JP2015027653A - Method and device for manufacturing hollow particle - Google Patents

Method and device for manufacturing hollow particle Download PDF

Info

Publication number
JP2015027653A
JP2015027653A JP2013158353A JP2013158353A JP2015027653A JP 2015027653 A JP2015027653 A JP 2015027653A JP 2013158353 A JP2013158353 A JP 2013158353A JP 2013158353 A JP2013158353 A JP 2013158353A JP 2015027653 A JP2015027653 A JP 2015027653A
Authority
JP
Japan
Prior art keywords
liquid
gas
droplet
hollow
droplets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013158353A
Other languages
Japanese (ja)
Inventor
寿典 幕田
Hisanori Makuta
寿典 幕田
太一 須藤
Taichi Sudo
太一 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013158353A priority Critical patent/JP2015027653A/en
Publication of JP2015027653A publication Critical patent/JP2015027653A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cosmetics (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Polyamides (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Jellies, Jams, And Syrups (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for generating a large amount of hollow particles in a short time, without removal of core material.SOLUTION: In a process for preparing a microcapsule having internally capsulated liquid or solid with interfacial polymerization, gas pressure is applied to the internally capsulated liquid so that gas is excessively dissolved than under normal pressure environment. Consequently, foam formation in the internally capsulated liquid is facilitated during film formation under normal pressure environment, so that a hollow particle is manufactured resulting from the film formation with a gas phase being internally held.

Description

本発明は、気体を加圧して液体に過剰に気体を溶解させた状態から減圧する際の発泡現象を利用して製造する中空構造を有する粒子および製造装置に関するものである。 The present invention relates to a particle having a hollow structure and a manufacturing apparatus, which are manufactured by utilizing a foaming phenomenon when a gas is pressurized and decompressed from a state where gas is excessively dissolved in a liquid.

内部が気体で外部が固体の構造を有する中空粒子は、密度が低く、音や熱の伝達を抑制することもできるため、材料の比重調整を行う軽量化材や防音材・断熱材などに用いられている。 Hollow particles with a gas structure inside and a solid outside structure are low in density and can suppress the transmission of sound and heat, so they are used for lightening materials, soundproofing materials, and heat insulating materials that adjust the specific gravity of materials. It has been.

従来の中空粒子の製法としては、液体または固体の芯となる物質(芯物質)を内包する固体粒子を生成し、芯物質を加圧または減圧などの操作によって固体粒子より抽出して中空にする方法(特許文献1、2参照)、あるいは芯物質を気化させて中空構造を付与する技術(特許文献3参照)などがある。   As a conventional method for producing hollow particles, solid particles containing a substance that becomes a liquid or solid core (core substance) are generated, and the core substance is extracted from the solid particles by an operation such as pressurization or decompression to be hollow. There are a method (refer to Patent Documents 1 and 2) or a technique for vaporizing a core material to give a hollow structure (refer to Patent Document 3).

また、気泡を用いて直接中空粒子を作り出す手法としては、気泡の表面において気泡周囲の液相中の物質同士を重合させて固体膜を生み出して中空粒子化する方法(特許文献4参照)、液相中の物質の重合を気相に含まれる触媒で促進させて中空粒子化する方法(特許文献5参照)、膜材料を溶解させた液滴中に気泡を安定に存在させたまま液滴を乾燥させ膜材料を析出させることで中空構造を有したまま中空粒子化する方法(特許文献6参照)、液体と反応して膜形成が起こる反応性ガスを含む気体を微細な気泡として液体中に供給して中空粒子化する方法(特許文献7)などがある。 Moreover, as a method of directly creating hollow particles using bubbles, a method of polymerizing substances in a liquid phase around the bubbles on the surface of the bubbles to produce a solid film to form hollow particles (see Patent Document 4), liquid A method in which polymerization of substances in a phase is promoted by a catalyst contained in a gas phase to form hollow particles (see Patent Document 5), and droplets are formed while bubbles are stably present in droplets in which a membrane material is dissolved. A method of forming a hollow particle with a hollow structure by drying and precipitating a film material (see Patent Document 6), a gas containing a reactive gas that reacts with a liquid and causes film formation as fine bubbles in the liquid There is a method of supplying hollow particles (Patent Document 7).

