, the magnetic flux density of the permanent magnet can be changed by increasing or decreasing the d-axis component of the rotating magnetic flux generated from the stator 25, so that the amount of magnetic flux can be increased or decreased. However, this phenomenon occurs not only in the low coercivity permanent magnet but also in the high coercivity permanent magnet. That is, it occurs in the permanent magnets in general and has no relation to the coercive force.

また、比較例1の永久磁石の動作点はB−H曲線上を移動するが、B−H曲線の傾きはリコイル比透磁率μrecで表される。希土類磁石では1に近く、真空中の透磁率4π×10−7にほぼ等しい。このため、通常の構成であれば、磁束密度を大きく変えるためにはかなり大きな磁化力を加えなければならず、このためのd軸成分の磁束を発生するためには大きな電流が必要となる。 Further, the operating point of the permanent magnet of Comparative Example 1 moves on the BH curve, and the slope of the BH curve is expressed by the recoil relative permeability μrec. In rare earth magnets, it is close to 1 and is almost equal to the permeability 4π × 10 −7 in vacuum. For this reason, in a normal configuration, a considerably large magnetizing force must be applied to greatly change the magnetic flux density, and a large current is required to generate a d-axis component magnetic flux.

なお、上記の比較例1の永久磁石電動機21では、低透磁率・高保磁力と低保磁力・高透磁率の2つの磁石を組み合わせているが、高透磁率磁石ではB−H曲線の傾きが大きく、磁化力による動作点の磁束密度の変化が大きく、より少ない電流で磁束量を可変できることになる。しかし、この作用は保磁力とは無関係であり、高保磁力磁石と低保磁力磁石とを組み合わせることには意味がない。   In the permanent magnet motor 21 of Comparative Example 1 described above, two magnets of low magnetic permeability / high coercive force and low coercive force / high magnetic permeability are combined. However, in the high magnetic permeability magnet, the slope of the BH curve is increased. The change in the magnetic flux density at the operating point due to the magnetizing force is large, and the amount of magnetic flux can be varied with a smaller current. However, this action is independent of the coercive force, and there is no point in combining a high coercivity magnet and a low coercivity magnet.

この比較例1の永久磁石電動機21は、基本的に永久磁石のB−H曲線の直線部(リコイル線)における動作を利用したもので、動作は可逆的である(可逆的な減磁及び増磁)。また、動作が可逆的であるため、磁化力を取り去ると永久磁石は元のB−H曲線上を戻るため、磁束密度を大きく変化させることはできない。また、屈曲点を越えるためには短時間で着磁させることが必要となるが、希土類磁石において、短時間とはいえ着磁には大きな磁化力すなわち電流が必要で、駆動装置の電流容量を増加させることが必要となる。   The permanent magnet motor 21 of the comparative example 1 basically uses the operation in the straight line portion (recoil wire) of the BH curve of the permanent magnet, and the operation is reversible (reversible demagnetization and increase). Magnetism). Also, since the operation is reversible, the permanent magnet returns on the original BH curve when the magnetizing force is removed, so that the magnetic flux density cannot be changed greatly. Moreover, in order to exceed the bending point, it is necessary to magnetize in a short time. However, in a rare earth magnet, magnetization requires a large magnetizing force, that is, a current, although it is a short time. It is necessary to increase it.

例えば、通常の設計において、固定子巻線37による着磁には通常運転電流の数十倍が必要であるが、駆動装置の素子には数ms程度の時間であっても素子の定格ないしは定格の2倍程度の電流までしか流せない。したがって、通常運転電流の数十倍の電流を流すためには素子を定格電流の大きなものにする必要があり、大幅なコストアップとなる。   For example, in a normal design, magnetizing by the stator winding 37 requires several tens of times the normal operating current, but the element of the drive device is rated or rated even for a few ms. Can only flow up to twice the current. Therefore, in order to pass a current several tens of times the normal operating current, it is necessary to make the element have a large rated current, which greatly increases the cost.

これに対して、本実施形態の永久磁石電動機21は、図5に示すように、永久磁石の磁化を非可逆的に変化させて大きな磁束量の変化が得られる。すなわち、一方の永久磁石の厚さを薄く構成することによりパーミアンス線Pcの傾きをずらすことで、非可逆的とする屈曲点を越えやすくすることが出来る。このため、永久磁石の非可逆減磁及び再着磁を利用することができる。   On the other hand, as shown in FIG. 5, the permanent magnet motor 21 of the present embodiment can change the magnetization of the permanent magnet irreversibly to obtain a large change in the amount of magnetic flux. That is, by making the thickness of one permanent magnet thin to shift the inclination of the permeance line Pc, it is possible to easily exceed the irreversible bending point. For this reason, the irreversible demagnetization and remagnetization of a permanent magnet can be utilized.

