JP2017034081A - Winding method, winding device or coil manufactured using the same - Google Patents

Winding method, winding device or coil manufactured using the same Download PDF

Info

Publication number
JP2017034081A
JP2017034081A JP2015152483A JP2015152483A JP2017034081A JP 2017034081 A JP2017034081 A JP 2017034081A JP 2015152483 A JP2015152483 A JP 2015152483A JP 2015152483 A JP2015152483 A JP 2015152483A JP 2017034081 A JP2017034081 A JP 2017034081A
Authority
JP
Japan
Prior art keywords
coil
bending
wire
winding
circumference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015152483A
Other languages
Japanese (ja)
Other versions
JP2017034081A5 (en
JP6476472B2 (en
Inventor
満男 海老澤
Mitsuo Ebisawa
満男 海老澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
And Co Ltd
Original Assignee
And Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by And Co Ltd filed Critical And Co Ltd
Priority to JP2015152483A priority Critical patent/JP6476472B2/en
Priority to PCT/JP2015/074443 priority patent/WO2016084442A1/en
Publication of JP2017034081A publication Critical patent/JP2017034081A/en
Publication of JP2017034081A5 publication Critical patent/JP2017034081A5/ja
Application granted granted Critical
Publication of JP6476472B2 publication Critical patent/JP6476472B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method or a manufacturing device for winding a non-circular spiral coil such as a rectangular coil that can be configured thin at a time point when the coil is manufactured, or the coil.SOLUTION: The manufacturing method of the winding comprises: wire supply means for feeding out and holding a coil wire material; a bending guide that is provided at a side of the wire material supply means; bending means for bending the coil wire material while abutting it to the bending guide; and coil moving means for moving the coil vertically to a winding surface of the coil. The manufacturing method iteratively implements a wire material supply step for feeding out the coil wire material while changing a supply length of the coil wire material by the wire material supply means, and a bending step for bending the coil wire material by the bending means. During at least a part of the bending step, the amount of a movement by the coil moving means is settled within an elastic limit range of the coil wire material, a coil having a smaller coil circumferential length is inserted inside of a coil having a larger coil circumferential length, and a spiral non-circular coil is formed. A thin coil can be obtained when the manufacture is completed.SELECTED DRAWING: Figure 1

Description

本発明は、非円形コイルの巻線装置に関するものである。   The present invention relates to a winding device for a non-circular coil.

近年、回転機や充電装置の小型化と高性能化のため、コイルを四角形などの非円形で渦巻状に巻回することが行われている。   In recent years, in order to reduce the size and performance of rotating machines and charging devices, a coil is wound in a non-circular shape such as a square in a spiral shape.

特許文献1に、1本の導線を渦巻き状に巻回することにより、互いに異なる内周長を有する複数の単位巻部を巻き軸方向に連続して形成すると共に、複数の単位巻部からなる単位コイル部を巻き軸方向に繰り返し形成して、コイルの中間製品を作製した後、この中間製品を巻き軸方向に圧縮して、各単位コイルを構成する複数の単位巻部の内、内周長の大きな単位巻部の内側に内周長の小さな単位巻部の一部を押し込んで、渦巻状に多層化した空芯コイルが開示されている。   In Patent Document 1, a plurality of unit winding portions having mutually different inner peripheral lengths are continuously formed in the winding axis direction by winding one conductive wire in a spiral shape, and the plurality of unit winding portions are formed. After the unit coil part is repeatedly formed in the winding axis direction to produce an intermediate product of the coil, the intermediate product is compressed in the winding axis direction, and the inner circumference of the plurality of unit winding parts constituting each unit coil An air-core coil is disclosed in which a part of a unit winding portion having a small inner peripheral length is pushed into the inside of a unit winding portion having a long length, and is multilayered in a spiral shape.

特開2003−86438号公報Japanese Patent Laid-Open No. 2003-86438

特許文献1のコイルの製造方法では、中間コイルを圧縮して渦巻状に多層化するので、回転機や充電装置にこのコイルを組み込むためにはコイルを垂直方向に圧縮する設計が必須となり、機器設計に制約を受けるばかりでなく、組み込みも簡単に行えないという欠点があった。   In the coil manufacturing method of Patent Document 1, since the intermediate coil is compressed and multi-layered in a spiral shape, in order to incorporate this coil in a rotating machine or a charging device, a design in which the coil is compressed in the vertical direction is essential. In addition to being constrained by the design, there was a drawback that it could not be easily installed.

本発明は、上述の課題を解決するもので、簡単な構成で、コイルを製造した時点で薄型に形成できる渦巻状の非円形コイルを高速で巻回する製造方法または製造装置およびコイルを得ることを目的とする。   The present invention solves the above-described problems, and provides a manufacturing method, a manufacturing apparatus, and a coil for winding a spiral non-circular coil that can be formed thinly at a high speed with a simple configuration at high speed. With the goal.

本発明に係る巻線の製造方法は、コイル線材を送出および把持する線材供給手段と、線材供給手段側に設けられた曲げガイドと、曲げガイドにコイル線材を当接させて曲折しコイルを形成する曲げ手段と、コイルをコイルの巻回面に対して垂直方向に移動させるコイル移動手段とを備え、線材供給手段により線材の供給長さを変えながらコイル線材を送出する工程と曲げ手段によりコイル線材を曲折する工程を繰り返し行い、少なくとも一部の曲折工程時にコイル移動手段による移動量をコイル線材の弾性限界範囲内にて行う工程により、コイル周長の大きいコイルの内側にコイル周長の小さなコイルを挿入して渦巻状の非円形コイルを形成するものである。
また、本発明の巻線の製造方法は、コイル線材を送出および把持する線材供給手段と、線材供給手段側に設けられた曲げガイドと、曲げガイドにコイル線材を当接させて曲折しコイルを形成する曲げ手段と、曲げ手段を回転駆動する回転機構とを備え、線材供給手段により線材の供給長さを変えながらコイル線材を送出する工程と、曲げ手段がコイル線材の曲折後の位置におけるコイルの外周より外側に回転中心を有し一方向に回転を繰り返しコイル線材の曲折を行う工程を繰り返し行い、コイル周長の大きいコイルの内側にコイル周長の小さなコイルを挿入して渦巻状の非円形コイルを形成するものである。
上記構成として具体的には、線材コイルの一端から曲げ部と非曲げ部とを継続して繰り返して渦巻状の非円形コイルを製造するものである。
また本発明の巻線の製造方法は、コイル周長の大きいコイルからコイル周長の小さいほうに巻回する第1巻回工程と、コイル周長の小さいコイルからコイル周長の大きいほうに巻回する第2巻回工程とを有し、第1巻回工程と第2巻回工程とで巻回したコイルを一部を重畳させて1巻回単位として構成するものである。
また本発明の巻線の製造方法は、第1巻回単位において最内周部と最外周部の一部にコイルが重畳しないようにして、コイルを連続して巻回するものである。
また本発明の巻線方法は1巻回単位を複数回繰り返して積層させ大容量のインダクタンスを得るものである。
The winding manufacturing method according to the present invention includes a wire supply means for feeding and gripping a coil wire, a bending guide provided on the wire supply means side, and bending the coil wire by bringing the coil wire into contact with the bending guide to form a coil. And a coil moving means for moving the coil in a direction perpendicular to the winding surface of the coil. The step of feeding the coil wire while changing the supply length of the wire by the wire supply means and the coil by the bending means The step of bending the wire is repeated, and the amount of movement by the coil moving means is performed within the elastic limit range of the coil wire during at least a part of the bending step. A coil is inserted to form a spiral non-circular coil.
The winding manufacturing method according to the present invention includes a wire supply means for feeding and gripping a coil wire, a bending guide provided on the wire supply means side, and bending the coil wire by contacting the coil wire with the bending guide. A step of feeding the coil wire while changing the supply length of the wire by the wire supply means, and a coil at a position after the bending of the coil wire. The process of repeatedly bending the coil wire rod having a center of rotation outside the outer circumference of the coil and repeatedly rotating in one direction is repeated, and a coil with a small coil circumference is inserted inside a coil with a large coil circumference. A circular coil is formed.
Specifically, a spiral noncircular coil is manufactured by continuously repeating a bent portion and a non-bent portion from one end of the wire coil as the above configuration.
The winding manufacturing method of the present invention includes a first winding step of winding from a coil having a large coil circumference to a coil having a small coil circumference, and winding from a coil having a small coil circumference to a coil having a large coil circumference. A second winding step that rotates, and the coils wound in the first winding step and the second winding step are partially overlapped to constitute one winding unit.
In the winding manufacturing method of the present invention, in the first winding unit, the coil is continuously wound so that the coil is not superimposed on a part of the innermost peripheral portion and the outermost peripheral portion.
In the winding method of the present invention, one winding unit is repeated a plurality of times to obtain a large-capacity inductance.

