JP2016097324A - Method for manufacturing hollow particle and control method - Google Patents

Method for manufacturing hollow particle and control method Download PDF

Info

Publication number
JP2016097324A
JP2016097324A JP2014234062A JP2014234062A JP2016097324A JP 2016097324 A JP2016097324 A JP 2016097324A JP 2014234062 A JP2014234062 A JP 2014234062A JP 2014234062 A JP2014234062 A JP 2014234062A JP 2016097324 A JP2016097324 A JP 2016097324A
Authority
JP
Japan
Prior art keywords
liquid
hollow
gas
droplet
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014234062A
Other languages
Japanese (ja)
Inventor
寿典 幕田
Hisanori Makuta
寿典 幕田
躍也 江黒
Yoya Eguro
躍也 江黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2014234062A priority Critical patent/JP2016097324A/en
Publication of JP2016097324A publication Critical patent/JP2016097324A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Micro-Capsules (AREA)

Abstract

PROBLEM TO BE SOLVED: To generate a large amount of hollow particles having an arbitrary hollow rate, circularity, and particles size in a short time without removing a core material.SOLUTION: In a process of preparing a microcapsule enclosing a liquid or solid by an interfacial polymerization method, the enclosed liquid is pressurized by gas to dissolve the gas therein more excessively than in an atmospheric pressure environment, and foaming of the enclosed liquid is promoted at the time of film formation in an atmospheric pressure environment, whereby film formation occurs in a state still including a gas phase inside to produce a hollow particle. A hollow particle having an arbitrary hollow rate, circularity, and particles size can be produced by changing a pressurizing pressure, solubility of gas into a droplet, and a distance from droplet formation means to a liquid to be reacted.SELECTED DRAWING: Figure 2

Description

本発明は、気体を加圧して液体に過剰に気体を溶解させた状態から減圧する際の発泡現象を利用して製造する直径1mm以下の中空構造を有する粒子(以下中空粒子)の製造装置および中空粒子の粒径・形状の制御手法に関するものである。 The present invention relates to an apparatus for producing particles having a hollow structure with a diameter of 1 mm or less (hereinafter referred to as hollow particles) produced by utilizing a foaming phenomenon when a gas is pressurized and decompressed from a state in which the gas is excessively dissolved in a liquid. The present invention relates to a method for controlling the particle size and shape of hollow particles.

内部が気体で外部が固体の構造を有する中空粒子は、密度が低く、音や熱の伝達を抑制することもできるため、材料の比重調整を行う軽量化材や防音材・断熱材などに用いられている。 Hollow particles with a gas structure inside and a solid outside structure are low in density and can suppress the transmission of sound and heat, so they are used for lightening materials, soundproofing materials, and heat insulating materials that adjust the specific gravity of materials. It has been.

従来の中空粒子の製法としては、液体または固体の芯となる物質(芯物質)を内包する固体粒子を生成し、芯物質を加熱または減圧などの操作によって固体粒子より抽出して中空にする方法(特許文献1、2参照)、あるいは芯物質を気化させて中空構造を付与する技術(特許文献3参照)などがある。 As a conventional method for producing hollow particles, solid particles containing a substance that becomes a liquid or solid core (core substance) are generated, and the core substance is extracted from the solid particles by an operation such as heating or decompression to make it hollow. (See Patent Documents 1 and 2), or a technique for vaporizing a core material to give a hollow structure (see Patent Document 3).

また、気泡を用いて直接中空粒子を作り出す手法としては、気泡の表面において気泡周囲の液相中の物質同士を重合させて固体膜を生み出して中空粒子化する方法(特許文献4参照)、液相中の物質の重合を気相に含まれる触媒で促進させて中空粒子化する方法(特許文献5参照)、膜材料を溶解させた液滴中に気泡を安定に存在させたまま液滴を乾燥させ膜材料を析出させることで中空構造を有したまま中空粒子化する方法(特許文献6参照)、液体と反応して膜形成が起こる反応性ガスを含む気体を微細な気泡として液体中に供給して中空粒子化する方法(特許文献7参照)などがある。 Moreover, as a method of directly creating hollow particles using bubbles, a method of polymerizing substances in a liquid phase around the bubbles on the surface of the bubbles to produce a solid film to form hollow particles (see Patent Document 4), liquid A method in which polymerization of substances in a phase is promoted by a catalyst contained in a gas phase to form hollow particles (see Patent Document 5), and droplets are formed while bubbles are stably present in droplets in which a membrane material is dissolved. A method of forming a hollow particle with a hollow structure by drying and precipitating a film material (see Patent Document 6), a gas containing a reactive gas that reacts with a liquid and causes film formation as fine bubbles in the liquid There is a method of supplying hollow particles (see Patent Document 7).

また、本発明者らは、本発明に先立ち、予め加圧して気体を飽和させた液体を噴霧することで粒子形成時の液滴内部での発泡を促し中空粒子を容易に製造する方法(特許文献8参照)を考案している。 In addition, prior to the present invention, the present inventors have promoted foaming inside droplets during the formation of particles by spraying a liquid that has been pre-pressurized and saturated with gas (patented). (Ref. 8).

特開2002−105104号公報JP 2002-105104 A 特表平9−508067号公報Japanese National Patent Publication No. 9-508067 特公平3−79060号公報Japanese Patent Publication No. 3-79060 特開2007−21315号公報JP 2007-21315 A 特開2007−196223号公報JP 2007-196223 A 特開2007−75660号公報Japanese Patent Laid-Open No. 2007-75660 特開2011−245452号公報Japanese Patent Application Laid-Open No. 2011-245452 特願2013−158353号Japanese Patent Application No. 2013-158353

前記の背景技術において、固体粒子に含まれる芯物質を抽出や気化を用いて中空化する方法は、中空化工程の圧力や熱の制御が難しく、中空化の際に粒子の変形や表面の損傷が起こりやすいことが問題である。 In the above background art, the method of hollowing out the core material contained in the solid particles by extraction or vaporization is difficult to control the pressure and heat of the hollowing process, and the deformation of the particles and the damage of the surface during the hollowing. It is a problem that is likely to occur.