特開2002−105104号公報JP 2002-105104 A 特表平9−508067号公報Japanese National Patent Publication No. 9-508067 特公平3−79060号公報Japanese Patent Publication No. 3-79060 特開2007−21315号公報JP 2007-21315 A 特開2007−196223号公報JP 2007-196223 A 特開2007−75660号公報Japanese Patent Laid-Open No. 2007-75660 特開2011−245452号公報Japanese Patent Application Laid-Open No. 2011-245452

前記の背景技術において、固体粒子に含まれる芯物質を抽出や気化を用いて中空化する方法は、中空化工程の圧力や熱の制御が難しく、中空化の際に粒子の変形や表面の損傷が起こりやすいことが問題である。 In the above background art, the method of hollowing out the core material contained in the solid particles by extraction or vaporization is difficult to control the pressure and heat of the hollowing process, and the deformation of the particles and the damage of the surface during the hollowing. It is a problem that is likely to occur.

また、前記の背景技術における気泡を使う手法においては、中空化工程が不要のため簡便に中空粒子を作ることができるものの、泡の発生量に対して中空粒子化する量が少なく収量が少ないことや、液中乾燥の場合に調製に長い時間を有することが問題である。また重合速度や泡維持の観点から、中空粒子化できる材料の選択肢が少ないことも問題である。 In addition, in the method using bubbles in the background art described above, a hollowing step is not required, so that hollow particles can be easily produced, but the amount of hollow particles to be generated is small with respect to the amount of bubbles generated, and the yield is low. In addition, in the case of drying in liquid, it is a problem that preparation takes a long time. In addition, from the viewpoint of polymerization rate and foam maintenance, there are also problems that there are few choices of materials that can be made into hollow particles.

本発明は、従来の中空構造を有する粒子の生成法に関する前記の問題を、従来と異なる生成手法を開発することで解決することを課題としている。 This invention makes it a subject to solve the said problem regarding the production | generation method of the particle | grains which have the conventional hollow structure by developing the production | generation method different from the past.

本発明者らは上記目的を達成するため鋭意研究を重ねた結果、公知のマイクロカプセル化手法である界面重合法(分散質と分散媒にそれぞれ異なる成分を含むエマルションにおいてそれぞれの相に含まれる異なる成分同士が接触界面で反応して膜形成する手法)によってマイクロカプセルを調製する工程において、分散質となる液体を気体で加圧して常圧環境時より過剰に気体を溶解させる工程を経ることで、常圧環境での膜形成時に分散質内部で泡が発生し、膜形成後に内部に気相を有する中空構造の粒子が調製できることを見出した。分散質内部での泡の発生に関しては、気体の液体への溶解量は圧力に比例し(ヘンリーの法則)高圧環境下では大気圧下よりも多量の気体が液体に溶解するため、高圧化で飽和溶解した液体を大気圧まで減圧すると過飽和の溶存気体が気泡として発生する原理を利用している。 As a result of intensive studies to achieve the above-mentioned object, the present inventors have found that a known microencapsulation technique, an interfacial polymerization method (in the emulsion containing different components in the dispersoid and the dispersion medium, different in each phase) In the process of preparing a microcapsule by a method in which components react with each other at the contact interface to form a microcapsule, the liquid that becomes the dispersoid is pressurized with a gas and passed through a process of dissolving the gas more than in a normal pressure environment. It has been found that bubbles are generated inside the dispersoid during film formation in a normal pressure environment, and hollow structure particles having a gas phase inside can be prepared after film formation. Regarding the generation of bubbles inside the dispersoid, the amount of gas dissolved in the liquid is proportional to the pressure (Henry's law). In a high-pressure environment, a larger amount of gas dissolves in the liquid than under atmospheric pressure. It utilizes the principle that when a saturated and dissolved liquid is depressurized to atmospheric pressure, a supersaturated dissolved gas is generated as bubbles.

本発明に係る中空構造を有する粒子では以下の効果を得ることができる。(1)芯物質除去工程が不要となる。(2)最低限必要とする装置が圧力容器、液滴形成手段、反応槽のみのシンプルな構成であり、容易かつ安価に中空粒子を調製できる。(3)芯物質中で発生した気泡の多くが粒子内部に留まる。 With the particles having a hollow structure according to the present invention, the following effects can be obtained. (1) The core substance removing step is not necessary. (2) The minimum required apparatus is a simple configuration including only a pressure vessel, a droplet forming means, and a reaction tank, and hollow particles can be prepared easily and inexpensively. (3) Many of the bubbles generated in the core substance remain inside the particles.