本実施形態に係る永久磁石電動機21及び圧縮機10によれば、以下のような効果が得られる。すなわち、磁束変化する第2の永久磁石34の厚さを磁束固定する第1の永久磁石33の厚さよりも薄くすることにより、パーミアンス線の傾きを図5におけるPc2のように変化させることができるので、低保磁力永久磁石である第2の永久磁石34の着磁及び減磁がしやすく、屈曲点を越えやすくなる。このため、少ない磁化力で非可逆減磁を発生させることが出来るので、駆動装置(インバータ)の電流容量を大きくすることなく磁束量を可変することが可能となる。   According to the permanent magnet motor 21 and the compressor 10 according to the present embodiment, the following effects can be obtained. That is, the inclination of the permeance line can be changed as shown by Pc2 in FIG. 5 by making the thickness of the second permanent magnet 34 that changes the magnetic flux thinner than the thickness of the first permanent magnet 33 that fixes the magnetic flux. Therefore, the second permanent magnet 34 which is a low coercive force permanent magnet can be easily magnetized and demagnetized, and the bending point can be easily exceeded. For this reason, since irreversible demagnetization can be generated with a small magnetization force, the amount of magnetic flux can be varied without increasing the current capacity of the drive device (inverter).

また、第1及び第2のいずれの永久磁石33,34にも希土類磁石を用いるため、通常運転のd軸あるいはq軸電流で磁化することが可能である。またアルニコ磁石と比べて保磁力が大きく、通常運転電流によっても部分的な減磁が発生するのを防止できる。なお、運転電流を永久磁石電動機の逆起電力と同相の成分と電気角で90度位相の進んだ成分に分けて考えたときに、同相成分をq軸成分、90度位相の進んだ成分をd軸成分と呼ぶ。   Further, since rare earth magnets are used for both the first and second permanent magnets 33 and 34, it is possible to magnetize with a d-axis or q-axis current in normal operation. In addition, the coercive force is larger than that of the alnico magnet, and partial demagnetization can be prevented from occurring even under normal operating current. When the operating current is divided into a component in phase with the back electromotive force of the permanent magnet motor and a component advanced in phase by 90 degrees in electrical angle, the in-phase component is defined as q-axis component and the component advanced in phase by 90 degrees. Called the d-axis component.

[第2実施形態]
以下本発明の第2実施形態にかかる永久磁石電動機21について図6を参照して説明する。図6Aに本実施形態の回転子40の斜視図を示し、図6Bに第1ブロック41の断面、図6Cに第2ブロック42の断面をそれぞれ概念的に示す。なお、回転子40の構成以外については上記第1実施形態にかかる永久磁石電動機21及び密閉型圧縮機10と同様であるため、共通する説明を省略する。
[Second Embodiment]
A permanent magnet motor 21 according to a second embodiment of the present invention will be described below with reference to FIG. FIG. 6A shows a perspective view of the rotor 40 of the present embodiment, FIG. 6B conceptually shows a cross section of the first block 41, and FIG. 6C conceptually shows a cross section of the second block 42. In addition, since it is the same as that of the permanent magnet electric motor 21 concerning the said 1st Embodiment and the hermetic compressor 10 except the structure of the rotor 40, common description is abbreviate | omitted.

図6に示すように、回転子40は、シャフト26の外周に配される円筒状の回転子鉄心31と、この回転子鉄心31にシャフト26の外周を囲むように設けられる永久磁石33,34と、を備えて構成されている。回転子鉄心31は第1及び第2のブロック41,42の組み合わせからなる。第1のブロック41及び第2のブロック42は、それぞれ永久磁石収容穴41a,42aが形成された抜板で構成され、この永久磁石収容穴41a,42aの寸法は異なる。すなわち、回転子鉄心31は寸法が異なる永久磁石収容穴41a,42aを有する2種類以上の抜板で構成されている。   As shown in FIG. 6, the rotor 40 includes a cylindrical rotor core 31 disposed on the outer periphery of the shaft 26, and permanent magnets 33 and 34 provided on the rotor core 31 so as to surround the outer periphery of the shaft 26. And is configured. The rotor core 31 includes a combination of first and second blocks 41 and 42. The 1st block 41 and the 2nd block 42 are comprised by the punching board in which the permanent magnet accommodation holes 41a and 42a were formed, respectively, and the dimension of this permanent magnet accommodation holes 41a and 42a differs. That is, the rotor core 31 is composed of two or more types of punched plates having permanent magnet housing holes 41a and 42a having different dimensions.

回転子40の回転子鉄心31の2つのブロック41,42において、外周側に、例えばシャフト26に沿って、シャフト26を囲むように、矩形状の4つの永久磁石収容穴41a,42aがそれぞれ設けられており、この4つの永久磁石収容穴41a,42aにそれぞれ1種類の永久磁石33,34が配置されている。   In the two blocks 41 and 42 of the rotor core 31 of the rotor 40, four rectangular permanent magnet housing holes 41a and 42a are provided on the outer peripheral side so as to surround the shaft 26 along the shaft 26, for example. One kind of permanent magnets 33 and 34 are disposed in the four permanent magnet receiving holes 41a and 42a, respectively.