また本発明の巻線装置は、コイル線材を送出および把持する線材供給手段と、線材供給手段側に設けられた曲げガイドと、曲げガイドにコイル線材を当接させて曲折しコイルを形成する曲げ手段と、コイルをコイルの巻回面に対して垂直方向に移動させるコイル移動手段とを備え、線材の供給長さを変えながら曲げ手段による曲折を繰り返し行い、少なくとも一部の曲折工程時にコイル移動手段による移動量をコイル線材の弾性限界範囲内にて行い、コイル周長の大きいコイルの内側にコイル周長の小さなコイルを挿入して渦巻状の非円形コイルを製造するようにしたものである。
また本発明の巻線装置は、コイル線材を送出および把持する線材供給手段と、線材供給手段側に設けられた曲げガイドと、前記曲げガイドに前記コイル線材を当接させて曲折しコイルを形成する曲げ手段と、曲げ手段を回転駆動する回転機構と、曲げ手段によって曲折されたコイルをコイル線材の弾性限界範囲内にてコイル軸方向に移動させるコイル移動手段とを備え、曲げ手段はコイル線材の曲折後の位置におけるコイルの外周より外側に回転中心を有し一方向に回転を繰り返し、コイル線材の供給長さを変えながら曲げ手段による曲折を繰り返し行い、コイル周長の大きいコイルの内側にコイル周長の小さなコイルを挿入して非円形コイルを製造するものである。
また、本発明は上記のような巻線方法あるいは巻線装置で製造された渦巻状の非円形のコイルである。。
The winding device of the present invention includes a wire supply means for feeding and gripping the coil wire, a bending guide provided on the wire supply means side, and a bending for forming the coil by bending the coil wire against the bending guide. And a coil moving means for moving the coil in a direction perpendicular to the winding surface of the coil, repeatedly bending the bending means while changing the supply length of the wire, and moving the coil during at least a part of the bending process. The amount of movement by means is performed within the elastic limit range of the coil wire, and a coil with a small coil circumference is inserted inside a coil with a large coil circumference to produce a spiral non-circular coil. .
Further, the winding device of the present invention forms a coil by feeding and gripping the coil wire, a bending guide provided on the wire supplying means side, and bending the coil wire in contact with the bending guide. Bending means, a rotating mechanism for rotating the bending means, and a coil moving means for moving the coil bent by the bending means in the coil axial direction within the elastic limit range of the coil wire, the bending means being a coil wire The center of rotation is located outside the outer periphery of the coil at the position after bending, and the rotation is repeated in one direction, and the bending by the bending means is repeated while changing the supply length of the coil wire. A non-circular coil is manufactured by inserting a coil having a small coil circumference.
Further, the present invention is a spiral non-circular coil manufactured by the above winding method or winding device. .

本発明に係る巻線方法は、曲げガイドにコイル線材を当接させて曲折しコイルを形成する曲げ手段と、曲げ手段によって曲折されたコイルをコイル線材の弾性限界範囲内にてコイル軸方向に移動させるコイル移動手段とを備えたので、線材の供給長さを変えながら曲げ手段による曲折を繰り返し行い、コイル周長の大きいコイルの内側にコイル周長の小さなコイルを挿入して非円形コイルを製造するようにしたので、コイル周長の大きいものから小さいものへ又はコイル周長の小さいものから大きいものへのコイルの製造が終了した時点で平面上の渦巻コイルが形成され、薄型にするためにコイルを圧縮して設置または収納する必要がない。
また、1単位コイルを複数巻回して製造する場合には、全体のコイル高さが低くなり製造時にコイルを移動又は回転する際の揺動量が小さく、またコイルを精度良く高速に製造できる。
The winding method according to the present invention includes a bending means for bending a coil wire with a bending guide to form a coil, and a coil bent by the bending means in the coil axial direction within the elastic limit range of the coil wire. Coil moving means to move, so that bending by the bending means is repeated while changing the supply length of the wire, and a non-circular coil is inserted by inserting a coil with a small coil circumference inside a coil with a large coil circumference. Since the coil is manufactured, the spiral coil on the plane is formed at the time when the manufacture of the coil from the one with the large coil circumference to the one with the small coil circumference or from the coil with the small coil circumference to the large one is completed to make it thin. There is no need to compress or install or store the coil.
In addition, when manufacturing by winding a plurality of unit coils, the overall coil height is reduced, and the amount of swing when the coil is moved or rotated during manufacturing is small, and the coil can be manufactured with high accuracy and high speed.

本発明の実施例1に係る巻線装置を示す斜視図。The perspective view which shows the winding apparatus which concerns on Example 1 of this invention. 本発明の実施例1に係る巻線装置のコイル製造状態を示す斜視図。The perspective view which shows the coil manufacture state of the winding apparatus which concerns on Example 1 of this invention. 本発明の実施例1に係る巻線方法の第1ステップから第5ステップまでの動作を示す模式図。The schematic diagram which shows operation | movement from the 1st step of the winding method which concerns on Example 1 of this invention to the 5th step. 本発明の実施例1に係る巻線方法の第6ステップから第8ステップまでの動作を示す模式図。The schematic diagram which shows the operation | movement from the 6th step of the winding method which concerns on Example 1 of this invention to the 8th step. 本発明の実施例1に係る巻線方法によるコイルの製造方法を示す模式図。The schematic diagram which shows the manufacturing method of the coil by the winding method which concerns on Example 1 of this invention. 本発明の実施例1に係る巻線方法によるコイルの製造方法を示す模式図。The schematic diagram which shows the manufacturing method of the coil by the winding method which concerns on Example 1 of this invention. 本発明の実施例1に係る巻線方法によるコイルの製造方法を示す模式図。The schematic diagram which shows the manufacturing method of the coil by the winding method which concerns on Example 1 of this invention. 本発明の実施例1に係る巻線方法によるコイルの製造方法を示す模式図。The schematic diagram which shows the manufacturing method of the coil by the winding method which concerns on Example 1 of this invention. 本発明の実施例1に係る巻線方法によるコイルの製造方法を示す模式図。The schematic diagram which shows the manufacturing method of the coil by the winding method which concerns on Example 1 of this invention. 本発明の実施例1に係る巻線方法によるコイルの製造方法を示す模式図。The schematic diagram which shows the manufacturing method of the coil by the winding method which concerns on Example 1 of this invention. 本発明の実施例1に係る巻線方法で製造されたコイルの外観図。The external view of the coil manufactured with the winding method which concerns on Example 1 of this invention. 本発明の実施例1に係る巻線方法で製造されたコイルの断面図。Sectional drawing of the coil manufactured with the winding method which concerns on Example 1 of this invention. 本発明の実施例2に係るコイルの外観図。The external view of the coil which concerns on Example 2 of this invention. 本発明の実施例2に係るコイルの断面図。Sectional drawing of the coil which concerns on Example 2 of this invention. 本発明の実施例3に係るコイルの外観図。The external view of the coil which concerns on Example 3 of this invention. 本発明の実施例3に係るコイルの断面図。Sectional drawing of the coil which concerns on Example 3 of this invention. 本発明の実施例4に係るコイルの外観図。The external view of the coil which concerns on Example 4 of this invention. 本発明の実施例5に係る巻線装置を示す斜視図。The perspective view which shows the winding apparatus which concerns on Example 5 of this invention.

