JP2016121817A - Water heater - Google Patents
Water heater Download PDFInfo
- Publication number
- JP2016121817A JP2016121817A JP2014260321A JP2014260321A JP2016121817A JP 2016121817 A JP2016121817 A JP 2016121817A JP 2014260321 A JP2014260321 A JP 2014260321A JP 2014260321 A JP2014260321 A JP 2014260321A JP 2016121817 A JP2016121817 A JP 2016121817A
- Authority
- JP
- Japan
- Prior art keywords
- hot water
- combustion
- heat transfer
- turbulent flow
- shape memory
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
- Details Of Fluid Heaters (AREA)
Abstract
Description
本発明は給湯装置に関し、特に熱交換器の伝熱管内に乱流を発生させる為の乱流発生部材が装着された給湯装置に関する。 The present invention relates to a hot water supply apparatus, and more particularly to a hot water supply apparatus equipped with a turbulent flow generating member for generating a turbulent flow in a heat transfer tube of a heat exchanger.
従来から、ガス給湯装置、電気給湯装置、石油給湯装置等の熱源に応じた種々の給湯装置が広く一般家庭に普及している。特に、ガス給湯装置は、燃焼用空気を外部から取り込む送風ファンと、燃焼用空気と燃料ガスとを混合して燃焼するバーナーユニットと、高温の燃焼ガスと伝熱管を流れる水との間で熱交換して水を加熱する熱交換器と、熱交換後の排気を外部に排出する為の排気筒等を備えている。 Conventionally, various hot water supply apparatuses according to heat sources such as a gas hot water supply apparatus, an electric hot water supply apparatus, and an oil hot water supply apparatus have been widely used in general households. In particular, the gas hot water supply device generates heat between a blower fan that takes in combustion air from the outside, a burner unit that mixes and burns combustion air and fuel gas, and high-temperature combustion gas and water flowing through a heat transfer tube. It has a heat exchanger that exchanges and heats the water, and an exhaust pipe and the like for discharging the exhaust gas after the heat exchange to the outside.
上記の熱交換器としては、一般的に、湯水を流通させる為の伝熱管と、この伝熱管に伝熱可能に固定された複数のフィンからなるフィンアンドチューブ型熱交換器が適用され、伝熱管やフィンを銅材料で構成したものが広く採用されている。 As the heat exchanger, a fin-and-tube heat exchanger composed of a heat transfer tube for circulating hot water and a plurality of fins fixed to the heat transfer tube so as to transfer heat is generally applied. Heat pipes and fins made of a copper material are widely used.
また、上記の熱交換器において、例えば、特許文献1の熱交換器に記載があるように、伝熱管の内部に乱流コイルを装着し、この乱流コイルによって伝熱管内を流通する湯水に対して乱流の発生を促進することで、局部沸騰や沸騰音が発生するのを防ぎ、熱交換器の熱交換効率を向上させる技術が一般に知られている。 Moreover, in the above heat exchanger, for example, as described in the heat exchanger of Patent Document 1, a turbulent coil is mounted inside the heat transfer tube, and the hot water flowing through the heat transfer tube is circulated by the turbulent coil. On the other hand, a technique for preventing the occurrence of local boiling or boiling noise by promoting the generation of turbulent flow and improving the heat exchange efficiency of the heat exchanger is generally known.
ところで、上記の給湯装置に供給する上水に対して硬度の高い水道水(硬水)を使用する場合、水道水に含有されているカルシウムやマグネシウム等と、炭酸イオンや硫酸イオン等とが結合することでスケール(缶石)が形成され、このスケールが熱交換器の伝熱管の内部に付着してしまうことで、熱交換効率が徐々に悪化するという問題がある。 By the way, when using tap water (hard water) having high hardness with respect to the tap water supplied to the hot water supply apparatus, calcium ions, magnesium, etc. contained in the tap water are combined with carbonate ions, sulfate ions, etc. As a result, a scale (cane stone) is formed, and this scale adheres to the inside of the heat transfer tube of the heat exchanger, so that there is a problem that the heat exchange efficiency gradually deteriorates.
さらに、スケール詰まりが発生した状態で給湯装置の使用を継続すると、熱交換器が損傷する虞がある。このため、スケール詰まりが発生した場合には、スケールを除去する為のメンテナンスを行う必要があるが、硬水の地域では、短期間の使用でスケール詰まりが発生してしまうので、メンテナンスの頻度が上昇してしまい、メンテナンスコストが増加するという問題がある。 Furthermore, if the use of the hot water supply device is continued in a state where scale clogging has occurred, the heat exchanger may be damaged. For this reason, when scale clogging occurs, it is necessary to perform maintenance to remove the scale, but in hard water areas, scale clogging occurs due to short-term use, so the frequency of maintenance increases. As a result, there is a problem that the maintenance cost increases.
本発明の目的は、給湯装置において、伝熱管の内部に付着したスケールの除去を簡単に実行可能なもの、スケール除去の為のメンテナンスの頻度を低減可能なもの、等を提供することである。 An object of the present invention is to provide a hot water supply device that can easily remove scales adhering to the inside of a heat transfer tube, can reduce the frequency of maintenance for scale removal, and the like.
請求項1の給湯装置は、熱交換部に供給された湯水を燃焼部で発生した燃焼ガスによって加熱する給湯装置であって、前記熱交換部は、湯水を流通させる為の伝熱管と、この伝熱管の内部に装着され且つ流通する湯水に対して乱流の発生を促進させる為の乱流発生部材とを備えた給湯装置において、前記乱流発生部材の全部又は一部は、前記熱交換部の温度変化によって前記伝熱管内の湯水の流れ方向に伸縮する形状記憶合金製の部材で構成されていることを特徴としている。 The hot water supply apparatus according to claim 1 is a hot water supply apparatus that heats hot water supplied to the heat exchange section with combustion gas generated in the combustion section, wherein the heat exchange section includes a heat transfer tube for circulating hot water, In the hot water supply apparatus provided with a turbulent flow generating member for promoting the generation of turbulent flow with respect to the hot and cold water that is mounted and circulated inside the heat transfer tube, all or part of the turbulent flow generating member is the heat exchange It is characterized by comprising a member made of a shape memory alloy that expands and contracts in the flowing direction of the hot water in the heat transfer tube due to the temperature change of the part.