軸方向に分割された複数のブロック41,42においては異なる寸法を有する永久磁石33,34がそれぞれ配置されている。例えばここでは軸方向一方側(図中上方側)のブロック41には薄く構成された第2の永久磁石34が配置され、軸方向他方側(図中下方側)のブロック42には第2の永久磁石34よりも厚く構成された第1の永久磁石33が配置されている。すなわち、低保磁力永久磁石である第2の永久磁石34が図中上部に、高保磁力永久磁石である第1の永久磁石33が図中下部に配置され、2種類の永久磁石が軸方向に並列して配置されている。回転子40は、特性の異なる2種類の第1の永久磁石33と第2の永久磁石34とを上下にそれぞれ備えて構成されている。なお、第1の永久磁石33及び第2の永久磁石34はいずれも希土類磁石を用いて構成されている。   In the plurality of blocks 41 and 42 divided in the axial direction, permanent magnets 33 and 34 having different dimensions are respectively arranged. For example, here, a thin second permanent magnet 34 is disposed in the block 41 on the one axial side (upper side in the drawing), and the second block 42 on the other axial side (lower side in the drawing) is provided with the second permanent magnet 34. A first permanent magnet 33 that is thicker than the permanent magnet 34 is disposed. That is, the second permanent magnet 34 which is a low coercive force permanent magnet is arranged in the upper part in the drawing, and the first permanent magnet 33 which is a high coercive force permanent magnet is arranged in the lower part in the drawing, and two kinds of permanent magnets are arranged in the axial direction. They are arranged in parallel. The rotor 40 includes two types of first permanent magnets 33 and second permanent magnets 34 having different characteristics. The first permanent magnet 33 and the second permanent magnet 34 are both configured using rare earth magnets.

回転子鉄心は、一般的にかしめ突起により打ち抜きと同時に一体に積層されるが、鉄心の順送型において寸法が異なる2つの永久磁石収容穴打ち抜きステーションを設け、どちらかを選択的に打ち抜くことで図6に示す回転鉄心31が得られる。   The rotor core is generally laminated at the same time as punching by caulking projections, but in the progressive feeding type of the core, two permanent magnet accommodation hole punching stations with different dimensions are provided, and either one is selectively punched A rotating iron core 31 shown in FIG. 6 is obtained.

本実施形態にかかる永久磁石電動機21及び密閉型圧縮機10においても上記第1実施形態と同様の効果が得られる。すなわち、磁束を可変する方の永久磁石34を薄く構成することにより、非可逆変化を発生させやすく、永久磁石の非可逆減磁及び再着磁を利用することができるため、磁化のために必要な電流を小さくし、駆動装置の電流容量を小さくすることが可能となる。   In the permanent magnet motor 21 and the hermetic compressor 10 according to the present embodiment, the same effects as in the first embodiment can be obtained. In other words, it is necessary for magnetization because the permanent magnet 34 that changes the magnetic flux is made thin so that irreversible changes can easily occur and irreversible demagnetization and remagnetization of the permanent magnet can be used. It is possible to reduce the current and the current capacity of the driving device.

さらに、各ブロック41,42の図中矢印zで示す軸方向長さ(積層方向厚さ)を変更することにより容易に磁束量を可変する磁石の割合を選択できる。   Furthermore, by changing the axial length (stacking direction thickness) indicated by the arrow z in the drawing of each block 41, 42, the ratio of the magnets that can change the amount of magnetic flux can be easily selected.

[第3実施形態]
以下本発明の第3実施形態にかかる永久磁石電動機21について図7を参照して説明する。図7Aには、第1ブロック41の断面図を、図7Bには第2ブロック42の断面図をそれぞれ概念的に示す。なお、回転子鉄心31の構成以外については上記第2実施形態にかかる永久磁石電動機21及び密閉型圧縮機10と同様であるため、共通する説明を省略する。
[Third Embodiment]
A permanent magnet motor 21 according to a third embodiment of the present invention will be described below with reference to FIG. 7A conceptually shows a cross-sectional view of the first block 41, and FIG. 7B conceptually shows a cross-sectional view of the second block 42. In addition, since it is the same as that of the permanent magnet electric motor 21 concerning the said 2nd Embodiment and the hermetic compressor 10 except the structure of the rotor core 31, common description is abbreviate | omitted.

