JP2017026280A - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP2017026280A
JP2017026280A JP2015148284A JP2015148284A JP2017026280A JP 2017026280 A JP2017026280 A JP 2017026280A JP 2015148284 A JP2015148284 A JP 2015148284A JP 2015148284 A JP2015148284 A JP 2015148284A JP 2017026280 A JP2017026280 A JP 2017026280A
Authority
JP
Japan
Prior art keywords
heat exchanger
combustion
hot water
temperature
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015148284A
Other languages
Japanese (ja)
Other versions
JP6598003B2 (en
Inventor
政人 堂山
Masato Doyama
政人 堂山
衣笠 朋文
Tomofumi Kinugasa
朋文 衣笠
石角 正光
Masamitsu Ishizumi
正光 石角
誠 日下部
Makoto Kusakabe
誠 日下部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2015148284A priority Critical patent/JP6598003B2/en
Priority to US15/213,701 priority patent/US20170030664A1/en
Publication of JP2017026280A publication Critical patent/JP2017026280A/en
Application granted granted Critical
Publication of JP6598003B2 publication Critical patent/JP6598003B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • F24H1/14Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form
    • F24H1/145Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/235Temperature of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/345Control of fans, e.g. on-off control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • F24H15/36Control of heat-generating means in heaters of burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H8/00Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2035Arrangement or mounting of control or safety devices for water heaters using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • F28D21/0005Recuperative heat exchangers the heat being recuperated from exhaust gases for domestic or space-heating systems
    • F28D21/0007Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/395Information to users, e.g. alarms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/421Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • F28D7/082Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
    • F28D7/085Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions
    • F28D7/087Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions assembled in arrays, each array being arranged in the same plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1615Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits being inside a casing and extending at an angle to the longitudinal axis of the casing; the conduits crossing the conduit for the other heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Abstract

PROBLEM TO BE SOLVED: To provide a water heater that measures temperature of a combustion exhaust gas from which sensible heat is recovered to reliably determine if scale is clogged.SOLUTION: The water heater includes: a fin-and-tube-type heat exchanger for heating clean water by a combustion gas; temperature detection means for detecting exhaust gas temperature of which heat has been exchanged by the heat exchanger; and determination means for determining that scale is deposited inside a heat transfer pipe of the heat exchanger when detection temperature detected by the temperature detection means is equal to or higher than preset temperature.SELECTED DRAWING: Figure 1

Description

本発明は給湯装置に関し、特に熱交換器の伝熱管内にスケールが堆積して発生するスケール詰まりを判定する機能を備えた給湯装置に関する。   The present invention relates to a hot water supply apparatus, and more particularly to a hot water supply apparatus having a function of determining scale clogging caused by scale accumulation in a heat transfer tube of a heat exchanger.

従来から、ガス給湯装置、電気給湯装置、石油給湯装置等の熱源に応じた種々の給湯装置が広く一般家庭に普及している。特に、ガス給湯装置は、燃焼用空気を外部から取り込む送風ファン、燃焼用空気と燃料ガスとを混合して燃焼するバーナーユニット、高温の燃焼ガスと伝熱管を流れる水との間で熱交換して水を加熱する熱交換器、熱交換後の排気を外部に排出するための排気筒等を備えている。   Conventionally, various hot water supply apparatuses according to heat sources such as a gas hot water supply apparatus, an electric hot water supply apparatus, and an oil hot water supply apparatus have been widely used in general households. In particular, a gas hot water supply device exchanges heat between a blower fan that takes in combustion air from the outside, a burner unit that mixes and burns combustion air and fuel gas, and high-temperature combustion gas and water flowing through a heat transfer tube. A heat exchanger for heating the water, an exhaust pipe for discharging the exhaust gas after the heat exchange to the outside.

上記の熱交換器としては、一般的に伝熱管と、この伝熱管に伝熱可能に固定された複数のフィンからなるフィンアンドチューブ型の熱交換器が採用され、伝熱管やフィンを銅材料で構成したものが広く使用されている。   As the heat exchanger, a heat exchanger tube and a fin-and-tube heat exchanger composed of a plurality of fins fixed to the heat exchanger tube so as to be able to conduct heat are generally adopted. What consists of is widely used.

ところで、上記の熱交換器に供給する上水として硬度の高い水道水を使用する場合、水道水に含まれるカルシウムやマグネシウム等と、炭酸イオンや硫酸イオン等とが結合することでスケールが析出する。このスケールは、湯水の温度が高くなると析出しやすくなり、熱交換器の伝熱管内に堆積することでスケール詰まりが発生し、熱交換器における熱交換効率が悪化し、伝熱管やフィンの温度が上昇するという問題がある。   By the way, when tap water with high hardness is used as the tap water supplied to the heat exchanger, calcium and magnesium contained in the tap water are combined with carbonate ions, sulfate ions, etc., so that the scale is deposited. . This scale tends to precipitate when the temperature of hot water rises, and builds up in the heat exchanger tubes of the heat exchanger, causing scale clogging, resulting in poor heat exchange efficiency in the heat exchanger, and the temperature of the heat exchanger tubes and fins. There is a problem of rising.

上記のスケール詰まりが発生した状態で給湯装置の使用を継続すると、熱交換器に熱応力が繰り返し加わるようになり、伝熱管や伝熱管とフィンの接合部に亀裂が生じ熱交換器が損傷するおそれがある。このためスケール詰まりが発生した場合にはスケールを除去する必要があり、従来から給湯装置に、スケール詰まりが発生しても破損を回避しつつスケール詰まりを検出する機能が備えられている。   If you continue to use the hot water supply device with the above scale clogging, thermal stress will be repeatedly applied to the heat exchanger, causing cracks in the heat transfer tubes and the joints between the heat transfer tubes and the fins, damaging the heat exchanger There is a fear. For this reason, when scale clogging occurs, it is necessary to remove the scale. Conventionally, a hot water supply apparatus has been provided with a function of detecting scale clogging while avoiding damage even if scale clogging occurs.

例えば、特許文献1には、燃焼停止後の後沸きによる湯水の温度上昇に基づいてスケール詰まりを判定する装置が開示されている。特許文献2には、熱交換器における熱交換効率の変化に基づいてスケール詰まりを判定する湯水加熱装置が開示されている。特許文献3には、燃焼排ガス温度推定手段により顕熱が回収された燃焼排ガスの温度を推定し、燃焼排ガスの推定温度がスケール詰まりによって上昇しても、燃焼排ガスの推定温度が所定の温度を超えないように燃焼制御したり、燃焼を停止させたりして熱交換器の損傷を回避しつつスケール詰まりを報知する給湯装置が開示されている。特許文献4には、燃焼排気の潜熱を吸収する熱交換器内の湯水の温度が設定値を超えないように燃焼制御し排気を混合する給湯装置が開示されている。   For example, Patent Document 1 discloses an apparatus that determines scale clogging based on a rise in temperature of hot water due to post-boiling after combustion stops. Patent Document 2 discloses a hot water heater that determines scale clogging based on a change in heat exchange efficiency in a heat exchanger. In Patent Document 3, the temperature of the flue gas from which sensible heat has been recovered by the flue gas temperature estimating means is estimated, and even if the estimated temperature of the flue gas rises due to clogging of the scale, the estimated temperature of the flue gas has a predetermined temperature. There has been disclosed a hot water supply apparatus that notifies scale clogging while performing combustion control so as not to exceed or stopping combustion to avoid damage to the heat exchanger. Patent Document 4 discloses a hot water supply apparatus that performs combustion control and mixes exhaust gas so that the temperature of hot water in a heat exchanger that absorbs latent heat of combustion exhaust gas does not exceed a set value.

