JP2017022882A - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
JP2017022882A
JP2017022882A JP2015138678A JP2015138678A JP2017022882A JP 2017022882 A JP2017022882 A JP 2017022882A JP 2015138678 A JP2015138678 A JP 2015138678A JP 2015138678 A JP2015138678 A JP 2015138678A JP 2017022882 A JP2017022882 A JP 2017022882A
Authority
JP
Japan
Prior art keywords
voltage
phase
vector
medium
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015138678A
Other languages
Japanese (ja)
Inventor
大森 洋一
Yoichi Omori
洋一 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Energy Support Corp
Original Assignee
Toyo Electric Manufacturing Ltd
Energy Support Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd, Energy Support Corp filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2015138678A priority Critical patent/JP2017022882A/en
Publication of JP2017022882A publication Critical patent/JP2017022882A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To obtain a compact power conversion device at low cost with a reduced harmonic.SOLUTION: A high voltage inverter group, a middle voltage inverter group and a three-phase full-bridge inverter constitute a main circuit. A controller is provided to generate a control signal of the high voltage inverter group, the middle voltage inverter group and the three-phase full-bridge inverter so that an average composite voltage vector in a predetermined period among a high voltage vector, which is the output voltage vector of the high voltage inverter group, a middle voltage vector, which is the output voltage vector of the middle voltage inverter group, and a low voltage vector, which is the output voltage vector of the three-phase full-bridge inverter becomes a command voltage vector.SELECTED DRAWING: Figure 1

Description

本発明は、高圧の電力変換装置であって、その中でも無効電力補償装置に関するものである。   The present invention relates to a high-voltage power converter, and more particularly to a reactive power compensator.

従来の無効電力補償装置としては、特許文献1に記載されているものがあり、その主回路は図2に示された構成をしている。それは、U相高圧直流電圧源13でU相出力端子を持つU相高圧単相フルブリッジインバータ10とV相高圧直流電圧源14でV相出力端子を持つV相高圧単相フルブリッジインバータ11とW相高圧直流電圧源15でW相出力端子を持つW相高圧単相フルブリッジインバータ12から成る高圧インバータ群19と、U相中圧直流電圧源23でU相出力端子を持つU相中圧単相フルブリッジインバータ20とV相中圧直流電圧源24でV相出力端子を持つV相中圧単相フルブリッジインバータ21とW相中圧直流電圧源25でW相出力端子を持つW相中圧単相フルブリッジインバータ22から成る中圧インバータ群29と、U相低圧直流電圧源33でU相出力端子を持つU相低圧単相フルブリッジインバータ30とV相低圧直流電圧源34でV相出力端子を持つV相低圧単相フルブリッジインバータ31とW相低圧直流電圧源35でW相出力端子を持つW相低圧単相フルブリッジインバータ32から成る低圧インバータ群39とで構成されており、各電圧源13〜15、23〜25、33〜35はコンデンサである。各相のフルブリッジインバータ(U相は10、20、30、 V相は11、21、31、W相は12、22、32)の出力はそれぞれ直列に接続され、その一方は各相どうしが短絡され、他方はリアクトル40〜42を介して系統に接続されている。   As a conventional reactive power compensator, there is one disclosed in Patent Document 1, and its main circuit has the configuration shown in FIG. The U-phase high-voltage DC voltage source 13 has a U-phase high-voltage single-phase full-bridge inverter 10 having a U-phase output terminal, and the V-phase high-voltage DC voltage source 14 has a V-phase high-voltage single-phase full-bridge inverter 11 having a V-phase output terminal. A high-voltage inverter group 19 composed of a W-phase high-voltage single-phase full-bridge inverter 12 having a W-phase output terminal in a W-phase high-voltage DC voltage source 15, and a U-phase intermediate pressure having a U-phase output terminal in a U-phase medium-voltage DC voltage source 23 Single phase full bridge inverter 20 and V phase medium voltage DC voltage source 24 have V phase output terminal V phase medium voltage single phase full bridge inverter 21 and W phase medium voltage DC voltage source 25 have W phase output terminal W phase A medium-voltage inverter group 29 composed of medium-pressure single-phase full-bridge inverters 22, a U-phase low-voltage single-phase full-bridge inverter 30 having a U-phase output terminal and a V-phase low-voltage DC voltage source 34. It consists of a V-phase low-voltage single-phase full-bridge inverter 31 having a phase output terminal and a low-voltage inverter group 39 including a W-phase low-voltage single-phase full-bridge inverter 32 having a W-phase output terminal with a W-phase low-voltage DC voltage source 35. The voltage sources 13 to 15, 23 to 25, and 33 to 35 are capacitors. The output of each phase full bridge inverter (U phase is 10, 20, 30; V phase is 11, 21, 31; W phase is 12, 22, 32) is connected in series. The other is short-circuited and the other is connected to the system via reactors 40-42.

U相高圧直流電圧源13とV相高圧直流電圧源14とW相高圧直流電圧源15の電圧を共通のVHとし、U相中圧直流電圧源23とV相中圧直流電圧源24とW相中圧直流電圧源25の電圧を共通のVMとし、U相低圧直流電圧源33とV相低圧直流電圧源34とW相低圧直流電圧源35の電圧を共通のVLとすると、特許文献1においては   The U-phase high-voltage DC voltage source 13, the V-phase high-voltage DC voltage source 14, and the W-phase high-voltage DC voltage source 15 are set to a common VH, and the U-phase medium-voltage DC voltage source 23, the V-phase medium-voltage DC voltage source 24, and W When the voltage of the phase intermediate voltage DC voltage source 25 is a common VM and the voltages of the U phase low voltage DC voltage source 33, the V phase low voltage DC voltage source 34, and the W phase low voltage DC voltage source 35 are a common VL, Patent Document 1 In

VM≦2・VL 式1
VH≦3・VM 式2
VM ≦ 2 · VL Formula 1
VH ≦ 3 ・ VM Formula 2

の関係とすることで、出力電圧Vu、Vv、Vwを正弦波状の指令に追従させることができるとしている。例えば、系統電圧実効値が変動分を考慮して6.6kVの1.1倍の7.26kVの場合では、相電圧の最大値が系統電圧実効値の2/3の平方根倍の5.928kVとなるので、式1と式2を満たす最小電圧を求めると、VL=0.659kV、VM=1.318kV、VH=3.952kVとなる。 With this relationship, the output voltages Vu, Vv, and Vw can be made to follow a sinusoidal command. For example, when the system voltage effective value is 7.26 kV which is 1.1 times 6.6 kV in consideration of fluctuations, the maximum value of the phase voltage is 5.928 kV which is 2/3 times the square root of the system voltage effective value. Therefore, when the minimum voltage satisfying Expressions 1 and 2 is obtained, VL = 0.659 kV, VM = 1.318 kV, and VH = 3.952 kV.

このようにすることで、各相の出力電圧の階段状波形の1ステップの電圧幅を低電圧のVLとすることができ、高圧インバータ群19や中圧インバータ群29のスイッチング周波数を最低限に低くした状態で低圧インバータ群39のスイッチング周波数を上げるだけでリアクトルに印加される電圧の高調波成分の波高値を低く周波数を高くできるので、リアクトルに流れる電流の高調波成分を小さくすることができる。   By doing in this way, the voltage width of one step of the stepped waveform of the output voltage of each phase can be set to the low voltage VL, and the switching frequency of the high voltage inverter group 19 and the intermediate voltage inverter group 29 is minimized. Since the peak value of the harmonic component of the voltage applied to the reactor can be lowered and the frequency can be increased simply by increasing the switching frequency of the low-voltage inverter group 39 in the lowered state, the harmonic component of the current flowing through the reactor can be reduced. .