本実施形態における回転子40は、第2実施形態と同様に、シャフト26の外周に配される円筒状の回転子鉄心31と、この回転子鉄心31にシャフト26の外周を囲むように4箇所に設けられる複数の永久磁石33,34と、を備えて構成されている。回転子鉄心31は第1ブロック41及び第2ブロック42の組み合わせからなり、それぞれのブロック41,42に形成された永久磁石収容穴41a,42aの寸法が異なる。   As in the second embodiment, the rotor 40 in the present embodiment has four cylindrical rotor cores 31 disposed on the outer periphery of the shaft 26 and four locations so that the rotor core 31 surrounds the outer periphery of the shaft 26. And a plurality of permanent magnets 33 and 34 provided in the. The rotor core 31 is a combination of a first block 41 and a second block 42, and the dimensions of the permanent magnet accommodation holes 41a, 42a formed in the respective blocks 41, 42 are different.

本実子形態において、図7に示すように、回転子40の回転子鉄心31における永久磁石33,34の外周側に複数のスリット穴43が形成されている。スリット穴43は電機子反作用磁束の低減や回転子外周の磁束分布の制御等の目的で設けられる。   In this actual child form, as shown in FIG. 7, a plurality of slit holes 43 are formed on the outer peripheral side of the permanent magnets 33 and 34 in the rotor core 31 of the rotor 40. The slit hole 43 is provided for the purpose of reducing armature reaction magnetic flux or controlling the magnetic flux distribution around the rotor.

この回転子40は、軸方向に並列する2つのブロック41,42において、永久磁石33,34の位置は、スリット穴43が形成されている外周側においては揃って配置され、内周側における位置が異なっている。すなわち、永久磁石33,34の厚さの違いは、スリット穴43側(外周側)ではなくて、シャフト26側(内径側)の鉄心の形状及び寸法設定を変えることにより異なるように構成されている。すなわち回転子40の軸方向(Z方向)から見て、永久磁石33,34の外周側の位置は同一であり、スリット穴43が形成された外周側の部分において2つのブロック41,42は同じ形状に形成されている。   In the two blocks 41 and 42 arranged in parallel in the axial direction, the rotor 40 is arranged so that the positions of the permanent magnets 33 and 34 are aligned on the outer peripheral side where the slit hole 43 is formed, and the position on the inner peripheral side. Is different. That is, the difference in thickness between the permanent magnets 33 and 34 is configured to be different by changing the shape and size setting of the iron core on the shaft 26 side (inner diameter side), not on the slit hole 43 side (outer periphery side). Yes. That is, when viewed from the axial direction (Z direction) of the rotor 40, the positions on the outer peripheral side of the permanent magnets 33, 34 are the same, and the two blocks 41, 42 are the same in the outer peripheral part where the slit holes 43 are formed. It is formed into a shape.

本実施形態にかかる永久磁石電動機21及び密閉型圧縮機10においても上記第2実施形態と同様の効果が得られる。すなわち、磁束を可変する方の永久磁石を薄く構成することにより、非可逆変化を発生させやすく、永久磁石の非可逆減磁及び再着磁を利用することができるため、磁化のために必要な電流を小さくし、駆動装置の電流容量を小さくすることが可能となる。さらに、スリット穴43の形状は1つでよく、スリット穴43の形状や配置をブロック41,42毎に変更する必要がなく、余分な型や打ち抜き工程が不要となる。また、回転子鉄心31の抜き打ち型の形状が複雑になるのを防止することができる。   In the permanent magnet motor 21 and the hermetic compressor 10 according to the present embodiment, the same effect as in the second embodiment can be obtained. That is, by making the permanent magnet whose magnetic flux is variable thin, it is easy to generate irreversible changes, and the irreversible demagnetization and remagnetization of the permanent magnet can be used. It is possible to reduce the current and the current capacity of the driving device. Furthermore, the shape of the slit hole 43 may be only one, and it is not necessary to change the shape and arrangement of the slit hole 43 for each of the blocks 41 and 42, and an extra die or punching process is unnecessary. Further, it is possible to prevent the shape of the punching die of the rotor core 31 from becoming complicated.

[第4実施形態]
以下本発明の第4実施形態にかかる永久磁石電動機21について図8を参照して説明する。なお、永久磁石を構成する材料以外については上記第1乃至第3実施形態にかかる永久磁石電動機21及び密閉型圧縮機10と同様であるため、共通する説明を省略する。
[Fourth Embodiment]
A permanent magnet motor 21 according to a fourth embodiment of the present invention will be described below with reference to FIG. In addition, since it is the same as that of the permanent-magnet motor 21 and the hermetic compressor 10 concerning the said 1st thru | or 3rd Embodiment except the material which comprises a permanent magnet, common description is abbreviate | omitted.

本実施形態において、着磁・減磁させて磁束量を可変する第2の永久磁石34である低保磁力永久磁石は、希土類の中でも着磁特性が良好である1−5系サマリウム・コバルト(SmCo)磁石で構成されている。 In this embodiment, the low coercive force permanent magnet 34, which is the second permanent magnet 34 that is magnetized and demagnetized to vary the amount of magnetic flux, is a 1-5 samarium-cobalt (which has good magnetization characteristics among rare earths). SmCo 5 ) magnet.