また、前記の背景技術における気泡を使う手法においては、中空化工程が不要のため簡便に中空粒子を作ることができるものの、泡の発生量に対して中空粒子化する量が少なく収量が少ないことや、液中乾燥の場合に調製に長い時間を要することが問題である。 In addition, in the method using bubbles in the background art described above, a hollowing step is not required, so that hollow particles can be easily produced, but the amount of hollow particles to be generated is small with respect to the amount of bubbles generated, and the yield is low. In addition, in the case of drying in liquid, it takes a long time to prepare.

発明者らが特許文献8で開示した方法では、粒子形成時の液滴内部での発泡を促し中空粒子を容易に製造する方法について示しているが、粒子径・中空率・外部形状の制御ついては明示されておらず、中空粒子に関する前記の項目を制御するパラメータについては示されていなかった。 The method disclosed by the inventors in Patent Document 8 shows a method for easily producing hollow particles by promoting foaming inside droplets during particle formation. For control of particle diameter, hollow ratio, and external shape, It was not specified and the parameters controlling the above items for hollow particles were not shown.

本発明は、従来の中空粒子の生成法に関する前記の問題を解決することが課題であり、中空粒子の大きさおよび外部・内部の構造をコントロールする手法を提供するものである。 An object of the present invention is to solve the above-mentioned problems relating to the conventional method for producing hollow particles, and to provide a method for controlling the size of the hollow particles and the external / internal structure.

本発明者らは特許文献8で開示した方法において、分散質となる液体を気体で加圧して常圧環境時より過剰に気体を溶解させる工程を経ることで、常圧環境での界面重合法(分散質と分散媒にそれぞれ異なる成分を含むエマルションにおいてそれぞれの相に含まれる異なる成分同士が接触界面で反応して膜形成する手法)による膜形成時に分散質内部で泡が発生し、膜形成後に内部に気相を有する中空粒子が調製できることを見出した。分散質内部での泡の発生に関しては、気体の液体への溶解量は圧力に比例し(ヘンリーの法則)高圧環境下では大気圧下よりも多量の気体が液体に溶解するため、高圧下で飽和溶解した液体を大気圧まで減圧すると過飽和の溶存気体が気泡として発生する原理を利用している。本発明では、前項に記載した課題を解決するために鋭意研究を重ねた結果、気体の溶解度、加圧圧力、液体放出口から反応物質が溶解した液体までの距離、を変化させることによって、それぞれ内部の発泡量、液滴形成状態、表面張力による形状の安定性を変化させ、中空粒子の中空率、平均粒子径、円形度の制御が可能であることを見出した。 In the method disclosed in Patent Document 8, the present inventors have carried out a step of pressurizing a liquid as a dispersoid with a gas and dissolving the gas in excess over that in a normal pressure environment, whereby an interfacial polymerization method in a normal pressure environment. (Emulsion containing different components in the dispersoid and disperse medium in which different components contained in each phase react with each other at the contact interface to form a film) Bubbles are generated inside the dispersoid during film formation, and film formation Later, it was found that hollow particles having a gas phase inside can be prepared. Regarding the generation of bubbles inside the dispersoid, the amount of gas dissolved in the liquid is proportional to the pressure (Henry's law). Under high pressure, a larger amount of gas dissolves in the liquid than under atmospheric pressure. It utilizes the principle that when a saturated and dissolved liquid is depressurized to atmospheric pressure, a supersaturated dissolved gas is generated as bubbles. In the present invention, as a result of intensive research to solve the problems described in the preceding paragraph, by changing the solubility of the gas, the pressurized pressure, the distance from the liquid discharge port to the liquid in which the reactant is dissolved, respectively, It was found that the hollowness, average particle diameter, and circularity of the hollow particles can be controlled by changing the internal foaming amount, the droplet formation state, and the shape stability depending on the surface tension.

本発明に係る中空粒子の製造装置および中空粒子の粒径・形状の制御手法では以下の効果を得ることができる。(1)芯物質除去工程が不要となる。(2)最低限必要とする装置が圧力容器、液滴形成手段、反応槽のみのシンプルな構成であり、容易かつ安価に中空粒子を調製できる。(3)用途に応じた最適な粒子径・中空率・円形度の中空粒子の調製ができる。 The hollow particle production apparatus and the method for controlling the particle size and shape of the hollow particles according to the present invention can provide the following effects. (1) The core substance removing step is not necessary. (2) The minimum required apparatus is a simple configuration including only a pressure vessel, a droplet forming means, and a reaction tank, and hollow particles can be prepared easily and inexpensively. (3) It is possible to prepare hollow particles having an optimum particle diameter, hollow ratio, and circularity according to the application.

本発明の装置構成を示した図である。It is the figure which showed the apparatus structure of this invention. 実施例1で調製した中空粒子の光学顕微鏡画像である。2 is an optical microscope image of hollow particles prepared in Example 1. FIG. 本発明における気体の溶解度と平均中空率の関係を示す図である。It is a figure which shows the relationship between the solubility of gas in this invention, and an average hollow rate. 本発明における加圧圧力と中空粒子の平均粒子径の関係を示す図である。It is a figure which shows the relationship between the pressurization pressure in this invention, and the average particle diameter of a hollow particle. 実施例7で調製した中空粒子の光学顕微鏡画像である。2 is an optical microscope image of hollow particles prepared in Example 7. FIG.