特許4854020号公報Japanese Patent No. 4854020 特開2008−215657号公報JP 2008-215657 A 特許5370807号公報Japanese Patent No. 5370807 特許3907032号公報Japanese Patent No. 3970332

しかし、特許文献1の装置のように、燃焼停止後の後沸きによる湯水の温度上昇に基づいてスケール詰まりを判定する場合、燃焼作動中には判定できず、加熱される位置と温度センサの取付位置との関係によって、低燃焼量の燃焼パターンの場合や大能力の給湯装置の場合に後沸きによる温度上昇の検出が困難になることがある。さらにスケール詰まりと後沸きの関係を燃焼パターン毎に確認する必要があり、スケール詰まりの判定基準の設定が容易ではないという問題がある。   However, in the case of determining scale clogging based on the rise in the temperature of hot water due to post-boiling after stopping combustion as in the device of Patent Document 1, it cannot be determined during the combustion operation, and the position to be heated and the attachment of the temperature sensor Depending on the position, it may be difficult to detect a temperature increase due to post-boiling in the case of a combustion pattern with a low combustion amount or a hot water heater with a large capacity. Further, it is necessary to check the relationship between scale clogging and post-boiling for each combustion pattern, and there is a problem that it is not easy to set the criteria for determining scale clogging.

また、特許文献2の装置では、燃焼作動中に燃焼量を変化させてスケール詰まりの判定を行うため、使用者が意図しない給湯量や給湯温度の変動が生じるという問題がある。特許文献3の装置では、余熱水温度と出湯温度から排気温度推定手段によって熱交換後の燃焼排ガスの温度を推定しているため、誤検知が生じるおそれがある。特許文献4の装置では、熱交換後の燃焼排ガスの温度を測定して燃焼制御しているが、スケール詰まりを判定できない。   Moreover, in the apparatus of Patent Document 2, since the scale clogging is determined by changing the combustion amount during the combustion operation, there is a problem that the hot water supply amount and the hot water supply temperature are unintended by the user. In the apparatus of Patent Document 3, the temperature of combustion exhaust gas after heat exchange is estimated by the exhaust gas temperature estimation means from the remaining hot water temperature and the tapping temperature, and therefore there is a risk of erroneous detection. In the apparatus of Patent Document 4, combustion control is performed by measuring the temperature of combustion exhaust gas after heat exchange, but scale clogging cannot be determined.

本発明の目的は、顕熱が回収された燃焼排ガスの温度を測定することによりスケール詰まりを正確に判定可能な給湯装置を提供することである。   An object of the present invention is to provide a hot water supply apparatus capable of accurately determining scale clogging by measuring the temperature of combustion exhaust gas from which sensible heat has been recovered.

請求項1の給湯装置は、燃焼ガスによって上水を加熱するためのフィンアンドチューブ型の熱交換器を備え、前記熱交換器において熱交換された後の排気温度を検知するための温度検知手段と、この温度検知手段によって検知される検知温度が設定温度以上になった場合に前記熱交換器の伝熱管内にスケールが堆積していると判定する判定手段とを備えたことを特徴としている。   The hot water supply apparatus according to claim 1 includes a fin-and-tube heat exchanger for heating clean water with combustion gas, and temperature detecting means for detecting an exhaust temperature after heat exchange in the heat exchanger. And a judging means for judging that a scale is accumulated in the heat transfer tube of the heat exchanger when the detected temperature detected by the temperature detecting means is equal to or higher than a set temperature. .

請求項2の給湯装置は、請求項1の発明において、前記温度検知手段は、前記熱交換器を構成する伝熱管における、給湯運転時には常時燃焼する燃焼部に最も近い伝熱管部分のうちの下流側の周囲を通過する燃焼ガスが排気されるフィン近傍に設けられたことを特徴としている。   According to a second aspect of the present invention, there is provided a hot water supply apparatus according to the first aspect of the invention, wherein the temperature detecting means is a downstream of the heat transfer tube portion closest to the combustion portion that always burns during the hot water supply operation in the heat transfer tube constituting the heat exchanger. It is characterized in that it is provided in the vicinity of the fin from which the combustion gas passing around the side is exhausted.

請求項3の給湯装置は、請求項1又は2の発明において、前記熱交換器は、燃焼排気の顕熱を回収するための顕熱回収用熱交換器であって、この顕熱回収用熱交換器の排気流路下流側に燃焼排気の潜熱を回収するための潜熱回収用熱交換器を備えた潜熱回収型給湯装置であることを特徴としている。   According to a third aspect of the present invention, there is provided the hot water supply apparatus according to the first or second aspect, wherein the heat exchanger is a sensible heat recovery heat exchanger for recovering sensible heat of combustion exhaust, The latent heat recovery type hot water supply apparatus includes a latent heat recovery heat exchanger for recovering latent heat of combustion exhaust gas on the downstream side of the exhaust passage of the exchanger.

スケール詰まりが発生すると、燃焼ガスから熱交換器の伝熱管を流れる水へ効率良く伝熱できないので、伝熱管やフィンの温度が上昇すると共に、熱交換器において熱交換された後の排気温度が異常に上昇する。従って、請求項1の発明によれば、この排気温度を検知する温度検知手段と、この温度検知手段によって検知される検知温度が設定温度以上になった場合に熱交換器の伝熱管内にスケールが堆積していると判定する判定手段とを備えたので、燃焼作動中に排気温度を直接検知することができ、排気温度が設定温度以上になった場合には熱交換器にスケール詰まりが発生したことを正確に判定することができる。   When scale clogging occurs, heat cannot be transferred efficiently from the combustion gas to the water flowing through the heat exchanger tubes, so the temperature of the heat exchanger tubes and fins rises, and the exhaust temperature after heat exchange in the heat exchanger It rises abnormally. Therefore, according to the first aspect of the present invention, the temperature detecting means for detecting the exhaust gas temperature and the scale in the heat transfer tube of the heat exchanger when the detected temperature detected by the temperature detecting means is equal to or higher than the set temperature. It is possible to detect the exhaust temperature directly during combustion operation, and if the exhaust temperature exceeds the set temperature, the heat exchanger will be clogged with scale. Can be accurately determined.

即ち、燃焼作動中に温度検知手段によって熱交換器において熱交換された後の燃焼ガスの排気温度を直接測定し、スケール詰まりにより熱交換器の伝熱が阻害されて発生する排気温度の異常な上昇を検知することで、スケール詰まりを判定することができるので、燃焼作動中にスケール詰まりを正確に判定することができ、スケール詰まりを判定する際に、使用者が意図しない給湯量や給湯温度の変動を防ぐことができる。   That is, the exhaust gas temperature of the combustion gas after the heat exchange in the heat exchanger is directly measured by the temperature detecting means during the combustion operation, and the exhaust gas temperature abnormally generated due to the clogging of the scale and the heat transfer of the heat exchanger being obstructed. By detecting the rise, scale clogging can be determined, so scale clogging can be accurately determined during combustion operation. When determining scale clogging, the amount of hot water and the hot water temperature that are not intended by the user Fluctuations can be prevented.