特開2012−175848号公報JP 2012-175848 A

変換器の出力最大電圧が決まれば、式1と式2の条件で自動的に各直流電圧源の電圧が決まるので、低圧直流電圧源の電圧を低くできない。よって、リアクトル40〜42に流れる電流の高調波成分を小さくするには、スイッチング周波数を上げるかリアクトル値を上げる必要があり、効率低下やコストアップや体積・重量アップとなる。   If the maximum output voltage of the converter is determined, the voltage of each DC voltage source is automatically determined under the conditions of Equations 1 and 2, so the voltage of the low-voltage DC voltage source cannot be lowered. Therefore, in order to reduce the harmonic component of the current flowing through the reactors 40 to 42, it is necessary to increase the switching frequency or the reactor value, resulting in a reduction in efficiency, an increase in cost, and an increase in volume and weight.

同様な理由で、各直流電圧源の電圧が決まるので、適用するスイッチング素子の耐圧が一義的に決定されるため、スイッチング素子の選択による装置の小型化や低コスト化ができなくなる。   For the same reason, since the voltage of each DC voltage source is determined, the withstand voltage of the switching element to be applied is uniquely determined. Therefore, it becomes impossible to reduce the size and cost of the apparatus by selecting the switching element.

1つの相当たり6つのスイッチング素子に電流が流れるので、効率が悪い。   Since current flows through six switching elements per phase, the efficiency is poor.

本発明は、上記問題点を解決するために、請求項1に係る発明では、図2の構成の低圧インバータ群39の代わりに低圧直流電圧源の3相フルブリッジインバータを接続した構成としている。   In order to solve the above problems, the present invention has a configuration in which a three-phase full-bridge inverter of a low-voltage DC voltage source is connected in place of the low-voltage inverter group 39 having the configuration of FIG.

また請求項2に係る発明では、前記高圧インバータ群の出力電圧ベクトルである高圧電圧ベクトルと前記中圧インバータ群の出力電圧ベクトルである中圧電圧ベクトルと前記3相フルブリッジインバータの出力電圧ベクトルである低圧電圧ベクトルとの所定期間の平均合成電圧ベクトルが指令電圧ベクトルとなるように、前記高圧インバータ群と前記中圧インバータ群と前記3相フルブリッジインバータの制御信号を生成する制御器を備えている。   In the invention according to claim 2, the high voltage vector that is the output voltage vector of the high voltage inverter group, the medium voltage vector that is the output voltage vector of the medium voltage inverter group, and the output voltage vector of the three-phase full-bridge inverter. A controller that generates control signals for the high-voltage inverter group, the intermediate-voltage inverter group, and the three-phase full-bridge inverter so that an average combined voltage vector with a certain low-voltage voltage vector for a predetermined period becomes a command voltage vector; Yes.

また請求項3に係る発明では、図2と同じ構成において、前記高圧インバータ群の出力電圧ベクトルである高圧電圧ベクトルと前記中圧インバータ群の出力電圧ベクトルである中圧電圧ベクトルと前記低圧インバータ群の出力電圧ベクトルである低圧電圧ベクトルとの所定期間の平均合成電圧ベクトルが指令電圧ベクトルとなるように、前記高圧インバータ群と前記中圧インバータ群と前記低圧インバータ群の制御信号を生成する制御器を備えている。   In the invention according to claim 3, in the same configuration as in FIG. 2, a high voltage vector that is an output voltage vector of the high voltage inverter group, an intermediate voltage vector that is an output voltage vector of the medium voltage inverter group, and the low voltage inverter group A controller that generates control signals for the high-voltage inverter group, the intermediate-voltage inverter group, and the low-voltage inverter group so that an average combined voltage vector for a predetermined period with a low-voltage voltage vector that is an output voltage vector of the output voltage vector becomes a command voltage vector It has.

また請求項4に係る発明では、請求項1や2の電力変換装置において、前記U相高圧直流電圧源と前記V相高圧直流電圧源と前記W相高圧直流電圧源の電圧を共通のVHとし、前記U相中圧直流電圧源と前記V相中圧直流電圧源と前記W相中圧直流電圧源の電圧を共通のVMとし、前記低圧直流電圧源の電圧をVLとした場合に、   In the invention according to claim 4, in the power converter of claim 1 or 2, the voltages of the U-phase high-voltage DC voltage source, the V-phase high-voltage DC voltage source, and the W-phase high-voltage DC voltage source are set to a common VH. When the voltage of the U-phase medium voltage DC voltage source, the V phase medium voltage DC voltage source, and the W phase medium voltage DC voltage source is a common VM, and the voltage of the low voltage DC voltage source is VL,

VM≦1.5・VL 式3
VH≦3・VM+1.5・VL 式4
VM ≦ 1.5 ・ VL Formula 3
VH ≦ 3 ・ VM + 1.5 ・ VL Formula 4

とすることを特徴とする。 It is characterized by.

また請求項5に係る発明では、請求項3の電力変換装置において、前記U相高圧直流電圧源と前記V相高圧直流電圧源と前記W相高圧直流電圧源の電圧を共通のVHとし、前記U相中圧直流電圧源と前記V相中圧直流電圧源と前記W相中圧直流電圧源の電圧を共通のVMとし、前記U相低圧直流電圧源と前記V相低圧直流電圧源と前記W相低圧直流電圧源の電圧を共通のVLとした場合に、   According to a fifth aspect of the present invention, in the power conversion device of the third aspect, the voltages of the U-phase high-voltage DC voltage source, the V-phase high-voltage DC voltage source, and the W-phase high-voltage DC voltage source are set to a common VH, The U-phase medium-voltage DC voltage source, the V-phase medium-voltage DC voltage source, and the W-phase medium-voltage DC voltage source are set to a common VM, and the U-phase low-voltage DC voltage source, the V-phase low-voltage DC voltage source, and the When the voltage of the W-phase low-voltage DC voltage source is a common VL,

VM=VL 式5
VH≦6・VL 式6
VM = VL Formula 5
VH ≦ 6 ・ VL Formula 6

とすることを特徴とする。 It is characterized by.

また請求項6に係る発明では、請求項3の電力変換装置において、前記U相高圧直流電圧源と前記V相高圧直流電圧源と前記W相高圧直流電圧源の電圧を共通のVHとし、前記U相中圧直流電圧源と前記V相中圧直流電圧源と前記W相中圧直流電圧源の電圧を共通のVMとし、前記U相低圧直流電圧源と前記V相低圧直流電圧源と前記W相低圧直流電圧源の電圧を共通のVLとした場合に、   Further, in the invention according to claim 6, in the power conversion device according to claim 3, the voltages of the U-phase high-voltage DC voltage source, the V-phase high-voltage DC voltage source, and the W-phase high-voltage DC voltage source are set to a common VH, The U-phase medium-voltage DC voltage source, the V-phase medium-voltage DC voltage source, and the W-phase medium-voltage DC voltage source are set to a common VM, and the U-phase low-voltage DC voltage source, the V-phase low-voltage DC voltage source, and the When the voltage of the W-phase low-voltage DC voltage source is a common VL,

VM≦3・VL 式7
VH≦3・(VM+VL) 式8
VM ≦ 3 · VL Equation 7
VH ≦ 3 · (VM + VL) Equation 8

とすることを特徴とする。 It is characterized by.

また請求項7に係る発明では、請求項2の電力変換装置の制御器において、19種類の高圧電圧ベクトルの中から前記指令電圧ベクトルに最も近いものを選択してそれをVHSとして前記高圧インバータ群が前記VHSを出力するようにし、前記VHSと前記指令電圧ベクトルとの差である中電圧差ベクトルを求め、19種類の中圧電圧ベクトルの中から前記中電圧差ベクトルに最も近いものを選択してそれをVMSとして前記中圧インバータ群が前記VMSを出力するようにし、前記VMSと前記中電圧差ベクトルとの差である低電圧差ベクトルを求め、前記3相フルブリッジインバータ出力の所定期間内の平均電圧ベクトルが前記低電圧差ベクトルとなるようにすることを特徴とする。   In the invention according to claim 7, in the controller of the power conversion device according to claim 2, the one closest to the command voltage vector is selected from 19 types of high voltage vectors and is set as VHS as the high voltage inverter group. Outputs the VHS, obtains an intermediate voltage difference vector which is a difference between the VHS and the command voltage vector, and selects a medium voltage vector closest to the intermediate voltage difference vector from 19 kinds of intermediate voltage vectors. The medium voltage inverter group outputs the VMS as VMS, obtains a low voltage difference vector which is a difference between the VMS and the medium voltage difference vector, and within a predetermined period of the output of the three-phase full bridge inverter. The average voltage vector is set to the low voltage difference vector.