本発明は、発明者らが先だって発明した特許文献8に記載の、 (1)容器中に保持された液体を気体によって大気圧以上に加圧して、大気圧環境下よりも過剰に液体中に気体を溶存させる、(2)加圧された液体を液滴形成手段によって液滴として反応槽に保持された液体中に放出し、前記液滴を分散質、反応槽に保持された液体を分散媒としたエマルション状態を形成させる、(3)反応槽に保持された液体と液滴はそれぞれに含まれる成分同士が液滴界面で反応して膜を形成し粒子化し、液滴内部では大気圧環境下に減圧されることで、加圧操作によって大気圧環境下での飽和状態よりも過剰に溶存した気体が泡として発生するため前記粒子に中空構造が付与される、以上の工程によって内部に空洞を含むカプセルを容易に生成可能とする技術において、 気体の溶解度、気体の加圧圧力、液滴を発生させるノズルから膜形成反応対象物質を含有する液体までの距離、を変えることで中空粒子の中空率、平均粒子径、円形度を制御する手法である。以下、本発明を実施するための最良の形態について図面1を参照して説明する。 The present invention is described in Patent Document 8 invented by the inventors of the present invention. (1) The liquid held in the container is pressurized to atmospheric pressure or higher by a gas so that the liquid is excessively contained in the liquid than in the atmospheric pressure environment. Dissolve the gas. (2) Discharge the pressurized liquid into the liquid held in the reaction vessel as droplets by the droplet forming means, disperse the droplets in the dispersoid and the liquid held in the reaction vessel. (3) The liquid and liquid droplets held in the reaction tank react with each other at the liquid droplet interface to form a film and form particles, and atmospheric pressure is generated inside the liquid droplets. By depressurizing under the environment, the gas is dissolved in excess as compared to the saturated state under the atmospheric pressure environment by the pressurization operation, so that a hollow structure is imparted to the particles. Capable of easily producing capsules containing cavities In this technology, the hollow ratio, average particle diameter, and circularity of the hollow particles are changed by changing the solubility of the gas, the pressure of the gas, and the distance from the nozzle that generates the droplet to the liquid that contains the target substance for film formation. It is a method to control. Hereinafter, the best mode for carrying out the present invention will be described with reference to FIG.

本発明を実施するための最良の形態では、以下の加圧工程、液滴形成工程、膜形成工程を経て中空粒子を生成する。
圧力容器1に粒子材料2が溶解または分散した液体3をいれ気体4によって加圧する(加圧工程)。
気体4によって加圧され大気圧環境下よりも過剰に気体4が溶解した液体3は、液滴形成手段5によって液滴6として放出され、反応槽7で回収される(液滴形成工程)。
液滴6は反応槽7に満たされた粒子材料8が溶解または分散した液体9の中で、液滴6と液体9の界面において液滴6に含まれる粒子材料2と液体9に含まれる粒子材料8が接触して膜形成し微粒子10が生成する(膜形成工程)。
液滴6の形成から微粒子10の生成が完了するまでに、大気圧環境下での液滴6内部では加圧操作によって過剰に溶解した気体4の一部が単一あるいは複数の気泡11として発生することで、微粒子10の内部に中空の構造を付与することができる。
本発明は、前記の中空粒子形成工程において、
(1)加圧工程における気体あるいは液体を変更して気体の溶解度を変えることで、中空率(粒子内部にある空洞の総体積/粒子の外部体積)を0%から55%の範囲で制御する。
(2)加圧工程における圧力を変更して、平均粒子径を15μmから80μmの範囲で制御する。
(3)液滴形成手段6で液滴を形成させる位置と液体9の距離を変えて円形度0.5から1の範囲で制御する。
以上3点を可能とするものである。
In the best mode for carrying out the present invention, hollow particles are generated through the following pressurizing step, droplet forming step, and film forming step.
A liquid 3 in which the particulate material 2 is dissolved or dispersed is put into the pressure vessel 1 and pressurized by the gas 4 (pressurizing step).
The liquid 3 which is pressurized by the gas 4 and in which the gas 4 is excessively dissolved in the atmospheric pressure environment is discharged as droplets 6 by the droplet forming means 5 and collected in the reaction tank 7 (droplet forming step).
The liquid droplet 6 is a liquid 9 in which the particle material 8 filled in the reaction vessel 7 is dissolved or dispersed. The material 8 comes into contact with the film to form fine particles 10 (film forming process).
From the formation of the droplet 6 until the generation of the fine particles 10 is completed, a part of the gas 4 excessively dissolved by the pressurizing operation is generated as single or plural bubbles 11 inside the droplet 6 under the atmospheric pressure environment. By doing so, a hollow structure can be provided inside the fine particles 10.
The present invention, in the hollow particle formation step,
(1) By changing the solubility of the gas by changing the gas or liquid in the pressurization step, the hollow ratio (total volume of cavities inside the particle / external volume of the particle) is controlled in the range of 0% to 55%. .
(2) The pressure in the pressurizing step is changed to control the average particle diameter in the range of 15 μm to 80 μm.
(3) The position where the droplet is formed by the droplet forming means 6 and the distance between the liquid 9 are changed and the circularity is controlled in the range of 0.5 to 1.
The above three points are possible.

圧力容器1については、内部を大気圧以上に保持し密封可能であれば特に限定されるものではないが、耐圧ガラスボトル、耐圧ガラスチューブ、ステンレスボトル、ステンレスチューブ、ステンレスタンク、フッ素樹脂ボトル、ペットボトル、アルミボトルなどが例示される。加圧する圧力については、大気圧以上であれは特に限定されるものではないが、ガスボンベ等で実施可能な0.1MPaから12MPaの範囲が好ましく、コンプレッサー等で実施可能な大気圧から0.1MPaから1.5MPaの範囲が特に好ましい。また加圧状態の保持時間については気体4が液体3に気体4が大気圧環境下での飽和溶存量よりも過剰に溶解する時間以上を確保すれば特に限定されるものではない。 The pressure vessel 1 is not particularly limited as long as the inside is maintained at atmospheric pressure or higher and can be sealed. However, the pressure glass bottle, the pressure glass tube, the stainless bottle, the stainless tube, the stainless tank, the fluororesin bottle, the pet Examples include bottles and aluminum bottles. The pressure to be pressurized is not particularly limited as long as it is atmospheric pressure or higher, but is preferably in the range of 0.1 MPa to 12 MPa that can be implemented with a gas cylinder or the like, and from atmospheric pressure to 0.1 MPa that can be implemented with a compressor or the like. A range of 1.5 MPa is particularly preferred. In addition, the holding time in the pressurized state is not particularly limited as long as the gas 4 is in the liquid 3 and the gas 4 is in excess of the saturated dissolved amount in the atmospheric pressure environment.