請求項2の発明によれば、温度検知手段は、前記熱交換器を構成する伝熱管における、給湯運転時には常時燃焼する燃焼部に最も近い伝熱管部分のうちの下流側の周囲を通過する燃焼ガスが排気されるフィン近傍に設けられたので、燃焼パターンにかかわらず、最もスケール詰まりが発生しやすい伝熱管部分の近傍を通過した燃焼ガスの排気温度を検知することができ、バーナーユニットの最低燃焼量による燃焼作動に対応可能である。   According to the invention of claim 2, the temperature detecting means is a combustion that passes through the downstream side of the heat transfer tube portion that is closest to the combustion portion that always burns during hot water supply operation in the heat transfer tube constituting the heat exchanger. Because it is provided near the fin where the gas is exhausted, it can detect the exhaust temperature of the combustion gas that has passed near the heat transfer tube part where scale clogging is most likely to occur, regardless of the combustion pattern. It can cope with the combustion operation by the amount of combustion.

請求項3の発明によれば、熱交換器は燃焼排気の顕熱を回収する顕熱回収用熱交換器であって、この顕熱回収用熱交換器の排気流路下流側に燃焼排気の潜熱を回収する潜熱回収用熱交換器を備えたので、燃焼により発生した熱の大部分を上水の加熱に利用でき、高効率の潜熱回収型給湯装置を構成することができる。
また、許容温度範囲内で、スケール詰まりにより顕熱回収用熱交換器の熱交換効率が低下して排気温度が上昇しても、潜熱回収用熱交換器において熱交換され給湯装置全体として熱交換効率の低下が小さいため、高効率の給湯装置を構成でき、且つ顕熱回収用熱交換器の排気温度を直接検知するので、スケール詰まりを正確に判定することができる。
According to the invention of claim 3, the heat exchanger is a sensible heat recovery heat exchanger that recovers the sensible heat of the combustion exhaust, and the combustion exhaust is disposed downstream of the exhaust passage of the sensible heat recovery heat exchanger. Since the latent heat recovery heat exchanger for recovering latent heat is provided, most of the heat generated by the combustion can be used for heating clean water, and a highly efficient latent heat recovery type hot water supply apparatus can be configured.
Also, within the allowable temperature range, even if the heat exchange efficiency of the sensible heat recovery heat exchanger decreases due to clogging of the scale and the exhaust temperature rises, heat is exchanged in the latent heat recovery heat exchanger and the entire hot water supply system performs heat exchange. Since the decrease in efficiency is small, a highly efficient hot water supply apparatus can be configured, and the exhaust temperature of the sensible heat recovery heat exchanger is directly detected, so that scale clogging can be accurately determined.

本発明の実施例に係る給湯装置の概略構成図である。It is a schematic block diagram of the hot water supply apparatus which concerns on the Example of this invention. 給湯装置の正面図である。It is a front view of a hot water supply apparatus. (a)は給湯装置の縦断面図、(b)は温度検知手段が設けられた部分の拡大縦断面図である。(A) is a longitudinal cross-sectional view of a hot-water supply apparatus, (b) is an enlarged longitudinal cross-sectional view of the part provided with the temperature detection means. (a)は熱交換器部の下段の熱交換領域の要部の平面図、(b)は熱交換器部の上段の熱交換領域の要部の平面図である。(A) is a top view of the principal part of the heat exchanger area | region of the lower stage of a heat exchanger part, (b) is a top view of the principal part of the heat exchanger area | region of the upper stage of a heat exchanger part. スケール詰まり判定運転制御のフローチャートである。It is a flowchart of scale clogging determination operation control.

以下、本発明を実施するための形態について実施例に基づいて説明する。   Hereinafter, modes for carrying out the present invention will be described based on examples.

最初に本発明の給湯装置1の全体構成について説明する。
給湯装置1は、給湯機器や暖房機器等の熱源機として適用されるものであり、図1に示すように、燃料ガスを燃焼させて発生する熱を水又は湯水の加熱に利用して給湯するガス給湯器を構成している。
Initially, the whole structure of the hot water supply apparatus 1 of this invention is demonstrated.
The hot water supply device 1 is applied as a heat source device such as a hot water supply device or a heating device, and as shown in FIG. 1, the heat generated by burning fuel gas is used to heat water or hot water. It constitutes a gas water heater.

この給湯装置1は、燃焼用空気を供給するための送風ファン2、燃料ガスを燃焼させるバーナー部3、このバーナー部3による燃焼ガスと水との間で熱交換する熱交換器部4、この熱交換器部4による熱交換後の燃焼ガスを排出する排気口5、入水管6aと出湯管6b等の各種配管類、各種センサ等からの信号を受信し各種機器を駆動制御する制御ユニット7等を備えている。   The hot water supply device 1 includes a blower fan 2 for supplying combustion air, a burner unit 3 for burning fuel gas, a heat exchanger unit 4 for exchanging heat between the combustion gas and water by the burner unit 3, A control unit 7 that receives signals from the exhaust port 5 for discharging the combustion gas after heat exchange by the heat exchanger unit 4, various pipes such as the water inlet pipe 6a and the hot water outlet pipe 6b, various sensors, and drives and controls various devices. Etc.

次に、バーナー部3について説明する。
バーナー部3は、燃料供給管(図示略)から供給される燃料ガスと送風ファン2から供給される燃焼用空気を混合して燃焼するバーナーユニット11と、このバーナーユニット11を収容したバーナー缶体12と、このバーナー缶体12内におけるバーナーユニット11の上方の燃焼空間13等を備えている。バーナー缶体12は、上方が開口された直方体形状に形成されている。バーナー缶体12の下端部には、送風ファン2が設けられている。
Next, the burner unit 3 will be described.
The burner unit 3 includes a burner unit 11 that burns by mixing fuel gas supplied from a fuel supply pipe (not shown) and combustion air supplied from the blower fan 2, and a burner can body that accommodates the burner unit 11. 12 and a combustion space 13 above the burner unit 11 in the burner can body 12. The burner can body 12 is formed in a rectangular parallelepiped shape having an upper opening. A blower fan 2 is provided at the lower end of the burner can body 12.

図1,図2,図4に示すように、バーナーユニット11は、左右方向に平行に配置された複数の燃焼管14を備え、例えば3段の燃焼段11a〜11cからなる多段式に構成されている。各燃焼段11a〜11cは、例えば5本、2本、3本の燃焼管14を夫々備え、対応する燃料供給管に夫々接続されている。各燃焼段11a〜11cは、制御ユニット7によって夫々燃焼制御可能であり、各種の運転に応じて燃焼作動される燃焼段11a〜11cの段数及びその出力が調整される。   As shown in FIGS. 1, 2, and 4, the burner unit 11 includes a plurality of combustion pipes 14 arranged in parallel in the left-right direction, and is configured in, for example, a multistage system including three combustion stages 11 a to 11 c. ing. Each of the combustion stages 11a to 11c includes, for example, five, two, and three combustion pipes 14, respectively, and is connected to a corresponding fuel supply pipe. Each of the combustion stages 11a to 11c can be controlled by the control unit 7, and the number of combustion stages 11a to 11c and the output thereof are adjusted according to various operations.