また請求項8に係る発明では、請求項5の条件の請求項3の電力変換装置の制御器において、19種類の高圧電圧ベクトルの中から前記指令電圧ベクトルに最も近いものを選択してそれをVHSとして前記高圧インバータ群が前記VHSを出力するようにし、前記VHSと前記指令電圧ベクトルとの差である中電圧差ベクトルを求め、前記中圧インバータ群出力の所定期間内の平均電圧ベクトルや前記低圧インバータ群出力の所定期間内の平均電圧ベクトルが前記中電圧差ベクトルの半分となるようにすることを特徴とする。   In the invention according to claim 8, in the controller of the power conversion device according to claim 3 under the condition of claim 5, the one closest to the command voltage vector is selected from 19 kinds of high voltage vectors and is used. The high voltage inverter group outputs the VHS as VHS, an intermediate voltage difference vector which is a difference between the VHS and the command voltage vector is obtained, an average voltage vector of the intermediate voltage inverter group output within a predetermined period, An average voltage vector within a predetermined period of the low-voltage inverter group output is set to be half of the medium voltage difference vector.

また請求項9に係る発明では、請求項6の条件の請求項3の電力変換装置の制御器において、19種類の高圧電圧ベクトルの中から前記指令電圧ベクトルに最も近いものを選択してそれをVHSとして前記高圧インバータ群が前記VHSを出力するようにし、前記VHSと前記指令電圧ベクトルとの差である中電圧差ベクトルを求め、19種類の中圧電圧ベクトルの中から前記中電圧差ベクトルに最も近いものを選択してそれをVMSとして前記中圧インバータ群が前記VMSを出力するようにし、前記VMSと前記中電圧差ベクトルとの差である低電圧差ベクトルを求め、前記低圧インバータ群出力の所定期間内の平均電圧ベクトルが前記低電圧差ベクトルとなるようにすることを特徴とする。   In the invention according to claim 9, in the controller of the power conversion device according to claim 3 under the condition of claim 6, the closest one to the command voltage vector is selected from 19 types of high voltage vectors and is used. As the VHS, the high-voltage inverter group outputs the VHS, and obtains an intermediate voltage difference vector which is a difference between the VHS and the command voltage vector, and changes the medium voltage difference vector from 19 types of intermediate voltage vectors. The closest one is selected as VMS so that the medium voltage inverter group outputs the VMS, a low voltage difference vector which is a difference between the VMS and the medium voltage difference vector is obtained, and the low voltage inverter group output The average voltage vector within a predetermined period is set to the low voltage difference vector.

また請求項10に係る発明では、請求項1から9の電力変換装置において、3相交流の電力系統に連系される自励式の無効電力補償装置に適用される際に、前記各相高圧直流電圧源や前記各相中圧直流電圧源や前記各相低圧直流電圧源または前記低圧直流電圧源がそれぞれコンデンサで構成されることを特徴とする。   According to a tenth aspect of the present invention, when the power converter according to any one of the first to ninth aspects is applied to a self-excited reactive power compensator linked to a three-phase AC power system, each phase high-voltage DC The voltage source, each phase medium-voltage DC voltage source, each phase low-voltage DC voltage source, or the low-voltage DC voltage source is constituted by a capacitor, respectively.

また請求項11に係る発明では、請求項10の電力変換器の制御器において、電流指令から求めたU相電流の単位正弦波GUとV相電流の単位正弦波GVとW相電流の単位正弦波GWを求め、前記U相高圧直流電圧源の電圧と高圧電圧指令との差と前記GUとの積からU相高圧誤差補正電圧を求め、前記V相高圧直流電圧源の電圧と前記高圧電圧指令との差と前記GVとの積からV相高圧誤差補正電圧を求め、前記W相高圧直流電圧源の電圧と前記高圧電圧指令との差と前記GWとの積からW相高圧誤差補正電圧を求め、前記U相高圧誤差補正電圧と前記V相高圧誤差補正電圧と前記W相高圧誤差補正電圧から高圧誤差補正電圧ベクトルを求め、19種類の高圧電圧ベクトルの中から前記高圧インバータ群が選択出力する際に前記指令電圧ベクトルの代わりに前記指令電圧ベクトルと前記高圧誤差補正電圧ベクトルの所定ゲイン倍との和のベクトルを用い、また請求項10で請求項7または9の電力変換器の制御器において、前記U相中圧直流電圧源の電圧と中圧電圧指令との差と前記GUとの積からU相中圧誤差補正電圧を求め、前記V相中圧直流電圧源の電圧と前記中圧電圧指令との差と前記GVとの積からV相中圧誤差補正電圧を求め、前記W相中圧直流電圧源の電圧と前記中圧電圧指令との差と前記GWとの積からW相中圧誤差補正電圧を求め、前記U相中圧誤差補正電圧と前記V相中圧誤差補正電圧と前記W相中圧誤差補正電圧から中圧誤差補正電圧ベクトルを求め、19種類の中圧電圧ベクトルの中から前記中圧インバータ群が選択出力する際に前記中電圧差ベクトルの代わりに前記中電圧差ベクトルと前記中圧誤差補正電圧ベクトルの所定ゲイン倍との和のベクトルを用いることを特徴とする。   In the invention according to claim 11, in the controller of the power converter according to claim 10, the unit sine wave GU of the U-phase current, the unit sine wave GV of the V-phase current and the unit sine of the W-phase current obtained from the current command. A wave GW is obtained, a U phase high voltage error correction voltage is obtained from the product of the difference between the voltage of the U phase high voltage DC voltage source and the high voltage command and the GU, and the voltage of the V phase high voltage DC voltage source and the high voltage A V-phase high-voltage error correction voltage is obtained from the product of the difference between the command and the GW, and a W-phase high-voltage error correction voltage is calculated from the product of the difference between the voltage of the W-phase high-voltage DC voltage source and the high-voltage voltage command and the GW. A high-voltage error correction voltage vector is obtained from the U-phase high-voltage error correction voltage, the V-phase high-voltage error correction voltage, and the W-phase high-voltage error correction voltage, and the high-voltage inverter group is selected from 19 types of high-voltage voltage vectors. When outputting the command voltage 10. In the controller of the power converter according to claim 10, the vector of the sum of the command voltage vector and a predetermined gain multiple of the high-voltage error correction voltage vector is used instead of the torque. A U phase intermediate voltage error correction voltage is obtained from the product of the difference between the voltage of the DC voltage source and the medium voltage command and the GU, and the difference between the voltage of the V phase medium voltage DC voltage source and the medium voltage command The V-phase medium pressure error correction voltage is obtained from the product of GW and the GV, and the W-phase medium pressure error correction voltage is calculated from the product of the difference between the voltage of the W-phase medium voltage DC voltage source and the medium voltage command and the GW. An intermediate pressure error correction voltage vector is obtained from the U-phase intermediate pressure error correction voltage, the V-phase intermediate pressure error correction voltage, and the W-phase intermediate pressure error correction voltage. The medium voltage difference vector when the medium voltage inverter group selectively outputs. Characterized by using the vector of the sum of the predetermined gain multiple in said pressure error correction voltage vector and the medium voltage difference vector instead.