粒子材料2および粒子材料8の組み合わせについては、互いに接触すると重合、縮合、脱水、冷却固化、吸水、水和、加水分解などの反応によって膜形成する粒子材料の組み合わせであれば特に限定されるものではないが、アルギン酸ナトリウムと塩化カルシウム、1,8−オクタンジカルボニルクロリドと1,6−ヘキサンジアミン、L−リジンとテレフタロイルジクロリド、酸クロライド(アジピン酸クロライド、セバコイルクロライド、テレフタル酸クロライドなど)とポリアミン(1,6ヘキサメチレンジアミン、ピペラジン、レーリジンなど)、酸クロライドとポリフェノール(2,2−ビス(4−ハイドロキシフェニル)プロパンなど)、イソシアネート(ヘキサメチレンジイソシアネート、メタフェニレンジイソシアネート、トルイレンイソシアネート、2,4−トリレンージイソシアネート、3,3−ジメチル−ジフェニル−4,4−ジイソシアネート、ジフェニルメタン−4,4ジイソシアネート、トリフェニルメタン−トリイソシアネート、ナフタレン−1,5−ジイソシアネートなど)またはイソチオシアネート(エチルイソチオシアネート、メチルイソチオシアネート、ベンジルイソチオシアネート、アリルイソチオシアネート、ピリジン−3−イソチオシアネートなど)と水またはポリオールまたはポリアミン、ポリイソシアネートとポリアミンなどの組み合わせが例示される。また、粒子材料2が溶解または分散した液体3および粒子材料8が溶解または分散した液体9については、常温・常圧下で液体であれば特に限定されず、水、公知の油類(ひまし油、サラダ油、コーン油、大豆油、ごま油、菜種油、サフラワー油、椿油、パーム油、オリーブオイル、流動パラフィン、シリコンオイルなど)、公知の有機溶媒(ヘキサン、ベンゼン、トルエン、ジエチルエーテル、 クロロホルム、酢酸エチル、 塩化メチレン、 テトラヒドロフラン、アセトン、アセトニトリル、N,N−ジメチルホルムアミド、ジメチルスルホキシド 、酢酸 、1−ブタノール、2−プロパノール、1−プロパノール、エタノール、メタノール、ギ酸など)や、液体への気体の溶解度を任意に変えるために気体の溶解度の異なる液体を2種類以上混ぜ合わせた混合溶液(低級アルコール水溶液や多価アルコール水溶液など)が例示される。特に好ましい形態としては、放出された液滴の形状の合体や分散安定性向上のために粒子材料2が溶解または分散した液体3または粒子材料8が溶解または分散した液体9の少なくとも一方に公知の界面活性剤を溶解させることが好ましい。前記界面活性剤としては非イオン性、アニオン性、カチオン性及び両性イオン性いずれの分類のものを使用してもよく、ポリビニルアルコール、TWEEN20、TWEEN80、TritonX−100、ドデシル硫酸ナトリウム、コール酸ナトリウム、デオキシコール酸ナトリウム、ヘキサデシルトリメチルアンモニウム、ブロミドセチルトリメチルアンモニウムブロミド、ドデシルトリメチルアンモニウムブロミドなどが例示される。また、粒子材料2または粒子材料8が常温・常圧下で液体の場合、液体状態の粒子材料はそのまま用いても良い。また、前述した組み合わせの一方の粒子材料が圧力容器1に封入され、もう一方の材料が反応槽7に保持されていれば良く、どちらを圧力容器1に封入しても良い。 The combination of the particulate material 2 and the particulate material 8 is particularly limited as long as it is a combination of particulate materials that form a film by reaction such as polymerization, condensation, dehydration, cooling and solidification, water absorption, hydration, and hydrolysis when they come into contact with each other. Not, but sodium alginate and calcium chloride, 1,8-octanedicarbonyl chloride and 1,6-hexanediamine, L-lysine and terephthaloyl dichloride, acid chloride (adipic acid chloride, sebacoyl chloride, terephthalic acid chloride, etc. ) And polyamines (1,6 hexamethylenediamine, piperazine, rheridine, etc.), acid chlorides and polyphenols (2,2-bis (4-hydroxyphenyl) propane, etc.), isocyanates (hexamethylene diisocyanate, metaphenylene diisocyanate, Ruylene isocyanate, 2,4-tolylene diisocyanate, 3,3-dimethyl-diphenyl-4,4-diisocyanate, diphenylmethane-4,4 diisocyanate, triphenylmethane-triisocyanate, naphthalene-1,5-diisocyanate, etc.) or Examples include combinations of isothiocyanates (ethyl isothiocyanate, methyl isothiocyanate, benzyl isothiocyanate, allyl isothiocyanate, pyridine-3-isothiocyanate, etc.) and water or polyol or polyamine, polyisocyanate and polyamine, and the like. The liquid 3 in which the particulate material 2 is dissolved or dispersed and the liquid 9 in which the particulate material 8 is dissolved or dispersed are not particularly limited as long as they are liquid at normal temperature and normal pressure. Water, known oils (castor oil, salad oil) , Corn oil, soybean oil, sesame oil, rapeseed oil, safflower oil, coconut oil, palm oil, olive oil, liquid paraffin, silicone oil, etc., known organic solvents (hexane, benzene, toluene, diethyl ether, chloroform, ethyl acetate, Methylene chloride, tetrahydrofuran, acetone, acetonitrile, N, N-dimethylformamide, dimethyl sulfoxide, acetic acid, 1-butanol, 2-propanol, 1-propanol, ethanol, methanol, formic acid, etc.) or any gas solubility in liquid Two types of liquids with different gas solubilities Upper combined mixed solution (such as a lower alcohol solution or aqueous polyhydric alcohol solution) is exemplified. Particularly preferred forms are known in at least one of the liquid 3 in which the particle material 2 is dissolved or dispersed or the liquid 9 in which the particle material 8 is dissolved or dispersed in order to improve the stability of coalescence and dispersion stability of the discharged droplets. It is preferable to dissolve the surfactant. Non-ionic, anionic, cationic and zwitterionic types may be used as the surfactant, polyvinyl alcohol, TWEEN 20, TWEEN 80, Triton X-100, sodium dodecyl sulfate, sodium cholate, Examples include sodium deoxycholate, hexadecyltrimethylammonium, bromide cetyltrimethylammonium bromide, dodecyltrimethylammonium bromide and the like. Further, when the particulate material 2 or the particulate material 8 is liquid at normal temperature and normal pressure, the particulate material in a liquid state may be used as it is. Moreover, one particle material of the combination mentioned above should just be enclosed with the pressure vessel 1, and the other material should just be hold | maintained at the reaction tank 7, and whichever may be enclosed with the pressure vessel 1. FIG.