給湯運転時には、例えば、中央の燃焼段11bの2本の燃焼管14のみを燃焼作動させる1段燃焼段階、中央と右側の燃焼段11b,11cの5本の燃焼管14を燃焼作動させる2段燃焼段階、左側と中央の燃焼段11a,11bの7本の燃焼管14を燃焼作動させる3段燃焼段階、全ての燃焼段11a〜11cの10本の燃焼管14を燃焼作動させる4段燃焼段階の4段階に燃焼段階を切り換えて燃焼作動可能である。尚、中央の燃焼段11bは、給湯運転時には常時燃焼される燃焼部に相当する。   During the hot water supply operation, for example, a one-stage combustion stage in which only the two combustion pipes 14 in the central combustion stage 11b are operated to burn, and a two-stage in which the five combustion pipes 14 in the center and right combustion stages 11b and 11c are operated to burn. Combustion stage, three-stage combustion stage in which seven combustion pipes 14 in the left and center combustion stages 11a and 11b are operated for combustion, and four-stage combustion stage in which ten combustion pipes 14 in all the combustion stages 11a to 11c are operated in combustion. The combustion operation can be performed by switching the combustion stage to four stages. The central combustion stage 11b corresponds to a combustion section that is always combusted during a hot water supply operation.

図2,図3(a)に示すように、バーナーユニット11の燃焼段11bに対応する部分の上方の燃焼空間13には、イグナイター15とフレームロッド16とが夫々配置されている。イグナイター15とフレームロッド16は、バーナー缶体12の前面側から夫々取り付けられ、フレームロッド16は、イグナイター15の右側に設けられている。   As shown in FIGS. 2 and 3A, an igniter 15 and a frame rod 16 are arranged in the combustion space 13 above the portion corresponding to the combustion stage 11b of the burner unit 11, respectively. The igniter 15 and the frame rod 16 are respectively attached from the front side of the burner can body 12, and the frame rod 16 is provided on the right side of the igniter 15.

イグナイター15は、バーナーユニット11に設けられた点火ターゲットとの間で点火スパークを生じさせることで、バーナーユニット11から供給される燃料空気混合気に点火するものであり、燃焼空間13に突き出すように且つ斜め下方に向かって延びるように取り付けられている。   The igniter 15 ignites the fuel-air mixture supplied from the burner unit 11 by generating an ignition spark with an ignition target provided in the burner unit 11 so as to protrude into the combustion space 13. And it is attached so that it may extend toward diagonally downward.

フレームロッド16は、バーナーユニット11の燃焼作動中に火炎の間に電圧を印加し、火炎のイオン化による導電性や整流作用を利用して、フレームロッド16から火炎へ流れる電流を検知することで、火炎の有無を検出するためのものであり、燃焼空間13に突き出すように略水平に延びるように取り付けられている。   The flame rod 16 detects a current flowing from the flame rod 16 to the flame by applying a voltage between the flames during the combustion operation of the burner unit 11 and using conductivity and rectification action due to the ionization of the flame. It is for detecting the presence or absence of a flame, and is attached so as to extend substantially horizontally so as to protrude into the combustion space 13.

次に、熱交換器部4について説明する。
図1〜図3(a)に示すように、熱交換器部4は、主として燃焼ガスの顕熱を回収する顕熱回収用熱交換器17と、この顕熱回収用熱交換器17で熱交換された後の燃焼ガス(排気)から主として潜熱を回収する潜熱回収用熱交換器19と、顕熱回収用熱交換器17を収容する下側熱交換器缶体18と、潜熱回収用熱交換器19を収容する上側熱交換器缶体20等を備えている。
Next, the heat exchanger unit 4 will be described.
As shown in FIG. 1 to FIG. 3A, the heat exchanger unit 4 mainly includes a sensible heat recovery heat exchanger 17 that recovers sensible heat of combustion gas, and a heat exchanger 17 for sensible heat recovery. The latent heat recovery heat exchanger 19 that mainly recovers latent heat from the exchanged combustion gas (exhaust gas), the lower heat exchanger can 18 that houses the sensible heat recovery heat exchanger 17, and the latent heat recovery heat An upper heat exchanger can body 20 or the like that accommodates the exchanger 19 is provided.

下側熱交換器缶体18は、平面視矩形枠状に構成され、下側熱交換器缶体18の下端部とバーナー缶体12の上端部とは、カシメやビス締結により接合されている。   The lower heat exchanger can body 18 is configured in a rectangular frame shape in plan view, and the lower end portion of the lower heat exchanger can body 18 and the upper end portion of the burner can body 12 are joined by caulking or screw fastening. .

上側熱交換器缶体20は直方体形状に形成され、その底部である下端部に潜熱回収により発生したドレン(凝縮水)を回収するトレイ6dと、下側熱交換器缶体18の排気の出口となる上側熱交換器缶体20の内部側に向かって開口した排気出口24を有し、給湯装置1の前面側に相当する上側熱交換器缶体20の前面下部に熱交換後の排気を給湯装置1の外部へ排出する排気口5が設けられている。   The upper heat exchanger can body 20 is formed in a rectangular parallelepiped shape, and a tray 6d for collecting drain (condensate) generated by the recovery of latent heat at the lower end, which is the bottom of the upper heat exchanger can body, and an exhaust outlet of the lower heat exchanger can body 18 An exhaust outlet 24 that opens toward the inner side of the upper heat exchanger can body 20, and exhausts the heat-exchanged air to the lower front portion of the upper heat exchanger can body 20 corresponding to the front side of the hot water supply device 1. An exhaust port 5 for discharging the hot water supply apparatus 1 to the outside is provided.

上側熱交換器缶体20下端部と下側熱交換器缶体18の上端部はカシメやビス締結により接合されている。図2、図3(a)に示すように、下側熱交換器缶体18の周囲には、温度ヒューズ23が異常高温を検知可能に設けられている。   The lower end portion of the upper heat exchanger can body 20 and the upper end portion of the lower heat exchanger can body 18 are joined by caulking or screw fastening. As shown in FIGS. 2 and 3A, a thermal fuse 23 is provided around the lower heat exchanger can 18 so as to detect an abnormally high temperature.

次に、顕熱回収用熱交換器17について説明する。
顕熱回収用熱交換器17は、図3(a)、図4に示すように、伝熱管25と、この伝熱管25に伝熱可能に固定された複数のフィン26等からなるフィンアンドチューブ型の熱交換器を構成している。複数のフィン26は、下側熱交換器缶体18の内周面に夫々ロウ付けされている。伝熱管25及びフィン26は、銅製のものであるが、特にこの材質に限定する必要はなく、ステンレス製のものであってもよい。
Next, the sensible heat recovery heat exchanger 17 will be described.
As shown in FIGS. 3A and 4, the sensible heat recovery heat exchanger 17 is a fin-and-tube including a heat transfer tube 25 and a plurality of fins 26 fixed to the heat transfer tube 25 so as to be able to transfer heat. It constitutes a mold heat exchanger. The plurality of fins 26 are brazed to the inner peripheral surface of the lower heat exchanger can 18 respectively. The heat transfer tubes 25 and the fins 26 are made of copper, but are not particularly limited to this material, and may be made of stainless steel.

図1,図3(a),図4に示すように、下側熱交換器缶体18の内部において、顕熱回収用熱交換器17の熱交換領域21は、燃焼空間13に面した下段側の下段熱交換領域21Aと、その上段側(燃焼ガス流の下流側)の上段熱交換領域21Bとを備えた2段構造である。   As shown in FIG. 1, FIG. 3A, and FIG. 4, the heat exchange region 21 of the sensible heat recovery heat exchanger 17 in the lower heat exchanger can 18 is a lower stage facing the combustion space 13. This is a two-stage structure including a lower heat exchange region 21A on the side and an upper heat exchange region 21B on the upper stage side (downstream side of the combustion gas flow).