請求項1の発明により、1つの相当たりのスイッチング素子数が5つに減るので効率改善となる。また6個のスイッチング素子入りのモジュールが使用できるので装置の小型化や低コスト化となる。   According to the invention of claim 1, the number of switching elements per phase is reduced to five, so that the efficiency is improved. In addition, since a module containing six switching elements can be used, the apparatus can be reduced in size and cost.

請求項2や3の発明で電圧ベクトル処理をすることで、電力変換装置が出力できる電圧範囲が明確となり、それによって請求項4から6に示されるように素子の耐圧に見合った電圧源の電圧を選択できることが分かる。その結果として請求項5では、中圧インバータ群と低圧インバータ群の電圧が同じで低電圧であるため、6個のスイッチング素子入りのモジュールを使うことができ、装置の小型化や低コスト化となる。また請求項6では、低圧インバータ群の電圧をより低くできることから、スイッチング周波数やリアクトル値を上げることなくリアクトル電流の高調波成分を小さくすることができる。   By performing voltage vector processing in the inventions of claims 2 and 3, the voltage range that can be output by the power converter is clarified, whereby the voltage of the voltage source corresponding to the breakdown voltage of the element as shown in claims 4 to 6 is obtained. It can be seen that can be selected. As a result, in claim 5, since the voltages of the medium voltage inverter group and the low voltage inverter group are the same and low voltage, a module containing six switching elements can be used, and the size and cost of the apparatus can be reduced. Become. Further, in claim 6, since the voltage of the low-voltage inverter group can be further lowered, the harmonic component of the reactor current can be reduced without increasing the switching frequency and the reactor value.

請求項7から9の発明により、請求項4から6の構成や電圧において、従来と同様に高圧インバータ群や中圧インバータ群のスイッチング周波数を最低限にすることができるので、それによる効率の低下は発生しない。   According to the inventions of claims 7 to 9, in the configurations and voltages of claims 4 to 6, the switching frequency of the high-voltage inverter group and the intermediate-voltage inverter group can be minimized as in the conventional case, thereby reducing the efficiency. Does not occur.

請求項10と請求項11の発明により、従来と同様に各相直流電圧源をコンデンサにすることができ、そのコンデンサの電圧を所定値に維持できるので、補助電源のような直流電源を接続する必要はない。   According to the tenth and eleventh aspects of the present invention, each phase DC voltage source can be a capacitor as in the prior art, and the voltage of the capacitor can be maintained at a predetermined value. Therefore, a DC power source such as an auxiliary power source is connected. There is no need.

請求項1、2、4、7の電力変換装置を無効電力補償装置に適用した場合の一例の主回路構成図である。It is a main circuit block diagram of an example at the time of applying the power converter device of Claim 1, 2, 4, 7 to a reactive power compensation apparatus. 請求項3、5、6、8、9の電力変換装置を無効電力補償装置に適用した場合の一例の、または従来技術の無効電力補償装置の主回路構成図である。It is a main circuit block diagram of an example at the time of applying the power converter device of Claim 3, 5, 6, 8, 9 to a reactive power compensator, or the reactive power compensator of a prior art. 高圧インバータ群や中圧インバータ群や低圧インバータ群の出力電圧ベクトルである。It is an output voltage vector of a high-voltage inverter group, a medium-voltage inverter group, or a low-voltage inverter group. 高圧電圧ベクトルと中圧電圧ベクトルと低圧電圧ベクトルと合成電圧ベクトルとの関係図例その1である。FIG. 2 is a first example of a relationship diagram among a high voltage vector, an intermediate voltage vector, a low voltage vector, and a combined voltage vector. 高圧電圧ベクトルと中圧電圧ベクトルと低圧電圧ベクトルと合成電圧ベクトルとの関係図例その2である。It is the example 2 of a related figure of a high voltage vector, an intermediate voltage vector, a low voltage vector, and a synthetic voltage vector. 高圧電圧ベクトルと中圧電圧ベクトルと低圧電圧ベクトルと合成電圧ベクトルとの関係図例その3である。FIG. 6 is a third example of a relationship diagram among a high voltage vector, an intermediate voltage vector, a low voltage vector, and a combined voltage vector. 高圧電圧ベクトルと中圧電圧ベクトルと低圧電圧ベクトルと合成電圧ベクトルとの関係図例その4である。FIG. 14 is a fourth example of a relationship diagram among a high voltage vector, an intermediate voltage vector, a low voltage vector, and a combined voltage vector. 高圧電圧ベクトルと中圧電圧ベクトルと低圧電圧ベクトルと合成電圧ベクトルとの関係図例その5である。FIG. 10 is a fifth example of a relationship diagram among a high voltage vector, an intermediate voltage vector, a low voltage vector, and a combined voltage vector. 電力変換装置を無効電力補償装置に適用した場合の制御ブロック図の一例である。It is an example of the control block diagram at the time of applying a power converter device to a reactive power compensator. 請求項7と9の制御器を表すブロック図である。FIG. 10 is a block diagram illustrating a controller according to claims 7 and 9. 請求項8の制御器を表すブロック図である。It is a block diagram showing the controller of Claim 8. 高圧誤差補正電圧ベクトルと中圧誤差補正電圧ベクトルを求めるブロック図である。It is a block diagram which calculates | requires a high voltage error correction voltage vector and a medium voltage error correction voltage vector. 直流電圧源をコンデンサとした請求項7と9での制御器を表すブロック図である。FIG. 10 is a block diagram showing a controller according to claim 7 and 9, wherein the DC voltage source is a capacitor. 直流電圧源をコンデンサとした請求項8での制御器を表すブロック図である。It is a block diagram showing the controller in Claim 8 which used the direct-current voltage source as the capacitor | condenser.

以下において、実施の形態の一例に基づいて詳細に説明する。   Hereinafter, a detailed description will be given based on an example of the embodiment.

請求項1の電力変換装置を無効電力補償装置に適用した場合の主回路構成を図1に示す。U相高圧直流電圧源13でU相出力端子を持つU相高圧単相フルブリッジインバータ10とV相高圧直流電圧源14でV相出力端子を持つV相高圧単相フルブリッジインバータ11とW相高圧直流電圧源15でW相出力端子を持つW相高圧単相フルブリッジインバータ12から成る高圧インバータ群19と、U相中圧直流電圧源23でU相出力端子を持つU相中圧単相フルブリッジインバータ20とV相中圧直流電圧源24でV相出力端子を持つV相中圧単相フルブリッジインバータ21とW相中圧直流電圧源25でW相出力端子を持つW相中圧単相フルブリッジインバータ22から成る中圧インバータ群29と、低圧直流電圧源37の3相フルブリッジインバータ36とで構成され、3相フルブリッジインバータ36のU相端子と中圧インバータ群29のU相出力端子と高圧インバータ群19のU相出力端子が直列に接続され、3相フルブリッジインバータ36のV相端子と中圧インバータ群29のV相出力端子と高圧インバータ群19のV相出力端子が直列に接続され、3相フルブリッジインバータ36のW相端子と中圧インバータ群29のW相出力端子と高圧インバータ群19のW相出力端子が直列に接続されている。   FIG. 1 shows a main circuit configuration when the power conversion device according to claim 1 is applied to a reactive power compensation device. U-phase high-voltage single-phase full-bridge inverter 10 having a U-phase output terminal at U-phase high-voltage DC voltage source 13 and V-phase high-voltage single-phase full-bridge inverter 11 having a V-phase output terminal at V-phase high-voltage DC voltage source 14 and W-phase A high-voltage inverter group 19 comprising a W-phase high-voltage single-phase full-bridge inverter 12 having a W-phase output terminal at a high-voltage DC voltage source 15 and a U-phase medium-voltage single-phase having a U-phase output terminal at a U-phase medium-voltage DC voltage source 23 A full-phase inverter 20 and a V-phase medium-voltage DC voltage source 24 have a V-phase output terminal. A V-phase medium-voltage single-phase full-bridge inverter 21 and a W-phase medium-voltage DC voltage source 25 have a W-phase output terminal. The medium-voltage inverter group 29 composed of the single-phase full-bridge inverter 22 and the three-phase full-bridge inverter 36 of the low-voltage DC voltage source 37 are configured. The U-phase output terminal of the data group 29 and the U-phase output terminal of the high-voltage inverter group 19 are connected in series, the V-phase terminal of the three-phase full-bridge inverter 36, the V-phase output terminal of the intermediate-voltage inverter group 29, and the high-voltage inverter group. 19 V-phase output terminals are connected in series, and a W-phase terminal of the three-phase full-bridge inverter 36, a W-phase output terminal of the medium-voltage inverter group 29, and a W-phase output terminal of the high-voltage inverter group 19 are connected in series. .