図8に示すように、一般的に、希土類磁石は着磁特性が悪い。例えばネオジウム・鉄・ボロン磁石は保磁力や残留磁束密度の違いによる着磁特性の変化が少なく、一般的に1〜1.5(MA/m)もの磁化力を必要とする。一方、2−17系サマリウム・コバルト(Sm[Co,Cu,Fe,Zr]17)磁石は保磁力によって着磁特性が大きく変化するが0.8〜1.2(MA/m)程度の磁化力が必要である。この場合には保磁力を下げれば着磁特性は改善されるが保持力を下げすぎると通常運転時に非可逆減磁が発生する場合がある。 As shown in FIG. 8, generally, rare earth magnets have poor magnetization characteristics. For example, neodymium / iron / boron magnets have little change in magnetization characteristics due to differences in coercive force and residual magnetic flux density, and generally require a magnetizing force of 1 to 1.5 (MA / m). On the other hand, the magnetization characteristics of the 2-17 samarium-cobalt (Sm 2 [Co, Cu, Fe, Zr] 17 ) magnet vary greatly depending on the coercive force, but it is about 0.8 to 1.2 (MA / m). Magnetizing force is required. In this case, if the coercive force is lowered, the magnetization characteristics are improved, but if the coercive force is lowered too much, irreversible demagnetization may occur during normal operation.

これに対して本実施形態で用いる1−5系サマリウム・コバルト(SmCo)磁石は保磁力が比較的高く非可逆減磁が起こりにくいが、厚さを薄くすることでパーミアンス係数Pcが小さくなるので、通常の駆動装置で出力できる電流で容易に非可逆減磁が行える。 In contrast, the 1-5 samarium-cobalt (SmCo 5 ) magnet used in this embodiment has a relatively high coercive force and is unlikely to cause irreversible demagnetization, but the permeance coefficient Pc is reduced by reducing the thickness. Therefore, irreversible demagnetization can be easily performed with a current that can be output by a normal driving device.

本実施形態にかかる永久磁石電動機21及び密閉型圧縮機10においても上記第1実施形態と同様の効果が得られる。すなわち、磁束を可変する方の第2の永久磁石34を薄く構成することにより、非可逆変化を発生させやすく、永久磁石の非可逆減磁及び再着磁を利用することができるため、磁化のために必要な電流を小さくし、駆動装置の電流容量を小さくすることが可能となる。さらに、着磁性が良好な材料を用いたことにより、より少ない電流で着磁でき、駆動装置の電流容量の増大を防止できる。したがって、通常の駆動装置が出力できる電流で無理なく非可逆減磁、着磁が行える。   In the permanent magnet motor 21 and the hermetic compressor 10 according to the present embodiment, the same effects as in the first embodiment can be obtained. That is, by making the second permanent magnet 34 that changes the magnetic flux thin, it is easy to generate irreversible changes, and irreversible demagnetization and remagnetization of the permanent magnet can be used. Therefore, it is possible to reduce the current required for this and to reduce the current capacity of the driving device. Furthermore, by using a material having good magnetization, it is possible to magnetize with a smaller current, and to prevent an increase in the current capacity of the driving device. Therefore, irreversible demagnetization and magnetization can be performed with a current that can be output by a normal driving device.

この発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。例えば、図1において、圧縮室を2つ備える2シリンダ式の圧縮機10を例示したが、これに限られるものではない。回転子24、40は、一例として4極構造について示したが、これに限られるものではない。また、永久磁石の形状は矩形の板状としたがこれに限られるものではなく、例えば断面視円弧状に構成されていてもよい。固定子25は、集中巻きである場合を示したが、これに限られるものではなく、例えば分布巻きとしてもよい。さらに、永久磁石の種類が2種類である場合について例示したが、3種類以上用いてもよい。   The present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. For example, in FIG. 1, the two-cylinder compressor 10 having two compression chambers is illustrated, but the present invention is not limited to this. The rotors 24 and 40 are shown as a four-pole structure as an example, but are not limited thereto. Moreover, although the shape of the permanent magnet is a rectangular plate shape, the shape is not limited to this, and may be configured, for example, in a circular arc shape in a sectional view. Although the case where the stator 25 is concentrated winding is shown, it is not limited to this, and may be distributed winding, for example. Furthermore, although the case where there are two types of permanent magnets is illustrated, three or more types may be used.