本発明の実施形態について、実施例1から実施例5の各々を例に挙げ、図面を参照しながら以下に説明する。なお、本発明の内容はこれらの実施形態に何ら限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings, taking each of Examples 1 to 5 as examples. The contents of the present invention are not limited to these embodiments.

本発明の実施例1を図面に基づいて説明する。図1は、実施例1に係る巻線装置Aの斜視図である。線材供給手段Bは断面形状が平角であるコイル線材2を送出又は停止させて把持するものであり、ボビン(図示せず)に巻かれたコイル線材2を図の矢印Jの方向に送出するものである。線材供給手段Bは、モータと駆動ローラの組み合わせた駆動機構を2セット配している。すなわち第1モータ3と第1モータ3の回転を伝達する第1駆動ローラ4と、第1駆動ローラ4と受動的に回転する第1受動ローラ5とでコイル線材2を挟み込む第1の駆動機構と、第2モータ6と第2駆動ローラ7と、受動的に回転する第2受動ローラ8とによってもコイル線材2を挟み込む第2の駆動機構とがあり、駆動ローラと受動ローラをそれぞれ矢印K1、矢印K2、矢印K3、矢印K4の方向に回転させることによりコイル線材2を送出する。コイル線材2はまず第1駆動ローラ4と第1受動ローラ5とにより送られ、線材ガイド9aで案内され、第2駆動ローラ7と第2受動ローラ8でさらに駆動されて線材ガイド9bに達する。線材ガイド9bの端部には後述するように曲げガイド9baが設けられている(図3参照)。また各モータの回転を停止することでコイル線材2を把持する。
それぞれのモータは、回転速度を適正にするために減速器を備えることができ、またモータの回転を発停する制御装置(図示せず)を有する。
なお、第1モータ3と第1駆動ローラ4と第1受動ローラ5との組み合わせ、あるいは第2モータ6と第2駆動ローラ7と第2受動ローラ8との組み合わせによる線材供給手段の代わりに、モータとねじによる直線運動変換機構を用いても良い。
A first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of a winding apparatus A according to the first embodiment. The wire supply means B is for sending or stopping and holding the coil wire 2 having a flat cross section, and for sending the coil wire 2 wound around a bobbin (not shown) in the direction of arrow J in the figure. It is. The wire supply means B is provided with two sets of drive mechanisms in which a motor and a drive roller are combined. That is, a first drive mechanism that sandwiches the coil wire 2 between the first motor 3 and the first drive roller 4 that transmits the rotation of the first motor 3 and the first drive roller 4 and the first passive roller 5 that passively rotates. And a second drive mechanism that sandwiches the coil wire 2 by the second motor 6, the second drive roller 7, and the second passive roller 8 that passively rotates, and the drive roller and the passive roller are respectively indicated by arrows K 1. The coil wire 2 is sent out by rotating in the directions of arrows K2, K3, and K4. The coil wire 2 is first fed by the first drive roller 4 and the first passive roller 5, guided by the wire guide 9a, and further driven by the second drive roller 7 and the second passive roller 8 to reach the wire guide 9b. A bending guide 9ba is provided at the end of the wire guide 9b as described later (see FIG. 3). Further, the coil wire 2 is gripped by stopping the rotation of each motor.
Each motor can be equipped with a speed reducer to make the rotation speed appropriate, and has a control device (not shown) for starting and stopping the rotation of the motor.
Instead of the wire supply means by the combination of the first motor 3, the first drive roller 4 and the first passive roller 5, or the combination of the second motor 6, the second drive roller 7 and the second passive roller 8, A linear motion conversion mechanism using a motor and a screw may be used.

曲げ手段Cは回転機構である曲げモータ10の回転軸11にレバー12を介して回転自由な曲げローラ13を備え、矢印L方向に回転し、図1においてはコイル線材2に当接して後述する曲げガイド9baを支点としてコイル線材2を図の上方向に折り曲げる。コイル移動ガイド21は線材ガイド9b側に固定されており、コイル線材2がコイル状になって曲折した際にこのコイル移動ガイド21に案内されて順次回転しながら移動する。   The bending means C includes a rotating shaft 11 of a bending motor 10 which is a rotating mechanism, and a bending roller 13 which is freely rotatable via a lever 12 and rotates in the direction of an arrow L. In FIG. The coil wire 2 is bent upward in the figure with the bending guide 9ba as a fulcrum. The coil movement guide 21 is fixed to the wire guide 9b side. When the coil wire 2 is bent in a coil shape, the coil movement guide 21 is guided by the coil movement guide 21 and moves while rotating sequentially.

曲げ手段Cが幾度か回転してコイル線材2を折り曲げることによって図2に示すように矩形の渦巻状に巻回されたコイル14を形成する。曲げ手段Cの曲げローラ13がコイル線材2を折り曲げる位置でのコイルの中心線をZ1とし、このとき曲げ手段Cの回転軸11の中心線をZ2とすると、中心線Z2は、コイル14の外周面よりも外側に位置している。
巻回されたコイル14は、コイルガイド15の接触部15a上に置かれ、コイル14の重量を支えられている。コイルガイド15はコイル線材2の曲折時にコイル14の回転によって発生するコイル14の揺動を制動する機能を有する。
The bending means C is rotated several times to bend the coil wire 2 to form a coil 14 wound in a rectangular spiral shape as shown in FIG. If the center line of the coil at the position where the bending roller 13 of the bending means C bends the coil wire 2 is Z1, and the center line of the rotating shaft 11 of the bending means C is Z2, the center line Z2 is the outer circumference of the coil 14. It is located outside the surface.
The wound coil 14 is placed on the contact portion 15 a of the coil guide 15 and supports the weight of the coil 14. The coil guide 15 has a function of braking the swing of the coil 14 caused by the rotation of the coil 14 when the coil wire 2 is bent.

なお、図1および図2では、巻回されたコイルが重力の方向に対して垂直方向に設置されているが、線材供給手段Bや曲げ手段Cの配置を変更することにより、コイルを重力の方向に対して平行になるように設置することもできる。   In FIGS. 1 and 2, the wound coil is installed in a direction perpendicular to the direction of gravity. However, by changing the arrangement of the wire rod supply means B and the bending means C, the coil can be It can also be installed parallel to the direction.

本発明の巻線装置の巻回の過程を矩形コイルの製作を例にして、図3〜図4に模式図にて示す。なお、図3から図4の図面は図1に示すX−X方向からの図である。図3(a)はステップ1を示したもので、コイル線材2が巻回を始める前の状態を示しており、回転軸11と曲げローラ13は停止しており、コイル線材2は矢印Jの方向に送られ、線材ガイド9Bから突出する。なお円形の2点鎖線は曲げローラ13の回転軌跡を示す。さらにコイル線材2が送られて、図3(b)のステップ2に示すように矩形コイルの一辺の長さに到達すると、線材供給手段Bは回転を停止し、コイル線材2を把持する。このコイル線材2の送出長さの制御は線材供給手段Bのモータの回転数で行われる。コイル線材2が所定長さ送られたことに同期して曲げローラ13が矢印L方向に回転を開始し、コイル線材2に曲げローラ13が当接しコイル線材2を線材ガイド9bの端部にある曲面形状の曲げガイド9baを中心に折り曲げを開始する。   The winding process of the winding device of the present invention is schematically shown in FIGS. 3 to 4 are views from the XX direction shown in FIG. FIG. 3A shows Step 1 and shows a state before the coil wire 2 starts to be wound. The rotating shaft 11 and the bending roller 13 are stopped, and the coil wire 2 is shown by an arrow J. In the direction and protrudes from the wire guide 9B. A circular two-dot chain line indicates a rotation locus of the bending roller 13. When the coil wire 2 is further sent and reaches the length of one side of the rectangular coil as shown in Step 2 of FIG. 3B, the wire supply means B stops rotating and grips the coil wire 2. The control of the feeding length of the coil wire 2 is performed by the number of rotations of the motor of the wire supply means B. The bending roller 13 starts to rotate in the direction of the arrow L in synchronization with the coil wire 2 being fed a predetermined length, and the bending roller 13 comes into contact with the coil wire 2 so that the coil wire 2 is at the end of the wire guide 9b. Bending is started around the curved bending guide 9ba.

図3(c)はステップ3を示し、コイル線材2が曲線部2cを経てほぼ90度に折り曲げられた状態を示している。この状態で曲げローラ13は時計方向に回転しほぼ左端の位置に移動した状態にあり、コイル線材2を反時計方向に約90度、場合によってはスプリングバックの影響を考慮して90度以上の鋭角に曲げる。さらに曲げローラ13が時計方向に回転を継続するとコイル線材2より離れていくことになる。図3(d)のステップ4では曲げローラ13がさらに回転し、コイル線材2を折り曲げた後、コイル線材2よりしだいに離れていく。図3(b)から(c)までの間コイル線材2は移動せずにその位置を保っているが、この後線材供給手段Bによってコイル線材2の供給が開始される。このとき曲げローラ13も回転を継続しており、曲げローラ13の移動の方が速く行われるので、図3(d)に示すようにコイル線材2の先端部2aや直線部2bが曲げローラ13に接触することはない。なお、コイル線材2を送出するタイミングは安全を期すなら、曲げローラ13が相当の距離離れてから行わせてもよい。   FIG. 3C shows step 3 and shows a state in which the coil wire 2 is bent at approximately 90 degrees through the curved portion 2c. In this state, the bending roller 13 is rotated in the clockwise direction and moved substantially to the leftmost position. The coil wire 2 is rotated approximately 90 degrees counterclockwise, and in some cases, more than 90 degrees in consideration of the influence of the springback. Bend at an acute angle. Further, when the bending roller 13 continues to rotate in the clockwise direction, it is separated from the coil wire 2. In step 4 of FIG. 3D, the bending roller 13 further rotates, bends the coil wire 2, and gradually moves away from the coil wire 2. The coil wire 2 is not moved during the period from FIG. 3B to FIG. 3C, and the position thereof is maintained. Thereafter, the supply of the coil wire 2 is started by the wire supply means B. At this time, the bending roller 13 continues to rotate, and the movement of the bending roller 13 is performed faster. Therefore, as shown in FIG. Never touch. Note that the timing of feeding the coil wire 2 may be performed after the bending roller 13 is separated by a considerable distance, for safety.

矩形コイルの他の辺の長さ分だけコイル線材2が送出されると図4(a)のステップ5に示すように線材供給手段Bはコイル線材2の送出を停止し把持する。曲げローラ13は継続して回転を行っておりコイル線材2に近づいていく。このとき曲げローラ13にかかる駆動負荷は小さいので速度を上げて時間を節約することが可能である。特に矩形形状の一辺が短いときに無駄な待ち時間をなくすことができる。   When the coil wire 2 is delivered by the length of the other side of the rectangular coil, the wire supply means B stops and holds the coil wire 2 as shown in step 5 of FIG. The bending roller 13 continues to rotate and approaches the coil wire 2. At this time, since the driving load applied to the bending roller 13 is small, the speed can be increased to save time. In particular, useless waiting time can be eliminated when one side of the rectangular shape is short.

図4(b)はステップ6を示しており、曲げローラ13がコイル線材2に当接し曲げガイド9bの端部9baを中心として曲げ加工が開始され、図4(c)のステップ7で2回目の曲げ加工が完了する。このときは曲げローラ13には比較的大きな負荷がかかるので回転速度を下げてモータトルクを上げて曲げ加工を行う。さらに同様の動作により図4(d)のステップ8で3回目の曲げ加工が行われる。以上の動作を繰り返すことにより図2に示すように積層された矩形のコイル14が製造される。
図4(d)に示すように曲げ手段Cの曲げローラ13によってコイル線材2の曲げ加工が行われ、コイル移動ガイド21に乗り上げるようにして案内されてコイル状に形成される。コイル14が形成されたときのコイルの中心Z1と回転軸11の中心Z2とは位置が異なっており、Z2はコイル14の外周よりもさらに外側に位置している。
FIG. 4B shows Step 6, where the bending roller 13 comes into contact with the coil wire 2 and bending is started around the end 9 ba of the bending guide 9 b, and the second time in Step 7 of FIG. 4C. The bending process is completed. At this time, since a relatively large load is applied to the bending roller 13, bending is performed by decreasing the rotational speed and increasing the motor torque. Further, the third bending process is performed at step 8 in FIG. By repeating the above operation, rectangular coils 14 stacked as shown in FIG. 2 are manufactured.
As shown in FIG. 4D, the coil wire 2 is bent by the bending roller 13 of the bending means C, and is guided to ride on the coil moving guide 21 to be formed in a coil shape. When the coil 14 is formed, the center Z1 of the coil and the center Z2 of the rotating shaft 11 are different in position, and Z2 is located further outside the outer periphery of the coil 14.

曲げローラ13とコイル線材2とは図3〜図4に示したように曲げ加工のとき以外は接触することがなく、必ずしも曲げローラ13を逆回転させたり、コイルをコイル面と垂直方向に方向に移動させる必要がないことがわかる。また曲げローラ13は加工が開始されると中心軸を軸方向に移動させることなく連続回転を行えばよいので曲げモータ10の制御は容易であり、高速に回転することが可能である。曲げモータ10は一般にサーボモータと称される誘導モータ、同期モータ、ステッピングモータなどが使用され、モータの回転位置を検出する位置検出器を備えていても良い。   As shown in FIGS. 3 to 4, the bending roller 13 and the coil wire 2 are not in contact with each other except during bending, and the bending roller 13 is not necessarily rotated in the reverse direction, and the coil is oriented in the direction perpendicular to the coil surface. It turns out that it is not necessary to move to. Further, since the bending roller 13 may be continuously rotated without moving the central axis in the axial direction when processing is started, the control of the bending motor 10 is easy and can be rotated at high speed. As the bending motor 10, an induction motor, a synchronous motor, a stepping motor or the like generally called a servo motor is used, and it may be provided with a position detector that detects the rotational position of the motor.

このようにして図3から図4の動作を繰り返すとコイル周長が一定のコイルが製造できる。なお、曲折の角度を変更すれば、四角形以外の多角形のコイルが製造可能である。
本実施例では曲げローラ13が同一方向に継続的に回転する例を示したが、曲げローラ13がコイル線材を曲折後(図3(c))に逆回転(反時計回り)させて図4(a)の状態に復帰させてコイル線材2を送出後に再度回転方向を変更(時計回り)して曲折するようにしても良い。
また、実施例1では回転機構として曲げモータ10を示したが、往復運動を行う電気駆動のソレノイドや空圧式のプランジャを用いても良い
When the operations of FIGS. 3 to 4 are repeated in this manner, a coil having a constant coil circumference can be manufactured. If the angle of bending is changed, a polygonal coil other than a quadrangle can be manufactured.
In the present embodiment, the bending roller 13 is continuously rotated in the same direction. However, the bending roller 13 rotates the coil wire rod in the reverse direction (counterclockwise) after bending (FIG. 3C). After returning to the state of (a) and feeding the coil wire 2, the direction of rotation may be changed again (clockwise) and bent.
In the first embodiment, the bending motor 10 is shown as the rotating mechanism. However, an electrically driven solenoid or a pneumatic plunger that performs reciprocating motion may be used.

次に本発明の実施例1として、7.6mmx2mmの矩形コイルをエッジワイズで巻回し、最外周が84mmx84mmで、最内周が28mmx28mmの矩形渦巻型のコイルの製造方法を図5〜図6の模式図にて示す。なお、具体的な寸法は一つの例であって、本発明はこの寸法に限定されるものではない。第1巻回行程として周長の大きいコイルから巻回して、順に周長の小さいコイルを巻回する工程を説明する。図5(a)はコイルを巻回する前の初期位置の状態を示しており、線材供給手段B(図1)によって線材ガイド9bに沿ってコイル線材2を送出する。21は、コイル移動手段としてのコイル移動ガイドである。図5(b)に示すようにコイル線材2は所定長さ(直線部2b)送られると停止し、図5(c)に示すように曲げローラ13が回転しコイル線材2の曲折部2cの部分で線材ガイド9bに沿って1回目の曲折を行う。この1回目の曲折は端子を取り出すので、例えば最外周の1辺の長さが84mmの矩形コイルではやや長めの例えば110mm程度にする。次に線材供給手段Bによってコイル線材2が図5(d)に示すように矢印方向に例えば60mm(直線部2d)の2回目の送出を行われて停止する。曲げローラ13はこの間も回転を継続しており図5(e)に示すようにコイル線材2が送出を完了した後再び曲折部2eにて2回目の曲折をする。このときコイル線材先端部2aや直線部2bはコイル移動ガイド21に乗り上げてガイドされながら回転する。直線部2eがコイル移動ガイド21のガイド面21aにガイドされるため曲折するコイル面と直角方向に移動してコイル線材2が変形することになるが、この変形量はコイル線材の弾性限界以下の変形量になるように、コイル移動ガイド21の傾斜が設定してある。3回目の送出として直線部2eが同様にして図5(f)に示すようにコイル線材2が2回目の送出(図5(d))と同じ直線部2fの長さ(60mm)が送出されて図5(g)に示すように曲げローラ13により曲折部2gにて3回目の曲折を行う。このとき直線部2bから直線部2dの線材はコイル移動ガイド21にガイドされて回転する。さらに直線部2bは清掃ガイド21から線材ガイド9b(図2)の外側にガイドされ、線材ガイド9bの内側を通過するコイル線材2とは立体的に交差するので、互いに干渉することはない。   Next, as Example 1 of the present invention, a rectangular coil of 7.6 mm × 2 mm is wound edgewise, and a method of manufacturing a rectangular spiral coil having an outermost circumference of 84 mm × 84 mm and an innermost circumference of 28 mm × 28 mm is shown in FIGS. Shown in schematic diagram. In addition, a specific dimension is an example, Comprising: This invention is not limited to this dimension. The process of winding from a coil with a large circumference as a first winding process and winding a coil with a small circumference in order will be described. FIG. 5A shows the state of the initial position before winding the coil, and the coil wire 2 is sent out along the wire guide 9b by the wire supply means B (FIG. 1). Reference numeral 21 denotes a coil movement guide as coil moving means. As shown in FIG. 5B, the coil wire 2 stops when it is fed a predetermined length (straight portion 2b), and the bending roller 13 rotates as shown in FIG. 5C to rotate the bent portion 2c of the coil wire 2. The first bend is performed along the wire guide 9b at the portion. Since the terminal is taken out in this first bending, for example, in the case of a rectangular coil having a length of one side of the outermost periphery of 84 mm, it is set to be slightly longer, for example, about 110 mm. Next, as shown in FIG. 5D, the coil wire 2 is sent by the wire supply means B in the direction of the arrow, for example, 60 mm (straight line portion 2d), and stopped. The bending roller 13 continues to rotate during this time, and as shown in FIG. 5E, after the coil wire 2 completes feeding, the second bending is performed again at the bending portion 2e. At this time, the coil wire rod front end portion 2a and the linear portion 2b ride on the coil movement guide 21 and rotate while being guided. Since the straight portion 2e is guided by the guide surface 21a of the coil movement guide 21, the coil wire 2 is deformed by moving in a direction perpendicular to the bending coil surface, but the amount of deformation is below the elastic limit of the coil wire. The inclination of the coil movement guide 21 is set so that the deformation amount is obtained. As shown in FIG. 5 (f), the straight portion 2e is sent the same length (60 mm) as that of the second portion (FIG. 5 (d)). As shown in FIG. 5G, the bending is performed at the bent portion 2g by the bending roller 13 for the third time. At this time, the wire from the straight portion 2b to the straight portion 2d is guided by the coil movement guide 21 and rotates. Further, since the straight portion 2b is guided from the cleaning guide 21 to the outside of the wire guide 9b (FIG. 2) and intersects the coil wire 2 passing through the inside of the wire guide 9b in three dimensions, they do not interfere with each other.

次に図5(h)に示すように、線材コイル2の送出を3回目の送り量60mmよりもコイル線材2の幅(本実施例では7.6mm)よりも短く、例えば直線部2hの長さを52mmに設定して4回目の送出を行い、図6(a)に示すように曲折部2iで4回目の曲折を行う。直線部2bは前述のように線材ガイド9bの外側にガイドされているので、供給されるコイル線材2とは立体的に交差している。5回目のコイル線材2の送出は、図6(b)に示すように4回目と同じ長さに設定し、図6(c)に示すように曲折部2kにて曲折を行う。このとき直線部2dが線材ガイド9bの外側にガイドされているのでと曲折部2bと曲げローラ13とは干渉せず、曲折部2kにて5回目の曲折が行われる。6回目の送出は、図6(d)に示すように5回目の送出量52mmよりもさらにコイル線材2の幅よりも短く、直線部2eの長さを例えば44mmに設定されて送出される、曲折部2mによって6回目の曲折が行われる。   Next, as shown in FIG. 5 (h), the wire coil 2 is sent out shorter than the third feed amount 60mm than the width of the coil wire 2 (7.6 mm in this embodiment), for example, the length of the straight portion 2h. The length is set to 52 mm and the fourth feeding is performed. As shown in FIG. 6A, the fourth bending is performed at the bending portion 2i. Since the straight line portion 2b is guided to the outside of the wire guide 9b as described above, it intersects the supplied coil wire 2 in a three-dimensional manner. The fifth delivery of the coil wire 2 is set to the same length as the fourth time as shown in FIG. 6 (b), and the bent portion 2k is bent as shown in FIG. 6 (c). At this time, since the straight portion 2d is guided outside the wire guide 9b, the bent portion 2b and the bending roller 13 do not interfere with each other, and the fifth turn is performed at the bent portion 2k. In the sixth delivery, as shown in FIG. 6D, the fifth delivery amount is 52 mm, which is shorter than the width of the coil wire 2 and the length of the linear portion 2e is set to 44 mm, for example. A sixth turn is performed by the bent portion 2m.

以下同様に、7回目(図6(f)・図6(g))は送出量44mm、8回目(図6(h)・図7(i))と9回目(図7(b)・図7(c))は総出量36mm、10回目(図7(d)・図7(e))と11回目(図7(f)・図7(g))は送出量28mm、12回目(図7(h)・図8(a))と13回目(図8(b)・図8(c))は送出量20mmのコイル線材2の送出と曲折が行われる、図8(c)の曲折において、周長が大きいほうから小さい方への矩形の渦巻状のコイルが形成される。   Similarly, the seventh time (FIGS. 6 (f) and 6 (g)) is 44 mm, the eighth time (FIGS. 6 (h) and 7 (i)) and the ninth time (FIG. 7 (b) and FIG. 7 (c)) is the total amount 36 mm, the 10th time (FIGS. 7 (d) and 7 (e)) and the 11th time (FIGS. 7 (f) and 7 (g)) are the delivery amount 28mm and the 12th time (FIG. 7 (h), FIG. 8 (a)) and the 13th time (FIG. 8 (b) / FIG. 8 (c)) are the winding and bending of the coil wire 2 having a feed amount of 20 mm. In FIG. 2, a rectangular spiral coil is formed from the larger circumference to the smaller circumference.

次にコイル周長の小さいコイルから周長の大きいコイルを巻回する第2巻回工程について説明する。14回目からのコイル線材の送出と曲折は、コイル周長が小さい方から大きい方への矩形渦巻のコイルが作成される。すなわち14回目(図8(d)・図8(e))と15回目(図8(f)・図8(g))は送出量20mmで送出と曲折とが行われる。なお、図8(e)以降のコイル図面は、周長が大きい方から小さい方へ巻回されて部分を破線で示し、周長が小さいほうから大きい方へ巻回されて部分は実線で示している。実践部分のコイル線材は破線と重ならないように線材の幅をやや小さく記載しているが、実際には1本の線材なので、その線材の幅は第1工程のときと同一である。16回目(図8(h)・図9(a))と17回目(図9(b)と図9(c))は送出量28mm、18回目(図9(d)・図9(e))と19回目(図9(f)・図9(g)は送出量36mm、20回目(図9(h)・図10(a)と21回目(図10(b)・図10(c))送出量44mm、22回目(図10(d)・図10(e)は送出量52mmで送出と曲折が行われ、コイル線材2を切断して図10(f)に示すような2層に重なり合った(1部は1層)矩形の渦巻コイルが形成される。
この第1巻回工程と第2巻回工程とで1巻回単位を構成し、最外周部から接続用端子を取り出すことができる。また後述するように1巻回単位工程を繰り返すことにより、3層以上に積層されたコイルを製作することができる。図5から図10の工程において、曲げローラ13は継続して回転し、コイル線材2は継続して供給され、途中でコイル線材を切断したりあるいはもう一方の端部からも巻回することがなく、いわゆる一筆書きで製造が行われる。
Next, a second winding process for winding a coil having a large circumference from a coil having a small coil circumference will be described. The coil wire is fed and bent from the 14th time, so that a rectangular spiral coil is created from the smaller coil circumference to the larger coil circumference. That is, in the 14th time (FIGS. 8 (d) and 8 (e)) and the 15th time (FIGS. 8 (f) and 8 (g)), sending and bending are performed with a sending amount of 20 mm. In the coil drawings after FIG. 8 (e), the portion wound from the larger circumference to the smaller one is indicated by a broken line, and the portion wound from the smaller circumference to the larger one is indicated by a solid line. ing. The coil wire of the practical part is described as being slightly smaller so that it does not overlap with the broken line, but since it is actually one wire, the width of the wire is the same as in the first step. The 16th time (FIGS. 8 (h) and 9 (a)) and the 17th time (FIGS. 9 (b) and 9 (c)) are 28 mm and the 18th time (FIGS. 9 (d) and 9 (e)). ) And 19th time (FIGS. 9 (f) and 9 (g) show a delivery amount of 36 mm, 20th time (FIGS. 9 (h), 10 (a) and 21st times (FIGS. 10 (b) and 10 (c)) ) Feeding amount 44 mm, 22nd time (FIGS. 10 (d) and 10 (e) are sent and bent at a feeding amount of 52mm, and the coil wire 2 is cut into two layers as shown in FIG. 10 (f). Overlapping (one part is one layer) rectangular spiral coil is formed.
The first winding step and the second winding step constitute one winding unit, and the connection terminal can be taken out from the outermost periphery. As will be described later, by repeating the one-winding unit process, a coil laminated in three or more layers can be manufactured. 5 to 10, the bending roller 13 is continuously rotated, the coil wire 2 is continuously supplied, and the coil wire can be cut halfway or wound from the other end. There is no so-called one-stroke writing.

図11と図12は実施例1の製造方法により作成された渦巻コイルである。図11(a)は正面図、(b)は背面図、(c)は右側面図、(d)は左側面図、(e)は平面図、(f)は底面図であり、図12の(a)と(b)はそれぞれ図11(a)正面図に示されるA−A断面図とB−B断面図である。図11の矩形渦巻コイルは最大4回巻を2層に形成している。コイル線材2を曲折する際に既に巻回されたコイルはコイル移動ガイド21にガイドされてコイルの巻回する面に対して垂直方向に変形することになるが、変形の範囲がコイル線材2の弾性限界範囲内に設定されているので、自然な状態では弾性により変形が戻り、図11に示すように周長の小さいコイルが周長の大きいコイルの内側に入り込み渦巻状のコイルを形成する。
コイルに垂直方向の変形を弾性限度内に保つために、コイル移動ガイド21の大きさはコイル線材の弾性係数やコイルの周回長等によって最適値を選定することが必要であるが、通常用いられる銅製の線材で実施例1に示したサイズであれば特に問題はなく製造が可能である。
図12の断面図に示されるように、渦巻形状コイルの最内周部と最外周部とは1巻回単位において線材が重ならない部分を設けることによって、コイル線材を一端から連続して巻回することが可能である。
11 and 12 show a spiral coil produced by the manufacturing method of the first embodiment. 11 (a) is a front view, (b) is a rear view, (c) is a right side view, (d) is a left side view, (e) is a plan view, and (f) is a bottom view. (A) and (b) are AA sectional view and BB sectional view shown in the front view of FIG. 11 (a), respectively. The rectangular spiral coil shown in FIG. 11 has a maximum of four turns formed in two layers. The coil already wound when the coil wire 2 is bent is guided by the coil movement guide 21 and deformed in a direction perpendicular to the surface around which the coil is wound. Since it is set within the elastic limit range, the deformation returns due to elasticity in a natural state, and a coil with a small circumferential length enters inside a coil with a large circumferential length as shown in FIG. 11 to form a spiral coil.
In order to keep the deformation in the direction perpendicular to the coil within the elastic limit, the size of the coil moving guide 21 needs to be optimally selected depending on the elastic coefficient of the coil wire, the winding length of the coil, etc. If it is the size shown in Example 1 with the copper wire, there is no problem and it can be manufactured.
As shown in the cross-sectional view of FIG. 12, the coil wire is continuously wound from one end by providing a portion where the wire does not overlap in the winding unit on the innermost peripheral portion and the outermost peripheral portion of the spiral coil. Is possible.

図5(a)に示すようにコイル線材の一端2aから巻回を開始し、コイル周長の大きいものから小さいものへ巻回し、さらに継続してコイル周長の小さいものから大きいものへと巻回するので、コイルの最外周と最内周は巻回数が少なくなるように構成する。すなわち多くが2層で巻回されているが、最内周と最外周とに1層の部分を設けることで、コイル線材の端部2aから同一方向に連続して巻回して製造することができる。
渦巻の内周部分では非線形コイルの一辺が短くなるので、コイル移動量が弾性限界以上になることも考えられるが、若干の変形は薄型の寸法への許容範囲内であれば差し支えない。特に最内周では1巻回単位では重なりがない部分もあるので、薄型寸法を保つことができる。
As shown in FIG. 5 (a), winding is started from one end 2a of the coil wire, wound from one having a large coil circumference to one having a small coil circumference, and continuously wound from one having a small coil circumference to one having a large coil circumference. Since it rotates, the outermost periphery and innermost periphery of a coil are comprised so that the number of turns may decrease. That is, many are wound in two layers, but by providing one layer portion on the innermost and outermost circumferences, it is possible to manufacture by winding continuously from the end 2a of the coil wire in the same direction. it can.
Since one side of the non-linear coil is shortened in the inner peripheral portion of the spiral, it is conceivable that the amount of coil movement exceeds the elastic limit. However, slight deformation is acceptable as long as it is within an allowable range for thin dimensions. Particularly in the innermost circumference, there is a portion where there is no overlap in one turn unit, so that the thin dimensions can be maintained.

図13と図14に本発明の実施例2のコイルを示す。実施例1と異なるところは、渦巻を2回の2層巻にしたことにある。図13(a)は正面図、(b)は背面図、(c)は右側面図、(d)は左側面図、(e)は平面図、(f)は底面図であり、図14の(a)と(b)はそれぞれ図13(a)正面図に示されるC−C断面図とD−D断面図である。   13 and 14 show a coil according to a second embodiment of the present invention. The difference from Example 1 is that the spiral is made into two two-layer windings. 13 (a) is a front view, (b) is a rear view, (c) is a right side view, (d) is a left side view, (e) is a plan view, and (f) is a bottom view. (A) and (b) are respectively a CC sectional view and a DD sectional view shown in the front view of FIG.

図15と図16に本発明の実施例3のコイルを示す。実施例1と異なるところはコイル線材を丸線にしたことにある。図15(a)は正面図、(b)は背面図、(c)は右側面図、(d)は左側面図、(e)は平面図、(f)は底面図であり、図16の(a)と(b)はそれぞれ図15(a)正面図に示されるE−E断面図とF−F断面図である。丸線によるコイルは、電流密度が等価な場合コイルサイズが大きくなる欠点があるが、一般的に製造されているコイル線材であるのでコイルを低価格で製造できる利点がある。   15 and 16 show a coil according to a third embodiment of the present invention. The difference from the first embodiment is that the coil wire is round. 15 (a) is a front view, (b) is a rear view, (c) is a right side view, (d) is a left side view, (e) is a plan view, and (f) is a bottom view. (A) and (b) are the EE sectional view and FF sectional view which are respectively shown by Fig.15 (a) front view. Although the coil by a round wire has the fault that a coil size will become large when an electric current density is equivalent, since it is a coil wire material generally manufactured, there exists an advantage which can manufacture a coil at low cost.

図17に本発明の実施例4の渦巻コイルを示す。実施例1と異なるところは長方形の渦巻形状にしたことにある。長方形のコイルの場合には、巻回ごとのコイル線材の供給長さを変えることで長方形の縦横の比率を調節できる。   FIG. 17 shows a spiral coil according to a fourth embodiment of the present invention. The difference from the first embodiment is that a rectangular spiral shape is used. In the case of a rectangular coil, the aspect ratio of the rectangle can be adjusted by changing the supply length of the coil wire for each winding.

図18に本発明の実施例5の巻線装置を示す。実施例1と異なるところは大きなインダクタンスを得るため、巻回を継続して3層以上の渦巻コイルを製造する点にある。しかし層数が多くなると軸方向の長さが長くなり巻回時の回転によって揺動が生じるため高速で巻回できなくなるが、本発明においては1層ごとの巻回後に弾性により平面的な渦巻形状になり、コイルの高さを低くすることができるので、揺動が生じにくく、コイルを高速に精度良く製造することができる。   FIG. 18 shows a winding device according to a fifth embodiment of the present invention. The difference from the first embodiment is that, in order to obtain a large inductance, winding is continued and a spiral coil having three or more layers is manufactured. However, as the number of layers increases, the axial length becomes longer and swinging occurs due to rotation at the time of winding, making it impossible to wind at high speed. Since it becomes a shape and the height of the coil can be reduced, it is difficult for oscillation to occur, and the coil can be manufactured at high speed and with high accuracy.

また非円形コイルは矩形コイルが一般的であるが、3角形や5角形以上のコイルも曲げガイド9baの形状を変えることで製造が可能である。
さらに、コイル線材を2枚以上重ねて供給することにより重ね巻を行うこともできる。
A non-circular coil is generally a rectangular coil, but a triangular or pentagonal or more coil can also be manufactured by changing the shape of the bending guide 9ba.
Furthermore, it is possible to perform lap winding by supplying two or more coil wires in a stacked manner.

A 巻線装置
B 線材供給手段
C 曲げ手段
2 コイル線材
9ba 曲げガイド
10 曲げモータ(回転機構)
14 コイル
21 コイル移動ガイド(コイル移動手段)
A Winding device B Wire supply means C Bending means 2 Coil wire 9ba Bending guide 10 Bending motor (rotating mechanism)
14 coils
21 Coil movement guide (coil movement means)

Claims (9)

コイル線材を送出および把持する線材供給手段と、前記線材供給手段側に設けられた曲げガイドと、前記曲げガイドに前記コイル線材を当接させて曲折しコイルを形成する曲げ手段と、前記コイルを前記コイルの巻回面に対して垂直方向に移動させるコイル移動手段とを備え、前記線材供給手段により前記コイル線材の供給長さを変えながら前記コイル線材を送出する線材供給工程と前記曲げ手段により前記コイル線材を折り曲げる曲折工程を繰り返し行い、少なくとも一部の曲折工程時に前記コイル移動手段による移動量を前記コイル線材の弾性限界範囲内にて行う工程により、前記コイルのコイル周長の大きいコイルの内側にコイル周長の小さなコイルを挿入して渦巻状の非円形コイルを形成する巻線方法。   Wire rod supply means for feeding and gripping the coil wire rod, a bending guide provided on the wire rod supply portion side, bending means for bending the coil wire rod against the bending guide to form a coil, and the coil A coil moving means for moving the coil wire in a direction perpendicular to a winding surface of the coil, and a wire rod supplying step for feeding the coil wire rod while changing a supply length of the coil wire rod by the wire rod supplying portion; The step of bending the coil wire is repeated, and the step of moving the amount of movement by the coil moving means within the elastic limit range of the coil wire during at least a part of the bending step is performed. A winding method in which a coil with a small coil circumference is inserted inside to form a spiral non-circular coil. コイル線材を送出および把持する線材供給手段と、前記線材供給手段側に設けられた曲げガイドと、前記曲げガイドに前記コイル線材を当接させて曲折しコイルを形成する曲げ手段と、前記曲げ手段を回転駆動する回転機構とを備え、前記線材供給手段により線材の供給長さを変えながら前記コイル線材を送出する工程と、前記曲げ手段が前記コイル線材の曲折後の位置における前記コイルの外周より外側に回転中心を有し一方向に回転を繰り返し行い前記コイル線材を折り曲げる工程とにより、コイル周長の大きいコイルの内側にコイル周長の小さなコイルを挿入して渦巻状の非円形コイルを形成する巻線方法。   Wire supply means for feeding and gripping a coil wire, bending guide provided on the wire supply means side, bending means for bending the coil wire against the bending guide to form a coil, and the bending means A step of feeding the coil wire while changing the supply length of the wire by the wire supply means, and the bending means from the outer periphery of the coil at a position after the coil wire is bent. A spiral non-circular coil is formed by inserting a coil with a small coil circumference inside a coil with a large coil circumference by bending the coil wire rod by repeatedly rotating in one direction and having a rotation center on the outside. Winding method to do. 前記線材コイルの一端から曲げ部と非曲げ部とを継続して繰り返して渦巻状の非円形コイルを製造することを特徴とする請求項1または請求項2に記載の巻線方法。   The winding method according to claim 1 or 2, wherein a spiral non-circular coil is manufactured by continuously repeating a bent portion and a non-bent portion from one end of the wire coil. コイル周長の大きいコイルからコイル周長の小さいほうに巻回する第1巻回工程と、コイル周長の小さいコイルからコイル周長の大きいほうに巻回する第2巻回工程とを有し、第1巻回工程と第2巻回工程とで巻回したコイルの一部を重畳させて1巻回単位として構成する請求項1〜3のいずれか1項に記載の巻線方法。   A first winding step of winding from a coil having a large coil circumference to a smaller coil circumference, and a second winding step of winding from a coil having a smaller coil circumference to a larger coil circumference. The winding method according to any one of claims 1 to 3, wherein a part of the coil wound in the first winding step and the second winding step is overlapped to constitute one winding unit. 前記第1巻回単位において渦巻状コイルの最内周部と最外周部の一部にコイルが重畳しないことを特徴とする請求項4に記載の巻線方法。   5. The winding method according to claim 4, wherein the coil is not superimposed on a part of the innermost peripheral portion and the outermost peripheral portion of the spiral coil in the first winding unit. 前記1巻回単位を複数回繰り返してコイルを積層する請求項4または請求項5に記載の巻線方法。   The winding method according to claim 4 or 5, wherein the coil is laminated by repeating the one winding unit a plurality of times. 曲げ部と非曲げ部とを有する非円形コイルを製造する巻線装置において、コイル線材を送出および把持する線材供給手段と、前記線材供給手段側に設けられた曲げガイドと、前記曲げガイドに前記コイル線材を当接させて曲折しコイルを形成する曲げ手段と、前記コイルを前記コイルの巻回面に対して垂直方向に移動させるコイル移動手段とを備え、前記線材供給手段により前記コイル線材の供給長さを変えながら前記曲げ手段による曲折を繰り返し行い、少なくとも一部の曲折工程時に前記コイル移動手段による移動量を前記コイル線材の弾性限界範囲内にて行い、前記コイルのコイル周長の大きいコイルの内側にコイル周長の小さなコイルを挿入して渦巻状の非円形コイルを製造することを特徴とする巻線装置。   In a winding device for manufacturing a non-circular coil having a bending portion and a non-bending portion, a wire supply means for sending and gripping a coil wire, a bending guide provided on the wire supply means side, and the bending guide Bending means for bending a coil wire to be in contact with each other to form a coil; and coil moving means for moving the coil in a direction perpendicular to a winding surface of the coil. The bending by the bending means is repeated while changing the supply length, the amount of movement by the coil moving means is performed within the elastic limit range of the coil wire during at least a part of the bending process, and the coil circumference of the coil is large. A winding device comprising a coil having a small coil circumference inside a coil to produce a spiral non-circular coil. 曲げ部と非曲げ部とを有する非円形コイルを製造する巻線装置において、コイル線材を送出および把持する線材供給手段と、前記線材供給手段側に設けられた曲げガイドと、前記曲げガイドに前記コイル線材を当接させて曲折しコイルを形成する曲げ手段と、前記曲げ手段を回転駆動する回転機構とを備え、前記曲げ手段は前記コイル線材の曲折後の位置におけるコイルの外周より外側に回転中心を有し一方向に回転を繰り返し、前記コイル線材の供給長さを変えながら前記曲げ手段による曲折を行い、コイル周長の大きいコイルの内側にコイル周長の小さなコイルを挿入して非円形コイルを製造することを特徴とする巻線装置。   In a winding device for manufacturing a non-circular coil having a bending portion and a non-bending portion, a wire supply means for sending and gripping a coil wire, a bending guide provided on the wire supply means side, and the bending guide A bending means for bending a coil wire to be bent to form a coil and a rotating mechanism for rotationally driving the bending means are provided, and the bending means is rotated outward from the outer periphery of the coil at a position after the bending of the coil wire. It has a center and repeats rotation in one direction, bends by the bending means while changing the supply length of the coil wire, and inserts a coil with a small coil circumference inside a coil with a large coil circumference to make it non-circular A winding device characterized by manufacturing a coil. 請求項1から請求項6のいずれか1項に記載の巻線方法で製造された渦巻状の非円形コイル。
A spiral non-circular coil manufactured by the winding method according to any one of claims 1 to 6.
JP2015152483A 2014-11-27 2015-07-31 Winding device Active JP6476472B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015152483A JP6476472B2 (en) 2015-07-31 2015-07-31 Winding device
PCT/JP2015/074443 WO2016084442A1 (en) 2014-11-27 2015-08-28 Winding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015152483A JP6476472B2 (en) 2015-07-31 2015-07-31 Winding device

Publications (3)

Publication Number Publication Date
JP2017034081A true JP2017034081A (en) 2017-02-09
JP2017034081A5 JP2017034081A5 (en) 2018-05-17
JP6476472B2 JP6476472B2 (en) 2019-03-06

Family

ID=56074023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015152483A Active JP6476472B2 (en) 2014-11-27 2015-07-31 Winding device

Country Status (2)

Country Link
JP (1) JP6476472B2 (en)
WO (1) WO2016084442A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6787275B2 (en) * 2017-08-10 2020-11-18 トヨタ自動車株式会社 Winding device
KR102128046B1 (en) * 2017-09-29 2020-06-29 한국생산기술연구원 Distributed MSO Armature Winding, Motor Having the Same, and Its Manufacturing Method
CN114783764B (en) * 2022-04-25 2023-09-29 山东华东风机有限公司 Coil wire winding is with adjustable apart from frock

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316054A (en) * 1995-05-23 1996-11-29 Matsushita Electric Ind Co Ltd Thin transformer
JPH11126722A (en) * 1997-10-21 1999-05-11 Nittoku Eng Co Ltd Double revolute coil, its winding method and winding equipment
JP2001071080A (en) * 1999-09-03 2001-03-21 Tokyo Marui:Kk Production of oval coil spring
JP2011050215A (en) * 2009-08-28 2011-03-10 Toyota Motor Corp Winding method and apparatus
JP2012038871A (en) * 2010-08-06 2012-02-23 Nittoku Eng Co Ltd Manufacturing method of spiral coil and manufacturing device of the same
JP2014100008A (en) * 2012-11-15 2014-05-29 Toyota Motor Corp Winding apparatus and winding method
JP3196150U (en) * 2014-08-11 2015-02-26 康雄 中西 Expansion and contraction type two-way winding connection coil
JP5780538B1 (en) * 2014-09-01 2015-09-16 株式会社アンド Winding device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316054A (en) * 1995-05-23 1996-11-29 Matsushita Electric Ind Co Ltd Thin transformer
JPH11126722A (en) * 1997-10-21 1999-05-11 Nittoku Eng Co Ltd Double revolute coil, its winding method and winding equipment
JP2001071080A (en) * 1999-09-03 2001-03-21 Tokyo Marui:Kk Production of oval coil spring
JP2011050215A (en) * 2009-08-28 2011-03-10 Toyota Motor Corp Winding method and apparatus
JP2012038871A (en) * 2010-08-06 2012-02-23 Nittoku Eng Co Ltd Manufacturing method of spiral coil and manufacturing device of the same
JP2014100008A (en) * 2012-11-15 2014-05-29 Toyota Motor Corp Winding apparatus and winding method
JP3196150U (en) * 2014-08-11 2015-02-26 康雄 中西 Expansion and contraction type two-way winding connection coil
JP5780538B1 (en) * 2014-09-01 2015-09-16 株式会社アンド Winding device

Also Published As

Publication number Publication date
WO2016084442A1 (en) 2016-06-02
JP6476472B2 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
CN102812620B (en) The manufacture method of the coil of the stator of electric rotating machine, the manufacture method of stator and stator
EP2854263B1 (en) Method for winding edgewise coil and winding device
JP6476472B2 (en) Winding device
TWI521554B (en) Automatic winding machine and winding method thereof
JP5785117B2 (en) Winding device and winding method
US10693355B2 (en) Coil unit arrangement device
TWI552177B (en) Coil,coil winding method and coil winding device
JP2013021041A5 (en)
JP2019195845A (en) Coil forming apparatus and coil forming method
CN104335304B (en) Coil winding method and transformer
JP5244223B2 (en) Air-core coil and winding method thereof
JP5499349B2 (en) Winding structure and electrical equipment using the same
JP5780538B1 (en) Winding device
JP6476465B2 (en) Winding device
JP5369160B2 (en) Air core coil winding device
WO2015155899A1 (en) Winding wire structure and electric device using same
KR101498777B1 (en) A Machine for Forming Helical Wires
JP4949941B2 (en) Winding device and method of manufacturing rotating electrical machine
JP6664664B2 (en) Winding device
JP5830824B2 (en) Ring concentric stranded cord manufacturing equipment
JP6442737B2 (en) Coil winding method and winding apparatus
JPS59123216A (en) Equipment for manufacturing multi-layer winding coil
JP5900159B2 (en) Coil parts manufacturing method and manufacturing apparatus
JP2016024972A (en) Manufacturing method of aggregated conductor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190116

R150 Certificate of patent or registration of utility model

Ref document number: 6476472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150