高圧インバータ群19の各相出力電圧をそれぞれVuH、VvH、VwHとし、中圧インバータ群29の各相出力電圧をそれぞれVuM、VvM、VwMとし、3相フルブリッジインバータ36の各相出力電圧をそれぞれVuL、VvL、VwLとすると電力変換装置全体の各相出力電圧は、   Each phase output voltage of the high-voltage inverter group 19 is VuH, VvH, VwH, each phase output voltage of the medium-voltage inverter group 29 is VuM, VvM, VwM, respectively, and each phase output voltage of the three-phase full-bridge inverter 36 is respectively Assuming VuL, VvL, and VwL, the output voltage of each phase of the entire power converter is

Vu=VuH+VuM+VuL 式9
Vv=VvH+VvM+VvL 式10
Vw=VwH+VwM+VwL 式11
Vu = VuH + VuM + VuL Equation 9
Vv = VvH + VvM + VvL Equation 10
Vw = VwH + VwM + VwL Equation 11

となる。U相と一致する軸をα軸とし、それと直交する軸をβ軸として、Vu、Vv、Vwをαβ座標軸の電圧ベクトルに変換すると、各成分は It becomes. When the axis that coincides with the U phase is the α axis, the axis orthogonal to it is the β axis, and Vu, Vv, and Vw are converted into voltage vectors of the αβ coordinate axis, each component is

Figure 2017022882
Figure 2017022882

と表せる。ここで It can be expressed. here

Figure 2017022882
Figure 2017022882

なので、VαHとVβHは高圧インバータ群19の出力電圧ベクトルである高圧電圧ベクトルの成分であり、VαMとVβMは中圧インバータ群29の出力電圧ベクトルである中圧電圧ベクトルの成分であり、VαLとVβLは3相フルブリッジインバータ36の出力電圧ベクトルである低圧電圧ベクトルの成分であることは明白である。以上より、電力変換装置全体の出力電圧ベクトルは、高圧電圧ベクトルと中圧電圧ベクトルと低圧電圧ベクトルとの合成で表すことができることがわかる。 Therefore, VαH and VβH are components of a high voltage vector that is an output voltage vector of the high voltage inverter group 19, VαM and VβM are components of an intermediate voltage vector that is an output voltage vector of the medium voltage inverter group 29, and VαL and It is obvious that VβL is a component of the low voltage vector that is the output voltage vector of the three-phase full bridge inverter 36. From the above, it can be seen that the output voltage vector of the entire power conversion device can be expressed by the combination of the high voltage vector, the medium voltage vector, and the low voltage vector.

高圧インバータ群19や中圧インバータ群29の各相出力電圧は、直流電源電圧に−1、0、1のどれかを乗じた値となるので、高圧電圧ベクトルや中圧電圧ベクトルの頂点は、図3に示される19個の黒丸で表される。図示されている()内の数値は、左からU、V、W相の順に各相の出力電圧の極性を表している。   Each phase output voltage of the high-voltage inverter group 19 and the medium-voltage inverter group 29 is a value obtained by multiplying the DC power supply voltage by one of −1, 0, and 1. It is represented by 19 black circles shown in FIG. The numerical values in parentheses shown in the figure represent the polarity of the output voltage of each phase in the order of U, V, and W phases from the left.

図4〜8は、電力変換装置全体の出力電圧ベクトル空間の一部を表したものである。白丸が高圧電圧ベクトルの頂点を表し、破線の6角形の黒点はその中心からの中圧電圧ベクトルの頂点を表し、実線の6角形はその中心からの低圧電圧ベクトルの範囲を表している。3相フルブリッジインバータ36は、PWM制御によって所定時間内の平均値として実線の6角形内の全ての電圧ベクトルを出力可能である。図のように、白丸を中心に中圧電圧ベクトルを描き、その黒点を中心に低圧電圧ベクトルを描くことで、高圧電圧ベクトルと中圧電圧ベクトルと低圧電圧ベクトルとを合成した(加算した)合成電圧ベクトルを表すことができ、それが電力変換装置全体の出力電圧ベクトルとなる。   4 to 8 show a part of the output voltage vector space of the entire power converter. White circles represent the vertices of the high voltage vector, dashed hexagonal black dots represent the vertices of the medium voltage vector from the center, and solid hexagons represent the range of the low voltage vector from the center. The three-phase full-bridge inverter 36 can output all voltage vectors in a solid hexagon as an average value within a predetermined time by PWM control. As shown in the figure, a high voltage vector, a medium voltage vector, and a low voltage vector are combined (added) by drawing a medium voltage vector around a white circle and drawing a low voltage vector around that black dot. A voltage vector can be represented, which becomes the output voltage vector of the entire power converter.

図4〜8の一点鎖線で示された範囲内である高圧電圧ベクトルの空間内を隙間無く合成電圧ベクトルが占めることができるようにする条件は、高圧電圧ベクトルと中圧電圧ベクトルと低圧電圧ベクトルのそれぞれの最大長をVHx、VMx、VLxとすると、以下となる。   The conditions for allowing the combined voltage vector to occupy the space of the high voltage vector within the range indicated by the one-dot chain line in FIGS. 4 to 8 without any gap are the high voltage vector, the medium voltage vector, and the low voltage vector. If the maximum length of each is VHx, VMx, VLx, the following is obtained.

VMx≦3・VLx 式15
VHx≦3・(VMx+VLx) 式16
VMx ≦ 3 · VLx Equation 15
VHx ≦ 3 · (VMx + VLx) Equation 16

次に図4〜8において、電力変換装置が全ての電圧位相で出力可能な最大電圧Vmaxを求める。それは、合成電圧ベクトルの出力可能エリア内の内接円の半径となり、図4〜8において、原点からの星印までの距離で表される。VHx>3VMxかつVHx−3・VMx−2・VLx≧0の場合は図4で表され、Vmaxは式17となる。VHx>3VMxかつVHx−3・VMx−2・VLx<0かつVMx+6・VLx−VHx≧0の場合は図5で表されVmaxは式17と式18の小さい方となる。VHx>3VMxかつVHx−3・VMx−2・VLx<0かつVMx+6・VLx−VHx<0の場合は図6で表されVmaxは式19となる。VHx≦3VMxかつVMx<2・VLxの場合は図7で表されVmaxは式17となり、VHx≦3VMxかつVMx≧2・VLxの場合は図8で表されVmaxは式20となる。   Next, in FIGS. 4-8, the maximum voltage Vmax which a power converter device can output in all the voltage phases is calculated | required. This is the radius of the inscribed circle in the area where the composite voltage vector can be output, and is represented by the distance from the origin to the star in FIGS. When VHx> 3VMx and VHx-3 · VMx−2 · VLx ≧ 0, this is expressed in FIG. When VHx> 3VMx and VHx−3 · VMx−2 · VLx <0 and VMx + 6 · VLx−VHx ≧ 0, Vmax is the smaller of Equations 17 and 18. When VHx> 3VMx and VHx−3 · VMx−2 · VLx <0 and VMx + 6 · VLx−VHx <0, Vmax is expressed by Equation 19. When VHx ≦ 3VMx and VMx <2 · VLx, Vmax is expressed by Expression 17, and when VHx ≦ 3VMx and VMx ≧ 2 · VLx, Vmax is expressed by Expression 20 and Vmax is expressed by Expression 20.