さらに、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。
以下に本発明の態様を記載する。
(1)
特性の異なる2種類以上の永久磁石を回転子内に備え、駆動装置によって固定子巻線に電流を流し、上記固定子巻線の作る磁界によって一方の永久磁石を着磁及び減磁させ、磁束量を可変して運転してなる永久磁石電動機であって、
上記永久磁石は希土類磁石を用いて構成されるとともに、着磁及び減磁させて磁束量を可変する一方の上記永久磁石は他方の上記永久磁石よりも厚さを小さくし、保磁力を小さくしたことを特徴とする永久磁石電動機。
(2)
上記回転子の回転子鉄心は、永久磁石を収容する永久磁石収容穴の寸法が異なる抜板を有する2種類以上のブロックを上記回転子の軸方向において組み合わせて備えるとともに、上記各ブロックの複数の永久磁石収容穴にそれぞれ1種類の永久磁石を収容してなることを特徴とする(1)記載の永久磁石電動機。
(3)
上記回転子の回転子鉄心における永久磁石の外周側にスリット穴が設けられ、
上記2種類の永久磁石の外周側の位置は回転子の軸方向から見て同位置に配されたことを特徴とする(2)記載の永久磁石電動機。
(4)
着磁・減磁させて磁束量を可変する永久磁石として、1−5系サマリウム・コバルト(SmCo5)磁石を使用したことを特徴とする(1)乃至(3)のいずれか記載の永久磁石電動機。
(5)
(1)乃至(4)の何れかに記載の永久磁石電動機と、この永久磁石電動機により駆動される圧縮機構部とを密閉容器内に収納した密閉型圧縮機。
Furthermore, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
Hereinafter, embodiments of the present invention will be described.
(1)
Two or more types of permanent magnets with different characteristics are provided in the rotor, current is passed through the stator winding by the driving device, and one of the permanent magnets is magnetized and demagnetized by the magnetic field created by the stator winding. A permanent magnet motor that is operated by varying the amount,
The permanent magnet is composed of rare earth magnets, and one of the permanent magnets, which is magnetized and demagnetized to change the amount of magnetic flux, has a smaller thickness and a smaller coercive force than the other permanent magnet. A permanent magnet motor characterized by that.
(2)
The rotor core of the rotor includes a combination of two or more types of blocks having punched plates having different dimensions of the permanent magnet housing holes for housing the permanent magnets in the axial direction of the rotor, and a plurality of blocks of the blocks. The permanent magnet electric motor according to (1), wherein one type of permanent magnet is accommodated in each permanent magnet accommodation hole.
(3)
A slit hole is provided on the outer peripheral side of the permanent magnet in the rotor core of the rotor,
(2) The permanent magnet motor according to (2), wherein the positions of the two types of permanent magnets on the outer peripheral side are arranged at the same position when viewed from the axial direction of the rotor.
(4)
The permanent magnet motor according to any one of (1) to (3), wherein a 1-5 samarium-cobalt (SmCo5) magnet is used as a permanent magnet that is magnetized and demagnetized to change the amount of magnetic flux. .
(5)
A hermetic compressor in which the permanent magnet motor according to any one of (1) to (4) and a compression mechanism portion driven by the permanent magnet motor are housed in a hermetic container.

本発明の第1実施形態に係る冷凍サイクル装置を示す説明図。Explanatory drawing which shows the refrigerating-cycle apparatus which concerns on 1st Embodiment of this invention. 同実施形態に係る回転子の断面を概念的に示す説明図。Explanatory drawing which shows notionally the cross section of the rotor which concerns on the same embodiment. 同実施形態に係る固定子の断面を概念的に示す説明図。Explanatory drawing which shows notionally the cross section of the stator which concerns on the same embodiment. 同実施形態に係る永久磁石の厚さと磁化力の関係を示すグラフ。The graph which shows the relationship between the thickness of the permanent magnet which concerns on the same embodiment, and magnetizing force. 同実施形態に係る永久磁石の動作と磁束密度と磁化力の関係を示すグラフ。The graph which shows the operation | movement of the permanent magnet which concerns on the same embodiment, and the relationship of magnetic flux density and magnetizing force. 本発明の第2実施形態に係る回転子を示す斜視図。The perspective view which shows the rotor which concerns on 2nd Embodiment of this invention. 同実施形態に係る回転子の第1ブロックにおける断面を概念的に示す説明図。Explanatory drawing which shows notionally the cross section in the 1st block of the rotor which concerns on the same embodiment. 同実施形態に係る回転子の第2ブロックにおける断面を概念的に示す説明図。Explanatory drawing which shows notionally the cross section in the 2nd block of the rotor which concerns on the same embodiment. 本発明の第3実施形態に係る回転子の第1ブロックにおける断面を概念的に示す説明図。Explanatory drawing which shows notionally the cross section in the 1st block of the rotor which concerns on 3rd Embodiment of this invention. 同実施形態に係る回転子の第2ブロックにおける断面を概念的に示す説明図。Explanatory drawing which shows notionally the cross section in the 2nd block of the rotor which concerns on the same embodiment. 本発明の第3実施形態に係る永久磁石の着磁率と磁化力の関係を示すグラフ。The graph which shows the relationship between the magnetization rate and magnetizing force of the permanent magnet which concerns on 3rd Embodiment of this invention. 永久磁石の一例の動作と磁束密度と磁化力の関係を示すグラフ。The graph which shows the operation | movement of an example of a permanent magnet, and the relationship between magnetic flux density and magnetizing force. 永久磁石の一例の動作と磁束密度と磁化力の関係を示すグラフ。The graph which shows the operation | movement of an example of a permanent magnet, and the relationship between magnetic flux density and magnetizing force.