圧力容器1の加圧に用いる気体4については、常温・常圧において気体であれば特に限定されるものではないが、フッ化炭素(0.0043:以下、括弧内は水25℃における溶解度[ml/ml])、六フッ化硫黄(0.0054)、ヘリウム(0.0087)、ネオン(0.010)、窒素(0.0150)、水素(0.018)、空気(0.0017)、酸素(0.029)、アルゴン(0.031)、炭化水素(0.031〜0.042)、二酸化窒素(0.074)、オゾン(0.29)、塩素(0.64)、二酸化炭素(1.1)、ハロゲン化炭化水素(2.3)、二酸化硫黄(31)、塩化水素(430)、アンモニア(610)、および液体への気体の溶解度を任意に変えるために気体を複数混合した混合気などが例示され、前記気体をダイアフラムポンプ、ギアポンプ、ロータリーポンプ、チューブポンプによる送気もしくはボンベなどの圧力容器からの送気によって圧力容器1の内部が加圧される。 The gas 4 used for pressurization of the pressure vessel 1 is not particularly limited as long as it is a gas at normal temperature and normal pressure, but is not limited to carbon fluoride (0.0043: hereinafter, solubility in water at 25 ° C. ml / ml]), sulfur hexafluoride (0.0054), helium (0.0087), neon (0.010), nitrogen (0.0150), hydrogen (0.018), air (0.0017) , Oxygen (0.029), argon (0.031), hydrocarbon (0.031 to 0.042), nitrogen dioxide (0.074), ozone (0.29), chlorine (0.64), dioxide Carbon (1.1), halogenated hydrocarbon (2.3), sulfur dioxide (31), hydrogen chloride (430), ammonia (610), and multiple gases to arbitrarily change the solubility of the gas in the liquid A mixed gas mixture is illustrated The gas diaphragm pump, gear pump, rotary pump, the interior of the pressure vessel 1 is pressurized by air from the pressure vessel, such as air or gas cylinder according to the tube pump.

液滴形成手段5については、液体3を大気中に体積球相当径が1mm以下の独立した液滴6として放出できれば、特に限定されるものではなく、スプレーノズル、細孔からの放出、超音波噴霧ノズル、インクジェット発生ノズルなど公知の液滴形成手段から適宜選択して用いる。 The droplet forming means 5 is not particularly limited as long as the liquid 3 can be discharged into the atmosphere as an independent droplet 6 having a volume sphere equivalent diameter of 1 mm or less. It is appropriately selected from known droplet forming means such as spray nozzles and ink jet generating nozzles.

粒子材料8が溶解または分散した液体9を保持する反応槽7については、液体を保持できれば特に限定されるものではなく、ガラス、金属、陶器、樹脂などの固体材料を用いた瓶、ビーカ、フラスコ、水槽などが例示される。また、必須ではないが、膜形成反応環境の制御のため、温度を調整するホットプレート、クールスターラ、熱交換器、オイルバスなどに例示される温度調整手段や、マグネチックスターラ、ボルテックスミキサー、ホモジナイザーなどの手段を反応槽7に具備することが望ましい。 The reaction tank 7 that holds the liquid 9 in which the particulate material 8 is dissolved or dispersed is not particularly limited as long as the liquid can be held. Bottles, beakers, flasks using solid materials such as glass, metal, earthenware, and resin A water tank etc. are illustrated. Although not essential, temperature control means exemplified by hot plates, cool stirrers, heat exchangers, oil baths, etc., magnetic stirrers, vortex mixers, and homogenizers are used to control the temperature of the film formation reaction environment. It is desirable to provide the reaction tank 7 with means such as these.

液滴形成手段5で液滴を形成させる位置と液体9の距離については、液滴6が液体3の表面張力の影響で形状が変化すれば特に限定されるものではないが、液滴6の形成および回収が容易な1cm〜500cmの範囲が望ましく、10cm〜100cmの範囲が特に望ましい。 The distance between the position where the droplet forming unit 5 forms the droplet and the liquid 9 is not particularly limited as long as the shape of the droplet 6 changes due to the surface tension of the liquid 3. A range of 1 cm to 500 cm, which is easy to form and collect, is desirable, and a range of 10 cm to 100 cm is particularly desirable.

以下、本発明を実施例に基づき更に説明するが、本発明はこれに限定されるものではない。 EXAMPLES Hereinafter, although this invention is further demonstrated based on an Example, this invention is not limited to this.