請求項2の給湯装置は、請求項1の発明において、前記形状記憶合金製の部材は、前記伝熱管の内径と等しい外径を有するコイル状の線材からなることを特徴としている。 According to a second aspect of the present invention, there is provided the hot water supply apparatus according to the first aspect, wherein the shape memory alloy member is made of a coiled wire having an outer diameter equal to the inner diameter of the heat transfer tube.
請求項3の給湯装置は、請求項1又は2の発明において、前記形状記憶合金製の部材は、前記伝熱管の内部において燃焼時には常時燃焼する燃焼部の直上に配置されることを特徴としている。 According to a third aspect of the present invention, there is provided the hot water supply apparatus according to the first or second aspect, wherein the member made of the shape memory alloy is disposed directly above the combustion portion that always burns during combustion inside the heat transfer tube. .
請求項1の発明によれば、乱流発生部材の全部又は一部は、熱交換部の温度変化によって伝熱管内の湯水の流れ方向に伸縮する形状記憶合金製の部材で構成されているので、給湯加熱時と給湯停止時とに亙る温度変化によって形状記憶合金製の部材が自動的に伸縮することで、伝熱管の内部に付着したスケールを簡単に除去してスケールの堆積を防止することができる。 According to the first aspect of the present invention, all or a part of the turbulent flow generating member is constituted by a member made of a shape memory alloy that expands and contracts in the flowing direction of the hot water in the heat transfer tube due to the temperature change of the heat exchange section. The shape memory alloy member automatically expands and contracts due to temperature changes during hot-water heating and when hot-water supply is stopped, thereby easily removing the scale adhering to the inside of the heat transfer tube and preventing scale build-up Can do.
従って、給湯装置にスケール除去の為の専用部材を追加的に設けずとも、既存の乱流発生部材の全部又は一部の材料を形状記憶合金製の部材に変更することで、湯水の乱流促進と共にスケール除去を実現できるので、低コストで且つ簡単な構造でもって、熱交換効率の低下を防止すると共に、スケール除去の為の定期的なメンテナンスの頻度を低減することができ、メンテナンスコストを低減することができる。 Therefore, even if a dedicated member for scale removal is not additionally provided in the hot water supply device, the turbulent flow of hot water can be achieved by changing the material of all or part of the existing turbulent flow generating member to a member made of shape memory alloy. Since the scale removal can be realized with the promotion, the low cost and simple structure can prevent the heat exchange efficiency from being lowered and the frequency of regular maintenance for the scale removal can be reduced. Can be reduced.
請求項2の発明によれば、形状記憶合金製の部材は、伝熱管の内径と等しい外径を有するコイル状の線材からなるので、コイル状の線材が伝熱管の内壁部に沿って伸縮することで、伝熱管の内壁部に付着したスケールを確実に除去することができる。 According to the invention of claim 2, since the shape memory alloy member is made of a coiled wire having an outer diameter equal to the inner diameter of the heat transfer tube, the coiled wire expands and contracts along the inner wall portion of the heat transfer tube. Thereby, the scale adhering to the inner wall part of a heat exchanger tube can be removed reliably.
請求項3の発明によれば、形状記憶合金製の部材は、伝熱管の内部において燃焼時には常時燃焼する燃焼部の直上に配置されるので、伝熱管のスケール詰まりが発生する可能性が高い箇所のスケールを除去することで、スケール詰まりの発生を極力防止することができる。 According to the invention of claim 3, since the member made of shape memory alloy is arranged directly above the combustion portion that always burns during combustion inside the heat transfer tube, the heat transfer tube is highly likely to be clogged with scale. By removing the scale, it is possible to prevent scale clogging as much as possible.
以下、本発明を実施するための形態について実施例に基づいて説明する。 Hereinafter, modes for carrying out the present invention will be described based on examples.
先ず、本発明の給湯装置1の全体構成について説明する。
図1〜図4に示すように、給湯装置1は、給湯機器や暖房機器等の熱源機として適用されるものであり、燃料ガスを燃焼して発生した燃焼ガスに含まれる熱を利用して水又は湯水の加熱を行うガス給湯器を構成している。
First, the whole structure of the hot water supply apparatus 1 of this invention is demonstrated.
As shown in FIGS. 1 to 4, the hot water supply device 1 is applied as a heat source device such as a hot water supply device or a heating device, and uses heat contained in combustion gas generated by burning fuel gas. The gas water heater which heats water or hot water is comprised.
即ち、給湯装置1は、燃焼用空気を供給する為の送風ファン2と、燃料ガスを燃焼させる燃焼部3と、この燃焼部3による燃焼ガスと水との間で熱交換する熱交換部4と、この熱交換部4による熱交換後の排気を排出する排気筒5と、入水管6aと出湯管6b等の各種配管類や各種機器を駆動制御する制御ユニット(図示略)等を備えている。 That is, the hot water supply device 1 includes a blower fan 2 for supplying combustion air, a combustion unit 3 for burning fuel gas, and a heat exchange unit 4 for exchanging heat between the combustion gas and water by the combustion unit 3. And an exhaust cylinder 5 for discharging the exhaust gas after heat exchange by the heat exchanging unit 4, a control unit (not shown) for driving and controlling various pipes such as a water inlet pipe 6a and a hot water outlet pipe 6b, and various devices. Yes.
燃焼部3は、燃料供給管(図示略)から供給される燃料ガスと送風ファン2から供給される燃焼用空気とを混合して燃焼するバーナーユニット11と、このバーナーユニット11を収容したバーナー缶体12と、このバーナー缶体12内におけるバーナーユニット11の上方の燃焼空間13等を備えている。バーナー缶体12は、上方が開口された直方体形状に構成されている。バーナー缶体12の下端部に、送風ファン2が設けられている。 The combustion unit 3 includes a burner unit 11 that mixes and burns fuel gas supplied from a fuel supply pipe (not shown) and combustion air supplied from the blower fan 2, and a burner can containing the burner unit 11. A body 12 and a combustion space 13 above the burner unit 11 in the burner can body 12 are provided. The burner can body 12 is configured in a rectangular parallelepiped shape having an upper opening. A blower fan 2 is provided at the lower end of the burner can body 12.