本発明の装置構成を示した図である。It is the figure which showed the apparatus structure of this invention. 実施例1で得られた中空構造を有する粒子の光学顕微鏡画像である。2 is an optical microscope image of particles having a hollow structure obtained in Example 1. FIG. 実施例2で得られた中空構造を有する粒子の電子顕微鏡画像である。3 is an electron microscope image of particles having a hollow structure obtained in Example 2. FIG.

本発明は、次の工程により、内部に空洞を保持したままの粒子を容易に生成可能とする技術および装置である。(1)容器中に保持された液体を気体によって大気圧以上に加圧して、大気圧環境下よりも過剰に液体中に気体を溶存させる。(2)加圧された液体を液滴形成手段によって液滴として反応槽に保持された液体中に放出し、前記液滴を分散質、反応槽に保持された液体を分散媒としたエマルション状態を形成させる。(3)反応槽に保持された液体と液滴はそれぞれに含まれる成分同士が液滴界面で反応して膜を形成し粒子化する。また、液滴内部では大気圧環境下に減圧されることで、加圧操作によって大気圧環境下での飽和状態よりも過剰に溶存した気体が泡として発生するため前記粒子に中空構造が付与される。以下、本発明を実施するための最良の形態について図面1を参照して説明する。 The present invention is a technique and apparatus that can easily generate particles with cavities held therein by the following steps. (1) The liquid held in the container is pressurized to atmospheric pressure or higher with a gas, and the gas is dissolved in the liquid more excessively than in an atmospheric pressure environment. (2) The pressurized liquid is discharged as droplets by the droplet forming means into the liquid held in the reaction tank, and the droplet is used as a dispersoid and the emulsion state using the liquid held in the reaction tank as a dispersion medium. To form. (3) The liquid and liquid droplets held in the reaction vessel react with each other in the components at the liquid droplet interface to form a film and become particles. In addition, by reducing the pressure inside the droplet under an atmospheric pressure environment, the gas is generated as a bubble in excess of the saturated state in the atmospheric pressure environment due to the pressurization operation, so that a hollow structure is imparted to the particles. The Hereinafter, the best mode for carrying out the present invention will be described with reference to FIG.

本発明を実施するための最良の形態を次に示す。圧力容器1に粒子材料2が溶解または分散した液体3をいれ気体4によって加圧する。気体4によって加圧され大気圧環境下よりも過剰に気体4が溶解した液体3は、液滴形成手段5によって液滴6として放出され、反応槽7で回収される。液滴6は反応槽7に満たされた粒子材料8が溶解または分散した液体9の中で、液滴6と液体9の界面において液滴6に含まれる粒子材料2と液体9に含まれる粒子材料8が接触して膜形成し微粒子10が生成する。液滴6の形成から微粒子10の生成が完了するまでに、大気圧環境下での液滴6内部では加圧操作によって過剰に溶解した気体4の一部が単一あるいは複数の気泡11として発生することで、微粒子10の内部に中空の構造を付与することができる。 The best mode for carrying out the present invention will be described below. A liquid 3 in which the particulate material 2 is dissolved or dispersed is placed in the pressure vessel 1 and pressurized with a gas 4. The liquid 3 which is pressurized by the gas 4 and in which the gas 4 is excessively dissolved in the atmospheric pressure environment is discharged as droplets 6 by the droplet forming means 5 and collected in the reaction tank 7. The liquid droplet 6 is a liquid 9 in which the particle material 8 filled in the reaction vessel 7 is dissolved or dispersed. The material 8 comes into contact with the film to form fine particles 10. From the formation of the droplet 6 until the generation of the fine particles 10 is completed, a part of the gas 4 excessively dissolved by the pressurizing operation is generated as single or plural bubbles 11 inside the droplet 6 under the atmospheric pressure environment. By doing so, a hollow structure can be provided inside the fine particles 10.

圧力容器1については、内部を大気圧以上に保持し密封可能であれば特に限定されるものではないが、耐圧ガラスボトル、耐圧ガラスチューブ、ステンレスボトル、ステンレスチューブ、ステンレスタンク、フッ素樹脂ボトル、ペットボトル、アルミボトルなどが例示される。加圧する圧力については、大気圧以上であれは特に限定されるものではないが、ガスボンベ等で実施可能な大気圧から15MPaの範囲が好ましく、コンプレッサー等で実施可能な大気圧から1MPaの範囲が特に好ましい。また加圧状態の保持時間については気体4が液体3に気体4が大気圧環境下での飽和溶存量よりも過剰に溶解する時間以上を確保すれば特に限定されるものではない。 The pressure vessel 1 is not particularly limited as long as the inside is maintained at atmospheric pressure or higher and can be sealed. However, the pressure glass bottle, the pressure glass tube, the stainless bottle, the stainless tube, the stainless tank, the fluororesin bottle, the pet Examples include bottles and aluminum bottles. The pressure to be pressurized is not particularly limited as long as it is equal to or higher than the atmospheric pressure, but is preferably in the range of atmospheric pressure to 15 MPa that can be implemented with a gas cylinder or the like, and particularly in the range of atmospheric pressure to 1 MPa that can be implemented with a compressor or the like. preferable. In addition, the holding time in the pressurized state is not particularly limited as long as the gas 4 is in the liquid 3 and the gas 4 is in excess of the saturated dissolved amount in the atmospheric pressure environment.

粒子材料2および粒子材料8の組み合わせについては、互いに接触すると重合、縮合、脱水、冷却固化、吸水、水和、加水分解などの反応によって膜形成する粒子材料の組み合わせであれば特に限定されるものではないが、アルギン酸ナトリウムと塩化カルシウム、1,8−オクタンジカルボニルクロリドと1,6−ヘキサンジアミン、L−リジンとテレフタロイルジクロリド、酸クロライド(アジピン酸クロライド、セバコイルクロライド、テレフタル酸クロライドなど)とポリアミン(1,6ヘキサメチレンジアミン、ピペラジン、レーリジンなど)、酸クロライドとポリフェノール(2,2−ビス(4−ハイドロキシフェニル)プロパンなど)、イソシアネート(ヘキサメチレンジイソシアネート、メタフェニレンジイソシアネート、トルイレンイソシアネート、2,4−トリレンージイソシアネート、3,3−ジメチル−ジフェニル−4,4−ジイソシアネート、ジフェニルメタン−4,4ジイソシアネート、トリフェニルメタン−トリイソシアネート、ナフタレン−1,5−ジイソシアネートなど)またはイソチオシアネート(エチルイソチオシアネート、メチルイソチオシアネート、ベンジルイソチオシアネート、アリルイソチオシアネート、ピリジン−3−イソチオシアネートなど)と水またはポリオールまたはポリアミン、ポリイソシアネートとポリアミンなどの組み合わせが例示される。また、粒子材料2が溶解または分散した液体3および粒子材料8が溶解または分散した液体9については、常温・常圧下で液体であれば特に限定されず、水、公知の油類(ひまし油、サラダ油、コーン油、大豆油、ごま油、菜種油、サフラワー油、椿油、パーム油、オリーブオイル、流動パラフィン、シリコンオイルなど)、公知の有機溶媒(ヘキサン、ベンゼン、トルエン、ジエチルエーテル、 クロロホルム、酢酸エチル、 塩化メチレン、 テトラヒドロフラン、アセトン、アセトニトリル、N,N-ジメチルホルムアミド、ジメチルスルホキシド 、酢酸 、1-ブタノール、2-プロパノール、1-プロパノール、エタノール、メタノール、ギ酸など)が例示される。特に好ましい形態としては、放出された液滴の形状の合体や分散安定性向上のために粒子材料2が溶解または分散した液体3または粒子材料8が溶解または分散した液体9の少なくとも一方に公知の界面活性剤を溶解させることが好ましい。前記界面活性剤としては非イオン性、アニオン性、カチオン性及び両性イオン性いずれの分類のものを使用してもよく、ポリビニルアルコール、TWEEN20、TWEEN80、TritonX−100、ドデシル硫酸ナトリウム、コール酸ナトリウム、デオキシコール酸ナトリウム、ヘキサデシルトリメチルアンモニウム、ブロミドセチルトリメチルアンモニウムブロミド、ドデシルトリメチルアンモニウムブロミドなどが例示される。また、粒子材料2または粒子材料8が常温・常圧下で液体の場合、液体状態の粒子材料はそのまま用いても良い。また、前述した組み合わせの一方の粒子材料が圧力容器1に封入され、もう一方の材料が反応槽7に保持されていれば良く、どちらを圧力容器1に封入しても良い。 The combination of the particulate material 2 and the particulate material 8 is particularly limited as long as it is a combination of particulate materials that form a film by reaction such as polymerization, condensation, dehydration, cooling and solidification, water absorption, hydration, and hydrolysis when they come into contact with each other. Not, but sodium alginate and calcium chloride, 1,8-octanedicarbonyl chloride and 1,6-hexanediamine, L-lysine and terephthaloyl dichloride, acid chloride (adipic acid chloride, sebacoyl chloride, terephthalic acid chloride, etc. ) And polyamines (1,6 hexamethylenediamine, piperazine, rheridine, etc.), acid chlorides and polyphenols (2,2-bis (4-hydroxyphenyl) propane, etc.), isocyanates (hexamethylene diisocyanate, metaphenylene diisocyanate, Ruylene isocyanate, 2,4-tolylene diisocyanate, 3,3-dimethyl-diphenyl-4,4-diisocyanate, diphenylmethane-4,4 diisocyanate, triphenylmethane-triisocyanate, naphthalene-1,5-diisocyanate, etc.) or Examples include combinations of isothiocyanates (ethyl isothiocyanate, methyl isothiocyanate, benzyl isothiocyanate, allyl isothiocyanate, pyridine-3-isothiocyanate, etc.) and water or polyol or polyamine, polyisocyanate and polyamine, and the like. The liquid 3 in which the particulate material 2 is dissolved or dispersed and the liquid 9 in which the particulate material 8 is dissolved or dispersed are not particularly limited as long as they are liquid at normal temperature and normal pressure. Water, known oils (castor oil, salad oil) , Corn oil, soybean oil, sesame oil, rapeseed oil, safflower oil, coconut oil, palm oil, olive oil, liquid paraffin, silicone oil, etc., known organic solvents (hexane, benzene, toluene, diethyl ether, chloroform, ethyl acetate, Methylene chloride, tetrahydrofuran, acetone, acetonitrile, N, N-dimethylformamide, dimethyl sulfoxide, acetic acid, 1-butanol, 2-propanol, 1-propanol, ethanol, methanol, formic acid, etc.). Particularly preferred forms are known in at least one of the liquid 3 in which the particle material 2 is dissolved or dispersed or the liquid 9 in which the particle material 8 is dissolved or dispersed in order to improve the stability of coalescence and dispersion stability of the discharged droplets. It is preferable to dissolve the surfactant. Non-ionic, anionic, cationic and zwitterionic types may be used as the surfactant, polyvinyl alcohol, TWEEN 20, TWEEN 80, Triton X-100, sodium dodecyl sulfate, sodium cholate, Examples include sodium deoxycholate, hexadecyltrimethylammonium, bromide cetyltrimethylammonium bromide, dodecyltrimethylammonium bromide and the like. Further, when the particulate material 2 or the particulate material 8 is liquid at normal temperature and normal pressure, the particulate material in a liquid state may be used as it is. Moreover, one particle material of the combination mentioned above should just be enclosed with the pressure vessel 1, and the other material should just be hold | maintained at the reaction tank 7, and whichever may be enclosed with the pressure vessel 1. FIG.

圧力容器1の加圧に用いる気体4については、常温・常圧において気体であれば特に限定されるものではないが、空気、水素、窒素、酸素、塩素、フッ素、希ガス、オゾン、二酸化炭素、アンモニア、二酸化硫黄、塩化水素、二酸化窒素、フッ化硫黄、炭化水素、ハロゲン化炭化水素、および前記気体の複数混合した混合気などが例示され、前記気体をダイアフラムポンプ、ギアポンプ、ロータリーポンプ、チューブポンプによる送気もしくはボンベなどの圧力容器からの送気によって圧力容器1の内部が加圧される。 The gas 4 used for pressurization of the pressure vessel 1 is not particularly limited as long as it is a gas at normal temperature and normal pressure, but air, hydrogen, nitrogen, oxygen, chlorine, fluorine, rare gas, ozone, carbon dioxide Ammonia, sulfur dioxide, hydrogen chloride, nitrogen dioxide, sulfur fluoride, hydrocarbons, halogenated hydrocarbons, and mixed gas mixtures of the gases are exemplified, and the gas is used as a diaphragm pump, gear pump, rotary pump, tube, etc. The inside of the pressure vessel 1 is pressurized by air supply from a pump or air supply from a pressure vessel such as a cylinder.

液滴形成手段5については、液体3を大気中に体積球相当径が1mm以下の独立した液滴として放出できれば、特に限定されるものではなく、細孔からの放出、超音波噴霧ノズル、スプレーノズル、インクジェット発生ノズルなど公知の液滴形成手段から適宜選択して用いる。 The droplet forming means 5 is not particularly limited as long as the liquid 3 can be discharged into the atmosphere as an independent droplet having a volume sphere equivalent diameter of 1 mm or less. Release from the pores, ultrasonic spray nozzle, spray These are appropriately selected from known droplet forming means such as nozzles and inkjet generation nozzles.

粒子材料8が溶解または分散した液体9を保持する反応槽7については、液体を保持できれば特に限定されるものではなく、ガラス、金属、陶器、樹脂などの固体材料を用いた瓶、ビーカー、フラスコ、水槽などが例示される。また、必須ではないが、膜形成反応環境の制御のため、温度を調整するホットプレート、クールスターラ、熱交換器、オイルバスなどに例示される温度調整手段や、マグネチックスターラー、ボルテックスミキサー、ホモジナイザーなどの手段を反応槽7に具備することが望ましい。 The reaction tank 7 that holds the liquid 9 in which the particulate material 8 is dissolved or dispersed is not particularly limited as long as the liquid can be held. Bottles, beakers, flasks using solid materials such as glass, metal, earthenware, and resin A water tank etc. are illustrated. Although not essential, temperature control means exemplified by hot plates, cool stirrers, heat exchangers, oil baths, etc., magnetic stirrers, vortex mixers, and homogenizers are used to control the temperature of the film formation reaction environment. It is desirable to provide the reaction tank 7 with means such as these.

1%アルギン酸ナトリウム水溶液10mLを容量300mLのステンレス圧力容器に入れ、酸素で4気圧まで加圧し30分間加圧し、1%アルギン酸ナトリウム水溶液に酸素を溶解させる。加圧した1%アルギン酸ナトリウム水溶液を内径0.3mmのステンレス細管を用いて液滴として300mLビーカに保持された10%塩化カルシウム水溶液200mLに放出する。1%アルギン酸ナトリウム水溶液と10%塩化カルシウム水溶液は互いの接触界面においてゲル状の不溶膜を形成し、300mLビーカ中にアルギン酸ゲル粒子が多数生成する。また、加圧容器内部で酸素によって加圧された1%アルギン酸ナトリウム水溶液は、大気圧環境下での液滴形成時またはゲル化時に減圧発泡しアルギン酸ゲル粒子中に気相の領域が形成する。 10 mL of a 1% aqueous sodium alginate solution is placed in a 300 mL stainless steel pressure vessel, pressurized to 4 atmospheres with oxygen, and pressurized for 30 minutes to dissolve oxygen in the 1% aqueous sodium alginate solution. The pressurized 1% sodium alginate aqueous solution is discharged as droplets into 200 mL of 10% calcium chloride aqueous solution held in a 300 mL beaker using a stainless steel tube having an inner diameter of 0.3 mm. A 1% sodium alginate aqueous solution and a 10% calcium chloride aqueous solution form a gel-like insoluble film at the contact interface with each other, and a large number of alginate gel particles are generated in a 300 mL beaker. In addition, the 1% sodium alginate aqueous solution pressurized with oxygen inside the pressurized container is foamed under reduced pressure when forming droplets or gelling under an atmospheric pressure environment to form a gas phase region in the alginate gel particles.

前記一連の工程を経て調製されたアルギン酸ゲル粒子は、図2に示すように外部の直径が100μmから500μmで内部に5μmから50μmの単一あるいは複数の空洞を持つことが確認された。 As shown in FIG. 2, the alginate gel particles prepared through the above-described series of steps were confirmed to have single or plural cavities having an outer diameter of 100 μm to 500 μm and an inner diameter of 5 μm to 50 μm.

水30mLにポリビニルアルコール0.3gと水酸化ナトリウム0.8gを溶解させた水溶液と塩化メチレン10mLに塩化アジポイル0.36gを溶解させた溶液を100mL試薬瓶に入れスターラで攪拌して乳化状態とする。乳化した分散液40mLを300mLの圧力容器に封入し、内部を空気で4気圧、30分間加圧して分散液に空気を溶解させる。加圧した乳化分散液を噴霧ノズルを用いて4%ヘキサメチレンジアミン水溶液に噴霧する。塩化アジポイルとヘキサメチレンジアミンが互いの接触界面においてナイロン膜が形成し、噴霧した液体の中にある塩化メチレン液滴の周囲に膜が形成する。また、前記塩化メチレン液滴の内部では加圧した空気が大気圧まで減圧され泡として液滴内部に発生する。 An aqueous solution in which 0.3 g of polyvinyl alcohol and 0.8 g of sodium hydroxide are dissolved in 30 mL of water and a solution in which 0.36 g of adipoyl chloride is dissolved in 10 mL of methylene chloride are placed in a 100 mL reagent bottle and stirred to obtain an emulsified state. . 40 mL of the emulsified dispersion is sealed in a 300 mL pressure vessel, and the inside is pressurized with air at 4 atm for 30 minutes to dissolve the air in the dispersion. The pressurized emulsified dispersion is sprayed onto a 4% hexamethylenediamine aqueous solution using a spray nozzle. A nylon film forms at the contact interface between adipoyl chloride and hexamethylene diamine, and a film forms around the methylene chloride droplets in the sprayed liquid. In the methylene chloride droplet, the pressurized air is depressurized to atmospheric pressure and generated as bubbles in the droplet.

前記一連の工程を経て調製された中空ナイロン粒子は、外部の直径が10μmから1000μmで、図3に示す破損した粒子の画像からは内部に空洞を持つことが確認された。 The hollow nylon particles prepared through the above series of steps have an outer diameter of 10 μm to 1000 μm, and it was confirmed from the image of damaged particles shown in FIG.

本発明で得られる中空粒子は、容易に微粒子の内部に中空構造を付与することが可能であるため、熱物性の変化や音や衝撃を吸収する工業材料へ応用、中空構造による食感を変化させることができる食品への応用、肌触りや風合いを変化させることのできる化粧品への応用、音響特性による信号を利用した造影剤などの医薬品への応用など様々な用途へ活用することが可能である。 Since the hollow particles obtained in the present invention can easily give a hollow structure inside the fine particles, they can be applied to industrial materials that absorb changes in thermophysical properties and sound and impact, and change the texture of the hollow structure. It can be used for various purposes such as application to foods that can be applied, application to cosmetics that can change the touch and texture, application to pharmaceuticals such as contrast media using signals by acoustic characteristics .

Claims (5)

接触界面で膜を形成する特徴を有する2つの異なる液体において、一方の液体を液滴として他方の液体中に供給し、液滴界面で膜形成させて粒子化する際に液滴内部で発泡させることで中空構造が付与されることを特徴とする中空粒子 In two different liquids having a characteristic of forming a film at the contact interface, one liquid is supplied as a droplet into the other liquid, and foamed inside the droplet when forming a film at the droplet interface to form particles. Hollow particles characterized by providing a hollow structure 接触界面で膜を形成する特徴を有する2つの異なる液体において、一方の液体と気体を封入し大気圧以上で保持可能な圧力容器と、他方の液体を保持する反応槽と、前記圧力容器中の液体を微細な液滴として前記反応槽中に供給する液滴形成手段を具備することを特徴とする請求項1に記載の中空粒子の製造装置 In two different liquids having the characteristic of forming a film at the contact interface, a pressure vessel capable of enclosing one liquid and a gas and holding it at atmospheric pressure or higher, a reaction vessel holding the other liquid, The apparatus for producing hollow particles according to claim 1, further comprising droplet forming means for supplying the liquid as fine droplets into the reaction vessel. 液滴内部で発泡させる手段が、液滴形成手段で液滴となる液体を液滴形成前に気体で大気圧以上に加圧して気体を溶解させ、液滴形成時に減圧されることによる液滴中に溶存したガスの減圧発泡であることを特徴とする請求項1に記載の中空粒子および請求項2に記載の中空粒子の製造装置 Liquid droplets are generated by the means for foaming inside the liquid droplets, and the liquid that forms the liquid droplets by the liquid droplet forming means is pressurized to atmospheric pressure or higher before forming the liquid droplets to dissolve the gas and decompressed when forming the liquid droplets. The hollow particle production apparatus according to claim 1 and the hollow particle production apparatus according to claim 2, wherein the gas is dissolved under reduced pressure. 液滴形成手段が開口部の面積等価直径が1mm以下の細孔からの気体または液体への放出であることを特徴とする請求項1に記載の中空粒子および請求項2に記載の中空粒子の製造装置 3. The hollow particles according to claim 1 and the hollow particles according to claim 2, wherein the droplet forming means is discharge into a gas or liquid from pores having an area equivalent diameter of 1 mm or less in the opening. manufacturing device 液滴が供給される流体が界面活性剤を含むことを特徴とする請求項1に記載の中空粒子および請求項2に記載の中空粒子の製造装置 The hollow particle according to claim 1 and the hollow particle production apparatus according to claim 2, wherein the fluid to which the droplets are supplied contains a surfactant.
JP2013158353A 2013-07-30 2013-07-30 Method and device for manufacturing hollow particle Pending JP2015027653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013158353A JP2015027653A (en) 2013-07-30 2013-07-30 Method and device for manufacturing hollow particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013158353A JP2015027653A (en) 2013-07-30 2013-07-30 Method and device for manufacturing hollow particle

Publications (1)

Publication Number Publication Date
JP2015027653A true JP2015027653A (en) 2015-02-12

Family

ID=52491778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013158353A Pending JP2015027653A (en) 2013-07-30 2013-07-30 Method and device for manufacturing hollow particle

Country Status (1)

Country Link
JP (1) JP2015027653A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017087115A (en) * 2015-11-06 2017-05-25 コニカミノルタ株式会社 Hollow particles and method for producing hollow particles
CN115500442A (en) * 2022-09-19 2022-12-23 贵州省生物技术研究所(贵州省生物技术重点实验室、贵州省马铃薯研究所、贵州省食品加工研究所) Double-layer suspension blasting bead and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017087115A (en) * 2015-11-06 2017-05-25 コニカミノルタ株式会社 Hollow particles and method for producing hollow particles
CN115500442A (en) * 2022-09-19 2022-12-23 贵州省生物技术研究所(贵州省生物技术重点实验室、贵州省马铃薯研究所、贵州省食品加工研究所) Double-layer suspension blasting bead and preparation method thereof
CN115500442B (en) * 2022-09-19 2024-02-27 贵州省生物技术研究所(贵州省生物技术重点实验室、贵州省马铃薯研究所、贵州省食品加工研究所) Double-layer suspension explosion bead and preparation method thereof

Similar Documents

Publication Publication Date Title
Kukizaki et al. Size control of nanobubbles generated from Shirasu-porous-glass (SPG) membranes
Takeuchi et al. An axisymmetric flow‐focusing microfluidic device
US7591452B2 (en) Method for producing monodisperse bubbles
JP5156635B2 (en) Hollow glass microspheres with porous walls for hydrogen storage
US8689459B2 (en) Method and apparatus for spray drying and powder produced using said method
WO2017075554A1 (en) Methods freeze drying and composite materials
Kukizaki Shirasu porous glass (SPG) membrane emulsification in the absence of shear flow at the membrane surface: Influence of surfactant type and concentration, viscosities of dispersed and continuous phases, and transmembrane pressure
Dragosavac et al. Production of porous silica microparticles by membrane emulsification
JPH04154605A (en) Inorganic uniform fine sphere and preparation thereof
JP2015027653A (en) Method and device for manufacturing hollow particle
WO2005073285A1 (en) A method for producing fine particles using method of rapid expansion into poor solvent from supercritical fluid
Melich et al. Preparation and characterization of perfluorocarbon microbubbles using Shirasu Porous Glass (SPG) membranes
Zheng et al. Supercritical fluid drying: classification and applications
JP2007021315A (en) Method for producing hollow microcapsule
US20110284648A1 (en) Method to generate micro scale gas filled liquid bubbles as tracer particles or inhaler mist for drug delivery
JP3535829B2 (en) Method and apparatus for drying microporous particles
Jiang et al. Formation and shape transition of porous polyurea of exotic forms through interfacial polymerization of toluene diisocyanate in aqueous solution of ethylenediamine and their characterization
CN110624428B (en) Membrane emulsification system
Kukizaki et al. Effect of surfactant type on microbubble formation behavior using Shirasu porous glass (SPG) membranes
JP2017029876A (en) Hollow particle made from bubbles and method for producing the same
Jiang et al. High‐Throughput Fabrication of Size‐Controlled Pickering Emulsions, Colloidosomes, and Air‐Coated Particles via Clog‐Free Jetting of Suspensions
JP2016097324A (en) Method for manufacturing hollow particle and control method
Yuan et al. Innovations in high throughput manufacturing of uniform emulsions and capsules
Giorno et al. Effects of organic solvents on ultrafiltration polyamide membranes for the preparation of oil-in-water emulsions
CN102431996B (en) Preparation method of monodisperse large size carbon ball