1%アルギン酸ナトリウム水溶液10mLを容量300mLのステンレス圧力容器に入れ、酸素(水25℃における溶解度:0.029mL/mL)で5気圧まで加圧し30分間加圧し、1%アルギン酸ナトリウム水溶液に酸素を溶解させる。加圧した1%アルギン酸ナトリウム水溶液を内径2.0mmのK―12型円形全面スプレーノズル(香取組製作所)を用いて液滴とし、放出口から1%塩化カルシウム水溶液面まで100cm離して5000mLビーカに保持された1%塩化カルシウム水溶液400mLに放出する。1%アルギン酸ナトリウム水溶液と1%塩化カルシウム水溶液は互いの接触界面においてゲル状の不溶膜を形成し、5000mLビーカ中にアルギン酸カルシウムゲル粒子が多数生成する。また、加圧容器内部で酸素によって加圧された1%アルギン酸ナトリウム水溶液は、大気圧環境下での液滴形成時またはゲル化時に減圧発泡しアルギン酸カルシウムゲル粒子中に気相の領域が形成する。 Place 10 mL of 1% sodium alginate aqueous solution in a 300 mL stainless steel pressure vessel, pressurize to 5 atm with oxygen (water solubility at 25 ° C .: 0.029 mL / mL), pressurize for 30 minutes, dissolve oxygen in 1% sodium alginate aqueous solution Let Pressurized 1% sodium alginate aqueous solution is formed into droplets using a K-12 type circular full surface spray nozzle (Katori Gumi Seisakusho) with an inner diameter of 2.0 mm and separated from the discharge port to the 1% calcium chloride aqueous solution surface by 100 cm into a 5000 mL beaker. Release into 400 mL of retained 1% aqueous calcium chloride solution. The 1% sodium alginate aqueous solution and the 1% calcium chloride aqueous solution form a gel-like insoluble film at the contact interface with each other, and many calcium alginate gel particles are generated in a 5000 mL beaker. In addition, the 1% sodium alginate aqueous solution pressurized with oxygen inside the pressurized container is foamed under reduced pressure when forming droplets or gelling under an atmospheric pressure environment to form a gas phase region in the calcium alginate gel particles. .

前記一連の工程を経て調製されたアルギン酸カルシウムゲル粒子は、図2に示すように外部の直径が15μmから200μmで内部に5μmから150μmの単一あるいは複数の空洞を持つ中空率が17.5%で円形度0.85の粒子が確認された。 As shown in FIG. 2, the calcium alginate gel particles prepared through the above series of steps have a hollow ratio of 17.5% having a single or plural cavities having an outer diameter of 15 μm to 200 μm and an inner diameter of 5 μm to 150 μm. As a result, particles having a circularity of 0.85 were confirmed.

加圧する気体をアルゴン(水25℃における溶解度:0.031mL/mL)に変更し、実施例1と同様に調製をした結果、外部の直径が15μmから200μmで内部に5μmから150μmの単一あるいは複数の空洞を持つ中空率が13.4%のアルギン酸カルシウムゲル粒子が確認された。 The gas to be pressurized was changed to argon (solubility at 25 ° C. in water: 0.031 mL / mL) and prepared in the same manner as in Example 1. As a result, the outer diameter was 15 μm to 200 μm and the inner diameter was 5 μm to 150 μm. A calcium alginate gel particle having a hollow ratio of 13.4% having a plurality of cavities was confirmed.

加圧する気体を窒素(水25℃における溶解度:0.015mL/mL)に変更し、実施例1と同様に調製をした結果、外部の直径が15μmから200μmで内部に5μmから150μmの単一あるいは複数の空洞を持つ中空率が24.6%のアルギン酸カルシウムゲル粒子が確認された。 The gas to be pressurized was changed to nitrogen (solubility at 25 ° C. in water: 0.015 mL / mL) and prepared in the same manner as in Example 1. As a result, the outer diameter was 15 μm to 200 μm, and the inner diameter was 5 μm to 150 μm. Calcium alginate gel particles having a plurality of cavities and a hollowness of 24.6% were confirmed.

加圧する気体を六フッ化硫黄(水25℃における溶解度:0.0055mL/mL)に変更し、実施例1と同様に調製をした結果、外部の直径が15μmから200μmで内部に5μmから150μmの単一あるいは複数の空洞を持つ中空率が47.5%のアルギン酸カルシウムゲル粒子が確認された。 The gas to be pressurized was changed to sulfur hexafluoride (water solubility at 25 ° C .: 0.0055 mL / mL) and prepared in the same manner as in Example 1. As a result, the outer diameter was 15 μm to 200 μm and the inner diameter was 5 μm to 150 μm. A calcium alginate gel particle having a hollow ratio of 47.5% having single or plural cavities was confirmed.

実施例1〜実施例4での溶解度を横軸、生成したアルギン酸カルシウムゲル粒子の中空率の平均を縦軸としたグラフを図3に示す。図3に示すように溶解度の増加につれて、中空率は減少しており、以下の式(1)および図3中に示す近似曲線を指標として、適宜溶解度が異なる単一組成の気体あるいは複数の気体を混合した混合気を用いることにより0から55%の範囲で中空粒子の中空率を制御することが可能である。なお、式(1)において、yは中空粒子の中空率[%]、xは溶解度[mL/mL]を意味する。
FIG. 3 shows a graph in which the horizontal axis represents the solubility in Examples 1 to 4 and the vertical axis represents the average hollowness of the generated calcium alginate gel particles. As shown in FIG. 3, as the solubility increases, the void ratio decreases, and a single composition gas or a plurality of gases having different solubility as appropriate using the following equation (1) and the approximate curve shown in FIG. It is possible to control the hollow ratio of the hollow particles in the range of 0 to 55% by using an air-fuel mixture in which. In the formula (1), y means the hollow ratio [%] of the hollow particles, and x means the solubility [mL / mL].