Figure 2017022882
Figure 2017022882

また図1の主回路構成において、高圧インバータ群19の各相の直流電圧源の電圧を共通のVHとし、中圧インバータ群29の各相の直流電圧源の電圧を共通のVMとし、3相フルブリッジインバータ36の直流電圧源37の電圧をVLとすると、VHx、VMx、VLxとの関係は式21と式22で表される。式15と式16に式21と式22を代入すると、式3と式4が得られる。   In the main circuit configuration of FIG. 1, the voltage of the DC voltage source of each phase of the high-voltage inverter group 19 is common VH, the voltage of the DC voltage source of each phase of the medium-voltage inverter group 29 is common VM, and three phases When the voltage of the DC voltage source 37 of the full bridge inverter 36 is VL, the relationship between VHx, VMx, and VLx is expressed by Expression 21 and Expression 22. When Expression 21 and Expression 22 are substituted into Expression 15 and Expression 16, Expression 3 and Expression 4 are obtained.

式15や式16が等号で表される場合のベクトル関係図は図4となり、Vmaxは式17で得られる。そのVmaxを例えば、系統電圧実効値が変動分を考慮して6.6kVの1.1倍の7.26kVとすると、等号の式15と式16と式17よりVHx、VMx、VLxが求められ、式21と式22よりVH=4.271kV、VM=1.068kV、VL=0.712kVとなる。よって3相フルブリッジインバータ36として広く市場に出回っている耐圧1200Vの6つ素子入りのモジュールを使うことが可能となり、電力変換装置の小型化と低コスト化を図ることができる。また図2に示される従来の構成と比較すると相当りのスイッチング素子数が6個から5個に減ることから素子の導通損失を減らすことができ効率向上にもなる。   FIG. 4 shows a vector relationship diagram when Expression 15 or Expression 16 is expressed by an equal sign, and Vmax is obtained by Expression 17. For example, when the effective value of the system voltage is 7.26 kV which is 1.1 times 6.6 kV in consideration of the fluctuation, VHx, VMx, and VLx are obtained from Equations 15, 16 and 17 of the equal sign. From Equations 21 and 22, VH = 4.271 kV, VM = 1.068 kV, and VL = 0.712 kV. Therefore, it is possible to use a module with six elements having a withstand voltage of 1200 V that is widely available on the market as the three-phase full-bridge inverter 36, and the power converter can be reduced in size and cost. Compared with the conventional configuration shown in FIG. 2, the number of switching elements is reduced from 6 to 5, so that the conduction loss of the elements can be reduced and the efficiency is improved.

図10は、図1の電力変換装置において、指令電圧ベクトル(Vαr,Vβr)相当の出力電圧を得るための制御器について示している。高圧インバータ群19の直流電源電圧指令VHrでの19種類の電圧ベクトルの中から指令電圧ベクトル(Vαr,Vβr)に最も近い電圧ベクトルを高圧ベクトル選択器70で選択してそれをVHSとして出力する。つまり、選択された電圧ベクトル相当のスイッチング信号を出力することなる。次に、VHSと指令電圧ベクトルとの差である中電圧差ベクトル(VαMr,VβMr)を求め、中圧インバータ群29の直流電源電圧指令VMrでの19種類の電圧ベクトルの中から中電圧差ベクトル(VαMr,VβMr)に最も近いものを中圧ベクトル選択器71で選択してそれをVMSとして出力する。つまり、選択された電圧ベクトル相当のスイッチング信号を出力することなる。最後に、VMSと中電圧差ベクトル(VαMr,VβMr)との差である低電圧差ベクトル(VαLr,VβLr)を求め、3相フルブリッジインバータ36をPWM制御することにより所定期間内の平均出力電圧ベクトルが低電圧差ベクトル(VαLr,VβLr)となるようなスイッチング信号を低圧3相ブリッジPWM生成器73より出力する。具体的な手段例としては、低電圧差ベクトル(VαLr,VβLr)を3相成分に展開して三角波キャリアと比較することでスイッチング信号を得ることができる。   FIG. 10 shows a controller for obtaining an output voltage corresponding to the command voltage vector (Vαr, Vβr) in the power conversion device of FIG. A voltage vector closest to the command voltage vector (Vαr, Vβr) is selected from the 19 types of voltage vectors in the DC power supply voltage command VHr of the high-voltage inverter group 19 and is output as VHS. That is, a switching signal corresponding to the selected voltage vector is output. Next, an intermediate voltage difference vector (VαMr, VβMr) that is a difference between VHS and the command voltage vector is obtained, and an intermediate voltage difference vector is selected from 19 types of voltage vectors in the DC power supply voltage command VMr of the medium voltage inverter group 29. The medium pressure vector selector 71 selects the one closest to (VαMr, VβMr) and outputs it as VMS. That is, a switching signal corresponding to the selected voltage vector is output. Finally, a low voltage difference vector (VαLr, VβLr) that is a difference between VMS and a medium voltage difference vector (VαMr, VβMr) is obtained, and an average output voltage within a predetermined period is obtained by PWM control of the three-phase full bridge inverter 36. A switching signal such that the vector becomes a low voltage difference vector (VαLr, VβLr) is output from the low voltage three-phase bridge PWM generator 73. As a specific means example, a switching signal can be obtained by expanding low voltage difference vectors (VαLr, VβLr) into three-phase components and comparing them with triangular wave carriers.

図1のように電力変換装置を無効電力補償装置に適用する場合は、装置から定常的に有効電力を出力する必要がないことから、図1の全ての直流電源をコンデンサで構成することができる。また無効電力補償装置の制御ブロック図の一例を図9に示す。系統電圧検出器58で検出されたαβ座標軸の系統電圧(Vsα,Vsβ)は座標変換器59により有効電圧Vsdと無効電圧Vsqに変換される。PLL60は無効電圧が0となるように電圧位相θを求める。無効電力指生成器51出力の無効電力指令Qrを有効電圧Vsdで除することにより無効電流指令Iqrが得られる。有効電流指令IdrはVdc制御器61において、例えば3相フルブリッジインバータ36の直流電圧源の電圧の指令VLrとの誤差を増幅して得られる。電流検出器56で検出されたαβ座標軸のリアクトル40〜42に流れる電流(Iα,Iβ)は、θで57により座標変換されて有効電流Idと無効電流Iqとなる。それらはそれらの指令に追従するように電流制御器53により電圧指令VdrとVqrが得られる。それらの電圧指令は、座標変換器54でαβ座標軸の電圧指令Vαr、Vβrに変換される。制御器55は、前述したように所定期間内の電力変換装置の出力電圧が電圧指令Vαr、Vβr通りとなるような電力変換装置のスイッチング信号を出力する。   When the power conversion device is applied to the reactive power compensation device as shown in FIG. 1, it is not necessary to constantly output active power from the device, so that all the DC power sources in FIG. 1 can be configured with capacitors. . An example of a control block diagram of the reactive power compensator is shown in FIG. The system voltage (Vsα, Vsβ) of the αβ coordinate axis detected by the system voltage detector 58 is converted into an effective voltage Vsd and an invalid voltage Vsq by the coordinate converter 59. The PLL 60 determines the voltage phase θ so that the reactive voltage becomes zero. The reactive current command Iqr is obtained by dividing the reactive power command Qr output from the reactive power finger generator 51 by the effective voltage Vsd. The effective current command Idr is obtained in the Vdc controller 61 by amplifying an error from the voltage command VLr of the DC voltage source of the three-phase full bridge inverter 36, for example. The currents (Iα, Iβ) flowing through the reactors 40 to 42 of the αβ coordinate axes detected by the current detector 56 are converted into coordinates by 57 by θ to become effective current Id and reactive current Iq. The voltage commands Vdr and Vqr are obtained by the current controller 53 so that they follow the commands. Those voltage commands are converted into voltage commands Vαr and Vβr of the αβ coordinate axis by the coordinate converter 54. As described above, the controller 55 outputs the switching signal of the power converter such that the output voltage of the power converter within the predetermined period becomes the voltage commands Vαr and Vβr.