図4に示すように、伝熱管25は、2段に亙って略平行に配置された複数の直管部27と、この複数の直管部27の端部同士を連結する複数の連結管部28とを備えている。図4(a)に示す下段熱交換領域21Aには、4本の直管部27が配設され、図4(b)に示す上段熱交換領域21Bには、4本の直管部27が配設され、下段熱交換領域21A及び上段熱交換領域21Bの夫々において、伝熱管25は、平面視蛇行形状に夫々構成されている。下段熱交換領域21Aの下流側の直管部27bの下流側端部は、上段熱交換領域21B上流側の直管部27cの上流側端部に連結管部28により連結されている。   As shown in FIG. 4, the heat transfer tube 25 includes a plurality of straight tube portions 27 arranged substantially in parallel over two stages, and a plurality of connection tubes that connect ends of the plurality of straight tube portions 27 to each other. Part 28. Four straight pipe portions 27 are arranged in the lower heat exchange area 21A shown in FIG. 4A, and four straight pipe portions 27 are arranged in the upper heat exchange area 21B shown in FIG. 4B. In each of the lower heat exchange region 21A and the upper heat exchange region 21B, the heat transfer tubes 25 are each configured in a meandering shape in plan view. The downstream end of the straight pipe portion 27b on the downstream side of the lower heat exchange region 21A is connected to the upstream end of the straight pipe portion 27c on the upstream side of the upper heat exchange region 21B by the connecting pipe portion 28.

バーナーユニット11に燃料供給管から燃料ガスが供給されると共に送風ファン2から燃焼用空気が供給され、燃焼空間13において燃料ガスと空気とが混合された燃料空気混合気が燃焼される。このとき発生する燃焼ガスは、燃焼空間13上方の下側熱交換器缶体18の内部に導入され顕熱回収用熱交換器17において上水を加熱すると共に降温し、下側熱交換器缶体18の排気出口24から排気され上側熱交換器缶体20の内部に導入される。   Fuel gas is supplied to the burner unit 11 from the fuel supply pipe and combustion air is supplied from the blower fan 2, and a fuel-air mixture in which fuel gas and air are mixed is burned in the combustion space 13. The combustion gas generated at this time is introduced into the inside of the lower heat exchanger can 18 above the combustion space 13 and heats the water in the sensible heat recovery heat exchanger 17 while lowering the temperature, and the lower heat exchanger can. It is exhausted from the exhaust outlet 24 of the body 18 and introduced into the upper heat exchanger can body 20.

顕熱回収用熱交換器17に入水された上水は、伝熱管25の下段熱交換領域21Aを流れた後、上段熱交換領域21Bを流れ、上述のように顕熱回収用熱交換器17を通過する間に燃焼ガスの顕熱により上水は加熱され、出湯管6bから給湯装置1の外部へ出湯される。   The clean water that has entered the sensible heat recovery heat exchanger 17 flows through the lower heat exchange region 21A of the heat transfer tube 25, and then flows through the upper heat exchange region 21B. As described above, the sensible heat recovery heat exchanger 17 The hot water is heated by the sensible heat of the combustion gas while passing through the hot water and discharged from the hot water supply pipe 6b to the outside of the hot water supply apparatus 1.

次に、潜熱回収用熱交換器19について説明する。
図3(a)に示すように、潜熱回収用熱交換器19は、上側熱交換器缶体20の内部に複数の伝熱管29が螺旋状、蛇行状等に備えられている。
Next, the latent heat recovery heat exchanger 19 will be described.
As shown in FIG. 3A, the latent heat recovery heat exchanger 19 includes a plurality of heat transfer tubes 29 in a spiral shape, a meandering shape, and the like inside an upper heat exchanger can body 20.

上側熱交換器缶体20の内部には、排気出口24から上側熱交換器缶体20の内部に導入された燃焼ガスの流路を形成し整流する整流板31a,31b,31c等が設けられ、上側熱交換器缶体20の前側に設けられた排気口5から熱交換後の燃焼ガスが給湯装置1の外部に排出される。このとき燃焼ガスは、潜熱回収用熱交換器19において上水源から入水管6aに供給される上水を加熱すると共に降温し、燃焼ガスに含まれる水蒸気が凝縮してドレン(凝縮水)となり、トレイ6dに集められ、ドレン管6cを通って中和器(図示略)に送られ、中和されて給湯装置1の外部へ排出される。加熱された上水は、顕熱回収用熱交換器17の下段熱交換領域21Aの上流側の直管部27aへ入水される。   Inside the upper heat exchanger can body 20, there are provided rectifying plates 31 a, 31 b, 31 c that form a flow path for the combustion gas introduced into the upper heat exchanger can body 20 from the exhaust outlet 24 and rectify it. The combustion gas after the heat exchange is discharged to the outside of the hot water supply apparatus 1 from the exhaust port 5 provided on the front side of the upper heat exchanger can body 20. At this time, the combustion gas heats the water supplied from the water source to the inlet pipe 6a in the latent heat recovery heat exchanger 19 and lowers the temperature, and the water vapor contained in the combustion gas is condensed to become drain (condensed water). They are collected in the tray 6d, sent to the neutralizer (not shown) through the drain pipe 6c, neutralized, and discharged to the outside of the hot water supply apparatus 1. The heated clean water enters the straight pipe portion 27a on the upstream side of the lower heat exchange region 21A of the sensible heat recovery heat exchanger 17.

次に、温度検知センサ32について図3、図4に基づいて説明する。
図3(a)に示すように、給湯装置1は、顕熱回収用熱交換器17にて熱交換された後の燃焼ガスの温度(排気温度)を検知する温度検知手段である温度検知センサ32を備えている。温度検知センサ32は、図4に示す顕熱回収用熱交換器17の伝熱管25における、給湯運転時には常時燃焼する燃焼段11bに最も近い伝熱管部分のうちの下流側の周囲を通過する燃焼ガスが排気されるフィン26の近傍に設けられている。
Next, the temperature detection sensor 32 will be described with reference to FIGS.
As shown in FIG. 3 (a), the hot water supply device 1 is a temperature detection sensor that is a temperature detection means for detecting the temperature (exhaust temperature) of the combustion gas after heat exchange in the sensible heat recovery heat exchanger 17. 32. The temperature detection sensor 32 in the heat transfer tube 25 of the sensible heat recovery heat exchanger 17 shown in FIG. 4 is a combustion that passes through the downstream side of the heat transfer tube portion closest to the combustion stage 11b that always burns during hot water supply operation. It is provided in the vicinity of the fin 26 from which gas is exhausted.

図3(b)に示すように、温度検知センサ32は、下段熱交換領域21Aの最も下流側の直管部27bにおける燃焼段11bの直上部分に固定されたフィン26の近傍に挿し込むように、上側熱交換器缶体20の後側から挿入され、ロウ付け等によって上側熱交換器缶体20に固定されている。   As shown in FIG. 3B, the temperature detection sensor 32 is inserted in the vicinity of the fin 26 fixed to the portion directly above the combustion stage 11b in the straight pipe portion 27b on the most downstream side of the lower heat exchange region 21A. The upper heat exchanger can body 20 is inserted from the rear side and fixed to the upper heat exchanger can body 20 by brazing or the like.

