JP2017029876A - Hollow particle made from bubbles and method for producing the same - Google Patents

Hollow particle made from bubbles and method for producing the same Download PDF

Info

Publication number
JP2017029876A
JP2017029876A JP2015149222A JP2015149222A JP2017029876A JP 2017029876 A JP2017029876 A JP 2017029876A JP 2015149222 A JP2015149222 A JP 2015149222A JP 2015149222 A JP2015149222 A JP 2015149222A JP 2017029876 A JP2017029876 A JP 2017029876A
Authority
JP
Japan
Prior art keywords
gas
liquid
bubbles
hollow particles
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015149222A
Other languages
Japanese (ja)
Inventor
寿典 幕田
Hisanori Makuta
寿典 幕田
太一 須藤
Taichi Sudo
太一 須藤
雅典 安藤
Masanori Ando
雅典 安藤
岳往 濱田
Takeyuki Hamada
岳往 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2015149222A priority Critical patent/JP2017029876A/en
Publication of JP2017029876A publication Critical patent/JP2017029876A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To stably generate a large number of hollow particles without the removal of core materials.SOLUTION: The present invention provides a hollow particle generation method for forming a solid membrane at the gas-liquid boundaries of bubbles generated by blowing a gas including monomers into a liquid, wherein, an ozone gas is contained in the gas including monomers to stably produce a large number of fine hollow particles.SELECTED DRAWING: Figure 5

Description

本発明は、気泡の界面を利用して製造した中空粒子およびその製造方法に関するものである。 The present invention relates to a hollow particle manufactured using an interface of bubbles and a manufacturing method thereof.

内部が気体で外部が固体の構造を有する中空粒子は、密度が低く、音や熱の伝達を抑制することもできるため、材料の比重調整や防音材・断熱材などへ用いられているほか、液体中で浮上する特性を利用して液体表面の流れを可視化するトレーサなどにも用いられている。近年では、中空粒子の超音波に対する周波数応答性を利用して、超音波診断用造影剤やドラッグデリバリーの薬剤輸送担体など医療材料として中空粒子を用いる先進医療の研究も行われている。 Hollow particles with a gas structure inside and a solid outside structure are low in density and can suppress the transmission of sound and heat, so they are used for adjusting the specific gravity of materials, soundproofing materials, heat insulating materials, etc. It is also used for tracers that visualize the flow on the surface of liquid by utilizing the characteristics of floating in the liquid. In recent years, advanced medical research using hollow particles as a medical material such as a contrast agent for ultrasonic diagnosis and a drug transport carrier for drug delivery has been performed using the frequency response of the hollow particles to ultrasonic waves.

従来の中空粒子の製法としては、液体または固体を内包する粒子を生成し、内部の液体または固体を抽出して中空にする方法(特許文献1、2参照)、あるいは液体または固体を含む粒子を熱膨張気化させて中空にする技術(特許文献3参照)などがある。 As a conventional method for producing hollow particles, particles containing liquid or solid are generated, and the liquid or solid inside is extracted and hollowed (see Patent Documents 1 and 2), or particles containing liquid or solid are used. There is a technique (refer to Patent Document 3) in which heat expansion is vaporized to make it hollow.

また、気泡を用いて直接中空粒子を作り出す手法としては、気泡の表面において液相中の物質同士を重合させて固体膜を生み出して中空粒子化する方法(特許文献4参照)、液相中の物質の重合を気相の触媒で促進させて中空粒子化する方法(特許文献5参照)、膜原材料を溶解させた液滴中に気泡を安定に存在させたまま液滴を乾燥させ膜を析出させることで中空構造を有したまま中空粒子化する方法などがある(特許文献6参照)。 In addition, as a method of directly creating hollow particles using bubbles, a method of polymerizing substances in the liquid phase on the surface of the bubbles to produce a solid film to form hollow particles (see Patent Document 4), A method in which polymerization of a substance is promoted by a gas phase catalyst to form hollow particles (see Patent Document 5), and a film is deposited by drying the liquid droplets while keeping the bubbles stably dissolved in the film raw material. For example, there is a method of forming hollow particles while having a hollow structure (see Patent Document 6).

特表平9−508067号公報Japanese National Patent Publication No. 9-508067 特開2002−105104号公報JP 2002-105104 A 特公平3−79060号公報Japanese Patent Publication No. 3-79060 特開2007−21315号公報JP 2007-21315 A 特開2007−196223号公報JP 2007-196223 A 特開2007−75660号公報Japanese Patent Laid-Open No. 2007-75660 特開2011−245452号公報Japanese Patent Application Laid-Open No. 2011-245452 特開2015−85251号公報Japanese Patent Laying-Open No. 2015-85251 特開2011−50832号公報JP 2011-50832 A

Journal of Fluid Mechanics、548(2006)、pp.113ー131.Journal of Fluid Mechanicals, 548 (2006), pp. 113-131. Materials Letters、63(2009)、pp.703−705.Materials Letters, 63 (2009), pp. 703-705. Ultrasonics、53(2013)、pp.196−202.Ultrasonics, 53 (2013), pp. 196-202.