バーナーユニット11は、左右方向に平行に配置された10本の燃焼管14を備え、複数段の(例えば3段)の燃焼段11a〜11cからなる多段式に構成されている(図1,図2,図4参照)。各燃焼段11a〜11cは、例えば5本、2本、3本の燃焼管14を夫々備え、対応する燃料供給管に夫々接続されている。各燃焼段11a〜11cは、制御ユニットによって単独で燃焼制御可能であり、各種の運転に応じて燃焼作動される燃焼段11a〜11cの段数及びその出力が調整される。 The burner unit 11 includes ten combustion pipes 14 arranged in parallel in the left-right direction, and is configured in a multistage system including a plurality of (for example, three) combustion stages 11a to 11c (FIGS. 1 and 1). 2, see FIG. Each of the combustion stages 11a to 11c includes, for example, five, two, and three combustion pipes 14, respectively, and is connected to a corresponding fuel supply pipe. Each of the combustion stages 11a to 11c can be independently controlled by the control unit, and the number of stages and the output of the combustion stages 11a to 11c that are operated by combustion according to various operations are adjusted.
給湯運転時には、例えば、中央の燃焼段11bの2本の燃焼管14のみを燃焼する1段燃焼段階、中央と右側の燃焼段11b,11cの5本の燃焼管14を燃焼する2段燃焼段階、左側と中央の燃焼段11a,11bの7本の燃焼管14を燃焼する3段燃焼段階、全ての燃焼段11a〜11cの10本の燃焼管14を燃焼する4段燃焼段階の4段階に燃焼段階を切り換えて燃焼作動する。中央の燃焼段11bは、給湯運転時には常時燃焼される燃焼部に相当する。 During the hot water supply operation, for example, a one-stage combustion stage in which only the two combustion tubes 14 in the central combustion stage 11b are combusted, and a two-stage combustion stage in which the five combustion tubes 14 in the center and right combustion stages 11b and 11c are combusted. The four-stage combustion stage includes the three-stage combustion stage for burning the seven combustion tubes 14 of the left and center combustion stages 11a and 11b, and the four-stage combustion stage for burning the ten combustion pipes 14 of all the combustion stages 11a to 11c. The combustion operation is performed by switching the combustion stage. The center combustion stage 11b corresponds to a combustion section that is always combusted during a hot water supply operation.
尚、バーナーユニット11は、10本の燃焼管14を備え、3段の燃焼段11a〜11cからなる多段式に構成されているが、特にこの構造に限定する必要はなく、バーナーユニット11の燃焼段の数や各燃焼段の燃焼管の数は、適宜変更可能であり、給湯運転時に常時燃焼される燃焼段も適宜変更可能である。 The burner unit 11 includes ten combustion pipes 14 and is configured in a multistage system including three combustion stages 11a to 11c. However, the burner unit 11 is not particularly limited to this structure. The number of stages and the number of combustion tubes in each combustion stage can be changed as appropriate, and the combustion stage that is always combusted during the hot water supply operation can also be changed as appropriate.
図2,図3に示すように、バーナーユニット11の燃焼段11bの上方の燃焼空間13には、イグナイター15とフレームロッド16とが夫々配置されている。イグナイター15とフレームロッド16は、バーナー缶体12の前側板12a左右方向の中央部の右寄り部分(燃焼段11bに対応する部分)に夫々取り付けられている。フレームロッド16は、イグナイター15の右側に隣接状に取り付けられている。 As shown in FIGS. 2 and 3, an igniter 15 and a frame rod 16 are respectively arranged in the combustion space 13 above the combustion stage 11 b of the burner unit 11. The igniter 15 and the frame rod 16 are respectively attached to the right side portion (portion corresponding to the combustion stage 11b) of the center portion of the front side plate 12a of the burner can body 12 in the left-right direction. The frame rod 16 is attached adjacent to the right side of the igniter 15.
イグナイター15は、バーナーユニット11に設けられた点火ターゲットとの間で点火スパークを生じさせることで、バーナーユニット11から噴出される燃料空気混合気に火炎を生じさせる為のものであり、燃焼空間13に突き出すように且つ斜め下方に向かって延びるように取り付けられている。 The igniter 15 generates an ignition spark with an ignition target provided in the burner unit 11, thereby generating a flame in the fuel-air mixture ejected from the burner unit 11. It is attached so that it may protrude to diagonally downward.
フレームロッド16は、バーナーユニット11に生じた火炎の間に電圧を印加し、火炎のイオン化による導電性や整流作用を利用して、フレームロッド16から火炎へ流れる電流を検知することで、火炎の有無を検出する為のものであり、燃焼空間13に延びるように取り付けられている。 The flame rod 16 applies a voltage between the flames generated in the burner unit 11, and detects the current flowing from the flame rod 16 to the flame using the conductivity and rectification action due to the ionization of the flame. It is for detecting the presence or absence, and is attached so as to extend into the combustion space 13.
図1〜図4に示すように、熱交換部4は、燃焼ガスの熱を回収する熱交換器21と、この熱交換器21を収容する熱交換器缶体22等を備えている。熱交換器缶体22の上端部に、前方に開口した排気口5aを有する排気筒5が設けられている。熱交換器缶体22は、平面視矩形枠状に構成されている。熱交換器缶体22の下端部とバーナー缶体12の上端部とは、カシメやビス締結により接合されている。熱交換器缶体22の周囲に温度ヒューズ23が設けられている(図2,図3参照)。 As shown in FIGS. 1 to 4, the heat exchange unit 4 includes a heat exchanger 21 that recovers the heat of the combustion gas, a heat exchanger can body 22 that accommodates the heat exchanger 21, and the like. An exhaust tube 5 having an exhaust port 5a opened forward is provided at the upper end of the heat exchanger can body 22. The heat exchanger can body 22 is configured in a rectangular frame shape in plan view. The lower end portion of the heat exchanger can body 22 and the upper end portion of the burner can body 12 are joined by caulking or screw fastening. A thermal fuse 23 is provided around the heat exchanger can body 22 (see FIGS. 2 and 3).
熱交換器21は、湯水を流通させる為の伝熱管25と、この伝熱管25に伝熱可能に固定された複数のフィン26等からなるフィンアンドチューブ型熱交換器を構成している。伝熱管25及びフィン26は、銅製のものであるが、特にこの材料に限定する必要はなく、ステンレス製のものであっても良い。 The heat exchanger 21 constitutes a fin-and-tube heat exchanger including a heat transfer tube 25 for circulating hot water and a plurality of fins 26 and the like fixed to the heat transfer tube 25 so that heat can be transferred. The heat transfer tubes 25 and the fins 26 are made of copper, but are not particularly limited to this material, and may be made of stainless steel.