加圧する圧力を2気圧に変更し、実施例1と同様に調製をした結果、外部の直径が15μmから200μmで内部に5μmから150μmの単一あるいは複数の空洞を持つ平均径が73.8μmのアルギン酸カルシウムゲル粒子が確認された。 The pressure applied was changed to 2 atm, and the same preparation as in Example 1 was performed. As a result, the outer diameter was 15 μm to 200 μm and the inner diameter was 53.8 μm to 150 μm and the average diameter was 73.8 μm. Calcium alginate gel particles were confirmed.

加圧する圧力を10気圧に変更し、実施例1と同様に調製をした結果、外部の直径が15μmから200μmで内部に5μmから150μmの単一あるいは複数の空洞を持つ平均径が45.6μmのアルギン酸カルシウムゲル粒子が確認された。 The pressure to be applied was changed to 10 atm. As a result of the same preparation as in Example 1, the outer diameter was 15 to 200 μm, and the inner diameter was 55.6 to 150 μm with an average diameter of 45.6 μm. Calcium alginate gel particles were confirmed.

実施例1、実施例5、実施例6での加圧圧力を横軸、生成したアルギン酸カルシウムゲル粒子の平均粒子径を縦軸としたグラフを図4に示す。図4に示すように加圧圧力の増加につれて、平均粒子径は減少しており、以下の式(2)および図4中に示す近似曲線を指標として、適宜圧力を調整することにより15μmから80μmの範囲で中空粒子の平均粒子径を制御することが可能である。なお、式(2)において、yは中空粒子の平均粒子径[μm]、xは加圧圧力[気圧]を意味する。
FIG. 4 shows a graph in which the pressurization pressure in Example 1, Example 5 and Example 6 is the horizontal axis and the average particle diameter of the generated calcium alginate gel particles is the vertical axis. As shown in FIG. 4, the average particle diameter decreases as the pressurizing pressure increases. By adjusting the pressure appropriately using the following equation (2) and the approximate curve shown in FIG. 4 as an index, 15 μm to 80 μm It is possible to control the average particle diameter of the hollow particles in the range of. In the formula (2), y means the average particle diameter [μm] of the hollow particles, and x means the pressurized pressure [atmospheric pressure].

前記スプレーノズルの放出口から1%塩化カルシウム水溶液面までの距離を10cmに変更し、実施例1と同様に調製をした結果、図5に示すように円形度が0.58の細長いヒモ状のアルギン酸カルシウムゲル粒子が確認された。 The distance from the spray nozzle outlet to the 1% calcium chloride aqueous solution surface was changed to 10 cm, and the same preparation as in Example 1 was carried out. As a result, as shown in FIG. Calcium alginate gel particles were confirmed.

実施例1、実施例7の結果より、円形度は放出口から1%塩化カルシウム水溶液面までの距離を遠ざけるほど円形度の高い球形の粒子が生成するため、噴霧した液滴を十分に回収できる範囲で前記スプレーノズルの放出口から1%塩化カルシウム水溶液面までの距離を変えることで、生成する中空粒子の円形度を0.5〜1の範囲で制御することが可能である。 From the results of Example 1 and Example 7, since the circularity of the spherical particles is higher as the distance from the discharge port to the surface of the 1% calcium chloride aqueous solution is increased, the sprayed droplets can be sufficiently collected. By changing the distance from the outlet of the spray nozzle to the surface of the 1% calcium chloride aqueous solution within the range, it is possible to control the circularity of the generated hollow particles in the range of 0.5 to 1.

本発明で得られる中空粒子は、容易に粒子の内部に中空構造を付与することが可能であるため、熱物性の変化や音や衝撃を吸収する工業材料への応用、中空構造による食感を変化させることができる食品への応用、肌触りや風合いを変化させることのできる化粧品への応用、音響特性による信号を利用した造影剤などの医薬品への応用など様々な用途へ活用することが可能であり、更に、内部の中空率、粒子径、形状を適宜変えることが可能であるため、最適な粒子を提供することが可能である。 Since the hollow particles obtained in the present invention can easily give a hollow structure to the inside of the particles, the application to industrial materials that absorb changes in thermophysical properties, sound and impact, and the texture of the hollow structure. It can be used for various purposes such as application to food that can be changed, application to cosmetics that can change the touch and texture, application to pharmaceuticals such as contrast media using signals by acoustic characteristics In addition, since the internal hollowness, particle diameter, and shape can be appropriately changed, it is possible to provide optimum particles.

Claims (8)