図1の全ての直流電源をコンデンサで構成した場合は、各コンデンサの電圧が所定値に維持できるように制御しなければならない。図10で示した制御器ではそれができないので、図13の制御器を用いる。高圧インバータ群19の直流電源電圧指令VHrでの19種類の電圧ベクトルの中から指令電圧ベクトル(Vαr,Vβr)と高圧誤差補正電圧ベクトル(ΔVHα,ΔVHβ)との和に最も近い電圧ベクトルを高圧ベクトル選択器70で選択してそれをVHSとして出力する。つまり、選択された電圧ベクトル相当のスイッチング信号を出力することなる。この高圧誤差補正電圧ベクトル(ΔVHα,ΔVHβ)は、図12のブロック図で求めることができる。有効電流指令Idrと無効電流指令Iqrと電圧位相θとからリアクトル40〜42を流れる相電流を表す波高値1の各相の単位正弦波であるGU、GV、GWを単位正弦波発生器80で求める。これは電流指令からではなく検出した電流から求めても良い。U相高圧直流電圧源13の電圧と高圧電圧指令VHrとの差と前記GUとの積からU相高圧誤差補正電圧を求め、V相高圧直流電圧源14の電圧とVHrとの差と前記GVとの積からV相高圧誤差補正電圧を求め、W相高圧直流電圧源15の電圧とVHrとの差と前記GWとの積からW相高圧誤差補正電圧を求め、前記U相高圧誤差補正電圧と前記V相高圧誤差補正電圧と前記W相高圧誤差補正電圧から3相2相変換器81でαβ軸の成分にし、83で所定ゲインのKH倍することで高圧誤差補正電圧ベクトル(ΔVHα,ΔVHβ)を得ることができる。この高圧誤差補正電圧ベクトルによる補正を加えることで、高圧インバータ群のスイッチングのタイミングをずらして高圧インバータ群の各相の直流電圧源のコンデンサ電圧を高圧電圧指令VHrに近づけることができる。例えば、U相のコンデンサ電圧が不足している場合にU相単相フルブリッジインバータの出力はU相電流が正のときは正の方向に、電流が負のときは負の方向に増加させれば不足電圧を小さくすることができる。しかし、電流が0付近ではほとんど不足電圧を小さくすることはできないのでU相単相フルブリッジインバータの出力を補正しても意味が無い。よってU相高圧誤差補正電圧は、U相のコンデンサ電圧の指令電圧との偏差を補正するためのU相単相フルブリッジインバータの出力補正量を表していることになる。V相やW相も同様であり、各相の高圧誤差補正電圧を3相2相変換された高圧誤差補正電圧ベクトル(ΔVHα,ΔVHβ)で指令電圧ベクトルを補正することで、各相のコンデンサ電圧を高圧電圧指令VHrに近づけることができる。   When all the DC power sources in FIG. 1 are configured with capacitors, control must be performed so that the voltage of each capacitor can be maintained at a predetermined value. Since the controller shown in FIG. 10 cannot do this, the controller shown in FIG. 13 is used. The voltage vector closest to the sum of the command voltage vector (Vαr, Vβr) and the high voltage error correction voltage vector (ΔVHα, ΔVHβ) is selected from the 19 types of voltage vectors in the DC power supply voltage command VHr of the high voltage inverter group 19. It selects with the selector 70 and outputs it as VHS. That is, a switching signal corresponding to the selected voltage vector is output. The high voltage error correction voltage vectors (ΔVHα, ΔVHβ) can be obtained from the block diagram of FIG. GU, GV, and GW, which are unit sine waves of each phase having a peak value 1 representing the phase current flowing through the reactors 40 to 42 from the active current command Idr, the reactive current command Iqr, and the voltage phase θ, are generated by the unit sine wave generator 80. Ask. This may be obtained from the detected current instead of from the current command. A U-phase high-voltage error correction voltage is obtained from the product of the difference between the voltage of the U-phase high-voltage DC voltage source 13 and the high-voltage voltage command VHr and the GU, and the difference between the voltage of the V-phase high-voltage DC voltage source 14 and VHr and the GV The V-phase high-voltage error correction voltage is obtained from the product of the GW and the W-phase high-voltage error correction voltage is obtained from the product of the difference between the voltage of the W-phase high-voltage DC voltage source 15 and VHr and the GW. The V-phase high-voltage error correction voltage and the W-phase high-voltage error correction voltage are converted into αβ-axis components by a three-phase two-phase converter 81 and multiplied by KH of a predetermined gain at 83 to obtain high-voltage error correction voltage vectors (ΔVHα, ΔVHβ). ) Can be obtained. By applying the correction by the high voltage error correction voltage vector, the switching timing of the high voltage inverter group can be shifted and the capacitor voltage of the DC voltage source of each phase of the high voltage inverter group can be brought close to the high voltage command VHr. For example, when the U-phase capacitor voltage is insufficient, the output of the U-phase single-phase full-bridge inverter is increased in the positive direction when the U-phase current is positive, and in the negative direction when the current is negative. Undervoltage can be reduced. However, it is almost meaningless to correct the output of the U-phase single-phase full-bridge inverter because the undervoltage can hardly be reduced when the current is near 0. Therefore, the U-phase high-voltage error correction voltage represents the output correction amount of the U-phase single-phase full-bridge inverter for correcting the deviation of the U-phase capacitor voltage from the command voltage. The same applies to the V phase and the W phase. By correcting the command voltage vector with the high voltage error correction voltage vector (ΔVHα, ΔVHβ) obtained by converting the high voltage error correction voltage of each phase into three phases and two phases, the capacitor voltage of each phase is corrected. Can be made close to the high voltage command VHr.

同様に図13において、中圧インバータ群29の直流電源電圧指令VMrでの19種類の電圧ベクトルの中から中電圧差ベクトル(VαMr,VβMr)と中圧誤差補正電圧ベクトル(ΔVMα,ΔVMβ)との和に最も近い電圧ベクトルを中圧ベクトル選択器71で選択してそれをVMSとして出力する。つまり、選択された電圧ベクトル相当のスイッチング信号を出力することなる。この中圧誤差補正電圧ベクトル(ΔVMα,ΔVMβ)は、高圧誤差補正電圧ベクトルと同様に図12のブロック図で求めることができる。U相中圧直流電圧源23の電圧と中圧電圧指令VMrとの差と前記GUとの積からU相中圧誤差補正電圧を求め、V相中圧直流電圧源24の電圧とVMrとの差と前記GVとの積からV相中圧誤差補正電圧を求め、W相中圧直流電圧源25の電圧とVMrとの差と前記GWとの積からW相中圧誤差補正電圧を求め、前記U相中圧誤差補正電圧と前記V相中圧誤差補正電圧と前記W相中圧誤差補正電圧から3相2相変換器82でαβ軸の成分にし、84で所定ゲインのKM倍することで中圧誤差補正電圧ベクトル(ΔVMα,ΔVMβ)を得ることができる。この中圧誤差補正電圧ベクトルによる補正を加えることで、中圧インバータ群のスイッチングのタイミングをずらして中圧インバータ群の各相の直流電圧源の電圧を中圧電圧指令VMrに近づけることができる。   Similarly, in FIG. 13, an intermediate voltage difference vector (VαMr, VβMr) and an intermediate voltage error correction voltage vector (ΔVMα, ΔVMβ) are selected from 19 types of voltage vectors in the DC power supply voltage command VMr of the intermediate voltage inverter group 29. The voltage vector closest to the sum is selected by the medium pressure vector selector 71 and is output as VMS. That is, a switching signal corresponding to the selected voltage vector is output. The intermediate pressure error correction voltage vectors (ΔVMα, ΔVMβ) can be obtained from the block diagram of FIG. 12 in the same manner as the high voltage error correction voltage vector. A U-phase intermediate voltage error correction voltage is obtained from the product of the difference between the voltage of the U-phase intermediate voltage DC voltage source 23 and the intermediate voltage command VMr and the GU, and the voltage of the V-phase intermediate voltage DC voltage source 24 and VMr are obtained. A V-phase intermediate pressure error correction voltage is obtained from the product of the difference and the GW, and a W-phase intermediate pressure error correction voltage is obtained from the product of the difference between the voltage of the W-phase intermediate voltage DC voltage source 25 and VMr and the GW. The U-phase intermediate pressure error correction voltage, the V-phase intermediate pressure error correction voltage, and the W-phase intermediate pressure error correction voltage are converted into αβ-axis components by a three-phase two-phase converter 82, and a predetermined gain is multiplied by KM at 84. The intermediate pressure error correction voltage vector (ΔVMα, ΔVMβ) can be obtained. By applying the correction based on the intermediate voltage error correction voltage vector, the voltage of the DC voltage source of each phase of the intermediate voltage inverter group can be made closer to the intermediate voltage command VMr by shifting the switching timing of the intermediate voltage inverter group.