符号の説明Explanation of symbols

1…冷凍サイクル装置、10…密閉型圧縮機、11…凝縮器、12…膨張装置、
13…蒸発器、4…アキュムレータ、21…永久磁石電動機、22…圧縮機構部、
23…密閉容器、24.40…回転子、25…固定子、26…シャフト、
31…回転子鉄心、31a…永久磁石収容穴、32…永久磁石部、
33…第1の永久磁石、34…第2の永久磁石、36…固定子コア、37…固定子巻線、
40…回転子、41…第1のブロック、41a.42a…永久磁石収容穴、
42…第2のブロック、43…スリット穴。
DESCRIPTION OF SYMBOLS 1 ... Refrigeration cycle apparatus, 10 ... Hermetic compressor, 11 ... Condenser, 12 ... Expansion apparatus,
13 ... Evaporator, 4 ... Accumulator, 21 ... Permanent magnet motor, 22 ... Compression mechanism,
23 ... Airtight container, 24.40 ... Rotor, 25 ... Stator, 26 ... Shaft,
31 ... Rotor core, 31a ... Permanent magnet accommodation hole, 32 ... Permanent magnet part,
33 ... 1st permanent magnet, 34 ... 2nd permanent magnet, 36 ... Stator core, 37 ... Stator winding,
40 ... rotor, 41 ... first block, 41a. 42a ... Permanent magnet receiving hole,
42 ... second block, 43 ... slit hole.

Claims (3)

特性の異なる2種類以上の永久磁石を回転子内に備え、駆動装置によって固定子巻線に電流を流し、上記固定子巻線の作る磁界によって一方の永久磁石を着磁及び減磁させ、磁束量を可変して運転してなる永久磁石電動機であって、
上記永久磁石は希土類磁石を用いて構成されるとともに、着磁及び減磁させて磁束量を可変する一方の上記永久磁石は他方の上記永久磁石よりも厚さを小さくし、保磁力を小さくし、
上記回転子の回転子鉄心は、永久磁石を収容する永久磁石収容穴の寸法が異なる抜板を有する2種類以上のブロックを上記回転子の軸方向において組み合わせて備えるとともに、上記各ブロックの複数の永久磁石収容穴にそれぞれ1種類の永久磁石を収容してなり、 上記回転子の回転子鉄心における永久磁石の外周側にスリット穴が設けられ、
上記2種類の永久磁石の外周側の位置は回転子の軸方向から見て同位置に配されたことを特徴とする永久磁石電動機。
Two or more types of permanent magnets with different characteristics are provided in the rotor, current is passed through the stator winding by the driving device, and one of the permanent magnets is magnetized and demagnetized by the magnetic field created by the stator winding. A permanent magnet motor that is operated by varying the amount,
With the above permanent magnet is constituted by using a rare earth magnet, one of the permanent magnet by magnetizing and demagnetized to vary the amount of magnetic flux to reduce the thickness than the other of the permanent magnets, reducing the coercive force ,
The rotor core of the rotor includes a combination of two or more types of blocks having punched plates having different dimensions of the permanent magnet housing holes for housing the permanent magnets in the axial direction of the rotor, and a plurality of blocks of the blocks. Each type of permanent magnet is accommodated in the permanent magnet accommodation hole, and a slit hole is provided on the outer peripheral side of the permanent magnet in the rotor core of the rotor,
A permanent magnet electric motor characterized in that the outer peripheral side positions of the two types of permanent magnets are arranged at the same position when viewed from the axial direction of the rotor.
着磁・減磁させて磁束量を可変する永久磁石として、1−5系サマリウム・コバルト(SmCo5)磁石を使用したことを特徴とする請求項記載の永久磁石
電動機。
As a permanent magnet for varying the magnetic flux amount by magnetizing-demagnetized, 1-5 based samarium-cobalt (SmCo5) permanent magnet motor according to claim 1, characterized by using a magnet.
請求項1または2に記載の永久磁石電動機と、この永久磁石電動機により駆動される圧縮機構部とを密閉容器内に収納した密閉型圧縮機。 A hermetic compressor in which the permanent magnet motor according to claim 1 or 2 and a compression mechanism portion driven by the permanent magnet motor are housed in a hermetic container.
JP2008330632A 2008-12-25 2008-12-25 Permanent magnet motor and hermetic compressor Expired - Fee Related JP5334295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008330632A JP5334295B2 (en) 2008-12-25 2008-12-25 Permanent magnet motor and hermetic compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008330632A JP5334295B2 (en) 2008-12-25 2008-12-25 Permanent magnet motor and hermetic compressor