接触界面で膜を形成する特徴を有する2つの異なる液体において、一方の液体を液滴として他方の液体中に供給し、液滴界面で膜形成させて粒子化する際に液滴形成前に気体で大気圧以上に加圧して液滴となる液体中に気体を溶解させ、液滴形成時に液滴内部で減圧発泡させることで中空構造が付与されることを特徴とする中空粒子 In two different liquids having the characteristic of forming a film at the contact interface, when one liquid is supplied into the other liquid as a droplet and the film is formed at the droplet interface to form particles, the gas is formed before the droplet is formed. A hollow particle characterized in that a hollow structure is imparted by dissolving a gas in a liquid that becomes a droplet by being pressurized to atmospheric pressure or higher and foaming under reduced pressure inside the droplet when the droplet is formed 前記接触界面で膜を形成する特徴を有する2つの異なる液体において、一方の液体と気体を封入し大気圧以上で保持可能な圧力容器と、他方の液体を保持する反応槽と、前記圧力容器中の液体を微細な液滴として前記反応槽中に供給する液滴形成手段を具備することを特徴とする請求項1に記載の中空粒子の製造装置 In two different liquids having the characteristic of forming a film at the contact interface, a pressure vessel capable of holding one liquid and a gas and holding it at atmospheric pressure or higher, a reaction vessel holding the other liquid, and the pressure vessel The apparatus for producing hollow particles according to claim 1, further comprising droplet forming means for supplying the liquid in the form of fine droplets into the reaction vessel. 前記液滴形成手段が開口部断面積の等価直径5mm以下の細孔からの液体の放出であることを特徴とする請求項1に記載の中空粒子および請求項2に記載の中空粒子の製造装置 3. The hollow particle production apparatus according to claim 1 and the hollow particle production apparatus according to claim 2, wherein the droplet forming means is a discharge of liquid from pores having an equivalent diameter of 5 mm or less of an opening cross-sectional area. 前記接触界面で膜を形成する特徴を有する2つの異なる液体の少なくとも1つの液体に界面活性剤を含むことを特徴とする請求項1に記載の中空粒子および請求項2に記載の中空粒子の製造装置 The hollow particle according to claim 1 and the production of the hollow particle according to claim 2, wherein a surfactant is contained in at least one liquid of two different liquids having the characteristic of forming a film at the contact interface. apparatus 前記圧力容器で加圧する気体の前記液滴となる液体への溶解度を変更することを特徴とする請求項1〜4のいずれかに記載の中空粒子の中空率(粒子内部にある空洞の総体積/粒子の外部体積)の制御方法。 The hollow ratio of the hollow particles according to any one of claims 1 to 4 (total volume of cavities inside the particles), wherein the solubility of the gas pressurized in the pressure vessel in the liquid to be the droplets is changed / External volume of particles). 液体への気体の溶解度を変更すること変更する手段が、気体種類の変更、2種類以上の気体の混合、液体種類の変更、2種類以上の液体の混合、のいずれかであることを特徴とする請求項5に記載の中空粒子の中空率の制御方法。 The means for changing the solubility of the gas in the liquid is any one of a change of the gas type, a mixture of two or more types of gas, a change of the liquid type, and a mixture of two or more types of liquid. The method for controlling the hollow ratio of the hollow particles according to claim 5. 前記液滴形成手段と前記反応槽中に保持される液面との距離を変更することを特徴とする請求項1〜4のいずれかに記載の中空粒子の円形度の制御方法。 The method for controlling the degree of circularity of hollow particles according to any one of claims 1 to 4, wherein a distance between the droplet forming means and a liquid level held in the reaction vessel is changed. 前記圧力容器による加圧圧力を変更することを特徴とする請求項1〜4のいずれかに記載の中空粒子の粒径の制御方法。 The method for controlling the particle size of the hollow particles according to any one of claims 1 to 4, wherein the pressure applied by the pressure vessel is changed.
JP2014234062A 2014-11-18 2014-11-18 Method for manufacturing hollow particle and control method Pending JP2016097324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014234062A JP2016097324A (en) 2014-11-18 2014-11-18 Method for manufacturing hollow particle and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014234062A JP2016097324A (en) 2014-11-18 2014-11-18 Method for manufacturing hollow particle and control method

Publications (1)

Publication Number Publication Date
JP2016097324A true JP2016097324A (en) 2016-05-30

Family

ID=56075224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014234062A Pending JP2016097324A (en) 2014-11-18 2014-11-18 Method for manufacturing hollow particle and control method

Country Status (1)

Country Link
JP (1) JP2016097324A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114698681A (en) * 2022-04-06 2022-07-05 韶关学院 Device and method for manufacturing ozone-rich gel water ball and gel water ball

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114698681A (en) * 2022-04-06 2022-07-05 韶关学院 Device and method for manufacturing ozone-rich gel water ball and gel water ball
CN114698681B (en) * 2022-04-06 2023-06-23 韶关学院 Device and method for manufacturing gel water ball rich in ozone and gel water ball

Similar Documents

Publication Publication Date Title
Sanli et al. Synthesis of nanostructured materials using supercritical CO 2: Part I. Physical transformations
Kukizaki et al. Size control of nanobubbles generated from Shirasu-porous-glass (SPG) membranes
Liu et al. On the spray drying of uniform functional microparticles
Ye et al. Ceramic microparticles and capsules via microfluidic processing of a preceramic polymer
CN107709424A (en) system and method for producing aerogel material
Goren et al. Influence of nanoparticle surface chemistry and size on supercritical carbon dioxide processed nanocomposite foam morphology
US5047180A (en) Process for making cellulose ester microparticles
JP7105488B2 (en) Continuous method for manufacturing airgel
WO2017075554A1 (en) Methods freeze drying and composite materials
JP2009512618A (en) Hollow glass microspheres with porous walls for hydrogen storage
Kukizaki Shirasu porous glass (SPG) membrane emulsification in the absence of shear flow at the membrane surface: Influence of surfactant type and concentration, viscosities of dispersed and continuous phases, and transmembrane pressure
Rueda et al. Production of silica aerogel microparticles loaded with ammonia borane by batch and semicontinuous supercritical drying techniques
JP3535829B2 (en) Method and apparatus for drying microporous particles
WO2020121805A1 (en) Method for producing cellulose beads
Zhao et al. Microfluidic interface boosted synthesis of covalent organic polymer capsule
Melich et al. Preparation and characterization of perfluorocarbon microbubbles using Shirasu Porous Glass (SPG) membranes
Jiang et al. Formation and shape transition of porous polyurea of exotic forms through interfacial polymerization of toluene diisocyanate in aqueous solution of ethylenediamine and their characterization
Horikoshi et al. On the stability of surfactant-free water-in-oil emulsions and synthesis of hollow SiO2 nanospheres
Zheng et al. Supercritical fluid drying: classification and applications
Nandiyanto et al. Nanosized polymer particle-facilitated preparation of mesoporous silica particles using a spray method
CN110624428B (en) Membrane emulsification system
JP2017029876A (en) Hollow particle made from bubbles and method for producing the same
US5064949A (en) Cellulose ester microparticles and process for making the same
JP2016097324A (en) Method for manufacturing hollow particle and control method
JP2015027653A (en) Method and device for manufacturing hollow particle