前記の背景技術において、液体または固体を内包する粒子から内包物質を除去して中空化する方法は、内包物質の蒸発や膨張を用いた中空化工程の圧力・熱の制御が難しく、中空化の際に粒子の変形や表面の損傷が起こりやすいことが問題である。 In the above-mentioned background art, the method of removing the inclusion substance from the particles containing the liquid or solid and making it hollow is difficult to control the pressure and heat in the hollowing process using evaporation and expansion of the inclusion substance, The problem is that particle deformation and surface damage are likely to occur.

また、前記の背景技術における気泡を使う手法においては、中空化工程が不要のため簡便に中空粒子を作ることができるものの、固体膜となる原材料が液相に溶解・分散して存在しているため、気泡界面近傍以外の部分では中空粒子の固体膜として有効に使われないことが問題である。 In addition, in the method using bubbles in the background art described above, the hollowing process is not required, so that hollow particles can be easily produced. However, the raw material to be a solid film is dissolved and dispersed in the liquid phase. Therefore, it is a problem that the portion other than the vicinity of the bubble interface is not effectively used as a solid film of hollow particles.

このような問題点を解消するために、本発明者は先に「液体中にモノマーを含む気体を吹き込んで発生させた気泡の気液界面において固体膜を形成させて中空粒子を製造する方法」を提案した(特許文献7、特許文献8) In order to solve such problems, the present inventor previously described "a method for producing hollow particles by forming a solid film at a gas-liquid interface of bubbles generated by blowing a gas containing a monomer into a liquid". (Patent Document 7, Patent Document 8)

発明者らのこの方法では、直径1μmから200μm程度の中空構造の粒子を短時間で多量に発生させることができるとしている。しかしながら、モノマーガスを液体中に吹き込むプロセスにおいてモノマーガスが微細気泡発生手段の気体放出口近傍で重合することによって目詰まりが生じやすく、例えば特許文献7に記載の方法では15分〜20分程度で気体供給管に目詰まりが生じ気泡発生が停止し、継続的な中空構造の粒子の生成ができなかった。 According to the method of the inventors, a large amount of hollow structure particles having a diameter of about 1 μm to 200 μm can be generated in a short time. However, in the process of blowing the monomer gas into the liquid, the monomer gas is easily clogged by polymerization in the vicinity of the gas outlet of the fine bubble generating means. For example, in the method described in Patent Document 7, it takes about 15 to 20 minutes. The gas supply tube was clogged and the generation of bubbles was stopped, and continuous hollow structure particles could not be generated.

本発明は、モノマーガスを含む気泡を液体に吹き込んで直接固体膜を製造して中空粒子を製造する方法において、オゾンガスをモノマーガスと混合させることによって微細気泡化する前の重合を抑制し、前記の従来技術の問題を解決することを課題としている。 In the method of producing hollow particles by directly blowing bubbles containing monomer gas into a liquid to produce hollow particles, the present invention suppresses polymerization before microbubble formation by mixing ozone gas with monomer gas, The problem is to solve the problems of the prior art.

本発明者らは上記目的を達成するため鋭意研究を重ねた結果、本発明者らがすでに提案した特開2011−245452(特許文献7)に記載した方法において、モノマーガスを含む気体にオゾンガスを混合させることによって、液体中で微細気泡化する微細気泡発生手段まで送気する気体流路中でのポリマー形成による目詰まりが抑制され、連続的かつ多量に微小な中空粒子を生成できることを見出した。 As a result of intensive studies to achieve the above object, the inventors of the present invention have already proposed ozone gas to a gas containing a monomer gas in the method described in Japanese Patent Application Laid-Open No. 2011-245452 (Patent Document 7). It was found that by mixing, clogging due to polymer formation in the gas flow path that feeds the fine bubble generating means that turns into fine bubbles in the liquid is suppressed, and minute hollow particles can be generated continuously and in large quantities. .

本発明に係る中空構造を有する粒子では以下の効果を得ることができる。本発明では、気泡の界面を利用して製造した中空粒子およびその製造方法においてモノマーガスを含む気体にオゾンガスを混合させることによって、特開2011−245452(特許文献7)に記載の中空粒子の製法に対して、混合気を送気する流路の目詰まりの抑止と体積濃度で8倍以上の収量向上を達成することができる。 With the particles having a hollow structure according to the present invention, the following effects can be obtained. In the present invention, a hollow particle produced using an interface between bubbles and a method for producing a hollow particle described in JP-A-2011-244542 (Patent Document 7) by mixing ozone gas into a gas containing monomer gas in the production method. On the other hand, it is possible to prevent clogging of the flow path for supplying the air-fuel mixture and to improve the yield by 8 times or more in volume concentration.