温度検知センサ32は、熱電対32aと、この熱電対32aから延びる1対のリード線32b等から構成された公知の温度検知センサで構成されている。1対のリード線32bは制御ユニット7に接続され、燃焼ガスが下側熱交換器缶体18から排出される排気温度が温度検知センサ32の検知信号によって制御ユニット7に送信される。   The temperature detection sensor 32 includes a known temperature detection sensor including a thermocouple 32a and a pair of lead wires 32b extending from the thermocouple 32a. The pair of lead wires 32 b are connected to the control unit 7, and the exhaust gas temperature at which the combustion gas is discharged from the lower heat exchanger can 18 is transmitted to the control unit 7 by the detection signal of the temperature detection sensor 32.

次に、制御ユニット7について説明する。
図1,図2に示す制御ユニット7は、給湯装置1の制御を行うものであり、各種のセンサが電気的に接続され、各種のセンサからの検知信号を受信するように構成されている。制御ユニット7は、操作リモコン等によって設定された給湯温度、給湯栓に供給される給湯量、各種のセンサから受信した検知信号に基づき、送風ファン2やバーナーユニット11等を駆動制御し、給湯運転を実行する。
Next, the control unit 7 will be described.
The control unit 7 shown in FIGS. 1 and 2 controls the hot water supply apparatus 1 and is configured such that various sensors are electrically connected to receive detection signals from the various sensors. The control unit 7 controls driving of the blower fan 2, the burner unit 11 and the like based on the hot water temperature set by the operation remote controller, the amount of hot water supplied to the hot water tap, and detection signals received from various sensors, and hot water supply operation Execute.

次に、スケール詰まり判定運転制御について説明する。
図5に示すように、判定手段に相当する制御ユニット7は、温度検知センサ32によって検知される排気温度が設定温度以上になった場合に、顕熱回収用熱交換器17の伝熱管25内にスケールが堆積していると判定するスケール詰まり判定運転制御を実行可能である。このスケール詰まり判定運転制御の制御プログラムは、制御ユニット7に予め格納されている。尚、図中の符号Si(i=1,2,・・)は各ステップを示す。
Next, scale clogging determination operation control will be described.
As shown in FIG. 5, when the exhaust temperature detected by the temperature detection sensor 32 becomes equal to or higher than the set temperature, the control unit 7 corresponding to the determination means is in the heat transfer tube 25 of the sensible heat recovery heat exchanger 17. It is possible to execute scale clogging determination operation control that determines that scale has accumulated on the surface. A control program for the scale clogging determination operation control is stored in the control unit 7 in advance. In the figure, the symbol Si (i = 1, 2,...) Indicates each step.

最初にS1において、制御ユニット7は、給湯装置1が給湯運転中か否かを判定する。給湯装置1が給湯運転中の場合、つまり、制御ユニット7が給湯運転に基づく信号を受信している場合、S1の判定がYesとなり、S2に移行し、S1の判定がNoである間はS1を繰り返す。   First, in S1, the control unit 7 determines whether or not the hot water supply apparatus 1 is in a hot water supply operation. When the hot water supply apparatus 1 is in the hot water supply operation, that is, when the control unit 7 receives a signal based on the hot water supply operation, the determination of S1 is Yes, the process proceeds to S2, and the determination of S1 is No while the determination is S1. repeat.

次に、S2において、制御ユニット7は、排気温度を測定する温度検知センサ32の検知信号を読み込んで排気温度を取得し、S3に移行する。   Next, in S2, the control unit 7 reads the detection signal of the temperature detection sensor 32 that measures the exhaust temperature, acquires the exhaust temperature, and proceeds to S3.

次に、S3において、排気温度が設定温度(例えば180〜200℃程度)を超えているか否かの判定を行い、排気温度が設定温度を超えている場合、S3の判定がYesとなり、S4に移行する。排気温度が設定温度以下の場合、S3の判定がNoとなり、熱交換器21が正常であると判定して、リターンする。尚、設定温度は、上記の温度に限定する必要はなく、適宜変更可能である。   Next, in S3, it is determined whether or not the exhaust temperature exceeds a set temperature (for example, about 180 to 200 ° C.). If the exhaust temperature exceeds the set temperature, the determination in S3 is Yes, and the process proceeds to S4. Transition. If the exhaust temperature is equal to or lower than the set temperature, the determination in S3 is No, it is determined that the heat exchanger 21 is normal, and the process returns. The set temperature need not be limited to the above temperature, and can be changed as appropriate.

ここで、給湯運転時には、上述したように、バーナーユニット11を、要求熱量に応じて4段階に燃焼段階を調整して燃焼作動するが、中央の燃焼段11bの2本の燃焼管14は、最低燃焼量で燃焼作動可能であり、給湯運転時には常時燃焼される。   Here, at the time of the hot water supply operation, as described above, the burner unit 11 is operated by adjusting the combustion stage in four stages according to the required heat quantity, but the two combustion pipes 14 in the central combustion stage 11b are Combustion operation is possible with the minimum combustion amount, and combustion is always performed during hot water supply operation.

一方、顕熱回収用熱交換器17において、潜熱回収用熱交換器19によって加熱され伝熱管25に供給される上水は、下段熱交換領域21Aの上流側の直管部27aから下流側の直管部27bに向かって蛇行状に流れて加熱され、直管部27aの水温より直管部27bの水温が高くなるため、伝熱管の温度は、バーナーユニット11に最も近い下段熱交換領域21Aの直管部27bが最も高くなる。   On the other hand, in the sensible heat recovery heat exchanger 17, the clean water heated by the latent heat recovery heat exchanger 19 and supplied to the heat transfer tubes 25 flows downstream from the straight pipe portion 27 a on the upstream side of the lower heat exchange region 21 </ b> A. Since the water temperature of the straight pipe part 27b is higher than the water temperature of the straight pipe part 27a, the temperature of the heat transfer pipe is lower than the burner unit 11 in the lower heat exchange region 21A. The straight pipe portion 27b is the highest.

このため、直管部27bの常時燃焼する燃焼段11bの直上の部分が、他の部分と比較してスケールが堆積しやすい。直管部27bにスケール詰まりが発生すると、顕熱回収用熱交換器17の伝熱不良によって、下側熱交換器缶体18から排出される排気温度が、180〜200℃程度に異常に上昇する。顕熱回収用熱交換器17が正常であれば、排気温度は通常120℃程度を維持するので、この排気温度の上昇を利用することで、スケール詰まりを正確に判定することができる。   For this reason, the portion of the straight pipe portion 27b immediately above the combustion stage 11b that always burns is more likely to deposit scale than the other portions. When scale clogging occurs in the straight pipe portion 27b, the exhaust temperature discharged from the lower heat exchanger can 18 abnormally rises to about 180 to 200 ° C. due to the heat transfer failure of the sensible heat recovery heat exchanger 17. To do. If the sensible heat recovery heat exchanger 17 is normal, the exhaust temperature is normally maintained at about 120 ° C., so that scale clogging can be accurately determined by utilizing this increase in the exhaust temperature.

S4において、制御ユニット7は、顕熱回収用熱交換器17にスケール詰まりが発生していると判定し、スケール詰まりを操作リモコンの表示や音声等を介して使用者に報知して、その後、リターンする。尚、スケール詰まりを報知した後、給湯運転を継続してもよいし、スケール詰まりを報知した直後に、給湯運転を停止してもよいし、スケール詰まりを報知して所定の時間経過後に、給湯運転を停止してもよい。   In S4, the control unit 7 determines that scale clogging has occurred in the sensible heat recovery heat exchanger 17, and notifies the user of the scale clogging via the operation remote control display or voice, and then Return. In addition, after notifying scale clogging, the hot water supply operation may be continued, immediately after notifying scale clogging, the hot water supply operation may be stopped, or when the scale clogging is notified and a predetermined time has elapsed, The operation may be stopped.