図1,図3に示すように、熱交換器缶体22の内部において、熱交換器21は、排気筒5の下端に連なる上段側(燃焼ガス流の下流側)の上段熱交換領域21Aと、燃焼空間13の上端に連なる下段側(燃焼ガス流の上流側)の下段熱交換領域21Bとを備えた2段構造である。 As shown in FIGS. 1 and 3, in the heat exchanger can body 22, the heat exchanger 21 includes an upper heat exchange region 21 </ b> A connected to the lower end of the exhaust pipe 5 (downstream side of the combustion gas flow) and the upper heat exchange region 21 </ b> A. , A two-stage structure including a lower heat exchange region 21B connected to the upper end of the combustion space 13 (the upstream side of the combustion gas flow).
伝熱管25は、2段に亙って平行状に配置された複数の直管部27と、この複数の直管部27の端部同士を連結する複数の連結管部28とを備えている。上段熱交換領域21Aに4本の直管部27が配設され、下段熱交換領域21Bに4本の直管部27が配設され、上段熱交換領域21A及び下段熱交換領域21Bの夫々において、伝熱管25は平面視蛇行形状に夫々構成されている(図4参照)。 The heat transfer tube 25 includes a plurality of straight tube portions 27 arranged in parallel over two stages, and a plurality of connection tube portions 28 that connect ends of the plurality of straight tube portions 27. . Four straight pipe portions 27 are disposed in the upper heat exchange region 21A, and four straight tube portions 27 are disposed in the lower heat exchange region 21B. In each of the upper heat exchange region 21A and the lower heat exchange region 21B, The heat transfer tubes 25 are each configured in a meandering shape in plan view (see FIG. 4).
入水管6aの下流側端部が、下段熱交換領域21Bの上流側(後側)の直管部27aに接続され、下段熱交換領域21Bの下流側(前側)の直管部27bが、上段熱交換領域21Aの上流側(前側)の直管部27cに連結管部28を介して接続され、上段熱交換領域21Aの下流側(後側)の直管部27dが、出湯管6bの上流側端部に接続されている。 The downstream end of the inlet pipe 6a is connected to the upstream (rear) straight pipe portion 27a of the lower heat exchange area 21B, and the downstream (front) straight pipe section 27b of the lower heat exchange area 21B is connected to the upper stage. The straight pipe portion 27c on the upstream side (front side) of the heat exchange region 21A is connected via the connecting pipe portion 28, and the straight pipe portion 27d on the downstream side (rear side) of the upper heat exchange region 21A is located upstream of the outlet pipe 6b. Connected to the side edge.
次に、本発明に関連する乱流発生部材30,31について説明する。
図4〜図6に示すように、熱交換部4は、伝熱管25の内部に装着され且つ流通する湯水に対して乱流の発生を促進させる為の複数の乱流発生部材30,31を備えている。上段熱交換領域21Aにおける複数の直管部27に複数の乱流発生部材30が装着され、下段熱交換領域21Bにおける複数の直管部27に複数の乱流発生部材31が装着されている。複数の乱流発生部材30,31は、直管部27の内周面に接するように夫々装着されている。
Next, the turbulent flow generating members 30 and 31 related to the present invention will be described.
As shown in FIGS. 4 to 6, the heat exchanging unit 4 includes a plurality of turbulent flow generating members 30, 31 that are attached to the inside of the heat transfer tube 25 and promote the generation of turbulent flow with respect to the flowing hot water. I have. A plurality of turbulent flow generating members 30 are attached to the plurality of straight pipe portions 27 in the upper heat exchange region 21A, and a plurality of turbulent flow generating members 31 are attached to the plurality of straight pipe portions 27 in the lower heat exchange region 21B. The plurality of turbulent flow generating members 30 and 31 are mounted so as to be in contact with the inner peripheral surface of the straight pipe portion 27.
乱流発生部材30と乱流発生部材31は、同じ形状の乱流コイルである。乱流発生部材30,31の全長は、直管部27の全長と同程度の長さに夫々設定されている。乱流発生部材30,31のコイル径は、14〜16mm程度に夫々設定されているが、特にこのサイズに限定する必要はなく、直管部27の内径に応じて適宜変更可能である。 The turbulent flow generating member 30 and the turbulent flow generating member 31 are turbulent coils having the same shape. The total length of the turbulent flow generating members 30 and 31 is set to be approximately the same as the total length of the straight pipe portion 27. The coil diameters of the turbulent flow generating members 30 and 31 are respectively set to about 14 to 16 mm, but are not particularly limited to this size, and can be appropriately changed according to the inner diameter of the straight pipe portion 27.
このように、伝熱管25の全ての直管部27には、乱流発生部材30,31が夫々装着されているので、乱流発生部材30,31の撹拌作用によって、複数の直管部27の各々の水流を意図的に乱して乱流を促進し、複数の直管部27の各々の壁面近傍部の熱を拡散させて温度の均一化を図ることで局部沸騰を極力防止することができる。 As described above, since the turbulent flow generating members 30 and 31 are attached to all the straight pipe portions 27 of the heat transfer tubes 25, a plurality of straight pipe portions 27 are caused by the stirring action of the turbulent flow generating members 30 and 31. By intentionally disturbing each water flow, the turbulent flow is promoted, and the heat in the vicinity of the wall surface of each of the plurality of straight pipe portions 27 is diffused to make the temperature uniform, thereby preventing local boiling as much as possible. Can do.
次に、乱流発生部材30,31の材料について説明する。
上段熱交換領域21Aにおける複数の乱流発生部材30は、直管部27の内径と等しい外径を有するコイル状のステンレス製の線材から夫々形成されているが、特に材料をステンレスに限定する必要はなく、適宜変更可能である。一方、下段熱交換領域21Bにおける複数の乱流発生部材31は、複数の材料から一体的に夫々形成されている。
Next, materials for the turbulent flow generation members 30 and 31 will be described.
The plurality of turbulent flow generating members 30 in the upper heat exchange region 21A are each formed from a coil-shaped stainless steel wire having an outer diameter equal to the inner diameter of the straight pipe portion 27, but it is particularly necessary to limit the material to stainless steel. There is no change and can be changed as appropriate. On the other hand, the plurality of turbulent flow generating members 31 in the lower heat exchange region 21B are integrally formed from a plurality of materials, respectively.
即ち、各乱流発生部材31は、中心部の右側寄り部分を構成する形状記憶合金製の部材32と、その左右両側部分を構成するステンレス製の部材33,34から形成されている。ステンレス製の部材33,34は、直管部27の内径と等しい外径を有するコイル状の線材から夫々形成されている。ステンレス製の部材33,34は、特に材料をステンレスに限定する必要はなく、適宜変更可能である。尚、形状記憶合金製の部材32の左右両端部は、ステンレス製の部材33,34の端部に夫々溶接接合されている。 That is, each turbulent flow generating member 31 is formed of a shape memory alloy member 32 constituting the right side portion of the center portion and stainless steel members 33 and 34 constituting the left and right side portions thereof. The stainless steel members 33 and 34 are each formed from a coiled wire having an outer diameter equal to the inner diameter of the straight pipe portion 27. The members 33 and 34 made of stainless steel are not particularly limited to stainless steel, and can be appropriately changed. The left and right ends of the shape memory alloy member 32 are welded to the end portions of the stainless members 33 and 34, respectively.
次に、本発明に関連する形状記憶合金製の部材32について説明する。
図4〜図6に示すように、形状記憶合金製の部材32は、乱流発生部材31の一部を構成するものであり、直管部27の内径と等しい外径を有するコイル状の線材から形成されている。形状記憶合金製の部材32は、伝熱管25の内部において燃焼時には常時燃焼する燃焼部(中央の燃焼段11b)の直上に配置されている。即ち、形状記憶合金製の部材32は、下段熱交換領域21Bの複数の直管部27における燃焼段11bの直上に位置する通路部27eに夫々装着されている。
Next, the shape memory alloy member 32 related to the present invention will be described.
As shown in FIGS. 4 to 6, the shape memory alloy member 32 constitutes a part of the turbulent flow generating member 31 and has a coil-shaped wire having an outer diameter equal to the inner diameter of the straight pipe portion 27. Formed from. The shape memory alloy member 32 is disposed directly above the combustion portion (the central combustion stage 11 b) that always burns during combustion inside the heat transfer tube 25. That is, the shape memory alloy members 32 are respectively attached to the passage portions 27e located immediately above the combustion stage 11b in the plurality of straight pipe portions 27 in the lower heat exchange region 21B.
形状記憶合金製の部材32は、熱交換部4の温度変化によって伝熱管25内の湯水の流れ方向に伸縮するものである。本実施例の形状記憶合金製の部材32は、温水温度が所定温度(例えば60℃)よりも高温領域において形状復元するものが好ましい。つまり、本実施例の形状記憶合金製の部材32は、湯水温度が所定温度以上において伸長状態にて形状記憶処理が施されたものである。 The shape memory alloy member 32 expands and contracts in the flowing direction of the hot water in the heat transfer tube 25 due to the temperature change of the heat exchange section 4. The shape memory alloy member 32 of this embodiment is preferably one whose shape is restored in a region where the hot water temperature is higher than a predetermined temperature (for example, 60 ° C.). That is, the shape memory alloy member 32 of the present embodiment is subjected to shape memory processing in an expanded state when the hot water temperature is equal to or higher than a predetermined temperature.
具体的に、形状記憶合金製の部材32は、給湯運転時に、湯水温度が上昇して所定温度(例えば60℃)以上になると、図6に示すように、元の記憶した形状(伸長状態)に戻り、給湯停止時に、湯水温度が低下してくると、図5に示すように、形状記憶が解除された形状(収縮状態)になる。形状記憶合金製の部材32は、バーナーユニット11の燃焼段11bの左右幅に対応するように乱流発生部材31の全長の約15〜30%程度の長さに設定されている。形状記憶合金製の部材32は、給湯運転時に湯水温度が所定温度以上になると、伸長動作することで例えば10%程度長くなる。 Specifically, when the hot water temperature rises to a predetermined temperature (for example, 60 ° C.) or higher during the hot water supply operation, the shape memory alloy member 32 has an original memorized shape (extended state) as shown in FIG. Returning to FIG. 5, when the hot water temperature decreases when hot water supply is stopped, as shown in FIG. 5, the shape is released from the shape memory (contracted state). The shape memory alloy member 32 is set to a length of about 15 to 30% of the total length of the turbulent flow generation member 31 so as to correspond to the left and right width of the combustion stage 11 b of the burner unit 11. The shape memory alloy member 32 is elongated by, for example, about 10% when the hot water temperature becomes a predetermined temperature or higher during the hot water supply operation.
形状記憶合金製の部材32の材料としては、Ti系合金(Ti−Ni合金、Ti−Ni−Cu合金等)、鉄系形状記憶合金、亜鉛系形状記憶合金等を選択可能であり、これらの材料の中でも、Ti系合金(特にTi−Ni−Cu合金)であることが望ましいが、特に限定する必要はなく、要求される変態温度や耐久性等に応じて、材料や元素比率は適宜変更可能である。 As a material of the member 32 made of a shape memory alloy, a Ti-based alloy (Ti-Ni alloy, Ti-Ni-Cu alloy, etc.), an iron-based shape memory alloy, a zinc-based shape memory alloy, or the like can be selected. Among the materials, Ti-based alloys (especially Ti-Ni-Cu alloys) are desirable, but there is no need to specifically limit them, and materials and element ratios are appropriately changed according to the required transformation temperature, durability, etc. Is possible.
次に、本発明の給湯装置1の作用及び効果について説明する。
給湯運転時には、バーナーユニット11に燃料供給管から燃料ガスが供給されると共に送風ファン2から燃焼用空気が供給され、燃料ガスが空気と混合され燃焼され、この火炎の燃焼熱(燃焼ガス)で熱交換器21内の水を加熱し、その後、排気は排気筒5を介して排気口から外部に排出される。
Next, the operation and effect of the hot water supply apparatus 1 of the present invention will be described.
During the hot water supply operation, fuel gas is supplied to the burner unit 11 from the fuel supply pipe and combustion air is supplied from the blower fan 2. The fuel gas is mixed with the air and burned, and the combustion heat (combustion gas) of the flame The water in the heat exchanger 21 is heated, and then the exhaust is discharged to the outside through the exhaust tube 5 from the exhaust port.
一方、熱交換器21においては、外部の上水源から入水管6aに水が供給されると、この水は、先ず、熱交換器21の下段熱交換領域21Bの伝熱管25を流れ、次に、熱交換器21の上段熱交換領域21Aの伝熱管25を流れ、上述のように熱交換器21にて水は加熱されて高温水となり、出湯管6bから外部に出湯される。 On the other hand, in the heat exchanger 21, when water is supplied to the water intake pipe 6a from an external water source, this water first flows through the heat transfer pipe 25 in the lower heat exchange region 21B of the heat exchanger 21, and then. The heat exchanger 21 flows through the heat transfer pipe 25 in the upper heat exchange region 21A, and as described above, water is heated in the heat exchanger 21 to become high-temperature water, and is discharged from the hot water discharge pipe 6b to the outside.
ところで、給湯運転時には、上述したように、燃焼部3のバーナーユニット11を、要求熱量に応じて4段階に燃焼段階を調整して燃焼作動するが、バーナーユニット11の中央の燃焼段11bの2本の燃焼管14は、最低燃焼量で燃焼作動可能であり、給湯運転時には常時燃焼されることになる。 By the way, during the hot water supply operation, as described above, the burner unit 11 of the combustion unit 3 is operated for combustion by adjusting the combustion stage in four stages according to the required amount of heat. The combustion tube 14 can be burned with the minimum amount of combustion, and is always burned during the hot water supply operation.
このため、下段熱交換領域21Bにおける複数の直管部27の燃焼段11bの直上に位置する通路部27eは、燃焼段11bの2本の燃焼管14の火炎に常時炙られることになるので、通路部27eを流れる湯水温度は他の通路部と比較して高くなりやすく、局部沸騰が発生する可能性が高く、他の通路部と比較してスケールが堆積しやすい傾向がある。 For this reason, since the passage part 27e located immediately above the combustion stage 11b of the plurality of straight pipe parts 27 in the lower heat exchange region 21B is constantly burned by the flames of the two combustion pipes 14 of the combustion stage 11b, The temperature of hot and cold water flowing through the passage portion 27e is likely to be higher than that of other passage portions, local boiling is likely to occur, and there is a tendency that scale is likely to accumulate as compared with other passage portions.
そこで、乱流発生部材31のうち上記の局部沸騰の可能性がある直管部27の通路部27eに装着される部分を形状記憶合金製の部材32で構成して、湯水温度の上昇時に、形状記憶合金製の部材32を伸長させ、湯水温度の低下時に、形状記憶合金製の部材32を収縮させることで、通路部27eに付着したスケールを除去可能となる。また、この形状記憶合金製の部材32の伸縮動作を介して、乱流発生部材31の全長を伸縮動作させることで、直管部27の全長に亙ってスケールを除去可能となる。 Therefore, a portion of the turbulent flow generating member 31 that is attached to the passage portion 27e of the straight pipe portion 27 that has the possibility of local boiling is constituted by a shape memory alloy member 32, and when the hot water temperature rises, By extending the shape memory alloy member 32 and contracting the shape memory alloy member 32 when the hot water temperature decreases, the scale attached to the passage portion 27e can be removed. In addition, the scale can be removed over the entire length of the straight pipe portion 27 by expanding and contracting the entire length of the turbulent flow generating member 31 through the expanding and contracting operation of the member 32 made of shape memory alloy.
以上説明したように、乱流発生部材31の一部は、熱交換部4の温度変化によって伝熱管25内の湯水の流れ方向に伸縮する形状記憶合金製の部材32で構成されているので、給湯加熱時と給湯停止時とに亙る温度変化によって形状記憶合金製の部材32が自動的に伸縮することで、伝熱管25の内部に付着したスケールを簡単に除去してスケールの堆積を防止することができる。 As described above, a part of the turbulent flow generating member 31 is configured by the shape memory alloy member 32 that expands and contracts in the flowing direction of the hot water in the heat transfer tube 25 due to the temperature change of the heat exchange unit 4. The shape memory alloy member 32 automatically expands and contracts due to temperature changes during hot water supply heating and when hot water supply is stopped, thereby easily removing the scale attached to the inside of the heat transfer tube 25 and preventing scale accumulation. be able to.
従って、給湯装置1にスケール除去の為の専用部材を追加的に設けずとも、既存の乱流発生部材31の一部の材料を形状記憶合金製の部材32に変更することで、湯水の乱流促進と共にスケール除去を実現できるので、低コストで且つ簡単な構造でもって、熱交換効率の低下を防止すると共に、スケール除去の為の定期的なメンテナンスの頻度を低減することができ、メンテナンスコストを低減することができる。 Therefore, even if a dedicated member for removing the scale is not additionally provided in the hot water supply device 1, the turbulent flow of the hot water is changed by changing a part of the material of the existing turbulent flow generating member 31 to the member 32 made of shape memory alloy. Since the scale removal can be realized with the flow promotion, the low cost and simple structure can prevent the heat exchange efficiency from decreasing and the frequency of regular maintenance for the scale removal can be reduced. Can be reduced.
また、形状記憶合金製の部材32は、伝熱管25の内径と等しい外径を有するコイル状の線材からなるので、コイル状の線材が伝熱管25の内壁部に沿って伸縮することで、伝熱管25の内壁部に付着したスケールを確実に除去することができる。 Further, since the shape memory alloy member 32 is made of a coiled wire having an outer diameter equal to the inner diameter of the heat transfer tube 25, the coiled wire expands and contracts along the inner wall portion of the heat transfer tube 25. The scale adhering to the inner wall portion of the heat tube 25 can be reliably removed.
さらに、形状記憶合金製の部材32は、伝熱管25の内部において燃焼時には常時燃焼する燃焼部(中央の燃焼段11b)の直上に配置されるので、伝熱管25のスケール詰まりが発生する可能性が高い箇所のスケールを除去することで、スケール詰まりの発生を極力防止することができる。 Furthermore, since the shape memory alloy member 32 is disposed directly above the combustion section (the central combustion stage 11b) that always burns during combustion inside the heat transfer tube 25, there is a possibility that scale clogging of the heat transfer tube 25 may occur. By removing the scale at a high point, scale clogging can be prevented as much as possible.
次に、前記実施例を部分的に変更した形態について説明する。
[1]前記実施例において、乱流発生部材31の一部を形状記憶合金製の部材32で構成しているが、特に一部に限定する必要はなく、乱流発生部材31の全部を伝熱管25の直管部27内の湯水の流れ方向に伸縮する形状記憶合金製の部材で構成しても良い。
Next, a mode in which the above embodiment is partially changed will be described.
[1] In the above-described embodiment, a part of the turbulent flow generating member 31 is configured by the shape memory alloy member 32. You may comprise with the member made from a shape memory alloy which expands-contracts in the flow direction of the hot water in the straight pipe part 27 of the heat pipe 25. FIG.
[2]前記実施例において、形状記憶合金製の部材32が一部を構成する乱流発生部材31を下段熱交換領域21Bの複数の直管部27にのみ夫々装着しているが、特にこの構造に限定する必要はなく、上段熱交換領域21Aの複数の直管部27に対しても同様に、乱流発生部材30に代えて乱流発生部材31を夫々装着しても良い。また、上段熱交換領域21Aの複数の乱流発生部材30を省略しても良い。 [2] In the above-described embodiment, the turbulent flow generating member 31 which is partly formed by the shape memory alloy member 32 is attached only to the plurality of straight pipe portions 27 in the lower heat exchange region 21B. It is not necessary to limit to the structure, and similarly, the turbulent flow generating members 31 may be attached to the plurality of straight pipe portions 27 in the upper heat exchange region 21 </ b> A instead of the turbulent flow generating members 30. Further, the plurality of turbulent flow generating members 30 in the upper heat exchange region 21A may be omitted.
[3]前記実施例において、形状記憶合金製の部材32を燃焼時には常時燃焼する燃焼部の直上に配置しているが、特にこの位置に限定する必要はなく、形状記憶合金製の部材32を直管部27の左右両端部のうちの何れか一方の端部に配置しても良いし、スケールが堆積する可能性がある他の通路部に配置しても良く、適宜変更可能である。 [3] In the above-described embodiment, the shape memory alloy member 32 is disposed immediately above the combustion portion that always burns during combustion. However, the shape memory alloy member 32 need not be limited to this position. It may be arranged at either one of the left and right end portions of the straight pipe portion 27, or may be arranged in another passage portion where the scale may be deposited, and can be changed as appropriate.
[4]前記実施例において、形状記憶合金製の部材32は、湯水温度が上昇すると伸長し、湯水温度が低下すると収縮するが、特にこの変形に限定する必要はない。即ち、図7に示すように、乱流発生部材31Aの一部を、湯水温度が上昇すると収縮し、湯水温度が低下すると伸長する形状記憶合金製の部材32Aで構成しても良い。形状記憶合金製の部材32Aは、給湯運転時に湯水温度が所定温度(例えば60℃)以上になると、収縮動作することで例えば10%程度短くなる。 [4] In the above-described embodiment, the shape memory alloy member 32 expands when the hot water temperature rises and contracts when the hot water temperature decreases, but it is not particularly limited to this deformation. That is, as shown in FIG. 7, a part of the turbulent flow generating member 31A may be constituted by a shape memory alloy member 32A that contracts when the hot water temperature rises and expands when the hot water temperature decreases. The shape memory alloy member 32A is shortened by, for example, about 10% when the hot water temperature becomes a predetermined temperature (for example, 60 ° C.) or more during the hot water supply operation by performing a contraction operation.
[5]前記実施例の乱流発生部材31は、一体品で構成されているが、特にこの構造に限定する必要はなく、別体に構成されても良い。即ち、図8,図9に示すように、乱流発生部材31Bの一部を、前記実施例と同様の形状記憶合金製の部材32Bで構成し、この形状記憶合金製の部材32Bを挟んだ左右両側部分を、帯状のステンレス材に所定の間隔ごとに交互に切り起こし形成された複数の切起し片35を有するステンレス製の部材33B,34B(バッフル板)で構成しても良い。 [5] The turbulent flow generating member 31 of the above-described embodiment is configured as an integral part, but is not particularly limited to this structure, and may be configured separately. That is, as shown in FIGS. 8 and 9, a part of the turbulent flow generating member 31B is constituted by a member 32B made of a shape memory alloy similar to that of the above-described embodiment, and the member 32B made of the shape memory alloy is sandwiched. The left and right side portions may be formed of stainless steel members 33B and 34B (baffle plates) having a plurality of cut and raised pieces 35 formed by cutting and raising the belt-like stainless steel material alternately at predetermined intervals.
[6]前記実施例の形状記憶合金製の部材32は、コイル状の線材からなるが、特にこの構造に限定する必要はなく、図10に示すように、乱流発生部材31Cを、直線状の線材からなる形状記憶合金製の部材32Cと、この形状記憶合金製の部材32Cが固定されたステンレス製の乱流コイル36とから構成しても良い。形状記憶合金製の部材32Cは、乱流発生部材31Cの一部を構成している。形状記憶合金製の部材32Cが温度変化によって伸縮することで乱流コイル36も伸縮されて乱流発生部材31Cの全長が伸縮する。 [6] The shape memory alloy member 32 of the above embodiment is made of a coiled wire, but is not particularly limited to this structure. As shown in FIG. A shape memory alloy member 32C made of the above-mentioned wire rod and a stainless steel turbulent coil 36 to which the shape memory alloy member 32C is fixed may be used. The shape memory alloy member 32C constitutes a part of the turbulent flow generation member 31C. When the shape memory alloy member 32C expands and contracts due to a temperature change, the turbulent coil 36 also expands and contracts, and the entire length of the turbulent flow generating member 31C expands and contracts.
[7]前記実施例の形状記憶合金製の部材32は、同一方向に巻いたコイル状に構成されているが、特にこの構造に限定する必要はなく、図11に示すように、乱流発生部材31Dの全部又は一部を、所定の間隔置きにC形形状の湾曲部を互い違いに形成した1本の線材からなる形状記憶合金製の部材32Dで構成しても良い。 [7] The shape memory alloy member 32 of the above embodiment is formed in a coil shape wound in the same direction, but it is not particularly limited to this structure. As shown in FIG. All or part of the member 31D may be configured by a shape memory alloy member 32D made of a single wire in which C-shaped curved portions are alternately formed at predetermined intervals.
[8]その他、当業者であれば、本発明の趣旨を逸脱することなく、前記実施例に種々の変更を付加した形態で実施可能であり、本発明はそのような変更形態を包含するものである。 [8] In addition, those skilled in the art can implement the present invention by adding various modifications without departing from the spirit of the present invention, and the present invention includes such modifications. It is.
1 給湯装置
3 燃焼部
4 熱交換部
25 伝熱管
31,31A〜31D 乱流発生部材
32,32A〜32D 形状記憶合金製の部材
DESCRIPTION OF SYMBOLS 1 Hot-water supply apparatus 3 Combustion part 4 Heat exchange part 25 Heat-transfer tube 31, 31A-31D Turbulent flow generation member 32, 32A-32D Shape memory alloy member
Claims (3)
前記乱流発生部材の全部又は一部は、前記熱交換部の温度変化によって前記伝熱管内の湯水の流れ方向に伸縮する形状記憶合金製の部材で構成されていることを特徴とする給湯装置。 A hot water supply apparatus for heating hot water supplied to a heat exchanging section with combustion gas generated in a combustion section, wherein the heat exchanging section is attached to a heat transfer pipe for circulating hot water and an inside of the heat transfer pipe, and In a hot water supply apparatus provided with a turbulent flow generating member for promoting the generation of turbulent flow with respect to circulating hot water,
All or a part of the turbulent flow generating member is formed of a shape memory alloy member that expands and contracts in the flowing direction of the hot water in the heat transfer tube due to a temperature change of the heat exchange section. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014260321A JP2016121817A (en) | 2014-12-24 | 2014-12-24 | Water heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014260321A JP2016121817A (en) | 2014-12-24 | 2014-12-24 | Water heater |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016121817A true JP2016121817A (en) | 2016-07-07 |
Family
ID=56328321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014260321A Pending JP2016121817A (en) | 2014-12-24 | 2014-12-24 | Water heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016121817A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106091356A (en) * | 2016-07-28 | 2016-11-09 | 芜湖美的厨卫电器制造有限公司 | Gas heater |
CN109028592A (en) * | 2018-07-18 | 2018-12-18 | 浙江萨弘科技有限公司 | A kind of full premixed condensed burnt gas wall hanging furnace that can remove scale |
CN112097545A (en) * | 2020-07-28 | 2020-12-18 | 厦门大学 | Intelligent thin-channel heat exchanger with built-in memory alloy spring |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0311595Y2 (en) * | 1986-08-29 | 1991-03-20 | ||
JPH03122451A (en) * | 1989-10-04 | 1991-05-24 | Matsushita Electric Ind Co Ltd | Heat exchanger |
JPH08185961A (en) * | 1994-12-28 | 1996-07-16 | Nippon Dennetsu Co Ltd | Liquid heating system |
JPH11257166A (en) * | 1998-03-17 | 1999-09-21 | Nissan Diesel Motor Co Ltd | Exhaust gas recirculation system |
JP2006266514A (en) * | 2005-03-22 | 2006-10-05 | Matsushita Electric Ind Co Ltd | Heat exchanger |
JP2011137622A (en) * | 2010-01-04 | 2011-07-14 | Hitachi Appliances Inc | Heat pump water heater |
-
2014
- 2014-12-24 JP JP2014260321A patent/JP2016121817A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0311595Y2 (en) * | 1986-08-29 | 1991-03-20 | ||
JPH03122451A (en) * | 1989-10-04 | 1991-05-24 | Matsushita Electric Ind Co Ltd | Heat exchanger |
JPH08185961A (en) * | 1994-12-28 | 1996-07-16 | Nippon Dennetsu Co Ltd | Liquid heating system |
JPH11257166A (en) * | 1998-03-17 | 1999-09-21 | Nissan Diesel Motor Co Ltd | Exhaust gas recirculation system |
JP2006266514A (en) * | 2005-03-22 | 2006-10-05 | Matsushita Electric Ind Co Ltd | Heat exchanger |
JP2011137622A (en) * | 2010-01-04 | 2011-07-14 | Hitachi Appliances Inc | Heat pump water heater |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106091356A (en) * | 2016-07-28 | 2016-11-09 | 芜湖美的厨卫电器制造有限公司 | Gas heater |
CN109028592A (en) * | 2018-07-18 | 2018-12-18 | 浙江萨弘科技有限公司 | A kind of full premixed condensed burnt gas wall hanging furnace that can remove scale |
CN112097545A (en) * | 2020-07-28 | 2020-12-18 | 厦门大学 | Intelligent thin-channel heat exchanger with built-in memory alloy spring |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7044123B2 (en) | Highly efficient heat exchanger and combustion chamber assembly for boilers and heated air generators | |
JP6085967B2 (en) | Heat exchanger and water heater provided with the same | |
JP6398325B2 (en) | Water heater | |
CN106796050B (en) | Heat exchanger | |
JP2016121817A (en) | Water heater | |
CN112303911B (en) | Gas combustion equipment | |
JP6598003B2 (en) | Water heater | |
JP2013029256A (en) | Water heater | |
JP2015224804A (en) | Heat exchanger | |
JP2005321172A (en) | Instantaneous heating device and hot water supply device | |
JP2011242086A (en) | High heat-conductive radiant tube | |
EP3002527A1 (en) | Heat exchanger and gas water heating appliance using the same | |
JP2022147205A (en) | Water heater, computer-implemented method for controlling water heater, and program for causing computer to execute the method | |
JP2017101848A (en) | Heat exchanger and water heater | |
JP4492266B2 (en) | Structure of heat exchanger for hot water | |
JP4172411B2 (en) | Structure of heat exchanger for hot water | |
JP6151146B2 (en) | Heat exchanger in water heater, and water heater | |
EP1975533A2 (en) | Heat exchanger and condensing boiler incorporating a heat exchanger | |
ES2340757B1 (en) | INSTANT WATER HEATER BY ELECTROMAGNETIC INDUCTION. | |
JP2012122706A (en) | Single end type radiant tube burner | |
JP2013242086A (en) | Heat source machine | |
CN201935383U (en) | High-efficiency hot blast stove | |
JP7077078B2 (en) | Water heater and latent heat exchanger | |
JPH1068596A (en) | Heat exchanger for water and aqueous solutions | |
Mihăescu et al. | Constructive layout of a multifunction 400 kW boiler for wooden and agricultural biomass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171120 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180803 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180903 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20190301 |