Publications (2)

Publication Number Publication Date
JP2010154676A JP2010154676A (en) 2010-07-08
JP5334295B2 true JP5334295B2 (en) 2013-11-06

Family

ID=42573101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008330632A Expired - Fee Related JP5334295B2 (en) 2008-12-25 2008-12-25 Permanent magnet motor and hermetic compressor

Country Status (1)

Country Link
JP (1) JP5334295B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9893577B2 (en) 2014-06-20 2018-02-13 Nidec Corporation Motor including permanent magnet rotor with flux barrier

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015156759A (en) * 2014-02-20 2015-08-27 アスモ株式会社 Rotor, and manufacturing method for rotor
JP2018085778A (en) * 2015-03-26 2018-05-31 東芝キヤリア株式会社 Hermetic type rotary compressor and refrigeration cycle device
JP2017229192A (en) * 2016-06-24 2017-12-28 三菱電機株式会社 Rotary electric machine and manufacturing method for rotary electric machine
EP3623628A1 (en) * 2018-09-11 2020-03-18 Lg Electronics Inc. Drive motor and compressor having the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810981B2 (en) * 1985-10-02 1996-01-31 株式会社日立製作所 Permanent magnet type DC rotating electric machine
JP4854867B2 (en) * 2001-05-10 2012-01-18 三菱電機株式会社 Electric motor
CN1287503C (en) * 2002-03-20 2006-11-29 大金工业株式会社 Permanent magnet type motor and compressor using it
JP2005304204A (en) * 2004-04-13 2005-10-27 Mitsubishi Electric Corp Permanent magnet synchronous motor and drive apparatus
JP5398103B2 (en) * 2005-03-01 2014-01-29 株式会社東芝 Permanent magnet rotating electric machine
JP5259927B2 (en) * 2006-03-31 2013-08-07 日立オートモティブシステムズ株式会社 Permanent magnet rotating electric machine
EP2750264B1 (en) * 2007-02-21 2017-06-28 Mitsubishi Electric Corporation Permanent magnet synchronous motor and hermetic compressor
JP5100169B2 (en) * 2007-03-26 2012-12-19 株式会社東芝 Permanent magnet type rotating electric machine and permanent magnet motor drive system
JP5332137B2 (en) * 2007-05-22 2013-11-06 日産自動車株式会社 Rotating electric machine
JPWO2008146937A1 (en) * 2007-05-28 2010-08-19 トヨタ自動車株式会社 Rotor for embedded magnet motor and embedded magnet motor
JP2008306874A (en) * 2007-06-08 2008-12-18 Daikin Ind Ltd Rotor and compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9893577B2 (en) 2014-06-20 2018-02-13 Nidec Corporation Motor including permanent magnet rotor with flux barrier

Also Published As

Publication number Publication date
JP2010154676A (en) 2010-07-08

Similar Documents

Publication Publication Date Title
US11936312B2 (en) Magnetic generator for motor, soft magnetic core, and method of manufacturing magnet
US10608488B2 (en) Radially embedded permanent magnet rotor and methods thereof
CN104756366B (en) Permanent magnet embedded type motor, compressor and refrigerating air conditioning device
US8653710B2 (en) Permanent magnet electric motor
US9083219B2 (en) Rotor and motor
KR101575353B1 (en) Rotor having embedded permanent magnet
EP1263116A2 (en) Dynamo electric machine with permanent magnet type rotor
CN101064464B (en) Hybrid permanent magnet type electric rotating machine and manufacturing method thereof
WO2011046108A1 (en) Axial gap motor
EP2866336B1 (en) Electric motor having embedded permanent magnet, compressor, and cooling/air-conditioning device
CN108475971B (en) Magnetizing method, rotor, motor and scroll compressor
CN103907267A (en) Rotor in permanent magnet embedded motor, motor using said rotor, compressor using said motor, and air conditioner using said compressor
JP6139007B2 (en) Rotating electrical machine
US20110163618A1 (en) Rotating Electrical Machine
JP5334295B2 (en) Permanent magnet motor and hermetic compressor
EP1744437B1 (en) Self magnetizing motor and stator thereof
WO2001097363A1 (en) Permanent magnet synchronous motor
JP2006115663A (en) Permanent magnet rotor
WO2019026932A1 (en) Magnetism generation device for electric motor, soft magnetic core, and production method for magnet
JP3871873B2 (en) Permanent magnet type rotor
JP2019092313A (en) Permanent magnet type rotary electric machine
JP2014195351A (en) Permanent magnet dynamo-electric machine
JPH104643A (en) Magnet rotor
EP4109722A1 (en) Rotary electric machine, compressor, refrigeration device, and vehicle
US10056792B2 (en) Interior permanent magnet electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

R150 Certificate of patent or registration of utility model

Ref document number: 5334295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees