JP2017030165A - Carbon fiber composite material, and method of manufacturing the same - Google Patents

Carbon fiber composite material, and method of manufacturing the same Download PDF

Info

Publication number
JP2017030165A
JP2017030165A JP2015149714A JP2015149714A JP2017030165A JP 2017030165 A JP2017030165 A JP 2017030165A JP 2015149714 A JP2015149714 A JP 2015149714A JP 2015149714 A JP2015149714 A JP 2015149714A JP 2017030165 A JP2017030165 A JP 2017030165A
Authority
JP
Japan
Prior art keywords
carbon fiber
foam
cured layer
fiber cloth
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015149714A
Other languages
Japanese (ja)
Other versions
JP6537917B2 (en
Inventor
淳 大藪
Atsushi Oyabu
淳 大藪
尚幸 田辺
Naoyuki Tanabe
尚幸 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoue MTP KK
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue MTP KK, Inoac Corp filed Critical Inoue MTP KK
Priority to JP2015149714A priority Critical patent/JP6537917B2/en
Publication of JP2017030165A publication Critical patent/JP2017030165A/en
Application granted granted Critical
Publication of JP6537917B2 publication Critical patent/JP6537917B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbon fiber composite material with increased bonding strength of a bonding component, and a method of manufacturing the same.SOLUTION: A laminate 52 in which a resin-impregnated foam body 56 formed by impregnating thermosetting resin into a foam body having open cells is laminated between a plurality of carbon fiber prepregs 54 formed by impregnating thermosetting resin into carbon fiber cloth, is compressed by a molding tool 60 holding a bonding component 30 from a lamination direction of the laminate 52, the carbon fiber prepreg 54 on the outermost layer compressed by the bonding component 30 is deformed to follow an outer face shape of the bonding component 30, and the resin-impregnated foam body 56 is compressively deformed to follow the carbon fiber prepreg 54 of the outermost layer. Then, the laminate 52 is thermally set in a compressed state, a carbon fiber cloth hardened layer 14 formed by hardening the carbon fiber prepreg 54 and a foam body hardened layer 16 in which the resin-impregnated foam body 56 is hardened by deforming to follow the carbon fiber prepreg 54 are unified, and the bonding component 30 is embedded in an exposed state on an outer surface.SELECTED DRAWING: Figure 4

Description

本発明は、炭素繊維織布に含浸する熱硬化性樹脂を硬化させた炭素繊維布硬化層が複数積層された炭素繊維複合材およびその製造方法に関するものである。   The present invention relates to a carbon fiber composite material in which a plurality of carbon fiber cloth cured layers obtained by curing a thermosetting resin impregnated in a carbon fiber woven fabric are laminated, and a method for producing the same.

ノートパソコンやプリンタなどのOA機器の筐体や機械部品、釣竿、自動車や自転車等の車両部品等のように軽量性と高剛性との両立が求められる部材に、炭素繊維で強化したプラスチックが使用されている。この炭素繊維強化プラスチックとしては、炭素繊維をシート状に織った炭素繊維織物のような炭素繊維布に熱硬化性樹脂を含浸させて半乾燥させた炭素繊維プリプレグを複数枚重ねて成形型で圧縮加熱することで一体化した炭素繊維複合材が実用化されている(例えば、特許文献1参照)。   Plastics reinforced with carbon fiber are used for materials that require both light weight and high rigidity, such as casings and machine parts for OA equipment such as notebook computers and printers, fishing rods, and vehicle parts such as automobiles and bicycles. Has been. As this carbon fiber reinforced plastic, a carbon fiber cloth such as a carbon fiber woven carbon fiber sheet is impregnated with a thermosetting resin and a plurality of semi-dried carbon fiber prepregs are stacked and compressed with a mold. Carbon fiber composites integrated by heating have been put into practical use (see, for example, Patent Document 1).

特開2004−209717号公報JP 2004-209717 A 特開昭58−92522号公報JP 58-92522 A

所要の形状に成形した前記炭素繊維複合材は、他の構成部品と連結することで製品または製品の一部として成立することが多い。ここで、金属製や樹脂製の部材では、成形後の後工程としてタップ加工を行いネジ孔を形成したり、下孔にボルトやナット、ピン等を圧入等することで締結部を設け、該締結部を利用して他の構成部品が締結されている。しかし、前記炭素繊維プリプレグを硬化した前記炭素繊維複合材は連続繊維が樹脂層に混在もしくは短繊維が樹脂層に分散されているので、圧縮加熱後に後加工として、ネジ切りタップ加工締を行っても、繊維が分断されたり、樹脂層にネジ溝がうまく反転されず、加工そのものが困難である。   In many cases, the carbon fiber composite material formed into a required shape is formed as a product or a part of a product by being connected to other components. Here, in a metal or resin member, a tapping process is performed as a post-process after molding to form a screw hole, or a fastening part is provided by press-fitting a bolt, a nut, a pin, or the like into the lower hole, Other components are fastened using the fastening portion. However, in the carbon fiber composite material obtained by curing the carbon fiber prepreg, continuous fibers are mixed in the resin layer or short fibers are dispersed in the resin layer. However, the fiber is divided, and the thread groove is not reversed well in the resin layer, so that the processing itself is difficult.

このため、炭素繊維複合材に対しては、炭素繊維複合材の表裏からブラケットを介して接合部品を挟み込んで固定する方法が採用されている。しかし、ブラケットを用いる方法では、部品数の増加、作業工数の増加、外観状の制約などの不都合がある。   For this reason, with respect to the carbon fiber composite material, a method of sandwiching and fixing the joining component from the front and back of the carbon fiber composite material via the bracket is employed. However, the method using the bracket has disadvantages such as an increase in the number of parts, an increase in the number of work steps, and a restriction on the appearance.

ここで特許文献2には、炭素繊維片および接合部品を配置した射出成形型に樹脂を射出することで、炭素繊維片で強化された炭素繊維複合材に接合部材をインサートする技術が開示されている。しかし、特許文献2の炭素繊維複合材は、炭素繊維片を分散した型内に射出した樹脂を行き渡らせる必要があることから、炭素繊維片の配合量(密度)を高めると、接合部品の周囲に樹脂の欠損等が発生して接合不良を招くことが懸念され、接合部品の接合強度を高くできない。また、炭素繊維複合材における炭素繊維片の偏在を制御することが困難なため、製品毎に接合部品の接合強度にばらつきが生じたり、接合部品の配設位置に割れや欠けが生ずる要因ともなる。   Here, Patent Document 2 discloses a technique for inserting a joining member into a carbon fiber composite material reinforced with carbon fiber pieces by injecting a resin into an injection mold in which the carbon fiber pieces and joining parts are arranged. Yes. However, since the carbon fiber composite material of Patent Document 2 needs to spread the resin injected into the mold in which the carbon fiber pieces are dispersed, if the blending amount (density) of the carbon fiber pieces is increased, It is feared that a resin deficiency or the like may occur to cause poor bonding, and the bonding strength of the bonded parts cannot be increased. Moreover, since it is difficult to control the uneven distribution of the carbon fiber pieces in the carbon fiber composite material, the bonding strength of the joining parts varies from product to product, and the location where the joining parts are arranged may be cracked or chipped. .

すなわち本発明は、従来の技術に内在する前記問題に鑑み、これらを好適に解決するべく提案されたものであって、接合部品の接合強度を高めた炭素繊維複合材およびその製造方法を提供することを目的とする。   That is, the present invention has been proposed in view of the above-mentioned problems inherent in the prior art, and provides a carbon fiber composite material with improved joint strength of a joined part and a method for producing the same. For the purpose.

前記課題を克服し、所期の目的を達成するため、本願請求項1に係る発明は、
炭素繊維布が硬化した複数層の炭素繊維布硬化層と、
前記炭素繊維布硬化層の間に積層されると共に当該炭素繊維布硬化層と一体化されており、圧縮状態で発泡体が硬化した発泡体硬化層と、
最外層を形成する前記炭素繊維布硬化層から一部が露出する埋設状態で接合されている接合部品とを備え、
前記最外層の炭素繊維布硬化層が形成する凹状部に埋設状態で接合されている前記接合部品が、当該凹状部の形成部において前記発泡体硬化層と一体化した炭素繊維布硬化層により包囲されていることを要旨とする。
これによれば、炭素繊維布を硬化してなる炭素繊維布硬化層と発泡体を圧縮硬化させてなる発泡体硬化層とを一体化して形成された凹状の凹状部に接合部品が埋設状態で接合されているので、接合部品の周りに均質に炭素繊維布硬化層を設けることができる。すなわち、機械的特性(高比強度、高比弾性)に優れた炭素繊維布を硬化させた炭素繊維布硬化層が接合部品を包囲すると共に、当該炭素繊維布硬化層を発泡体硬化層で支持することで、炭素繊維布硬化層からの接合部品の脱落を防止し、接合部品の接合強度を高めることができる。
In order to overcome the above-mentioned problems and achieve the intended purpose, the invention according to claim 1 of the present application provides:
A plurality of carbon fiber cloth cured layers in which the carbon fiber cloth is cured;
The foam cured layer is laminated between the carbon fiber cloth cured layers and integrated with the carbon fiber cloth cured layer, and the foam is cured in a compressed state.
A joining component joined in an embedded state in which a part is exposed from the carbon fiber cloth cured layer forming the outermost layer,
The joining component joined in an embedded state to the concave portion formed by the outermost carbon fiber cloth cured layer is surrounded by a carbon fiber cloth cured layer integrated with the foam cured layer in the concave portion forming portion. It is a summary.
According to this, the joining component is embedded in the concave concave portion formed by integrating the carbon fiber cloth cured layer formed by curing the carbon fiber cloth and the foam cured layer formed by compressing and curing the foam. Since it is joined, the carbon fiber cloth cured layer can be provided uniformly around the joined part. In other words, a carbon fiber cloth cured layer obtained by curing a carbon fiber cloth having excellent mechanical properties (high specific strength, high specific elasticity) surrounds the joined part, and the carbon fiber cloth cured layer is supported by the foam cured layer. By doing so, it is possible to prevent the joining component from falling off from the carbon fiber cloth cured layer, and to increase the joining strength of the joining component.

請求項2に係る発明は、
前記凹状部から前記接合部品を引き抜く方向において、当該凹状部を形成する炭素繊維布硬化層と接合部品が係合するよう構成されたことを要旨とする。
これによれば、凹状部から接合部品が引き抜かれる方向に力が作用した際に、炭素繊維布硬化層に接合部品が係合することで、接合部品の引き抜きを防止することができる。
The invention according to claim 2
The gist is that the bonded part is engaged with the carbon fiber cloth cured layer forming the recessed part in the direction in which the bonded part is pulled out from the recessed part.
According to this, when a force acts in the direction in which the joined part is pulled out from the concave portion, the joined part is engaged with the carbon fiber cloth cured layer, thereby preventing the joined part from being pulled out.

更に、請求項1の構成を含む発明に関し、以下の構成を具有する発明とすることもできる。すなわち、熱硬化性樹脂が含浸された表面層を形成する炭素繊維布と、前記炭素繊維布に積層されると共に熱硬化性樹脂が含浸された樹脂含浸発泡体と、前記炭素繊維布が形成する凹状部に一体に埋め込まれた接合部品とが、前記樹脂含浸発泡体が前記接合部品を埋め込む状態で、前記炭素繊維布と接合部材の埋め込まれた部分が密着するように構成されている炭素繊維複合材であることを要旨とする。
また更に、前記炭素繊維布と前記樹脂含浸発泡体を複数積層させることもできる。複数積層させることで、炭素繊維複合材の強度や剛性が高まる。
Furthermore, regarding the invention including the configuration of claim 1, the invention having the following configuration can also be provided. That is, a carbon fiber cloth forming a surface layer impregnated with a thermosetting resin, a resin-impregnated foam laminated on the carbon fiber cloth and impregnated with a thermosetting resin, and the carbon fiber cloth are formed. A carbon fiber configured such that a bonded part integrally embedded in a concave part is in a state where the resin-impregnated foam embeds the bonded part and the carbon fiber cloth and the embedded part of the bonded member are in close contact with each other. The gist is that it is a composite material.
Furthermore, a plurality of the carbon fiber cloth and the resin-impregnated foam can be laminated. By laminating a plurality of layers, the strength and rigidity of the carbon fiber composite material are increased.

前記課題を克服し、所期の目的を達成するため、本願請求項3に係る発明は、
連続気泡を有する発泡体に熱硬化性樹脂を含浸させた樹脂含浸発泡体を炭素繊維布に熱硬化性樹脂を含浸させた複数の炭素繊維プリプレグの間に積層させてなる積層体を、型面に接合部品を保持した成形型により積層体の積層方向から圧縮して、当該接合部品により圧縮される最外層の炭素繊維プリプレグを接合部品の外面形状に追従変形させると共に、当該最外層の炭素繊維プリプレグに追従して前記樹脂含浸発泡体を圧縮変形させ、
前記積層体を圧縮した状態で加熱して、前記熱硬化性樹脂の硬化に伴い前記接合部品の外面形状に追従変形させた前記炭素繊維プリプレグを硬化してなる炭素繊維布硬化層と、当該炭素繊維プリプレグに追従変形させた前記樹脂含浸発泡体を硬化してなる発泡体硬化層とを一体化して、外表面に露出する状態で前記接合部品を埋設することを要旨とする。
これによれば、接合部品を保持した成形型で積層体を圧縮すると共に加熱することで、炭素繊維布硬化層と発泡体硬化層とを一体化しつつ最外層の炭素繊維布硬化層から露出する状態で接合部品が埋設される。この積層体が圧縮されるとき、炭素繊維布プリプレグは接合部材の形状に合わせて屈曲すると同時に、樹脂含浸発泡体は、その弾性特性によって接合部材の形状に密着することができるので、接合部品が強固に炭素繊維複合材に固定される。また、炭素繊維布硬化層と発泡体硬化層とを一体化しつつ接合部品が埋設されるので、成形型で圧縮および加熱する工程とは別に接合部品を取り付ける工程を設ける必要がない。また、得られた炭素繊維複合材は、接合部品の外面形状に追従した形態で発泡体硬化層と一体化された炭素繊維布硬化層により包囲されるので、接合部品の周りに均質に炭素繊維布硬化層を設けることができる。すなわち、機械的特性(高比強度、高比弾性)に優れた炭素繊維布を硬化させた炭素繊維布硬化層が接合部品を包囲すると共に当該炭素繊維布硬化層を発泡体硬化層で支持することにより、炭素繊維布硬化層からの接合部品の脱落を防止し、接合部品の接合強度を高めた炭素繊維複合材を得ることができる。
In order to overcome the above-mentioned problems and achieve the intended purpose, the invention according to claim 3 of the present application provides:
A layered product obtained by laminating a resin-impregnated foam obtained by impregnating a thermosetting resin into a foam having open cells and laminating between a plurality of carbon fiber prepregs obtained by impregnating a carbon fiber cloth with a thermosetting resin, The outermost carbon fiber prepreg compressed by the joining part is compressed by a molding die holding the joining part on the outer surface and deformed following the outer surface shape of the joining part, and the outermost carbon fiber is compressed. Following the prepreg, the resin-impregnated foam is compressed and deformed,
A carbon fiber cloth cured layer formed by curing the carbon fiber prepreg that is heated in a compressed state and is deformed following the outer surface shape of the joining component as the thermosetting resin is cured, and the carbon The gist is to embed the joint component in a state of being exposed to the outer surface by integrating a foam cured layer obtained by curing the resin-impregnated foam that has been deformed following the fiber prepreg.
According to this, by compressing and heating the laminate with the mold holding the joined parts, the carbon fiber cloth cured layer and the foam cured layer are integrated and exposed from the outermost carbon fiber cloth cured layer. The joining parts are buried in the state. When this laminate is compressed, the carbon fiber cloth prepreg is bent in accordance with the shape of the joining member, and at the same time, the resin-impregnated foam can be closely attached to the shape of the joining member due to its elastic characteristics, so that the joining component is Firmly fixed to the carbon fiber composite. Moreover, since the joining component is embedded while integrating the carbon fiber cloth cured layer and the foam cured layer, it is not necessary to provide a step of attaching the joining component separately from the step of compressing and heating with the molding die. Further, since the obtained carbon fiber composite material is surrounded by the carbon fiber cloth cured layer integrated with the foam cured layer in a form following the outer shape of the joined part, the carbon fiber is uniformly distributed around the joined part. A cloth cured layer can be provided. That is, a carbon fiber cloth cured layer obtained by curing a carbon fiber cloth having excellent mechanical properties (high specific strength, high specific elasticity) surrounds the joining component and supports the carbon fiber cloth cured layer with the foam cured layer. Accordingly, it is possible to obtain a carbon fiber composite material in which the joining component is prevented from falling off the carbon fiber cloth cured layer and the joining strength of the joining component is increased.

請求項4に係る発明は、
凹凸形状部が設けられた前記接合部品を保持した前記成形型により前記積層体を圧縮した状態で加熱して、前記最外層の炭素繊維プリプレグを前記接合部品の凹凸形状部に追従変形させた状態で、前記炭素繊維布硬化層と発泡体硬化層とを一体化することを要旨とする。
これによれば、接合部品に形成された凹凸形状部に炭素繊維布硬化層が嵌合した状態となるので、接合部品の接合強度をより高めることができる。
The invention according to claim 4
A state in which the outermost layer carbon fiber prepreg is deformed following the concavo-convex shape portion of the joint component by heating the laminate with the molding die holding the joint component provided with the concavo-convex shape portion. Then, the gist is to integrate the carbon fiber cloth cured layer and the foam cured layer.
According to this, since the carbon fiber cloth hardened layer is fitted to the concavo-convex shape portion formed in the joined part, the joining strength of the joined part can be further increased.

更に、請求項3の構成を含む発明に関し、以下の構成を具有する発明とすることもできる。すなわち、炭素繊維布に熱硬化性樹脂を含浸させて炭素繊維プリプレグを得る工程と、発泡体に熱硬化性樹脂を含浸させて樹脂含浸発泡体を得る工程と、金型に接合部品を保持する工程と、上記接合部品が保持された金型に上記炭素繊維プリプレグを積層する工程と、前記炭素繊維プリプレグに前記樹脂含浸発泡体を積層する工程と、前記金型を閉じて圧縮加熱する工程を含んでおり、前記金型に前記炭素繊維プリプレグを積層する工程により表面層を形成し、前記炭素繊維プリプレグに前記樹脂含浸発泡体を積層する少なくとも一回の工程が含まれてなる炭素繊維複合材の製造方法である。
更には、前記炭素繊維プリプレグに前記樹脂含浸発泡体を積層する工程が複数回あっても良い。
Furthermore, regarding the invention including the configuration of claim 3, the invention having the following configuration can also be provided. That is, a step of obtaining a carbon fiber prepreg by impregnating a carbon fiber cloth with a thermosetting resin, a step of obtaining a resin-impregnated foam by impregnating a foam with a thermosetting resin, and holding a joining component in a mold A step of laminating the carbon fiber prepreg on a mold holding the joining component, a step of laminating the resin-impregnated foam on the carbon fiber prepreg, and a step of compressing and heating the mold. A carbon fiber composite material comprising at least one step of forming a surface layer by laminating the carbon fiber prepreg on the mold and laminating the resin-impregnated foam on the carbon fiber prepreg. It is a manufacturing method.
Furthermore, the step of laminating the resin-impregnated foam on the carbon fiber prepreg may be performed a plurality of times.

本発明に係る炭素繊維複合材によれば、接合部品の接合強度を高めることができる。またその製造方法によれば、接合部品の接合強度が高い炭素繊維複合材が得られる。   According to the carbon fiber composite material according to the present invention, the bonding strength of the bonded component can be increased. Moreover, according to the manufacturing method, a carbon fiber composite material having a high bonding strength of the bonded parts can be obtained.

本発明の実施例に係る炭素繊維複合材の要部を概略で示す平面図である。It is a top view which shows roughly the principal part of the carbon fiber composite material which concerns on the Example of this invention. 実施例に係る炭素繊維複合材の要部を一部破断して示す斜視図である。It is a perspective view which fractures | ruptures and shows the principal part of the carbon fiber composite material which concerns on an Example. (a)は、図1のA−A線における概略断面図であり、(b)は、(a)のB−B線における接合部品の配設位置を拡大した概略断面図である。(a) is a schematic sectional drawing in the AA line of FIG. 1, (b) is the schematic sectional drawing to which the arrangement | positioning position of the joining components in the BB line of (a) was expanded. 実施例に係る炭素繊維複合材の製造工程を断面で示す概略図であって、(a)は積層体を成形型で圧縮および加熱する前の状態を示し、(b)は積層体を成形型で圧縮および加熱した状態を示す。It is the schematic which shows the manufacturing process of the carbon fiber composite material which concerns on an Example in a cross section, (a) shows the state before compressing and heating a laminated body with a shaping | molding die, (b) is a shaping | molding die for a laminated body The state compressed and heated by is shown.

次に、本発明に係る炭素繊維複合材およびその製造方法につき、好適な実施例を挙げて、添付図面を参照して以下に説明する。   Next, the carbon fiber composite material and the method for producing the same according to the present invention will be described below with reference to the accompanying drawings, taking preferred examples.

(炭素繊維複合材10について)
図1〜図3に示すように、本発明に係る炭素繊維複合材10は、炭素繊維布が硬化した炭素繊維布硬化層14と、圧縮状態で発泡体が硬化した発泡体硬化層16とを一体化した基材12に接合部品30が埋設されて、当該接合部品30を介して他の部品に着脱可能に取り付け可能に構成されている。ここで具体的に、炭素繊維布硬化層14は、炭素繊維布に熱硬化性樹脂を含浸した炭素繊維プリプレグ54が硬化した層であり、発泡体硬化層16は、熱可塑性樹脂を含浸させた連続気泡を有する発泡体を圧縮状態で硬化した層である。炭素繊維複合材10は、ドアトリムやコンソールボックス等の車両内装部品の外装板として使用可能な板状に形成され、接合部品30を介して車両内装部品の基部に連結されるようになっている。この炭素繊維複合材10の基材12は、複数の炭素繊維布硬化層14の間に少なくとも1つの前記発泡体硬化層16が積層され、炭素繊維布硬化層14、発泡体硬化層16および接合部品30が一体化することで構成されている。炭素繊維複合材10の基材12は、表裏面を形成する炭素繊維布硬化層14の間に発泡体硬化層16を積層して構成され、炭素繊維複合材10の外面(最外層)が炭素繊維布硬化層14により形成されている。以下の説明では、炭素繊維複合材10において、厚み方向の一方の外面(図3(a)における上面)を第1外面10Aと指称し、他方の外面(図2)を第2外面10Bと指称する場合がある。
(About carbon fiber composite material 10)
As shown in FIGS. 1 to 3, a carbon fiber composite material 10 according to the present invention includes a carbon fiber cloth cured layer 14 in which a carbon fiber cloth is cured, and a foam cured layer 16 in which the foam is cured in a compressed state. The joining component 30 is embedded in the integrated base material 12, and is configured to be detachably attachable to other components via the joining component 30. Specifically, the carbon fiber cloth cured layer 14 is a layer obtained by curing a carbon fiber prepreg 54 obtained by impregnating a carbon fiber cloth with a thermosetting resin, and the foam cured layer 16 is impregnated with a thermoplastic resin. It is a layer obtained by curing a foam having open cells in a compressed state. The carbon fiber composite material 10 is formed in a plate shape that can be used as an exterior plate of a vehicle interior part such as a door trim or a console box, and is connected to a base part of the vehicle interior part via a joining part 30. In the base 12 of the carbon fiber composite material 10, at least one foam cured layer 16 is laminated between a plurality of carbon fiber cloth cured layers 14, and the carbon fiber cloth cured layer 14, the foam cured layer 16 and the bonding are bonded. The parts 30 are integrated. The substrate 12 of the carbon fiber composite material 10 is configured by laminating a foam cured layer 16 between carbon fiber cloth cured layers 14 forming the front and back surfaces, and the outer surface (outermost layer) of the carbon fiber composite material 10 is carbon. It is formed by the fiber cloth cured layer 14. In the following description, in the carbon fiber composite material 10, one outer surface (the upper surface in FIG. 3A) in the thickness direction is referred to as a first outer surface 10A, and the other outer surface (FIG. 2) is referred to as a second outer surface 10B. There is a case.

前記炭素繊維複合材10の基材12には、図1、図2、図3(a)に示すように、基材12の厚み方向(積層方向)に凹んだ凹状部20が形成されており、全体または一部を基材12に埋設するよう当該凹状部20に前記接合部品30が嵌合した状態で固定されている。この凹状部20は、基材12の最外層の炭素繊維布硬化層14を形成する炭素繊維布(炭素繊維プリプレグ54)が前記接合部品30の外面形状に密着するように追従した形状で硬化することにより、基材12の厚み方向に凹んだ凹状に形成されて、当該凹状部20に嵌合した接合部品30の外面を、当該最外層の炭素繊維布硬化層14が包囲するようになっている。すなわち、凹状部20の開口を介して接合部品30の一部が最外層を形成する炭素繊維布硬化層14から基材12の外側に露出している。すなわち、前記基材12は、前記凹状部20を形成する炭素繊維布硬化層14に対して内部側で前記発泡体硬化層16が一体化しており、当該凹状部20の剛性を高めて、接合部品30の接合強度を高めるようにしてある。言い換えると、凹状部20を形成する最外層の炭素繊維布硬化層14が前記接合部品30に接合する接合層を構成し、最外層の炭素繊維布硬化層14に一体化した発泡体硬化層16が当該炭素繊維布硬化層14を支持する支持層を構成している。   As shown in FIGS. 1, 2, and 3 (a), the substrate 12 of the carbon fiber composite material 10 has a recessed portion 20 that is recessed in the thickness direction (stacking direction) of the substrate 12. In addition, the joint component 30 is fixed in a state where the joint part 30 is fitted to the concave portion 20 so as to be entirely or partially embedded in the base material 12. The concave portion 20 is cured in a shape that follows so that the carbon fiber cloth (carbon fiber prepreg 54) that forms the outermost carbon fiber cloth cured layer 14 of the base material 12 is in close contact with the outer surface shape of the joining component 30. Thus, the outermost carbon fiber cloth cured layer 14 surrounds the outer surface of the joining component 30 that is formed in a concave shape in the thickness direction of the base material 12 and fitted into the concave portion 20. Yes. That is, a part of the joining component 30 is exposed to the outside of the base material 12 from the carbon fiber cloth cured layer 14 that forms the outermost layer through the opening of the concave portion 20. That is, the base material 12 is integrated with the foam cured layer 16 on the inner side with respect to the carbon fiber cloth cured layer 14 forming the concave portion 20, and the rigidity of the concave portion 20 is increased and bonded. The joint strength of the component 30 is increased. In other words, the outermost carbon fiber cloth cured layer 14 forming the concave portion 20 constitutes a bonding layer to be bonded to the bonded component 30, and the foam cured layer 16 integrated with the outermost carbon fiber cloth cured layer 14. Constitutes a support layer for supporting the carbon fiber cloth cured layer 14.

ここで、前記凹状部20は、前記炭素繊維複合材10の第1外面10Aとの境界をなす境界縁22より奥側において、接合部品30の後述する拡大部38に対して当該凹状部20から接合部品30を引き抜く方向で係合する規制部が形成されている。すなわち、前記凹状部から接合部品30を引き抜く方向において、当該凹状部20をなす炭素繊維布硬化層14により形成される規制部26と接合部品30の拡大部38とが係合することで、凹状部20からの接合部品30の引き抜きを規制するようになっている。この規制部26は、当該規制部26の形成位置における凹状部20の内径寸法に対して、当該規制部26の形成位置より奥側における凹状部20の内径寸法が拡大することで形成されている。具体的に図3(a)では、前記凹状部20の境界縁22と底部24との間の周面において、前記接合部品30の外形形状に合わせて炭素繊維複合材10の厚み方向と向と交差する方向(凹状部20の内側(接合部品30側))へ炭素繊維布硬化層14が突出することで前記規制部26が形成されている。   Here, the concave portion 20 is located from the concave portion 20 to the enlarged portion 38 to be described later of the joining component 30 on the back side from the boundary edge 22 that forms a boundary with the first outer surface 10A of the carbon fiber composite material 10. A restricting portion that engages in the direction in which the joining component 30 is pulled out is formed. That is, in the direction in which the joining part 30 is pulled out from the concave part, the restricting part 26 formed by the carbon fiber cloth cured layer 14 forming the concave part 20 and the enlarged part 38 of the joining part 30 engage with each other. The extraction of the joining component 30 from the portion 20 is regulated. The restricting portion 26 is formed by expanding the inner diameter dimension of the recessed portion 20 on the back side from the forming position of the restricting portion 26 with respect to the inner diameter size of the recessed portion 20 at the forming position of the restricting portion 26. . Specifically, in FIG. 3A, the thickness direction and direction of the carbon fiber composite material 10 are matched with the outer shape of the joining component 30 on the peripheral surface between the boundary edge 22 and the bottom 24 of the concave portion 20. The restricting portion 26 is formed by the carbon fiber cloth cured layer 14 projecting in the intersecting direction (inside the recessed portion 20 (on the joining component 30 side)).

前記炭素繊維布硬化層14は、前記炭素繊維布に熱硬化性樹脂を含浸させた炭素繊維プリプレグ54を硬化して形成されている。前記炭素繊維布は、炭素繊維をシート状に形成したものであり、熱硬化性樹脂を含浸可能であると共に、軽くて剛性が高いという性質を持つ。炭素繊維布としては、例えば、炭素繊維を織った炭素繊維織物や、炭素繊維をシート状に結合した炭素繊維不織布等を採用することができる。ここで、前記炭素繊維布は、特に繊維が一方向のみではないものが好ましく、例えば、縦糸と横糸で構成される平織、綾織、朱子織及び3方向の糸で構成される三軸織等が好ましい。また、前記炭素繊維布は、熱硬化性樹脂の含浸及び剛性の点から、その繊維の重さを90〜400g/mとするのが好ましい。繊維の重さが90g/m未満の場合には、炭素繊維複合材10の強度、剛性が充分に確保することが困難になる。一方で、繊維の重さが400g/mを超える場合には、接合部材30を炭素繊維布硬化層14に密着させるように埋め込んで一体に成形することが困難になる。 The carbon fiber cloth cured layer 14 is formed by curing a carbon fiber prepreg 54 in which the carbon fiber cloth is impregnated with a thermosetting resin. The carbon fiber cloth is formed by forming a carbon fiber into a sheet shape, and can be impregnated with a thermosetting resin, and is light and highly rigid. As the carbon fiber cloth, for example, a carbon fiber woven fabric woven with carbon fibers, a carbon fiber nonwoven fabric in which carbon fibers are combined in a sheet shape, or the like can be employed. Here, the carbon fiber cloth is preferably one in which the fibers are not only in one direction, for example, plain weave composed of warp and weft, twill weave, satin weave, and triaxial weave composed of three-direction yarn. preferable. The carbon fiber cloth preferably has a fiber weight of 90 to 400 g / m 2 from the viewpoint of impregnation and rigidity of the thermosetting resin. When the fiber weight is less than 90 g / m 2 , it is difficult to ensure sufficient strength and rigidity of the carbon fiber composite material 10. On the other hand, when the weight of the fiber exceeds 400 g / m 2 , it becomes difficult to embed the bonding member 30 so as to be in close contact with the carbon fiber cloth cured layer 14 and integrally form the bonding member 30.

前記炭素繊維布に含浸する前記熱硬化性樹脂は、特に限定されないが、前記炭素繊維複合材10の剛性を高めるためには、硬化した際に熱硬化性樹脂自体がある程度の剛性を有するのが好ましい。例えば、熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、エポキシアクリレート樹脂、ビニルエステル樹脂、フェノール樹脂とエポキシ樹脂の混合物等を採用し得る。特に、前記熱硬化性樹脂としては、ノボラック系の2核体が低減された架橋度の高いフェノール樹脂化合物が好適である。なお、前記炭素繊維複合材10に難燃性が要求される場合には、前記熱硬化性樹脂としてフェノール樹脂のように良好な難燃性を示す樹脂を含浸することが好ましい。なお、熱硬化性樹脂は、前記炭素繊維布に含浸し易くするために、アルコール等の希釈剤で希釈するのが好ましい。また、前記炭素繊維布への熱硬化性樹脂の含浸量は、軽量化や剛性を高めるためには、前記炭素繊維プリプレグ54における前記熱硬化性樹脂の樹脂重量比率を30〜80%の範囲に設定するのが好ましく、該樹脂重量比率を40〜70%の範囲に設定するのがより好ましい。なお、前記樹脂重量比率は、(熱硬化性樹脂を含浸する前後における炭素繊維布と発泡体の合計重量の差)÷(熱硬化性樹脂を含浸した後の炭素繊維布と発泡体の合計重量)×100(%)の式により算出された値である。なお、前記樹脂重量比率の式における熱硬化性樹脂を含浸した後の重量は、熱硬化性樹脂を溶剤に溶かして使用した場合には、含浸後に乾燥させて溶剤を除去した後の重量である。   The thermosetting resin impregnated in the carbon fiber cloth is not particularly limited, but in order to increase the rigidity of the carbon fiber composite material 10, the thermosetting resin itself has a certain degree of rigidity when cured. preferable. For example, as the thermosetting resin, a phenol resin, an epoxy resin, an epoxy acrylate resin, a vinyl ester resin, a mixture of a phenol resin and an epoxy resin, or the like can be adopted. In particular, as the thermosetting resin, a phenol resin compound having a high degree of cross-linking in which novolak dinuclear bodies are reduced is suitable. In addition, when the said carbon fiber composite material 10 requires a flame retardance, it is preferable to impregnate resin which shows favorable flame retardance like a phenol resin as the said thermosetting resin. The thermosetting resin is preferably diluted with a diluent such as alcohol in order to easily impregnate the carbon fiber cloth. Further, the amount of the thermosetting resin impregnated into the carbon fiber cloth is set so that the resin weight ratio of the thermosetting resin in the carbon fiber prepreg 54 is in the range of 30 to 80% in order to reduce the weight and increase the rigidity. It is preferable to set, and it is more preferable to set the resin weight ratio in the range of 40 to 70%. The resin weight ratio is (the difference between the total weight of the carbon fiber cloth and the foam before and after impregnation with the thermosetting resin) / (the total weight of the carbon fiber cloth and the foam after impregnating the thermosetting resin). ) × 100 (%). The weight after impregnating the thermosetting resin in the resin weight ratio formula is the weight after removing the solvent by drying after impregnation when the thermosetting resin is dissolved in the solvent. .

前記発泡体硬化層16を形成する発泡体としては、特に限定されるものではない。この発泡体は、各気泡(セル)が連通する連続気泡構造からなる発泡体が適しているが、気泡が連通しない構造の発泡体を用いることも可能である。ここで、発泡体は連続気泡構造を有することで、熱硬化性樹脂を好適に含浸させることができるだけでなく、高い圧縮率で成形が可能となる。また、連続気泡構造の発泡体は、前記接合部品30を後述する嵌合状態で接合するのにも適している。前記発泡体としては、例えば、メラミン樹脂発泡体、ウレタン樹脂発泡体、ポリオレフィン(ポリアミド)樹脂発泡体などから選択することができる。発泡体硬化層16を形成する発泡体としてこれらの素材を選ぶことにより炭素繊維布の積層枚数に相当する厚みにまで圧縮成形が可能である。特に、前記発泡体として、メラミン樹脂発泡体もしくはポリアミド樹脂発泡体が好ましい。また、前記炭素繊維複合材10に難燃性が求められる場合には、含浸される熱硬化性樹脂としては難燃性のものが好ましく、メラミン樹脂発泡体は良好な難燃性を有するため、前記炭素繊維複合材10として好適なものである。前記発泡体の圧縮前の厚み(元厚み)は適宜に設定することができるが、例えば1〜25mmの範囲を挙げる。また、前記発泡体は、圧縮容易性、含浸性、軽量性、剛性等の観点から、圧縮する前の密度を5〜80kg/mとするのが好ましく、8〜12kg/mとするのがより好ましい。すなわち、発泡体の圧縮前の密度が5kg/m未満の場合には、炭素繊維複合材10の強度、剛性を充分に確保することが困難になる。一方で、発泡体の圧縮前の密度が80kg/mを超える場合には、発泡体への熱可塑性樹脂の含浸や発泡体の圧縮が困難になったり、炭素繊維複合材10の重量が増して取扱い性が低下する要因となる。 The foam forming the foam cured layer 16 is not particularly limited. As this foam, a foam having an open cell structure in which each bubble (cell) communicates is suitable, but a foam having a structure in which bubbles do not communicate can also be used. Here, since the foam has an open cell structure, it can be suitably impregnated with a thermosetting resin and can be molded at a high compression rate. Moreover, the foam of an open cell structure is suitable also for joining the said joining component 30 in the fitting state mentioned later. The foam can be selected from, for example, melamine resin foam, urethane resin foam, polyolefin (polyamide) resin foam, and the like. By selecting these materials as the foam for forming the foam cured layer 16, compression molding is possible to a thickness corresponding to the number of laminated carbon fiber cloths. In particular, the foam is preferably a melamine resin foam or a polyamide resin foam. When the carbon fiber composite material 10 is required to have flame retardancy, the impregnated thermosetting resin is preferably flame retardant, and the melamine resin foam has good flame retardancy. The carbon fiber composite material 10 is suitable. Although the thickness (original thickness) before compression of the foam can be appropriately set, for example, a range of 1 to 25 mm is given. In addition, the density of the foam before compression is preferably 5 to 80 kg / m 3 and more preferably 8 to 12 kg / m 3 from the viewpoints of ease of compression, impregnation, lightness, rigidity, and the like. Is more preferable. That is, when the density of the foam before compression is less than 5 kg / m 3 , it is difficult to sufficiently secure the strength and rigidity of the carbon fiber composite material 10. On the other hand, when the density of the foam before compression exceeds 80 kg / m 3 , it becomes difficult to impregnate the foam with the thermoplastic resin or compress the foam, or the weight of the carbon fiber composite material 10 increases. As a result, handling becomes a factor.

前記発泡体に含浸する熱硬化性樹脂は、特に限定されないが、前記炭素繊維複合材10の剛性を高めるためには、硬化した際に熱硬化性樹脂自体がある程度の剛性を有するのが好ましい。例えば、熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、フェノール樹脂とエポキシ樹脂の混合物等を採用し得る。特に、前記熱硬化性樹脂としては、ノボラック系の2核体が低減された架橋度の高いフェノール樹脂化合物が好適である。なお、前記炭素繊維複合材10に難燃性が要求される場合には、前記熱硬化性樹脂としてフェノール樹脂のように良好な難燃性を示す樹脂を含浸することが好ましい。なお、熱硬化性樹脂は、前記炭素繊維布に含浸し易くするために、アルコール等の希釈剤で希釈するのが好ましい。また、炭素繊維プリプレグ54に含浸させる熱硬化性樹脂と、発泡体に含浸させる熱硬化性樹脂とは、同じ種類のものでも異なる種類のものでもよいが、同じ種類の熱硬化性樹脂を含浸することが好ましく、積層体52を圧縮硬化した際に炭素繊維布硬化層14と発泡体硬化層16との密着性を高め、層間剥離を著しく抑制して両層を強固に一体化し得る。   The thermosetting resin impregnated in the foam is not particularly limited, but in order to increase the rigidity of the carbon fiber composite material 10, it is preferable that the thermosetting resin itself has a certain degree of rigidity when cured. For example, as the thermosetting resin, a phenol resin, an epoxy resin, a mixture of a phenol resin and an epoxy resin, or the like can be adopted. In particular, as the thermosetting resin, a phenol resin compound having a high degree of cross-linking in which novolak dinuclear bodies are reduced is suitable. In addition, when the said carbon fiber composite material 10 requires a flame retardance, it is preferable to impregnate resin which shows favorable flame retardance like a phenol resin as the said thermosetting resin. The thermosetting resin is preferably diluted with a diluent such as alcohol in order to easily impregnate the carbon fiber cloth. Further, the thermosetting resin impregnated in the carbon fiber prepreg 54 and the thermosetting resin impregnated in the foam may be the same type or different types, but the same type of thermosetting resin is impregnated. Preferably, when the laminate 52 is compression-cured, the adhesion between the carbon fiber cloth cured layer 14 and the foam cured layer 16 can be enhanced, and delamination can be remarkably suppressed, and both layers can be firmly integrated.

図1〜図3に示すように、前記接合部品30としては、他の部材との締結に用いられるネジやナット、ピン等の他の構成部品に対する連結に供される部品の他に、装飾用の飾り部品等を採用することができ、炭素繊維複合材10の凹状部20に埋設することで、当該接合部品30を強固に固定することが可能になる。なお、前記接合部品30の材質は、後述する圧縮および加熱に耐え得る程度の耐圧性および耐熱性を備えていれば特に限定されない。実施例では、一端面にネジ孔32が開口した金属製の所謂インサートナットを接合部品30として採用してある。すなわち、接合部品30の前記ネジ孔32に、他の構成部材に設けた雄ネジを螺挿することで、前記炭素繊維複合材10を他の構成部材に対して容易に連結可能となっている。   As shown in FIGS. 1-3, as said joining component 30, in addition to components used for connection to other components such as screws, nuts and pins used for fastening with other members, it is for decoration Such a decorative part can be employed, and by embedding it in the concave portion 20 of the carbon fiber composite material 10, it is possible to firmly fix the joint part 30. In addition, the material of the said joining component 30 will not be specifically limited if it has the pressure resistance and heat resistance of the grade which can endure the compression and heating which are mentioned later. In the embodiment, a so-called insert nut made of metal having a screw hole 32 opened at one end surface is employed as the joining component 30. That is, the carbon fiber composite material 10 can be easily connected to other constituent members by screwing male screws provided on other constituent members into the screw holes 32 of the joining component 30. .

また、前記接合部品30は、炭素繊維複合材10の第1外面10Aから前記ネジ孔32が開口する開口面34が露出する状態で凹状部20に嵌合するよう設けられて、当該凹状部20を形成する最外層の炭素繊維布硬化層14に接合部品30が接合されている。このように接合部品30は、前記凹状部20に嵌合することで、前記一体化した炭素繊維布硬化層14および発泡体硬化層16からなる基材12に対して厚み方向に埋め込まれた状態で固定されている。ここで、接合部品30の全体が前記凹状部20に嵌合して埋設される形態に限られるものでない。例えば、前記凹状部20の深さ寸法より長い接合部品30を嵌合させて、接合部品30の一部が凹状部20から突出するよう構成することもできる(図示せず)。換言すると、接合部品30において前記凹状部20に嵌合する部位だけが、炭素繊維布硬化層14に包囲された状態で接合される接合部となる。   In addition, the joining component 30 is provided so as to be fitted into the recessed portion 20 in a state where the opening surface 34 where the screw hole 32 opens from the first outer surface 10A of the carbon fiber composite material 10 is exposed. The joining component 30 is joined to the outermost carbon fiber cloth cured layer 14 that forms the structure. Thus, the joining component 30 is embedded in the thickness direction with respect to the base material 12 including the integrated carbon fiber cloth cured layer 14 and the foam cured layer 16 by fitting into the concave portion 20. It is fixed with. Here, the entire joining component 30 is not limited to a form in which the joining component 30 is embedded in the concave portion 20. For example, a joining component 30 longer than the depth of the concave portion 20 can be fitted so that a part of the joining component 30 protrudes from the concave portion 20 (not shown). In other words, only a portion of the joining component 30 that fits into the concave portion 20 is a joining portion that is joined in a state of being surrounded by the carbon fiber cloth cured layer 14.

ここで、前記接合部品30の外面形状は、特に限定されないが、前記凹状部20に嵌合する接合部に、前記凹状部20の前記規制部26に対して凹状部20の底部24側から境界縁22の方向で当接する抜け止め部38を設けることが好ましい。このような抜け止め部38は、接合部品30の外周面を凹凸状に形成したり、凹状部20の奥側において外形が拡大するよう形成することで設けることができる。例えば、図2、図3に示す接合部品30は、軸状部36の両端部に、当該軸状部36より外形の大きな拡大部38,40が形成されており、当該軸状部36より凹状部20の奥側に位置する拡大部38が前記抜け止め部として機能するようになっている。すなわち、前記接合部品30の外面形状に追従した形態で前記炭素繊維布硬化層14および発泡体硬化層16が形成される前記規制部26が、軸状部36および拡大部38,40により形成される接合部品30の拡大部38,40の間の溝状部分に嵌合することで、凹状部20から引き抜かれる方向に力が前記接合部品30に作用した際に、前記凹状部20の奥側(底部24側)に位置する拡大部38が当該規制部26に係合して、接合部品30が凹状部20から脱落するのを効果的に防止している。また、凹状部20の奥側に接合部品30を押し込む方向に力が作用した際には、発泡体硬化層16の弾性力によって、規制部26に炭素繊維布硬化層14を押し込め、接合部品30と炭素繊維布硬化層14、発泡体硬化層16の密着力を高めている。また、凹状部20を形成する表面層において炭素繊維布硬化層14が複数積層されている場合には、複数の炭素繊維布硬化層14および発泡体硬化層16が接合部品30の形状に合わせて密着している。ここで、複数の炭素繊維布硬化層14は一定の深さまで接合部品30の形状に追従しているものの、それより深い領域では、破断している。ここでいう破断とは、炭素繊維布が接合部材30によって圧縮されることで、当該繊維布の伸びを超えて、接合部材30の圧縮面で破断し接合部材30が繊維布を貫通している状態をいう。接合部品30の底部に圧縮される領域では、表面層と裏面層(第1外面10Aと第2外面10B)の炭素繊維布硬化層14と発泡体硬化層16が圧縮されており、発泡体硬化層16が中実になっている。ここで、前記抜け止め部は、接合部品30を錐体形状に形成したり、当該接合部品30の外周面に凹み部や突出部を設けることによっても形成することが可能であり、当該接合部品30の外面形状に追従した形態で炭素繊維布硬化層14および発泡体硬化層16が形成されることで、接合部品30の引き抜きや押し込みを防止することが可能である。   Here, the shape of the outer surface of the joining component 30 is not particularly limited, but it is a boundary from the bottom 24 side of the recessed portion 20 to the restricting portion 26 of the recessed portion 20 at the joining portion that fits into the recessed portion 20. It is preferable to provide a retaining portion 38 that abuts in the direction of the edge 22. Such a retaining portion 38 can be provided by forming the outer peripheral surface of the joining component 30 in a concavo-convex shape or by forming the outer shape on the back side of the concave portion 20. For example, in the joining component 30 shown in FIGS. 2 and 3, enlarged portions 38 and 40 having an outer shape larger than that of the shaft-shaped portion 36 are formed at both ends of the shaft-shaped portion 36, and are concave from the shaft-shaped portion 36. An enlarged portion 38 located on the back side of the portion 20 functions as the retaining portion. That is, the restricting portion 26 in which the carbon fiber cloth cured layer 14 and the foam cured layer 16 are formed in a form following the outer shape of the joining component 30 is formed by the shaft-shaped portion 36 and the enlarged portions 38 and 40. When the force acts on the joining part 30 in the direction of being pulled out from the recessed part 20 by fitting in the groove-like part between the enlarged parts 38 and 40 of the joining part 30 to be connected, the back side of the recessed part 20 The enlarged portion 38 located on the (bottom portion 24 side) engages with the restricting portion 26, and effectively prevents the joining component 30 from falling off the concave portion 20. In addition, when a force acts in the direction in which the joining component 30 is pushed into the back side of the concave portion 20, the carbon fiber cloth cured layer 14 is pushed into the restricting portion 26 by the elastic force of the foam cured layer 16, and the joining component 30. And the adhesion of the carbon fiber cloth cured layer 14 and the foam cured layer 16 are enhanced. Further, when a plurality of carbon fiber cloth cured layers 14 are laminated on the surface layer that forms the concave portion 20, the plurality of carbon fiber cloth cured layers 14 and the foam cured layer 16 are matched to the shape of the joining component 30. It is in close contact. Here, the plurality of carbon fiber cloth cured layers 14 follow the shape of the joining component 30 to a certain depth, but are broken in a deeper region. The break here means that the carbon fiber cloth is compressed by the bonding member 30, exceeds the elongation of the fiber cloth, breaks at the compression surface of the bonding member 30, and the bonding member 30 penetrates the fiber cloth. State. In the region compressed to the bottom of the joining component 30, the carbon fiber cloth cured layer 14 and the foam cured layer 16 of the front surface layer and the back surface layer (the first outer surface 10A and the second outer surface 10B) are compressed, and the foam is cured. Layer 16 is solid. Here, the retaining portion can also be formed by forming the joint component 30 in a cone shape, or by providing a recess or protrusion on the outer peripheral surface of the joint component 30. By forming the carbon fiber cloth hardened layer 14 and the foam hardened layer 16 in a form following the outer shape of the joint 30, it is possible to prevent the joining component 30 from being pulled out or pushed.

また、図3(b)に示すように、前記接合部品30には、前記凹状部20に嵌合する接合部に、当該凹状部20の中心線(凹状部20の奥行き方向)を軸線とした回転方向への回転を規制する滑り止め部42が設けることが好ましい。このような、滑り止め部42は、接合部品30の外周面を凹凸状に形成したり、凹状部20の中心線に交差する方向での接合部品30の断面形状を非円形状に形成することで設けることができる。例えば、図3(b)および図2に示す接合部品30は、前記拡大部38,40の外周面に、凹状部20の中心線を軸線とした回転方向に交差する傾斜状の溝部を周方向に離間して複数形成されており、当該溝部により形成される微少な突起42が前記滑り止め部として機能するようになっている。また、凹状部20からの接合部品30の引き抜き方向に対して交差するよう前記溝部を形成することで、突起42が前記抜け止め部として機能するよう構成することができる。   Further, as shown in FIG. 3B, the joining component 30 has an axis that is the center line of the concave portion 20 (in the depth direction of the concave portion 20). It is preferable to provide a non-slip portion 42 that restricts rotation in the rotation direction. Such an anti-slip part 42 forms the outer peripheral surface of the joining part 30 in an uneven shape, or forms the cross-sectional shape of the joining part 30 in a direction intersecting the center line of the recessed part 20 in a noncircular shape. Can be provided. For example, in the joining component 30 shown in FIG. 3B and FIG. 2, an inclined groove portion that intersects the rotation direction with the center line of the concave portion 20 as the axis is formed on the outer peripheral surface of the enlarged portions 38 and 40 in the circumferential direction. A plurality of projections 42 formed by the groove portions function as the anti-slip portions. Further, by forming the groove portion so as to intersect with the direction in which the joining component 30 is pulled out from the concave portion 20, the protrusion 42 can be configured to function as the retaining portion.

このような滑り止め部42は、所謂ローレット加工や、ブラスト加工等の接合部品30外周面に凹凸形状を形成可能な各種の加工方法により形成することができる。なお、ローレット加工により突起42を形成する際には、凹状部20の中心線に対して溝部が傾斜した斜めローレットや、凹状部20の中心線に沿って溝部が延在する平目ローレット、溝部を網目状に形成した綾目ローレット等を採用できる。なお、図2では、溝部を網目状に形成した状態を示してある。言い換えると、滑り止め部42は、接合部品30の外表面から突出するよう形成された微少な突起42の間の隙間に炭素繊維が嵌合することで形成される。すなわち、前記接合部品30の外面形状に追従した形態で形成される炭素繊維布硬化層14が接合部品30の滑り止め部(突起)42に嵌合することで、凹状部20の内部で接合部品30が回転する方向に力が作用した際に接合部品30が回転するのを効果的に防止することができる。このような滑り止め部42は、ボルトやナットのように回転方向に力が作用する部品を接合部品30として埋設する場合に特に有効である。また、前記滑り止め部42は、接合部品30の断面を楕円や多角形状に形成することで形成することも可能である。   Such an anti-slip portion 42 can be formed by various processing methods capable of forming a concavo-convex shape on the outer peripheral surface of the joining component 30 such as so-called knurling or blasting. When forming the protrusions 42 by knurling, an oblique knurl in which the groove portion is inclined with respect to the center line of the concave portion 20, a flat knurling in which the groove portion extends along the center line of the concave portion 20, and the groove portion are used. A twill knurled or the like formed in a mesh shape can be employed. FIG. 2 shows a state in which the grooves are formed in a mesh shape. In other words, the anti-slip portion 42 is formed by fitting the carbon fiber into a gap between the minute protrusions 42 formed so as to protrude from the outer surface of the joining component 30. That is, the carbon fiber cloth cured layer 14 formed in a form following the outer surface shape of the joining component 30 is fitted into the anti-slip portion (projection) 42 of the joining component 30, so that the joining component is formed inside the recessed portion 20. It is possible to effectively prevent the joining component 30 from rotating when a force acts in the direction in which the 30 rotates. Such an anti-slip portion 42 is particularly effective when a component such as a bolt or a nut, on which a force acts in the rotational direction, is embedded as the joining component 30. The anti-slip portion 42 can also be formed by forming the cross-section of the joining component 30 into an ellipse or a polygon.

(炭素繊維複合材10の製造方法について)
次に、前述した炭素繊維複合材10の製造方法について説明する。図4に示すように、炭素繊維複合材10は、成形型60を用いて製造される。前記成形型60は、炭素繊維複合材10における第1外面10A(第1表面層とも称す)を成形する第1型面62aを有する第1型62と、炭素繊維複合材10における第2外面10B(第2表面層とも称す)を成形する第2型面64aを有する第2型64とから構成される。そして、前記成形型60(第1および第2型62,64)の型面62a,64aに、成型後に成形型60から離脱可能な状態で前記接合部品30を保持する保持手段66が設けられている。ここで、接合部品30は、第1および第2型62,64の何れか片方の型に保持してもよく、また両方の型に保持してもよい。すなわち、片方の型に接合部品30を保持した成形型60で前記積層体52を圧縮加熱することで、得られる炭素繊維複合材10の片面に接合部品30を埋設することができ、両方の型に接合部品30を保持した成形型60で前記積層体52を圧縮加熱することで、得られる炭素繊維複合材10の両面に接合部品30を埋設することができる。なお、前記成形型60に保持する接合部品30の数は適宜に決定することができ、複数の接合部品30を保持した成形型60で前記積層体52を圧縮加熱することで、得られる炭素繊維複合材10に複数の接合部品30を埋設することができる。図4では、前記第1型面62aに形成した1つの前記保持手段66に接合部品30を保持してある。なお、図4では、保持手段66は、接合部品30の前記ネジ孔32に挿入されるピンで構成されている。
(About the manufacturing method of the carbon fiber composite material 10)
Next, the manufacturing method of the carbon fiber composite material 10 mentioned above is demonstrated. As shown in FIG. 4, the carbon fiber composite material 10 is manufactured using a mold 60. The mold 60 includes a first mold 62 having a first mold surface 62a for molding a first outer surface 10A (also referred to as a first surface layer) of the carbon fiber composite material 10, and a second outer surface 10B of the carbon fiber composite material 10. And a second mold 64 having a second mold surface 64a for molding (also referred to as a second surface layer). A holding means 66 is provided on the mold surfaces 62a and 64a of the mold 60 (first and second molds 62 and 64) to hold the joining component 30 in a state of being removable from the mold 60 after molding. Yes. Here, the joining component 30 may be held in one of the first and second molds 62 and 64, or may be held in both molds. That is, by compressing and heating the laminate 52 with the molding die 60 holding the joining component 30 in one mold, the joining component 30 can be embedded in one side of the carbon fiber composite material 10 obtained. By compressing and heating the laminated body 52 with the molding die 60 holding the joint component 30 on the surface, the joint component 30 can be embedded on both surfaces of the obtained carbon fiber composite material 10. In addition, the number of the joining components 30 held in the molding die 60 can be determined as appropriate, and the carbon fiber obtained by compressing and heating the laminate 52 with the molding die 60 holding a plurality of joining components 30 is obtained. A plurality of joining parts 30 can be embedded in the composite material 10. In FIG. 4, the joining component 30 is held by one holding means 66 formed on the first mold surface 62a. In FIG. 4, the holding means 66 is constituted by a pin inserted into the screw hole 32 of the joining component 30.

また、第1型面62aには凹凸形成部68が形成されており、積層体52を圧縮加熱することで、炭素繊維複合材10の第1外面10Aの適宜位置に凹凸を形成するよう構成されている。この凹凸は、図示した凸形状や凹形状に限定されず、曲面が隆起することで形成されるなだらかな凹凸であってもよい。さらに、凹凸領域が異なる面積の凹凸部を、各々第1型面62aには凸部、第2型面64aには凹部として設けることも可能である。このように、積層体52を圧縮加熱する成形型60の型面62a,64aは、必要な炭素繊維複合材10の形状に合わせて形成することができる。図4では、前記第1型面62aに、炭素繊維複合材10の第1外面10Aに凹部18を形成する凹凸形成部68が設けられている。また、この成形型60には電熱ヒーター等の加熱手段(図示せず)が設けられており、積層体52を圧縮した状態で前記熱硬化性樹脂の硬化反応に必要可能な温度まで加熱し得るよう構成されている。   Further, the first mold surface 62a is provided with an unevenness forming portion 68, and is configured to form unevenness at an appropriate position on the first outer surface 10A of the carbon fiber composite material 10 by compressing and heating the laminate 52. ing. The unevenness is not limited to the illustrated convex shape or concave shape, and may be a gentle unevenness formed by a raised curved surface. Furthermore, it is also possible to provide uneven portions having different areas of uneven regions as convex portions on the first mold surface 62a and concave portions on the second mold surface 64a. As described above, the mold surfaces 62 a and 64 a of the mold 60 for compressing and heating the laminate 52 can be formed according to the shape of the necessary carbon fiber composite material 10. In FIG. 4, the first mold surface 62 a is provided with a concavo-convex forming portion 68 that forms the concave portion 18 in the first outer surface 10 </ b> A of the carbon fiber composite material 10. Further, the mold 60 is provided with heating means (not shown) such as an electric heater, and can be heated to a temperature necessary for the curing reaction of the thermosetting resin in a state where the laminate 52 is compressed. It is configured as follows.

また、前記炭素繊維布に熱硬化性樹脂を含浸させて前記炭素繊維プリプレグ54を作成する(炭素繊維プリプレグを得る工程)。この炭素繊維プリプレグ54は、液状の熱硬化性樹脂溶液中に、所要の平面サイズに裁断した前記炭素繊維布を浸漬して、該炭素繊維布に熱硬化性樹脂を含浸させることで作成することができる。また、前記発泡体に熱硬化性樹脂を含浸させて前記樹脂含浸発泡体56を作成する(樹脂含浸発泡体を得る工程)。この樹脂含浸発泡体56は、炭素繊維プリプレグ54と同様に、液状の熱硬化性樹脂溶液中に、所要の平面サイズに裁断した前記発泡体を浸漬して、該発泡体に熱硬化性樹脂を含浸させることで作成することができる。また、溶剤に熱硬化性樹脂を溶かした溶液を含浸させた後に、熱硬化性樹脂の硬化反応を生じない温度で乾燥させて希釈剤を除去することで、炭素繊維プリプレグ54や樹脂含浸発泡体56を容易に作成することが可能になる。なお、炭素繊維布や発泡体に熱硬化性樹脂を含浸する方法としては、前述した熱硬化性樹脂溶液に浸漬する方法の他、スプレーにより熱硬化性樹脂溶液を吹き付けて含浸させる方法や、ロールコータにより熱硬化性樹脂溶液を塗布する方法等を採用することができる。   Further, the carbon fiber prepreg 54 is prepared by impregnating the carbon fiber cloth with a thermosetting resin (step of obtaining a carbon fiber prepreg). The carbon fiber prepreg 54 is prepared by immersing the carbon fiber cloth cut into a required plane size in a liquid thermosetting resin solution and impregnating the carbon fiber cloth with the thermosetting resin. Can do. Further, the resin-impregnated foam 56 is prepared by impregnating the foam with a thermosetting resin (step of obtaining a resin-impregnated foam). In the same manner as the carbon fiber prepreg 54, the resin-impregnated foam 56 is obtained by immersing the foam cut into a required plane size in a liquid thermosetting resin solution, and applying the thermosetting resin to the foam. It can be created by impregnation. Further, after impregnating a solution in which a thermosetting resin is dissolved in a solvent, the carbon fiber prepreg 54 and the resin-impregnated foam are removed by drying at a temperature at which the curing reaction of the thermosetting resin does not occur and removing the diluent. 56 can be easily created. In addition, as a method of impregnating a carbon fiber cloth or foam with a thermosetting resin, in addition to the method of immersing in the thermosetting resin solution described above, a method of spraying and impregnating the thermosetting resin solution with a spray, a roll A method of applying a thermosetting resin solution with a coater can be employed.

ここで、前記炭素繊維布および発泡体への熱硬化性樹脂の含浸量は、軽量化や剛性を高めるために、前記炭素繊維プリプレグ54における前記熱硬化性樹脂の重量比率を30〜80%の範囲に設定するのが好ましく、該重量比率を40〜70%の範囲に設定するのがより好ましい。なお、熱硬化性樹脂を希釈剤に溶かして含浸させた場合には、含浸後に乾燥させて希釈剤を除去した後の重量を基準にして前記樹脂重量比率が求められる。また、炭素繊維布や発泡体に対して同じ種類の熱硬化性樹脂を含浸することで、積層体52を圧縮加熱した際に、炭素繊維布硬化層14および発泡体硬化層16を効果的に一体化して基材12の剛性を高めることができる。   Here, the amount of the thermosetting resin impregnated into the carbon fiber cloth and the foam is 30 to 80% by weight of the thermosetting resin in the carbon fiber prepreg 54 in order to reduce weight and increase rigidity. The range is preferably set, and the weight ratio is more preferably set in the range of 40 to 70%. When the thermosetting resin is dissolved in the diluent and impregnated, the resin weight ratio is obtained based on the weight after drying after the impregnation and removing the diluent. Further, by impregnating the carbon fiber cloth or the foam with the same type of thermosetting resin, the carbon fiber cloth cured layer 14 and the foam cured layer 16 are effectively formed when the laminate 52 is compressed and heated. The rigidity of the base material 12 can be increased by integrating.

そして、図4(a)に示すように、最外層に前記炭素繊維プリプレグ54が位置するように、複数の炭素繊維プリプレグ54の間に樹脂含浸発泡体56を積層した積層体52を、前記接合部品30を保持した前記成形型60の第1型62および第2型64の間に配置して、当該積層体52における炭素繊維プリプレグ54および樹脂含浸発泡体56の積層方向から圧縮すると共に圧縮状態で加熱する。すなわち、成形型60に接合部品30を保持する工程と、当該接合部品30が保持された成形型60に炭素繊維プリプレグ54を積層する工程と、前記炭素繊維プリプレグ54に前記樹脂含浸発泡体56を積層する工程と、前記成形型60を閉じて積層体52を圧縮加熱する工程とが含まれて、前記成形型60に前記炭素繊維プリプレグ54を積層する工程により炭素繊維複合材10の表面層を形成するようになっている。ここで、積層する炭素繊維プリプレグ54および樹脂含浸発泡体56の枚数は適宜に定めることができる。例えば、炭素繊維プリプレグ54と樹脂含浸発泡体56とを複数枚重ねて積層したとしても、樹脂含浸発泡体の弾性力によって、圧縮量に関係なく金型の凹凸形成部68が、忠実に反転されることにより凹部の深さや、凸部の高さを調整することが可能である。すなわち、炭素繊維プリプレグ54を複数枚重ねても、樹脂含浸発泡体56を複数枚重ねることで、得られる炭素繊維複合材10の立体形状を複雑にすることができる。また、最外層を形成する一対の炭素繊維プリプレグ54の間に、炭素繊維プリプレグ54および樹脂含浸発泡体56を複数枚重ねて積層することで、得られる炭素繊維複合材10の内部に炭素繊維布硬化層14を形成することができ、炭素繊維複合材10の耐引張荷重や耐曲げ荷重の向上を図りうる利点がある。   Then, as shown in FIG. 4A, a laminated body 52 in which a resin-impregnated foam 56 is laminated between a plurality of carbon fiber prepregs 54 so that the carbon fiber prepregs 54 are located in the outermost layer is joined Arranged between the first mold 62 and the second mold 64 of the mold 60 holding the component 30, and compressed from the stacking direction of the carbon fiber prepreg 54 and the resin-impregnated foam 56 in the laminate 52. Heat with. That is, the step of holding the joining component 30 on the molding die 60, the step of laminating the carbon fiber prepreg 54 on the molding die 60 on which the joining component 30 is held, and the resin impregnated foam 56 on the carbon fiber prepreg 54 A step of laminating, and a step of compressing and heating the laminated body 52 by closing the molding die 60, and a step of laminating the carbon fiber prepreg 54 on the molding die 60 to form a surface layer of the carbon fiber composite material 10. It comes to form. Here, the number of carbon fiber prepregs 54 and resin-impregnated foams 56 to be laminated can be determined as appropriate. For example, even if a plurality of carbon fiber prepregs 54 and resin-impregnated foams 56 are stacked and laminated, the unevenness forming portion 68 of the mold is faithfully inverted by the elastic force of the resin-impregnated foam regardless of the compression amount. This makes it possible to adjust the depth of the concave portion and the height of the convex portion. That is, even if a plurality of carbon fiber prepregs 54 are stacked, the three-dimensional shape of the obtained carbon fiber composite material 10 can be complicated by stacking a plurality of resin-impregnated foams 56. Further, a plurality of carbon fiber prepregs 54 and a plurality of resin-impregnated foams 56 are stacked and laminated between a pair of carbon fiber prepregs 54 forming the outermost layer, so that a carbon fiber cloth is obtained inside the obtained carbon fiber composite material 10. The cured layer 14 can be formed, and there is an advantage that the tensile load and bending load of the carbon fiber composite material 10 can be improved.

また、炭素繊維複合材10の一方の外表面から最も近い樹脂含浸発泡体56までの間に存在する炭素繊維プリプレグ54の数と、炭素繊維複合材10の他方の外表面から最も近い樹脂含浸発泡体56までの間に存在する炭素繊維プリプレグ54の数とが等しくなるよう積層したり、当該炭素繊維プリプレグ54の数を異なるよう積層することも可能である。積層体52の圧縮に伴って接合部品30や凹凸形成部68により炭素繊維プリプレグ54を圧縮する際に、接合部品30の埋設位置や凹凸形成部68による凹凸形状の形成位置に応じて、炭素繊維複合材10の両外表面側に位置する炭素繊維プリプレグ54の枚数を調整することで、反りのない炭素繊維複合材10を得ることができる。すなわち、前記炭素繊維プリプレグ54に前記樹脂含浸発泡体56を積層する少なくとも一回の工程が含まれており、当該炭素繊維プリプレグ54に前記樹脂含浸発泡体56を積層する工程を複数回設けることが可能である。   Further, the number of carbon fiber prepregs 54 existing between one outer surface of the carbon fiber composite material 10 and the nearest resin impregnated foam 56 and the resin impregnated foam material closest to the other outer surface of the carbon fiber composite material 10. It is also possible to laminate so that the number of carbon fiber prepregs 54 existing up to the body 56 is equal, or to laminate the carbon fiber prepregs 54 so as to have different numbers. When the carbon fiber prepreg 54 is compressed by the joining component 30 or the concavo-convex forming portion 68 in accordance with the compression of the laminate 52, the carbon fiber depends on the burying position of the joining component 30 or the concavo-convex forming position by the concavo-convex forming portion 68. By adjusting the number of carbon fiber prepregs 54 located on both outer surface sides of the composite material 10, the carbon fiber composite material 10 without warping can be obtained. That is, at least one step of laminating the resin-impregnated foam 56 on the carbon fiber prepreg 54 is included, and the step of laminating the resin-impregnated foam 56 on the carbon fiber prepreg 54 may be provided a plurality of times. Is possible.

例えば、炭素繊維複合材10の両面に均等になるよう接合部品30を埋設したり、凹凸形状を形成する場合には、炭素繊維複合材10の両面側に位置する炭素繊維プリプレグ54の枚数を等しくすることで、接合部品30の埋設や凹凸形状の形成を良好に行いつつ、炭素繊維複合材10の反りを押さえることができる。一方で、炭素繊維複合材10の片面に接合部品30を埋設したり、凹凸形状を形成する場合のように、埋設される接合部品30や形成する凹凸形状が炭素繊維複合材10の両面で不均等になるような場合には、炭素繊維複合材10の両面側に位置する炭素繊維プリプレグ54の枚数を異ならせることで、接合部品30の埋設や基材12に対して凹凸形状の形成を良好に行いつつ、炭素繊維複合材10の反りを押さえることができる。すなわち、積層体52を圧縮するのに伴って接合部品30等により押圧されて炭素繊維プリプレグ54が引っ張られる外表面と反対側の外表面側に積層する炭素繊維プリプレグ54の枚数を増やすことで、接合部品30の埋設側に炭素繊維複合材10が反り返るのを効果的に防止することが可能になる。なお、図4(a)では、炭素繊維複合材10において接合部品30を埋設する第1外面10A側に炭素繊維プリプレグ54を1枚配置し、反対となる第2外面60B側に炭素繊維プリプレグ54を2枚重ねて配置した状態を図示してある。   For example, when embedding the joining component 30 so as to be even on both surfaces of the carbon fiber composite material 10 or forming an uneven shape, the number of carbon fiber prepregs 54 positioned on both surfaces of the carbon fiber composite material 10 is equal. By doing so, it is possible to suppress warping of the carbon fiber composite material 10 while satisfactorily embedding the joining component 30 and forming the uneven shape. On the other hand, the bonding component 30 to be embedded and the uneven shape to be formed are not good on both surfaces of the carbon fiber composite material 10 as in the case where the bonding component 30 is embedded in one surface of the carbon fiber composite material 10 or the uneven shape is formed. In such a case, the number of the carbon fiber prepregs 54 positioned on both sides of the carbon fiber composite material 10 is made different so that the joining part 30 is embedded and the uneven shape is formed on the base material 12. The warpage of the carbon fiber composite material 10 can be suppressed while performing the above. That is, by increasing the number of carbon fiber prepregs 54 laminated on the outer surface side opposite to the outer surface that is pressed by the joining component 30 or the like and pulled by the carbon fiber prepreg 54 as the laminate 52 is compressed, It is possible to effectively prevent the carbon fiber composite material 10 from warping to the side where the joining component 30 is embedded. In FIG. 4A, one carbon fiber prepreg 54 is disposed on the first outer surface 10A side where the joining component 30 is embedded in the carbon fiber composite material 10, and the carbon fiber prepreg 54 is disposed on the opposite second outer surface 60B side. A state in which two sheets are stacked is shown.

前記積層体52を圧縮することで、炭素繊維プリプレグ54および樹脂含浸発泡体56は、前記型面62a,64aおよび前記接合部品30の外面の凹凸形状部(軸状部36や拡大部38,40、滑り止め部42)へ追従した形状に変形する。この際、圧縮に反発する力(樹脂含浸発泡体56の反発力や圧縮に伴い流動する熱硬化性樹脂)により積層体52の内部側から炭素繊維プリプレグ54が押圧されることで、接合部品により圧縮される最外層の炭素繊維プリプレグ54を、当該接合部品30に密着するよう追従変形させることができる。すなわち、接合部品30の軸状部36および拡大部38,40に追従した形状に最外層の炭素繊維プリプレグ54が変形することで前記規制部26を形成することができる。また、炭素繊維プリプレグ54を接合部品30に押し付けることで、接合部品30の滑り止め部42の隙間に炭素繊維プリプレグ54の炭素繊維が嵌まり込ませることができる。   By compressing the laminated body 52, the carbon fiber prepreg 54 and the resin-impregnated foam 56 are formed into the concave and convex portions (the shaft-shaped portion 36 and the enlarged portions 38, 40) on the outer surfaces of the mold surfaces 62a and 64a and the joining component 30. , It is deformed into a shape following the anti-slip portion 42). At this time, the carbon fiber prepreg 54 is pressed from the inner side of the laminate 52 by the force repelling compression (the repulsive force of the resin-impregnated foam 56 and the thermosetting resin flowing along with the compression). The outermost carbon fiber prepreg 54 to be compressed can be made to follow and deform so as to be in close contact with the joint component 30. That is, the restricting portion 26 can be formed by deforming the outermost carbon fiber prepreg 54 into a shape that follows the shaft-like portion 36 and the enlarged portions 38 and 40 of the joining component 30. Further, by pressing the carbon fiber prepreg 54 against the joining component 30, the carbon fiber of the carbon fiber prepreg 54 can be fitted into the gap of the anti-slip portion 42 of the joining component 30.

そして、前記積層体52を圧縮した状態で熱硬化性樹脂を反応硬化することで、炭素繊維プリプレグ54が硬化した炭素繊維布硬化層14と、樹脂含浸発泡体56が硬化した発泡体硬化層16とが、前記型面62a,64aおよび前記接合部品30の外面形状に追従した形態で一体化されると共に、前記接合部品30の一部(開口面34)が炭素繊維布硬化層14から露出した状態で接合される。すなわち、積層体52の圧縮に伴って、前記接合部品により圧縮される最外層の炭素繊維プリプレグ54を接合部品30の外面形状に追従変形させると共に、当該最外層の炭素繊維プリプレグ54に追従して樹脂含浸発泡体56を圧縮変形させた状態で加熱により硬化することで、接合部品30の外面形状に追従変形させた炭素繊維プリプレグ54を硬化してなる炭素繊維布硬化層14と、当該炭素繊維プリプレグ54に追従変形させた樹脂含浸発泡体56を硬化してなる発泡体硬化層16とが一体化して接合部品30が嵌合する凹状部20が形成され、外表面に露出する状態で接合部品30を埋設した炭素繊維複合材10を得ることができる。このとき、硬化した炭素繊維布硬化層14および発泡体硬化層16により前記規制部26が形成されると共に、接合部品30の滑り止め部42の隙間に炭素繊維が嵌まり込んだ状態で、炭素繊維布硬化層14が形成されることで、接合部品30が凹状部20に対して強固に接合される。   Then, the thermosetting resin is reactively cured in a state where the laminate 52 is compressed, so that the carbon fiber cloth cured layer 14 in which the carbon fiber prepreg 54 is cured and the foam cured layer 16 in which the resin-impregnated foam 56 is cured. Are integrated in a form that follows the mold surfaces 62a, 64a and the outer shape of the joining component 30, and a part (opening surface 34) of the joining component 30 is exposed from the carbon fiber cloth cured layer 14. Joined in state. That is, as the laminate 52 is compressed, the outermost carbon fiber prepreg 54 compressed by the joining component is deformed following the outer surface shape of the joining component 30, and the outermost carbon fiber prepreg 54 is followed. The carbon fiber cloth cured layer 14 formed by curing the carbon fiber prepreg 54 that has been deformed following the outer shape of the joining component 30 by curing the resin-impregnated foam 56 by heating in a state of being compressed and deformed, and the carbon fiber The joint part is formed in a state where the concave part 20 into which the joint part 30 is fitted is formed by being integrated with the foam cured layer 16 obtained by curing the resin-impregnated foam 56 that is deformed following the prepreg 54 and exposed to the outer surface. The carbon fiber composite material 10 having 30 embedded therein can be obtained. At this time, the regulation part 26 is formed by the cured carbon fiber cloth cured layer 14 and the foam cured layer 16, and carbon fibers are fitted in the gaps between the anti-slip parts 42 of the joining component 30. By forming the fiber cloth cured layer 14, the joining component 30 is firmly joined to the concave portion 20.

次に、炭素繊維複合材10の具体的な製造方法の一例を示す。熱硬化性樹脂として2核体が低減されたノボラック系フェノール樹脂(住友ベークライト株式会社製 品名;スミライトレジンPR−55791B)を、主成分がエタノールである希釈剤(大伸化学株式会社製 品名;ネオエタノール)に91wt%となるよう希釈した熱硬化性樹脂溶液を生成する。そして、炭素繊維布として平織の炭素繊維織物(東邦テックス株式会社製 品名;W−3101 繊維重さ200g/m)を前記熱硬化性樹脂溶液中に浸漬して、当該溶液から取り出した炭素繊維布を自然乾燥し、熱硬化性樹脂を含浸した炭素繊維プリプレグ54を作成する。同様に、連続気泡を有する発泡体として厚み10mm、平面サイズ200×300mmに切り出したメラミン樹脂発泡体(BASF社製 品名;バソテクトG 密度10.3kg/m)を、前記炭素繊維布と同様にして熱硬化性樹脂溶液中に浸漬して、当該溶液から取り出した発泡体を自然乾燥し、熱硬化性樹脂を含浸した樹脂含浸発泡体56を作成する。このとき、前述した式で算出される樹脂重量比率は93%とした。 Next, an example of a specific method for manufacturing the carbon fiber composite material 10 will be described. As a thermosetting resin, a novolac phenol resin (Sumitomo Bakelite Co., Ltd. product name; Sumitrite Resin PR-55791B) with a reduced dinuclear substance is used as a diluent (product name of Daishin Chemical Co., Ltd.); A thermosetting resin solution diluted to 91 wt% in neoethanol) is produced. Carbon fiber woven with plain weave (product name: Toho Tex Co., Ltd .; W-3101 fiber weight: 200 g / m 2 ) as a carbon fiber cloth is immersed in the thermosetting resin solution and taken out from the solution. The cloth is naturally dried to produce a carbon fiber prepreg 54 impregnated with a thermosetting resin. Similarly, a foamed melamine resin foam (BASF product name; BASOTECT G density 10.3 kg / m 3 ) cut into a thickness of 10 mm and a plane size of 200 × 300 mm as a foam having open cells is the same as the carbon fiber cloth. Then, the resin is immersed in a thermosetting resin solution, the foam taken out from the solution is naturally dried, and a resin-impregnated foam 56 impregnated with the thermosetting resin is produced. At this time, the resin weight ratio calculated by the above-mentioned formula was 93%.

次に、成形型60における第1型62の第1型面62aに形成した保持手段66としてのピンに接合部品30を嵌挿保持すると共に、第1型62および第2型64の表面に離型剤を塗布すると共に、第1型62側から順に1枚の炭素繊維プリプレグ54、1枚の樹脂含浸発泡体56、2枚の炭素繊維プリプレグ54を積層した積層体52を第1型62および第2型64の間に配置する。この状態で、図4(b)に示すように、前記積層体52を前記第1型62および第2型64により積層方向から圧縮すると共に、成形型60の鋳込みヒーターを用いて圧縮状態で加熱して、圧縮状態において熱可塑性樹脂(フェノール樹脂)を反応硬化させた。第1表面層(第1外面10A)側に配置した炭素繊維プリプレグ54は、布が柔軟に変形して袋状に凹状部20を形成して接合部材30と密着するとともに、凹状部20に取られる面積ぶんだけ成形型周縁が短くなっている。このとき、成形型60により150℃で15分間、18MPaの面圧をかけて圧縮した。第1型62に対向する炭素繊維プリプレグ54により形成される最外層の炭素繊維布硬化層14が形成する凹状部20に接合部品30が嵌合して、当該炭素繊維布硬化層14により接合部品30が包囲された状態で接合すると共に、当該炭素繊維布硬化層14における凹状部20の形成部と発泡体硬化層16)とが一体化した炭素繊維複合材10を得ることができる。   Next, the joining component 30 is fitted and held on the pin as the holding means 66 formed on the first mold surface 62 a of the first mold 62 in the molding die 60, and is separated from the surfaces of the first mold 62 and the second mold 64. In addition to applying the mold agent, a laminate 52 in which one carbon fiber prepreg 54, one resin-impregnated foam 56, and two carbon fiber prepregs 54 are laminated in order from the first mold 62 side. It arrange | positions between the 2nd type | molds 64. FIG. In this state, as shown in FIG. 4B, the laminate 52 is compressed from the lamination direction by the first die 62 and the second die 64 and heated in a compressed state using the casting heater of the mold 60. Then, the thermoplastic resin (phenol resin) was reaction-cured in the compressed state. The carbon fiber prepreg 54 arranged on the first surface layer (first outer surface 10A) side is deformed flexibly to form a concave portion 20 in a bag shape and is in close contact with the joining member 30, and is attached to the concave portion 20. The periphery of the mold is shortened as much as possible. At this time, the mold 60 was compressed by applying a surface pressure of 18 MPa at 150 ° C. for 15 minutes. The joining component 30 is fitted into the concave portion 20 formed by the outermost carbon fiber cloth cured layer 14 formed by the carbon fiber prepreg 54 facing the first mold 62, and the joining component 30 is joined by the carbon fiber cloth cured layer 14. It is possible to obtain the carbon fiber composite material 10 in which the formation portion of the concave portion 20 in the carbon fiber cloth cured layer 14 and the foam cured layer 16) are integrated while being joined in a state where 30 is surrounded.

(実施例の作用)
次に、前述した炭素繊維複合材およびその製造方法の作用について説明する。炭素繊維複合材10は、炭素繊維布を硬化してなる炭素繊維布硬化層14と発泡体を圧縮硬化させてなる発泡体硬化層16とを一体化して形成された凹状の凹状部20に接合部品30が嵌合状態で接合されているので、接合部品30の周りに均質に炭素繊維布硬化層14を設けることができる。すなわち、機械的特性(高比強度、高比弾性)に優れた炭素繊維布を硬化させた炭素繊維布硬化層14が接合部品30を包囲すると共に、当該炭素繊維布硬化層14を発泡体硬化層16で支持することで、炭素繊維布硬化層14からの接合部品30の脱落を防止し、接合部品30の接合強度を高めることができる。また、炭素繊維複合材10は、接合部品30に設けられた抜け止め部(拡大部)38が、凹状部20の規制部26に係合するよう構成されている。このため、接合部品30に対して嵌合を浅くする方向(接合部品30を凹状部20から引き抜く方向)に力が加わった際に、抜け止め部(拡大部)38に規制部26が干渉するので、接合部品30がより外れ難い。更に、炭素繊維複合材10は、接合部品30に設けられた滑り止め部42の凹凸形状に炭素繊維布硬化層14が嵌まり込むことで、接合部品30の接合強度がより高められている。特に、接合部品30に対して前記ネジ孔32を軸として回転する方向の力が作用しても、凹状部20が滑り止め部42に嵌合しているため、凹状部20内で接合部品30が供回りするのを効果的に防ぐことができる。
(Operation of Example)
Next, the effect | action of the carbon fiber composite material mentioned above and its manufacturing method is demonstrated. The carbon fiber composite material 10 is bonded to a concave concave portion 20 formed by integrating a carbon fiber cloth cured layer 14 formed by curing a carbon fiber cloth and a foam cured layer 16 formed by compressing and curing the foam. Since the components 30 are joined in the fitted state, the carbon fiber cloth cured layer 14 can be provided uniformly around the joined components 30. That is, the carbon fiber cloth cured layer 14 obtained by curing the carbon fiber cloth having excellent mechanical properties (high specific strength and high specific elasticity) surrounds the joining component 30 and the carbon fiber cloth cured layer 14 is cured by foam. By supporting with the layer 16, the joining component 30 can be prevented from falling off from the carbon fiber cloth cured layer 14, and the joining strength of the joining component 30 can be increased. Further, the carbon fiber composite material 10 is configured such that a retaining portion (enlarged portion) 38 provided in the joining component 30 is engaged with the regulating portion 26 of the concave portion 20. For this reason, when a force is applied in a direction in which the fitting with respect to the joining component 30 is shallow (a direction in which the joining component 30 is pulled out from the concave portion 20), the restriction portion 26 interferes with the retaining portion (enlarged portion) 38. Therefore, the joining component 30 is more difficult to come off. Further, in the carbon fiber composite material 10, the bonding strength of the bonded component 30 is further increased by fitting the carbon fiber cloth cured layer 14 into the uneven shape of the anti-slip portion 42 provided in the bonded component 30. In particular, even when a force in the direction of rotation about the screw hole 32 acts on the joint component 30, the concave portion 20 is fitted to the anti-slip portion 42, so the joint component 30 is within the concave portion 20. Can be effectively prevented.

また、炭素繊維複合材10は、第1型面62aに接合部品30が保持された前記成形型60で前記積層体52を圧縮して、当該接合部品30により圧縮される最外層の炭素繊維プリプレグ54を接合部品30の外面形状に追従変形させると共に、当該最外層の炭素繊維プリプレグ54に追従して樹脂含浸発泡体56を圧縮変形させ、更に積層体52を圧縮した状態で加熱することで、熱硬化性樹脂の硬化に伴い接合部品30の外面形状に追従変形させた炭素繊維プリプレグ54を硬化してなる炭素繊維布硬化層14と、当該炭素繊維プリプレグ54に追従変形させた樹脂含浸発泡体56を硬化してなる発泡体硬化層16とを一体化して、外表面に露出する状態で接合部品30を埋設することで得ることができる。このように、この積層体52が圧縮される際に、炭素繊維布プリプレグ54が接合部材30の形状に合わせて屈曲すると同時に、樹脂含浸発泡体56がその弾性特性によって接合部材30の形状に合わせて炭素繊維布プリプレグ54に密着することができるので、接合部品30が強固に炭素繊維複合材10に固定される。また、炭素繊維布硬化層14と発泡体硬化層16とを一体化しつつ接合部品30が埋設されるので、接合部品30を炭素繊維複合材10の基材12に接合する工程を、炭素繊維布硬化層14や発泡体硬化層16を形成する工程とは別に設ける必要がなく、該接合部品30の接合作業性を向上することができる。   Further, the carbon fiber composite material 10 includes the outermost carbon fiber prepreg compressed by the joining component 30 by compressing the laminate 52 with the molding die 60 in which the joining component 30 is held on the first mold surface 62a. 54 in accordance with the outer surface shape of the joining component 30, the resin impregnated foam 56 is compressed and deformed following the outermost carbon fiber prepreg 54, and the laminate 52 is heated in a compressed state, A carbon fiber cloth cured layer 14 obtained by curing a carbon fiber prepreg 54 that has been deformed following the outer shape of the joining component 30 as the thermosetting resin is cured, and a resin-impregnated foam that is deformed following the carbon fiber prepreg 54. It can be obtained by integrating the cured foam layer 16 formed by curing 56 and embedding the joining component 30 in a state of being exposed to the outer surface. As described above, when the laminate 52 is compressed, the carbon fiber cloth prepreg 54 bends in accordance with the shape of the joining member 30, and at the same time, the resin-impregnated foam 56 conforms to the shape of the joining member 30 due to its elastic characteristics. Thus, the bonded component 30 can be firmly fixed to the carbon fiber composite material 10. Moreover, since the joining component 30 is embedded while integrating the carbon fiber cloth cured layer 14 and the foam cured layer 16, the step of joining the joining component 30 to the base material 12 of the carbon fiber composite material 10 is performed. There is no need to provide it separately from the step of forming the hardened layer 14 or the foam hardened layer 16, and the joining workability of the joining component 30 can be improved.

そして、接合部品30が保持された成形型60で積層体52を圧縮硬化させることで、接合部品30の外面形状に追従した形態で発泡体硬化層16と一体化された炭素繊維布硬化層14により包囲することができ、接合部品30の周りに均質に炭素繊維布硬化層14を設けることができる。すなわち、機械的特性(高比強度、高比弾性)に優れた炭素繊維布を硬化させた炭素繊維布硬化層14が接合部品30を包囲すると共に当該炭素繊維布硬化層14を発泡体硬化層16で支持することにより、炭素繊維布硬化層14からの接合部品30の脱落を防止し、接合部品30の接合強度を高めた炭素繊維複合材10を容易に得ることができる。   And the carbon fiber cloth cured layer 14 integrated with the foam cured layer 16 in a form following the outer surface shape of the joined component 30 by compressing and curing the laminate 52 with the mold 60 holding the joined component 30. The carbon fiber cloth hardened layer 14 can be provided uniformly around the joining component 30. That is, the carbon fiber cloth cured layer 14 obtained by curing a carbon fiber cloth having excellent mechanical properties (high specific strength, high specific elasticity) surrounds the joining component 30 and the carbon fiber cloth cured layer 14 is used as the foam cured layer. By supporting with 16, it is possible to easily obtain the carbon fiber composite material 10 in which the joining component 30 is prevented from falling off the carbon fiber cloth cured layer 14 and the joining strength of the joining component 30 is increased.

前記滑り止め部42が設けられた接合部品30を保持した成形型60で前記積層体52を圧縮および加熱することで、炭素繊維布硬化層14が前記滑り止め部42の凹凸形状に嵌合する状態で、炭素繊維布硬化層14と発泡体硬化層16とが一体化される。更に、前記抜け止め部(拡大部)38が設けられた接合部品30を保持した成形型60で前記積層体52を圧縮および加熱することで、炭素繊維布硬化層14と発泡体硬化層16とが抜け止め部(拡大部)38に沿った形態で一体化される。すなわち、接合部品30が保持された成形型60で積層体52を圧縮硬化させるだけで、炭素繊維複合材10の基材12に対して接合部品30を強固に接合することができ、埋設した接合部品30を締結部として好適に利用することが可能な炭素繊維複合材10を得ることができる。   The laminated body 52 is compressed and heated with a mold 60 that holds the joining component 30 provided with the anti-slip portion 42, so that the carbon fiber cloth cured layer 14 fits into the uneven shape of the anti-slip portion 42. In the state, the carbon fiber cloth cured layer 14 and the foam cured layer 16 are integrated. Furthermore, by compressing and heating the laminate 52 with a mold 60 holding the joining component 30 provided with the retaining portion (enlarged portion) 38, the carbon fiber cloth cured layer 14 and the foam cured layer 16 Are integrated in a form along the retaining portion (enlarged portion) 38. That is, the joining component 30 can be firmly joined to the base material 12 of the carbon fiber composite material 10 simply by compressing and curing the laminate 52 with the molding die 60 holding the joining component 30. The carbon fiber composite material 10 that can be suitably used as the fastening part 30 can be obtained.

(変更例)
なお、本発明に係る炭素繊維複合材およびその製造方法としては、前述したものに限らず、種々の変更が可能である。
(1) 実施例では、炭素繊維複合材を平板状に形成するようにしたが、成形型のキャビティを適宜に調節することで、屈曲形状や湾曲形状の炭素繊維複合材に形成することができる。
(2) 炭素繊維複合材の基材に埋め込む接合部品は、実施例で示したナットである必要はなく、ボルトやピン状の部品であってもよい。また、接合部品の1箇所を炭素繊維複合材の基材に埋め込む形態に限られるものではなく、例えばコ字状に形成した接合部品の両端部を炭素繊維複合材の基材に埋め込むよう構成することで、炭素繊維複合材に把持部を形成することも可能である。
(3) 接合部品は、炭素繊維複合材の一方面に埋設する構成に限らず、炭素繊維複合材の両面に埋設する構成とすることができる。例えば、実施例に示した成形型の第1型および第2型の夫々に接合部品を保持して積層体を圧縮および加熱することで実現できる。このとき、各面の接合部品を異なる部品とすることができることは当然である。
(Example of change)
The carbon fiber composite material and the manufacturing method thereof according to the present invention are not limited to those described above, and various modifications can be made.
(1) In the examples, the carbon fiber composite material is formed in a flat plate shape, but can be formed into a bent or curved carbon fiber composite material by appropriately adjusting the cavity of the mold. .
(2) The joining component embedded in the base material of the carbon fiber composite material does not have to be the nut shown in the embodiment, and may be a bolt or pin-shaped component. Moreover, it is not restricted to the form which embeds one location of joining components in the base material of a carbon fiber composite material, For example, it comprises so that both ends of the joining components formed in the U shape may be embedded in the base material of carbon fiber composite material. Thus, it is possible to form a gripping portion on the carbon fiber composite material.
(3) The joining component is not limited to the configuration embedded in one surface of the carbon fiber composite material, but may be configured to be embedded in both surfaces of the carbon fiber composite material. For example, it can be realized by compressing and heating the laminated body while holding the joining parts in the first mold and the second mold of the mold shown in the embodiment. At this time, it is a matter of course that the joining parts on each surface can be different parts.

10 炭素繊維複合材,14 炭素繊維布硬化層,16 発泡体硬化層,20 凹状部
30 接合部品,38 拡大部(凹凸形状部),42 抜け止め部(凹凸形状部)
52 積層体,54 炭素繊維プリプレグ,56 樹脂含浸発泡体
60 成形型,62a 第1型面(型面)
DESCRIPTION OF SYMBOLS 10 Carbon fiber composite material, 14 Carbon fiber cloth cured layer, 16 Foam cured layer, 20 Concave part 30 Joining part, 38 Enlarged part (uneven shape part), 42 Retaining part (uneven shape part)
52 Laminated body, 54 Carbon fiber prepreg, 56 Resin-impregnated foam 60 Mold, 62a First mold surface (mold surface)

Claims (4)

炭素繊維布が硬化した複数層の炭素繊維布硬化層と、
前記炭素繊維布硬化層の間に積層されると共に当該炭素繊維布硬化層と一体化されており、圧縮状態で発泡体が硬化した発泡体硬化層と、
最外層を形成する前記炭素繊維布硬化層から一部が露出する埋設状態で接合されている接合部品とを備え、
前記最外層の炭素繊維布硬化層が形成する凹状部に埋設状態で接合されている前記接合部品が、当該凹状部の形成部において前記発泡体硬化層と一体化した炭素繊維布硬化層により包囲されている
ことを特徴とする炭素繊維複合材。
A plurality of carbon fiber cloth cured layers in which the carbon fiber cloth is cured;
The foam cured layer is laminated between the carbon fiber cloth cured layers and integrated with the carbon fiber cloth cured layer, and the foam is cured in a compressed state.
A joining component joined in an embedded state in which a part is exposed from the carbon fiber cloth cured layer forming the outermost layer,
The joining component joined in an embedded state to the concave portion formed by the outermost carbon fiber cloth cured layer is surrounded by a carbon fiber cloth cured layer integrated with the foam cured layer in the concave portion forming portion. Carbon fiber composite material characterized by being made.
前記凹状部から前記接合部品を引き抜く方向において、当該凹状部を形成する炭素繊維布硬化層と接合部品が係合するよう構成された請求項1記載の炭素繊維複合材。   The carbon fiber composite material according to claim 1, wherein the carbon fiber cloth cured layer forming the concave portion is engaged with the bonded component in a direction in which the joint component is pulled out from the concave portion. 連続気泡を有する発泡体に熱硬化性樹脂を含浸させた樹脂含浸発泡体を炭素繊維布に熱硬化性樹脂を含浸させた複数の炭素繊維プリプレグの間に積層させてなる積層体を、型面に接合部品を保持した成形型により積層体の積層方向から圧縮して、当該接合部品により圧縮される最外層の炭素繊維プリプレグを接合部品の外面形状に追従変形させると共に、当該最外層の炭素繊維プリプレグに追従して前記樹脂含浸発泡体を圧縮変形させ、
前記積層体を圧縮した状態で加熱して、前記熱硬化性樹脂の硬化に伴い前記接合部品の外面形状に追従変形させた前記炭素繊維プリプレグを硬化してなる炭素繊維布硬化層と、当該炭素繊維プリプレグに追従変形させた前記樹脂含浸発泡体を硬化してなる発泡体硬化層とを一体化して、外表面に露出する状態で前記接合部品を埋設する
ことを特徴とする炭素繊維複合材の製造方法。
A layered product obtained by laminating a resin-impregnated foam obtained by impregnating a thermosetting resin into a foam having open cells and laminating between a plurality of carbon fiber prepregs obtained by impregnating a carbon fiber cloth with a thermosetting resin, The outermost carbon fiber prepreg compressed by the joining part is compressed by a molding die holding the joining part on the outer surface and deformed following the outer surface shape of the joining part, and the outermost carbon fiber is compressed. Following the prepreg, the resin-impregnated foam is compressed and deformed,
A carbon fiber cloth cured layer formed by curing the carbon fiber prepreg that is heated in a compressed state and is deformed following the outer surface shape of the joining component as the thermosetting resin is cured, and the carbon A carbon fiber composite material comprising: a foam cured layer formed by curing the resin-impregnated foam that has been deformed following a fiber prepreg, and the embedded component being embedded in an exposed state on the outer surface. Production method.
凹凸形状部が設けられた前記接合部品を保持した前記成形型により前記積層体を圧縮した状態で加熱して、前記最外層の炭素繊維プリプレグを前記接合部品の凹凸形状部に追従変形させた状態で、前記炭素繊維布硬化層と発泡体硬化層とを一体化する請求項3記載の炭素繊維複合材の製造方法。   A state in which the outermost layer carbon fiber prepreg is deformed following the concavo-convex shape portion of the joint component by heating the laminate with the molding die holding the joint component provided with the concavo-convex shape portion. The method for producing a carbon fiber composite material according to claim 3, wherein the carbon fiber cloth cured layer and the foam cured layer are integrated.
JP2015149714A 2015-07-29 2015-07-29 Carbon fiber composite material and method for producing the same Active JP6537917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015149714A JP6537917B2 (en) 2015-07-29 2015-07-29 Carbon fiber composite material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015149714A JP6537917B2 (en) 2015-07-29 2015-07-29 Carbon fiber composite material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2017030165A true JP2017030165A (en) 2017-02-09
JP6537917B2 JP6537917B2 (en) 2019-07-03

Family

ID=57986024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015149714A Active JP6537917B2 (en) 2015-07-29 2015-07-29 Carbon fiber composite material and method for producing the same

Country Status (1)

Country Link
JP (1) JP6537917B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108125713A (en) * 2017-12-28 2018-06-08 武汉康斯泰德科技有限公司 Long-chain carbon fiber PEEK outer wrapping thermoforming bone fixation plates and forming method
JP2019042975A (en) * 2017-08-31 2019-03-22 株式会社イノアックコーポレーション Fiber reinforced molded article and manufacturing method thereof
WO2019074134A1 (en) * 2017-10-11 2019-04-18 (주)티엔케이 Molding device for carbon prepreg compression forming
KR20200014032A (en) * 2018-07-31 2020-02-10 주식회사화신 Subframe and manufacturing method thereof
CN112373062A (en) * 2020-10-19 2021-02-19 广联航空工业股份有限公司 Method for realizing skid resistance, sweat releasing and shock absorption of composite material surface
CN113910641A (en) * 2021-10-11 2022-01-11 成都锐美特新材料科技有限公司 Carbon fiber composite material product, preparation method thereof and wearable seat
CN114368167A (en) * 2021-12-16 2022-04-19 连云港神鹰复合材料科技有限公司 Preparation method of integrally-formed carbon fiber wheel set lifting crane
CN114542516A (en) * 2020-11-26 2022-05-27 中国航发商用航空发动机有限责任公司 Composite material casing and manufacturing method thereof
CN114683575A (en) * 2022-03-18 2022-07-01 南京聚隆复合材料技术有限公司 Preparation method of carbon fiber composite material rail obstacle clearing device
CN116552738A (en) * 2023-07-04 2023-08-08 东莞市聚力复合材料科技有限公司 Sail control rod and manufacturing process thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08276525A (en) * 1995-01-26 1996-10-22 Sumitomo Electric Ind Ltd Laminated composite material and its manufacture
WO2011052243A1 (en) * 2009-10-29 2011-05-05 株式会社イノアックコーポレーション Fiber-reinforced molded product and method for producing same
WO2012029810A1 (en) * 2010-08-30 2012-03-08 株式会社イノアックコーポレーション Fiber reinforced molded article and manufacturing method therefor
WO2015178141A1 (en) * 2014-05-21 2015-11-26 株式会社イノアックコーポレーション Carbon fiber composite material
JP2016028838A (en) * 2014-07-25 2016-03-03 株式会社イノアックコーポレーション Boring method of carbon fiber composite material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08276525A (en) * 1995-01-26 1996-10-22 Sumitomo Electric Ind Ltd Laminated composite material and its manufacture
WO2011052243A1 (en) * 2009-10-29 2011-05-05 株式会社イノアックコーポレーション Fiber-reinforced molded product and method for producing same
WO2012029810A1 (en) * 2010-08-30 2012-03-08 株式会社イノアックコーポレーション Fiber reinforced molded article and manufacturing method therefor
WO2015178141A1 (en) * 2014-05-21 2015-11-26 株式会社イノアックコーポレーション Carbon fiber composite material
JP2016028838A (en) * 2014-07-25 2016-03-03 株式会社イノアックコーポレーション Boring method of carbon fiber composite material

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019042975A (en) * 2017-08-31 2019-03-22 株式会社イノアックコーポレーション Fiber reinforced molded article and manufacturing method thereof
WO2019074134A1 (en) * 2017-10-11 2019-04-18 (주)티엔케이 Molding device for carbon prepreg compression forming
CN108125713A (en) * 2017-12-28 2018-06-08 武汉康斯泰德科技有限公司 Long-chain carbon fiber PEEK outer wrapping thermoforming bone fixation plates and forming method
CN108125713B (en) * 2017-12-28 2024-02-23 武汉康斯泰德科技有限公司 Long-chain carbon fiber PEEK (polyether-ether-ketone) outer-wrapped thermal-forming bone fixing plate and forming method
KR20200014032A (en) * 2018-07-31 2020-02-10 주식회사화신 Subframe and manufacturing method thereof
KR102113981B1 (en) * 2018-07-31 2020-05-22 주식회사 화신 Subframe and manufacturing method thereof
CN112373062A (en) * 2020-10-19 2021-02-19 广联航空工业股份有限公司 Method for realizing skid resistance, sweat releasing and shock absorption of composite material surface
CN112373062B (en) * 2020-10-19 2023-03-24 广联航空工业股份有限公司 Method for realizing skid resistance, sweat releasing and shock absorption of composite material surface
CN114542516A (en) * 2020-11-26 2022-05-27 中国航发商用航空发动机有限责任公司 Composite material casing and manufacturing method thereof
CN113910641B (en) * 2021-10-11 2023-06-02 成都锐美特新材料科技有限公司 Carbon fiber composite material product, preparation method thereof and wearable seat
CN113910641A (en) * 2021-10-11 2022-01-11 成都锐美特新材料科技有限公司 Carbon fiber composite material product, preparation method thereof and wearable seat
CN114368167A (en) * 2021-12-16 2022-04-19 连云港神鹰复合材料科技有限公司 Preparation method of integrally-formed carbon fiber wheel set lifting crane
CN114368167B (en) * 2021-12-16 2024-05-07 连云港神鹰复合材料科技有限公司 Preparation method of integrally formed carbon fiber wheel set lifting crane
CN114683575A (en) * 2022-03-18 2022-07-01 南京聚隆复合材料技术有限公司 Preparation method of carbon fiber composite material rail obstacle clearing device
CN114683575B (en) * 2022-03-18 2024-02-27 南京聚隆复合材料技术有限公司 Preparation method of carbon fiber composite material track obstacle clearing device
CN116552738A (en) * 2023-07-04 2023-08-08 东莞市聚力复合材料科技有限公司 Sail control rod and manufacturing process thereof
CN116552738B (en) * 2023-07-04 2023-11-14 东莞市聚力复合材料科技有限公司 Sail control rod and manufacturing process thereof

Also Published As

Publication number Publication date
JP6537917B2 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
JP2017030165A (en) Carbon fiber composite material, and method of manufacturing the same
EP3147108B1 (en) Carbon fiber composite material
JP4558091B1 (en) Fiber-reinforced molded body and method for producing the same
TWI689407B (en) Injection modlding method and injection molded part using fiber reinforced composite material
JP6415885B2 (en) Method for producing perforated carbon fiber composite material
US20200061952A1 (en) Integrally molded body and method of producing same
JP2015085613A (en) Integrally molded body and method for producing the same
JP2008246981A (en) Manufacturing method of fiber-reinforced composite material
JP2011143609A (en) Manufacturing method of fiber-reinforced resin member having insert component
JP6685616B2 (en) Carbon fiber composite material and manufacturing method thereof
JP6294298B2 (en) Method for manufacturing vehicle components / structural components from plastic materials
JP6721107B2 (en) COMPOSITE MATERIAL MEMBER, METHOD OF MANUFACTURING COMPOSITE MATERIAL MEMBER, AND MOLDING DIE
CN108621531B (en) Method for manufacturing composite structure
US10828850B2 (en) Fiber-reinforced plastic and method of producing the fiber-reinforced plastic
KR20200132876A (en) Manufacturing method of molded article
JP2010221489A (en) Rtm molding method
JP6786989B2 (en) Composite material molding method
JP7017071B2 (en) Sandwich structure and its manufacturing method
JP2019042975A (en) Fiber reinforced molded article and manufacturing method thereof
JP2006015611A (en) Method for producing sandwich laminate
JP7403931B2 (en) Resin molded bodies and fiber reinforced resin molded bodies
TWI627055B (en) Low-density fiber reinforced plastic composite plate and method for manufacturing the same
JP2022149481A (en) sandwich structure
JP2016198973A (en) Composite material molding
KR20230093935A (en) Method of forming thermosetting composite parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190605

R150 Certificate of patent or registration of utility model

Ref document number: 6537917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250