本発明の装置構成を示した図である。It is the figure which showed the apparatus structure of this invention. 超音波による微細気泡の発生状態を表す写真である。It is a photograph showing the generation state of fine bubbles by ultrasonic waves. 実施例1で得られた中空粒子の電子顕微鏡画像である。2 is an electron microscope image of hollow particles obtained in Example 1. FIG. 実施例1で生成した中空粒子の粒径分布である。2 is a particle size distribution of hollow particles produced in Example 1. 実施例2で得られた中空粒子の電子顕微鏡画像である。3 is an electron microscope image of hollow particles obtained in Example 2. FIG. 実施例2で生成した中空粒子の粒径分布である。2 is a particle size distribution of hollow particles produced in Example 2. 比較例で得られた中空粒子の電子顕微鏡画像である。It is an electron microscope image of the hollow particles obtained in the comparative example. 比較例で生成した中空粒子の粒径分布である。It is a particle size distribution of the hollow particle produced | generated by the comparative example. 実施例1、2および比較例で中空粒子を生成したあとの中空超音波ホーンの気体導入口および放出口の写真である。It is a photograph of the gas inlet and outlet of a hollow ultrasonic horn after producing hollow particles in Examples 1 and 2 and a comparative example.

本発明における気泡の界面を利用して製造した中空粒子およびその製造方法では、モノマーガスおよびオゾンガスを含む気体を公知の微細気泡発生手法を用いて液体中に気泡として供給し、気泡表面においてモノマーガスと液体が接触することで膜形成反応が起こり、ガスが固体膜で覆われた中空粒子が生成する。以下、本発明を実施するための最良の形態について図面1を参照して説明する。 In the hollow particle produced using the bubble interface in the present invention and the production method thereof, a gas containing monomer gas and ozone gas is supplied as a bubble into the liquid using a known fine bubble generation method, and the monomer gas on the bubble surface And a liquid come into contact with each other, a film formation reaction occurs, and hollow particles in which a gas is covered with a solid film are generated. Hereinafter, the best mode for carrying out the present invention will be described with reference to FIG.

本発明を実施するための最良の形態では、オゾンガスを含有する供給ガス1と気化容器2においてモノマー3を気化させたモノマーガスとの混合ガス4を、送気手段5を用いて気泡発生手段6に供給し、気泡発生手段6によってモノマー3を気化させたガスを含む気泡9を温度調整手段7によって好適な温度に保たれた液体8中に発生させる。液体8中に発生させた前記気泡9において、気泡中のモノマーガスと液体8が、界面で接触・固化することによって、気泡表面に固体膜が形成し、中空粒子10が生成して浮上する。 In the best mode for carrying out the present invention, a mixed gas 4 of a supply gas 1 containing ozone gas and a monomer gas obtained by vaporizing the monomer 3 in the vaporization vessel 2 is used as a bubble generating means 6 using an air supply means 5. The bubbles 9 containing the gas obtained by vaporizing the monomer 3 by the bubble generating means 6 are generated in the liquid 8 maintained at a suitable temperature by the temperature adjusting means 7. In the bubbles 9 generated in the liquid 8, the monomer gas in the bubbles and the liquid 8 contact and solidify at the interface, whereby a solid film is formed on the surface of the bubbles, and the hollow particles 10 are generated and floated.

前記気化容器2は、モノマー3を容器に入れて保持し、公知の加熱または減圧手段によって前記モノマー3を沸点以上に加熱あるいは蒸気圧以下に減圧して気化できる機能を有していれば特に制限はなく、ガラス製や金属製の容器を、アルコールランプ、ガスバーナー、ホットプレート、オイルバスなどで加熱または真空ポンプなどで減圧する方法が例示される。また、前記気化容器2は、前記モノマー3が常温で気体の際には必須ではない。 The vaporization vessel 2 is particularly limited as long as it has a function capable of holding the monomer 3 in the vessel and holding it, and vaporizing it by heating the monomer 3 above the boiling point or reducing the vapor pressure below the vapor pressure by a known heating or decompression means. Rather, a method of heating or depressurizing a glass or metal container with an alcohol lamp, a gas burner, a hot plate, an oil bath or the like with a vacuum pump or the like is exemplified. The vaporization container 2 is not essential when the monomer 3 is a gas at normal temperature.

前記モノマー3としては、前記液体8あるいは前記液体8に溶解した成分と反応性を有していれば良く、モノマー3と液体8の組み合わせとして、シアノアクリレート系組成物と水、シリコーン系組成物と水、湿気硬化型ウレタン系組成物と水、オレフィン系炭化水素と触媒を含有した低級脂肪族炭化水素などが例示される。また、前記組み合わせにおける膜形成に要する時間は、目詰まりや反応界面消失の防止の観点から、気泡の発生に要する時間より長く、気泡が溶解または浮上によって消失する時間より短いことが好ましい。膜形成時間の範囲についてより具体的には、20kHz超音波による気泡発生の基準時間である50マイクロ秒以上(非特許文献1参照)、液体中で安定に気泡が存在可能な4時間以下(非特許文献2参照)が特に好ましい。但し、気泡の発生に要する時間は気泡発生装置、気泡が溶解または浮上によって消失する時間は気泡内包成分の液体に対する溶解度、液体の粘度など気泡周囲の環境によって大きく影響を受けるため、前記範囲に限定されるものではない。 The monomer 3 only needs to be reactive with the liquid 8 or a component dissolved in the liquid 8, and as a combination of the monomer 3 and the liquid 8, a cyanoacrylate composition, water, a silicone composition, Examples include water, a moisture-curable urethane composition and water, a lower aliphatic hydrocarbon containing an olefinic hydrocarbon and a catalyst, and the like. In addition, the time required for film formation in the combination is preferably longer than the time required for generating bubbles and shorter than the time required for bubbles to disappear due to dissolution or floating from the viewpoint of preventing clogging and disappearance of the reaction interface. More specifically, the range of the film formation time is 50 microseconds or more, which is a standard time for bubble generation by 20 kHz ultrasonic waves (see Non-Patent Document 1), and 4 hours or less in which bubbles can stably exist in a liquid (non- (See Patent Document 2). However, the time required for the generation of bubbles is limited to the above range because the bubble generation device, the time for the bubbles to disappear by dissolution or floating is greatly affected by the environment surrounding the bubbles, such as the solubility of the bubble inclusion component in the liquid and the viscosity of the liquid. Is not to be done.

前記混合ガス4中のモノマーガスの濃度は、モノマーガスを含んでいれば特に制限されない。 The concentration of the monomer gas in the mixed gas 4 is not particularly limited as long as it contains the monomer gas.

前記送気手段5は前記気泡発生手段6にオゾンガスを含有する供給ガス1とモノマー3を気化させたガスの混合ガス4を供給できれば特に制限はなく、ダイアフラムポンプ、ギアポンプ、ロータリーポンプ、チュービングポンプ等が例示される。また、供給ガス1を加圧して送気する場合には、前記送気手段5は必須ではない。 The gas supply means 5 is not particularly limited as long as it can supply the bubble generating means 6 with a mixed gas 4 of a gas obtained by vaporizing the supply gas 1 containing ozone gas and the monomer 3, and a diaphragm pump, a gear pump, a rotary pump, a tubing pump, etc. Is exemplified. Further, when the supply gas 1 is pressurized and supplied, the air supply means 5 is not essential.

前記微細気泡発生手段6は、前記混合ガス4を前記液体8中に気泡として供給できる方法であれば特に制限はなく、微小孔を有する管または多孔質体を通して気体を液体中に噴出させる方法、噴流や旋回流中で生じるせん断力を利用して気相を液相に巻き込む方法、超音波を用いて気液界面を振動させ微細な気泡を生成する方法などが例示される。特に好ましい例としては、超音波の周期で瞬間的に微細な気泡を発生するために膜形成反応による目詰まりが発生しにくい、中空超音波ホーンを用いて微細気泡を発生する方法(特許文献9、非特許文献3)が挙げられる。 The fine bubble generating means 6 is not particularly limited as long as it is a method capable of supplying the mixed gas 4 as bubbles into the liquid 8, and a method of jetting gas into the liquid through a tube having a micropore or a porous body. Examples include a method in which a gas phase is engulfed in a liquid phase using a shear force generated in a jet flow or a swirling flow, and a method in which a gas-liquid interface is vibrated using ultrasonic waves to generate fine bubbles. As a particularly preferred example, a method of generating fine bubbles using a hollow ultrasonic horn that is unlikely to be clogged due to a film formation reaction because fine bubbles are instantaneously generated in an ultrasonic cycle (Patent Document 9). Non-patent document 3).

前記温度調整手段7は、混合ガスの通気あるいは気泡発生手段による液体8の温度上昇を抑制することができれば特に制限はなく、クールスターラー、熱交換器、冷却ブロックなどが例示される。また、液体8の温度についてはモノマーの凝縮を促すため室温より下げることが望ましく、特に15℃以下とすることが好ましい。 The temperature adjusting means 7 is not particularly limited as long as the temperature of the liquid 8 can be prevented from flowing through the mixed gas or the bubble generating means, and examples thereof include a cool stirrer, a heat exchanger, and a cooling block. Further, the temperature of the liquid 8 is preferably lowered from room temperature in order to promote condensation of the monomer, and is preferably 15 ° C. or less.

前記液体8は、前記モノマー3と反応する成分または触媒が含まれていれば構成に特に制限は無く、反応成分または触媒のみで構成された液体、溶媒に反応成分または触媒が溶解した溶液、溶媒に反応成分または触媒が乳化分散したエマルションなどいずれの状態でも良い。また、前記液体8には気泡の微細化および安定化のために、界面活性剤を含有することが望ましい。前記界面活性剤としては非イオン性、アニオン性、カチオン性及び両性イオン性いずれの分類のものを使用してもよく、ポリビニルアルコール、TWEEN20、TWEEN80、TritonX−100、ドデシル硫酸ナトリウム、コール酸ナトリウム、デオキシコール酸ナトリウム、デオキシコール酸、ヘキサデシルトリメチルアンモニウム、ブロミドセチルトリメチルアンモニウムブロミド、ドデシルトリメチルアンモニウムブロミドなどが例示される。また、前記液体8のpH環境については、pH調整剤を前記液体8に添加してpH7以下とすることが好ましく、より好ましくはpH4以下とすることが望ましい。前記pH調整剤としてはクエン酸、酢酸、塩酸、次亜塩素酸、硫酸、硝酸、フルオロスルホン酸、リン酸、ホウ酸、ベンゼンスルホン酸、ギ酸、乳酸、シュウ酸、酒石酸、アスコルビン酸などが例示される。 The liquid 8 is not particularly limited in configuration as long as it contains a component or catalyst that reacts with the monomer 3, a liquid composed of only the reaction component or catalyst, a solution in which the reaction component or catalyst is dissolved in the solvent, a solvent Any state such as an emulsion in which a reaction component or a catalyst is emulsified and dispersed may be used. The liquid 8 preferably contains a surfactant in order to refine and stabilize the bubbles. Non-ionic, anionic, cationic and zwitterionic types may be used as the surfactant, polyvinyl alcohol, TWEEN 20, TWEEN 80, Triton X-100, sodium dodecyl sulfate, sodium cholate, Examples include sodium deoxycholate, deoxycholic acid, hexadecyltrimethylammonium, bromidecetyltrimethylammonium bromide, dodecyltrimethylammonium bromide and the like. Moreover, about the pH environment of the said liquid 8, it is preferable to add a pH adjuster to the said liquid 8, and to make it pH 7 or less, More preferably, it is desirable to make it pH 4 or less. Examples of the pH adjusting agent include citric acid, acetic acid, hydrochloric acid, hypochlorous acid, sulfuric acid, nitric acid, fluorosulfonic acid, phosphoric acid, boric acid, benzenesulfonic acid, formic acid, lactic acid, oxalic acid, tartaric acid, ascorbic acid, etc. Is done.

最終的に生成する前記中空粒子10の内部の気相の成分については、前記オゾンガスを含有する供給ガス1の成分によって変えることができる。前記オゾンガスを含有する供給ガス1については、常温・常圧において気相状態の気体にオゾンガスが含まれていれば特に限定されるものではなく、空気、水素、窒素、酸素、塩素、フッ素、希ガス、二酸化炭素、アンモニア、二酸化硫黄、塩化水素、二酸化窒素、フッ化硫黄、炭化水素、ハロゲン化炭化水素、および前記気体の複数混合した混合気などにオゾンガスを混合したガスなどが例示される。前記オゾンガスを含有する供給ガス1中の含有濃度についてはオゾンが僅かでも含まれていれば特に限定されるものではないが、好ましいオゾン濃度としては0.1ppm以上、特に好ましくは1ppm以上が望ましい。オゾンガスを含有する供給ガス1の供給手段については特に制限されず、高圧ボンベ、ダイアフラムポンプ、ギアポンプ、ロータリーポンプ、チュービングポンプによる送気などが例示される。 The gas phase components inside the hollow particles 10 that are finally generated can be changed depending on the components of the supply gas 1 containing the ozone gas. The supply gas 1 containing the ozone gas is not particularly limited as long as ozone gas is contained in the gas phase gas at normal temperature and pressure, and air, hydrogen, nitrogen, oxygen, chlorine, fluorine, rare Examples include gas, carbon dioxide, ammonia, sulfur dioxide, hydrogen chloride, nitrogen dioxide, sulfur fluoride, hydrocarbons, halogenated hydrocarbons, and a gas in which ozone gas is mixed with a mixture of a plurality of the gases. The concentration in the supply gas 1 containing the ozone gas is not particularly limited as long as ozone is contained, but a preferable ozone concentration is 0.1 ppm or more, particularly preferably 1 ppm or more. The supply means of the supply gas 1 containing ozone gas is not particularly limited, and examples thereof include air supply using a high-pressure cylinder, a diaphragm pump, a gear pump, a rotary pump, and a tubing pump.

以下、本発明を実施例に基づき更に説明するが、本発明はこれに限定されるものではない。 EXAMPLES Hereinafter, although this invention is further demonstrated based on an Example, this invention is not limited to this.

エチルシアノアクリレート4gを気体吸入口および混合ガス放出口を設けた50mL三角フラスコに封入し、250℃のホットスターラーによって加熱・撹拌し、エチルシアノアクリレート蒸気を発生させる。発生したエチルシアノアクリレート蒸気は気体吸入口より取り込まれたオゾンを50ppmで含有する乾燥空気と共にマイクロバブル発生装置に送気され、冷却水を循環可能な500mLビーカー中で冷却水循環装置によって12℃に維持された400mLの0.02%デオキシコール酸ナトリウム水溶液に中空超音波ホーンから放出することによって微細な気泡が発生する。中空超音波ホーンにはノズル内径6mmの噴霧ノズルを装着しており、周波数15kHz、振幅40μm(Peak to Peak)で振動し、振動の有無により図2に示すように瞬時に1mm以下の気泡に微細化される。0.02%デオキシコール酸ナトリウム水溶液中の気泡の界面においてエチルシアノアクリレートは水と接触することで重合反応が開始して固体膜が形成し、微細な中空粒子が生成する。また中空粒子の生成、分散により、透明な水相は時間と共に白濁する。本実施例1に示す操作によって白濁した水相中の球形粒子の電子顕微鏡画像を図3に示す。図3に示すように大きさ10μm以下の中空構造の粒子が確認できることから、内部に空気吸入口から取り込んだ空気を含む大きさ10μm以下の中空粒子の作成が確認された。また、この実施例1では目詰まりすることなく20分以上の調製が可能であり、20分時点での中空粒子分散液中の粒子体積濃度は0.10vol%、図4に示す分布のように0.8〜100μmの範囲の中空構造を有する粒子が生成し、個数での平均直径は1.69μmであった。 4 g of ethyl cyanoacrylate is sealed in a 50 mL Erlenmeyer flask provided with a gas inlet and a mixed gas outlet, and heated and stirred by a hot stirrer at 250 ° C. to generate ethyl cyanoacrylate vapor. The generated ethyl cyanoacrylate vapor is sent to the microbubble generator together with dry air containing 50 ppm of ozone taken in from the gas inlet, and maintained at 12 ° C. by the cooling water circulating device in a 500 mL beaker capable of circulating cooling water. Fine bubbles are generated by discharging from a hollow ultrasonic horn into 400 mL of 0.02% sodium deoxycholate aqueous solution. The hollow ultrasonic horn is equipped with a spray nozzle with a nozzle inner diameter of 6 mm. It vibrates at a frequency of 15 kHz and an amplitude of 40 μm (Peak to Peak). It becomes. When ethyl cyanoacrylate comes into contact with water at the bubble interface in a 0.02% sodium deoxycholate aqueous solution, a polymerization reaction starts to form a solid film, and fine hollow particles are generated. In addition, due to the formation and dispersion of hollow particles, the transparent aqueous phase becomes cloudy with time. FIG. 3 shows an electron microscope image of the spherical particles in the aqueous phase that has become cloudy by the operation shown in Example 1. Since hollow particles having a size of 10 μm or less can be confirmed as shown in FIG. 3, it was confirmed that hollow particles having a size of 10 μm or less containing air taken in from the air suction port were confirmed. In Example 1, preparation for 20 minutes or more is possible without clogging, and the particle volume concentration in the hollow particle dispersion at 20 minutes is 0.10 vol%, as shown in the distribution shown in FIG. Particles having a hollow structure in the range of 0.8 to 100 μm were produced, and the average diameter in number was 1.69 μm.

実施例1における中空構造を有する粒子を生成する工程において、400mLのデオキシコール酸ナトリウム水溶液に酒石酸0.2gを加えpHを3.5とした前記水溶液を用いて中空構造を有する粒子を生成した。この実施例2においても中空構造を有する粒子の生成、分散により、透明な水相は時間と共に白濁する。実施例2に示す操作によって白濁した水相中の球形粒子の電子顕微鏡画像を図5に示す。図5に示すように大きさ1μm以下の中空構造を有する粒子が確認できることから、内部に気体吸入口から取り込んだ空気を含む中空粒子の作成が確認された。また、この実施例2でも目詰まりすることなく20分以上の調製が可能であり、20分時点での中空粒子分散液中の粒子体積濃度は0.41vol%、図6に示す分布のように0.3〜100μmの範囲の中空構造を有する粒子が生成し、個数での平均直径は0.66μmであった。 In the step of producing particles having a hollow structure in Example 1, particles having a hollow structure were produced using the aqueous solution in which 0.2 g of tartaric acid was added to 400 mL of sodium deoxycholate and the pH was 3.5. Also in Example 2, the transparent aqueous phase becomes cloudy with time due to the generation and dispersion of particles having a hollow structure. FIG. 5 shows an electron microscope image of the spherical particles in the aqueous phase that has become cloudy by the operation shown in Example 2. As shown in FIG. 5, since particles having a hollow structure having a size of 1 μm or less can be confirmed, it was confirmed that hollow particles containing air taken in from the gas inlet were produced. Further, in Example 2, preparation for 20 minutes or more is possible without clogging, and the particle volume concentration in the hollow particle dispersion at the time of 20 minutes is 0.41 vol%, as shown in the distribution shown in FIG. Particles having a hollow structure in the range of 0.3 to 100 μm were produced, and the average diameter in number was 0.66 μm.

実施例1において気体吸入口より取り込まれる気体を、オゾンを含まない乾燥空気に変え、特許文献7に記載の内容の範囲で作成した例(比較例)では、図7の画像および図8に示す0.7〜600μmの粒径範囲で平均1.34μmの中空構造を有する粒子が生成したものの、18分で目詰まりが発生し気泡の発生が停止した。この時、超音波ホーンでは気体を導入する継手部分および気体を液体中に放出する気体放出口付近では図9に示すようにシアノアクリレート樹脂が継ぎ手内部へ付着したり、塊が気体放出口に生成することが確認された一方、オゾンガスを含む気体を供給した実施例1および実施例2では20分経過しても気泡の発生は安定しており、図9に示すようにシアノアクリレート樹脂の継ぎ手内部へ付着はほとんど確認されず、供給モノマーが固化して内部を塞栓してしまうことによる目詰まりの抑止が可能であった。また、目詰まりが発生する18分で白濁した中空粒子分散液中の粒子体積濃度は0.013vol%であった。したがって、実施例1は比較例の8倍、実施例2では比較例の31.5倍の収量向上が確認された。 In the example (comparative example) created in the range described in Patent Document 7 by changing the gas taken in from the gas suction port in Example 1 to dry air not containing ozone, the image shown in FIG. 7 and FIG. 8 are shown. Although particles having a hollow structure of 1.34 μm on average were generated in the particle size range of 0.7 to 600 μm, clogging occurred in 18 minutes and the generation of bubbles stopped. At this time, in the ultrasonic horn, a cyanoacrylate resin adheres to the inside of the joint as shown in FIG. 9 or a lump is generated in the gas discharge port in the vicinity of the joint portion for introducing the gas and the gas discharge port for discharging the gas into the liquid. On the other hand, in Example 1 and Example 2 in which the gas containing ozone gas was supplied, the generation of bubbles was stable even after 20 minutes, and the inside of the joint of the cyanoacrylate resin as shown in FIG. Almost no adhesion was observed, and clogging due to solidification of the supplied monomer and plugging of the inside was possible. In addition, the particle volume concentration in the hollow particle dispersion which became cloudy in 18 minutes when clogging occurred was 0.013 vol%. Therefore, the yield improvement of Example 1 was confirmed to be 8 times that of the Comparative Example, and Example 2 was confirmed to be 31.5 times that of the Comparative Example.

本発明で得られる中空粒子は、材料を液体中に溶解させるのではなく、気泡内部のガスとして供給するため、反応場である気泡表面に選択的に材料を供給することができる。また、気泡に含まれるモノマーガスと供給ガスの濃度を変えることにより膜厚や比重の調整も容易であるため、断熱材、防音材、感熱材、緩衝材、軽量化材料、衝撃吸収剤、光学材料、塗料、化粧品、医薬品など様々な用途に有効である。例えば、実施例1〜2で使用したシアノアクリレートは医療用にも用いられている材料であり、中空構造が有する音響特性を活用することで超音波造影剤としての利用も期待できる。 The hollow particles obtained in the present invention do not dissolve the material in the liquid, but supply it as a gas inside the bubble, so that the material can be selectively supplied to the bubble surface as a reaction field. In addition, it is easy to adjust the film thickness and specific gravity by changing the concentration of monomer gas and supply gas contained in the bubbles, so heat insulation, soundproofing material, heat sensitive material, cushioning material, weight reduction material, shock absorber, optical It is effective for various applications such as materials, paints, cosmetics, and pharmaceuticals. For example, cyanoacrylate used in Examples 1 and 2 is a material that is also used for medical purposes, and can be expected to be used as an ultrasound contrast agent by utilizing the acoustic characteristics of the hollow structure.

1 オゾンガスを含有する供給ガス
2 気化容器
3 モノマー
4 混合ガス
5 送気手段
6 気泡発生手段
7 温度調整手段
8 液体
9 気泡
10 中空粒子
DESCRIPTION OF SYMBOLS 1 Supply gas containing ozone gas 2 Vaporization container 3 Monomer 4 Mixed gas 5 Air supply means 6 Bubble generation means 7 Temperature adjustment means 8 Liquid 9 Bubble 10 Hollow particle

Claims (5)

液体中にオゾンガスおよびモノマーを含む気体を吹き込んで気泡を発生させ、前記気泡の気液界面において前記モノマーと前記液体の接触により固体膜を形成させることを特徴とする中空粒子の製造方法。 A method for producing hollow particles, wherein a gas containing ozone gas and a monomer is blown into a liquid to generate bubbles, and a solid film is formed by contacting the monomer and the liquid at a gas-liquid interface of the bubbles. オゾンガスおよびモノマーを含む気体の供給手段と前記気体を微細な気泡とする微細気泡発生手段を具備することを特徴とする中空粒子の製造装置 A device for producing hollow particles, comprising: a supply means for a gas containing ozone gas and a monomer; and a fine bubble generating means for making the gas into fine bubbles. 気泡を発生させる液体のpHを7以下の酸性側に維持することを特徴とする請求項1に記載の中空粒子の製造方法もしくは請求項2に記載の中空粒子の製造装置 The method for producing hollow particles according to claim 1 or the apparatus for producing hollow particles according to claim 2, wherein the pH of the liquid for generating bubbles is maintained on the acidic side of 7 or less. 気泡を発生させる液体に界面活性剤を含有する請求項1に記載の中空粒子の製造方法もしくは請求項2に記載の中空粒子の製造装置 The method for producing hollow particles according to claim 1 or the apparatus for producing hollow particles according to claim 2, wherein a surfactant is contained in a liquid that generates bubbles. 請求項1から請求項4のいずれかに記載の方法もしくは装置で製造した中空粒子。 Hollow particles produced by the method or apparatus according to any one of claims 1 to 4.
JP2015149222A 2015-07-29 2015-07-29 Hollow particle made from bubbles and method for producing the same Pending JP2017029876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015149222A JP2017029876A (en) 2015-07-29 2015-07-29 Hollow particle made from bubbles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015149222A JP2017029876A (en) 2015-07-29 2015-07-29 Hollow particle made from bubbles and method for producing the same

Publications (1)

Publication Number Publication Date
JP2017029876A true JP2017029876A (en) 2017-02-09

Family

ID=57986564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015149222A Pending JP2017029876A (en) 2015-07-29 2015-07-29 Hollow particle made from bubbles and method for producing the same

Country Status (1)

Country Link
JP (1) JP2017029876A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210044899A (en) 2019-09-18 2021-04-23 엔지케이 인슐레이터 엘티디 Electrostatic chuck heater
KR20210070371A (en) 2019-09-18 2021-06-14 엔지케이 인슐레이터 엘티디 ceramic heater
KR20210134046A (en) 2019-06-28 2021-11-08 엔지케이 인슐레이터 엘티디 electrostatic chuck heater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210134046A (en) 2019-06-28 2021-11-08 엔지케이 인슐레이터 엘티디 electrostatic chuck heater
KR20210044899A (en) 2019-09-18 2021-04-23 엔지케이 인슐레이터 엘티디 Electrostatic chuck heater
KR20210070371A (en) 2019-09-18 2021-06-14 엔지케이 인슐레이터 엘티디 ceramic heater

Similar Documents

Publication Publication Date Title
JP2017029876A (en) Hollow particle made from bubbles and method for producing the same
US10946148B2 (en) Method and apparatus for the production of microscale bubbles by depressurization cavitation
JP2005290494A (en) Method for manufacturing foamed sintered body
Horikoshi et al. On the stability of surfactant-free water-in-oil emulsions and synthesis of hollow SiO2 nanospheres
JP3931233B2 (en) Method for producing gas hydrate using ultrafine bubbles and particulate gas hydrate obtained by this production method
JP6964521B2 (en) How to help heat-induced changes
JP5590666B2 (en) Hollow particles made from bubbles and method for producing the same
JP2014050817A (en) Control method of particle size of fine bubble
JP6677018B2 (en) Method for producing hollow particles and hollow particles
JP2007314463A (en) Liquid composition containing fine bubble
JP2007196223A (en) Manufacturing method of hollow microcapsule
JP2015085251A (en) Hollow particle made from air bubble and production device therefor
JP2011025202A (en) Functional mist generator
Murakami et al. Droplets generation in the flowing ambient liquid by using an ultrasonic torsional transducer
JP2007313425A (en) Production method for liquid composition with microbubbles
Makuta et al. Fabrication of metal nanoparticle by microbubble oscillation in molten metal
JP2011050832A (en) Minute bubble generation apparatus and generation method
Katayose et al. New fabrication method and properties of porous metals produced by ultrasonic control of microbubble size
JP2015516483A (en) Products and methods for producing uniform spherical acrylic polymer beads
JP2011025203A (en) Functional mist generator
CN105036174A (en) Production method for submicron electronic-grade copper oxide powder
JP2012106189A (en) Device of generating bubble-containing liquid
JP2005074369A (en) Method and apparatus for producing fine bubble having uniform diameter
KR101061875B1 (en) Recovery Method of Ionic Liquid Using Ultrasonic Atomization
JP2019094226A (en) Method for producing hollow particles