次に、本発明の給湯装置1の作用及び効果について説明する。
本発明の給湯装置1は、排気温度を検知するための温度検知センサ32と、この温度検知センサ32によって検知される検知温度が設定温度以上になった場合に顕熱回収用熱交換器17の伝熱管25内にスケールが堆積していると判定する制御ユニット7とを備えたので、スケール詰まりにより顕熱回収用熱交換器17の熱交換が阻害されて発生する排気温度の上昇を検知可能であり、排気温度が設定温度以上になった場合、顕熱回収用熱交換器17にスケール詰まりが発生したことを正確に判定することができる。
Next, the operation and effect of the hot water supply apparatus 1 of the present invention will be described.
The hot water supply apparatus 1 of the present invention includes a temperature detection sensor 32 for detecting the exhaust temperature, and a sensible heat recovery heat exchanger 17 when the detected temperature detected by the temperature detection sensor 32 is equal to or higher than a set temperature. Since the control unit 7 that determines that the scale is accumulated in the heat transfer tube 25 is provided, it is possible to detect a rise in the exhaust temperature that is generated when the heat exchange of the heat exchanger 17 for sensible heat recovery is hindered due to clogging of the scale. When the exhaust gas temperature is equal to or higher than the set temperature, it can be accurately determined that scale clogging has occurred in the sensible heat recovery heat exchanger 17.

即ち、燃焼作動中に温度検知センサ32によって排気温度を直接検知し、排気温度の異常な上昇を検知することで、制御ユニット7がスケール詰まりを判定するので、燃焼停止後の湯水温度の上昇や燃焼作動中の熱交換効率の変化でスケール詰まりを判定する給湯装置、排気温度を推定してスケール詰まりを判定する装置と異なり、燃焼運転中であってもスケール詰まりを正確に判定することができ、スケール詰まりを判定する際に、使用者が意図しない給湯量や給湯温度の変動を防ぐことができる。   That is, the exhaust gas temperature is directly detected by the temperature detection sensor 32 during the combustion operation, and the control unit 7 determines that the scale is clogged by detecting an abnormal increase in the exhaust gas temperature. Unlike hot water supply devices that determine scale clogging based on changes in heat exchange efficiency during combustion operation and devices that estimate scale clogging by estimating exhaust temperature, scale clogging can be accurately determined even during combustion operation. When determining scale clogging, it is possible to prevent fluctuations in the hot water supply amount and hot water temperature that are not intended by the user.

また、温度検知センサ32は、顕熱回収用熱交換器17を構成する伝熱管25における、給湯運転時には常時燃焼する燃焼段11bに最も近い伝熱管部分のうちの下流側の周囲を通過する燃焼ガスが排気されるフィン26の近傍に設けられたので、バーナーユニット11の燃焼パターンにかかわらず、最もスケール詰まりが発生しやすい部分を通過した燃焼ガスの排気温度を検知することができ、バーナーユニット11の最低燃焼量による燃焼作動に対応可能である。   Further, the temperature detection sensor 32 is a combustion that passes through the downstream side of the heat transfer tube portion closest to the combustion stage 11b that always burns during the hot water supply operation in the heat transfer tube 25 constituting the sensible heat recovery heat exchanger 17. Since it is provided in the vicinity of the fin 26 where the gas is exhausted, the exhaust temperature of the combustion gas that has passed through the portion where scale clogging is most likely to occur can be detected regardless of the combustion pattern of the burner unit 11, and the burner unit It is possible to cope with a combustion operation with a minimum combustion amount of 11.

さらに、顕熱回収用熱交換器17の排気流路下流側に燃焼ガスの潜熱を回収する潜熱回収用熱交換器19を備えたので、燃焼により発生した熱の大部分を上水の加熱に利用でき、高効率の給湯装置1を構成することができると共に、許容される排気温度の範囲内でスケールの付着により顕熱回収用熱交換器17の熱交換効率が低下するが、潜熱回収用熱交換器19で上水が加熱されるため給湯装置全体として熱交換効率の低下が小さくなる構成であっても、顕熱回収用熱交換器17において熱交換された後の排気温度を直接検知しているので、正確にスケール詰まりを判定することができる。   Further, since a latent heat recovery heat exchanger 19 for recovering the latent heat of the combustion gas is provided on the downstream side of the exhaust flow path of the sensible heat recovery heat exchanger 17, most of the heat generated by the combustion is heated to the clean water. The heat exchange efficiency of the sensible heat recovery heat exchanger 17 is reduced by adhesion of the scale within the allowable exhaust temperature range, but the latent heat recovery is possible. Even if the heat exchanger 19 heats the clean water and the heat exchange efficiency decreases as a whole, the exhaust temperature after the heat exchange in the sensible heat recovery heat exchanger 17 is directly detected. Therefore, scale clogging can be accurately determined.

次に、前記実施例を部分的に変更した形態について説明する。
[1]前記実施例の温度検知センサ32は、略水平に挿入されているが、給湯時に常時燃焼する燃焼部以外の燃焼部からの排気が混合される影響を少なくするため、フィンに近づけるように斜め下方に向かって挿入され固定されていてもよく、温度検知センサ32の先端がフィンに近づくように下方に曲げられた状態で挿入され固定されていてもよい。
Next, a mode in which the above embodiment is partially changed will be described.
[1] Although the temperature detection sensor 32 of the above-described embodiment is inserted substantially horizontally, it is brought closer to the fins in order to reduce the influence of the exhaust from the combustion section other than the combustion section that always burns when hot water is supplied. May be inserted and fixed obliquely downward, or may be inserted and fixed in a state bent downward so that the tip of the temperature detection sensor 32 approaches the fin.

[2]前記実施例の温度検知センサ32として、熱電対32aを用いているが、これに限定する必要はなく、サーミスタで構成されたものを採用することもできる。 [2] Although the thermocouple 32a is used as the temperature detection sensor 32 of the above-described embodiment, the present invention is not limited to this, and a thermistor may be employed.

[3]前記実施例のバーナーユニット11は、10本の燃焼管14を備え、3段の燃焼段11a〜11cからなる多段式に構成されているが、特にこの構造に限定する必要はなく、バーナーユニットの燃焼段の数や各燃焼段の燃焼管の数は、適宜変更可能である。 [3] The burner unit 11 of the above-described embodiment includes ten combustion pipes 14 and is configured in a multistage system including three combustion stages 11a to 11c. However, the present invention is not particularly limited to this structure. The number of combustion stages in the burner unit and the number of combustion tubes in each combustion stage can be changed as appropriate.

[4]前記実施例の給湯装置1は、熱交換器部4がバーナー部3の上方に備えられた上向き燃焼方式の給湯装置であるが、上下が略反転した態様の下向き燃焼方式の給湯装置においても実施可能である。 [4] The hot water supply apparatus 1 of the above embodiment is an upward combustion type hot water supply apparatus in which the heat exchanger section 4 is provided above the burner section 3, but the downward combustion type hot water supply apparatus in which the top and bottom are substantially inverted. Can also be implemented.

[5]その他、当業者であれば、本発明の趣旨を逸脱することなく、前記実施例に種々の変更を付加した形態で実施可能であり、本発明はそのような変更形態を包含するものである。 [5] In addition, those skilled in the art can implement the present invention in various forms with various modifications without departing from the spirit of the present invention, and the present invention includes such modifications. It is.

1 給湯装置
2 送風ファン
5 排気口
7 制御ユニット(判定手段)
11 バーナーユニット
17 顕熱回収用熱交換器
18 下側熱交換器缶体
19 潜熱回収用熱交換器
20 上側熱交換器缶体
24 排気出口
25 伝熱管
26 フィン
32 温度検知センサ(温度検知手段)
DESCRIPTION OF SYMBOLS 1 Hot-water supply apparatus 2 Blower fan 5 Exhaust port 7 Control unit (determination means)
11 Burner unit 17 Sensible heat recovery heat exchanger 18 Lower heat exchanger can body 19 Latent heat recovery heat exchanger 20 Upper heat exchanger can body 24 Exhaust outlet 25 Heat transfer tube 26 Fin 32 Temperature detection sensor (temperature detection means)

Claims (3)

燃焼ガスによって上水を加熱するためのフィンアンドチューブ型の熱交換器を備えた給湯装置であって、
前記熱交換器において熱交換された後の排気温度を検知するための温度検知手段と、この温度検知手段によって検知される検知温度が設定温度以上になった場合に前記熱交換器の伝熱管内にスケールが堆積していると判定する判定手段とを備えたことを特徴とする給湯装置。
A water heater provided with a fin-and-tube heat exchanger for heating clean water with combustion gas,
Temperature detecting means for detecting the exhaust temperature after heat exchange in the heat exchanger, and when the detected temperature detected by the temperature detecting means is equal to or higher than a set temperature, in the heat transfer tube of the heat exchanger A hot water supply apparatus comprising: determination means for determining that scale has accumulated on the surface.
前記温度検知手段は、前記熱交換器を構成する伝熱管における、給湯運転時には常時燃焼する燃焼部に最も近い伝熱管部分のうちの下流側の周囲を通過する燃焼ガスが排気されるフィン近傍に設けられたことを特徴とする請求項1に記載の給湯装置。   The temperature detecting means is in the vicinity of the fin where the combustion gas passing through the downstream side of the heat transfer tube portion closest to the combustion portion that always burns during hot water supply operation in the heat transfer tube constituting the heat exchanger is exhausted. The hot water supply device according to claim 1, wherein the hot water supply device is provided. 前記熱交換器は、燃焼排気の顕熱を回収するための顕熱回収用熱交換器であって、この顕熱回収用熱交換器の排気流路下流側に燃焼排気の潜熱を回収するための潜熱回収用熱交換器を備えた潜熱回収型給湯装置であることを特徴とする請求項1又は2に記載の給湯装置。   The heat exchanger is a sensible heat recovery heat exchanger for recovering sensible heat of combustion exhaust, and recovers the latent heat of the combustion exhaust downstream of the exhaust flow path of the sensible heat recovery heat exchanger. The hot water supply device according to claim 1, wherein the hot water supply device is a latent heat recovery type hot water supply device provided with a latent heat recovery heat exchanger.
JP2015148284A 2015-07-28 2015-07-28 Water heater Active JP6598003B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015148284A JP6598003B2 (en) 2015-07-28 2015-07-28 Water heater
US15/213,701 US20170030664A1 (en) 2015-07-28 2016-07-19 Hot water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015148284A JP6598003B2 (en) 2015-07-28 2015-07-28 Water heater

Publications (2)

Publication Number Publication Date
JP2017026280A true JP2017026280A (en) 2017-02-02
JP6598003B2 JP6598003B2 (en) 2019-10-30

Family

ID=57882416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015148284A Active JP6598003B2 (en) 2015-07-28 2015-07-28 Water heater

Country Status (2)

Country Link
US (1) US20170030664A1 (en)
JP (1) JP6598003B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11639799B2 (en) 2020-12-17 2023-05-02 Noritz Corporation Hot water supply device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107560473B (en) * 2017-09-20 2024-01-02 广东万和新电气股份有限公司 Plate heat exchanger and gas water heater
JP7135325B2 (en) * 2018-01-24 2022-09-13 株式会社ノーリツ Heat exchange device and heat source machine
EP3901550B1 (en) * 2020-04-19 2022-11-02 Bosch Termoteknik Isitmave Klima Sanayi Ticaret Anonim Sirketi A system for detecting clogging in a heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003254615A (en) * 2002-03-04 2003-09-10 Matsushita Electric Ind Co Ltd Hot water supply system
JP2009156522A (en) * 2007-12-27 2009-07-16 Osaka Gas Co Ltd Combustion device
JP2009264684A (en) * 2008-04-25 2009-11-12 Noritz Corp Latent heat recovery type water heater
JP2014047980A (en) * 2012-08-31 2014-03-17 Noritz Corp Latent heat recovery type hot water supply device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6345769B2 (en) * 2000-04-17 2002-02-12 Canadian Gas Research Institute Water heating apparatus with sensible and latent heat recovery
JP3907032B2 (en) * 2000-10-04 2007-04-18 リンナイ株式会社 Water heater
US8151872B2 (en) * 2007-03-16 2012-04-10 Centipede Systems, Inc. Method and apparatus for controlling temperature
US8971694B2 (en) * 2009-02-03 2015-03-03 Intellihot Green Technologies, Inc. Control method for a hybrid tankless water heater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003254615A (en) * 2002-03-04 2003-09-10 Matsushita Electric Ind Co Ltd Hot water supply system
JP2009156522A (en) * 2007-12-27 2009-07-16 Osaka Gas Co Ltd Combustion device
JP2009264684A (en) * 2008-04-25 2009-11-12 Noritz Corp Latent heat recovery type water heater
JP2014047980A (en) * 2012-08-31 2014-03-17 Noritz Corp Latent heat recovery type hot water supply device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11639799B2 (en) 2020-12-17 2023-05-02 Noritz Corporation Hot water supply device

Also Published As

Publication number Publication date
US20170030664A1 (en) 2017-02-02
JP6598003B2 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
JP6598003B2 (en) Water heater
US20140060458A1 (en) Latent heat recovery type water heater
JP6398325B2 (en) Water heater
JP4099141B2 (en) Hot water equipment
JP5121378B2 (en) Water heater
US11079138B2 (en) Combustion apparatus
JP6621053B2 (en) Water heater
JP2012072991A (en) Economizer control device, economizer, and boiler
JP5987866B2 (en) Economizer control device, economizer and boiler
CN209263326U (en) Intelligent maintainance prewarning fully pre-mixing gas combustion wall-hung boiler
JP5018200B2 (en) Combustion device
JP5210234B2 (en) Latent heat recovery type water heater
JP2016121817A (en) Water heater
JP2015129601A (en) heat source machine
JP4217989B2 (en) Combustion equipment
JP2005180778A (en) Water heating appliance
JP2015224804A (en) Heat exchanger
JP2019124366A (en) Highly efficient water heater
JP2022147205A (en) Water heater, computer-implemented method for controlling water heater, and program for causing computer to execute the method
CN110873462B (en) Carbon deposition reminding control method for gas water heater with carbon deposition reminding function
JP2012229896A (en) Combustion appliance
JP2017026267A (en) Sensor fixation metal fitting
CN210921831U (en) Heating combustion system of gas wall-mounted boiler and wall-mounted boiler
CN217817434U (en) Gas water heater
KR100422867B1 (en) Optimization Method For Tapping Temperature Of Initial Hot-Water In Condensing Boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190918

R150 Certificate of patent or registration of utility model

Ref document number: 6598003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150