請求項5の電力変換装置を無効電力補償装置に適用した場合の主回路構成を図2に示す。これは従来技術と同じ図なので説明を省略する。高圧インバータ群19の各相の直流電圧源の電圧を共通のVHとし、中圧インバータ群29の各相の直流電圧源の電圧を共通のVMとし、低圧インバータ群39の各相の直流電圧源の電圧を共通のVLとすると、VHx、VMx、VLxとの関係は式21と式23で表される。よってVHとVMとVLの関係を式5と式6としても式15と式16を満たすことができるので、高圧インバータ群19の出力電圧ベクトルである高圧電圧ベクトルと中圧インバータ群29の出力電圧ベクトルである中圧電圧ベクトルと低圧インバータ群39の出力電圧ベクトルである低圧電圧ベクトルとの所定期間の平均合成電圧ベクトルは、図4〜8の一点鎖線で示された範囲内である高圧電圧ベクトルの空間内を隙間無く占めることができる。   FIG. 2 shows a main circuit configuration when the power conversion device according to claim 5 is applied to the reactive power compensation device. Since this is the same diagram as the prior art, description thereof is omitted. The DC voltage source of each phase of the high voltage inverter group 19 is set to a common VH, the DC voltage source of each phase of the medium voltage inverter group 29 is set to a common VM, and the DC voltage source of each phase of the low voltage inverter group 39 is set. Assuming that the common voltage is VL, the relationship between VHx, VMx, and VLx is expressed by Expression 21 and Expression 23. Therefore, even if the relationship between VH, VM, and VL is expressed as Equations 5 and 6, Equations 15 and 16 can be satisfied, so that the high voltage vector that is the output voltage vector of the high voltage inverter group 19 and the output voltage of the medium voltage inverter group 29 are satisfied. The average composite voltage vector of the medium voltage vector that is a vector and the low voltage vector that is the output voltage vector of the low voltage inverter group 39 in a predetermined period is a high voltage vector that is within the range indicated by the one-dot chain line in FIGS. Can occupy the space without any gaps.

Figure 2017022882
Figure 2017022882

式5や式6で表される場合のベクトル関係図も図4となり、Vmaxは式17で得られる。そのVmaxを例えば、7.26kVとすると、VH=4.271kV、VM=0.712kV、VL=0.712kVとなる。よって中圧インバータ群29や低圧インバータ群39のスイッチング素子として広く市場に出回っている耐圧1200Vの6つ素子入りのモジュールを使うことが可能となり、電力変換装置の小型化と低コスト化を図ることができる。なおその際にモジュール内の2つのスイッチング素子は使わないことになる。   The vector relationship diagram in the case of being expressed by Equation 5 or Equation 6 is also shown in FIG. 4, and Vmax is obtained by Equation 17. For example, when the Vmax is 7.26 kV, VH = 4.271 kV, VM = 0.712 kV, and VL = 0.712 kV. Therefore, it is possible to use modules with six elements with a withstand voltage of 1200 V that are widely available on the market as switching elements for the medium-voltage inverter group 29 and the low-voltage inverter group 39, and to reduce the size and cost of the power converter. Can do. At that time, the two switching elements in the module are not used.

図11は、式5と式6を満たした図2の電力変換装置において、指令電圧ベクトル(Vαr,Vβr)相当の出力電圧を得るための制御器について示している。高圧インバータ群19の直流電源電圧指令VHrでの19種類の電圧ベクトルの中から指令電圧ベクトル(Vαr,Vβr)に最も近い電圧ベクトルを高圧ベクトル選択器70で選択してそれをVHSとして出力する。つまり、選択された電圧ベクトル相当のスイッチング信号を出力することなる。次に、VHSと指令電圧ベクトルとの差の半分を中電圧差ベクトル(VαMr,VβMr)や低電圧差ベクトル(VαLr,VβLr)とする。中圧インバータ群29や低圧インバータ群39をPWM制御することにより、各インバータ群の所定期間内の平均出力電圧ベクトルがそれぞれの指令である(VαMr,VβMr)や(VαLr,VβLr)に一致するようなスイッチング信号をそれぞれのPWM制御器74と75より出力する。   FIG. 11 shows a controller for obtaining an output voltage corresponding to the command voltage vector (Vαr, Vβr) in the power conversion device of FIG. 2 satisfying Equations 5 and 6. A voltage vector closest to the command voltage vector (Vαr, Vβr) is selected from the 19 types of voltage vectors in the DC power supply voltage command VHr of the high-voltage inverter group 19 and is output as VHS. That is, a switching signal corresponding to the selected voltage vector is output. Next, half of the difference between VHS and the command voltage vector is set as a medium voltage difference vector (VαMr, VβMr) and a low voltage difference vector (VαLr, VβLr). By PWM control of the medium voltage inverter group 29 and the low voltage inverter group 39, the average output voltage vector of each inverter group within a predetermined period is made to coincide with the respective commands (VαMr, VβMr) and (VαLr, VβLr). Switching signals are output from the PWM controllers 74 and 75, respectively.

式5と式6を満たした図2の全ての直流電源をコンデンサで構成した場合は、各コンデンサの電圧が所定値に維持できるように制御しなければならない。図11で示した制御器ではそれができないので、図14の制御器を用いる。高圧インバータ群19の直流電源電圧指令VHrでの19種類の電圧ベクトルの中から指令電圧ベクトル(Vαr,Vβr)と高圧誤差補正電圧ベクトル(ΔVHα,ΔVHβ)との和に最も近い電圧ベクトルを高圧ベクトル選択器70で選択してそれをVHSとして出力する。つまり、選択された電圧ベクトル相当のスイッチング信号を出力することなる。この高圧誤差補正電圧ベクトル(ΔVHα,ΔVHβ)は、図12のブロック図で求めることができる。この高圧誤差補正電圧ベクトルによる補正を加えることで、高圧インバータ群のスイッチングのタイミングをずらして高圧インバータ群の各相の直流電圧源の電圧を高圧電圧指令VHrに近づけることができる。次に、VHSと指令電圧ベクトルとの差の半分を中電圧差ベクトル(VαMr,VβMr)や低電圧差ベクトル(VαLr,VβLr)とする。中圧インバータ群29や低圧インバータ群39をPWM制御することにより、各インバータ群の所定期間内の平均出力電圧ベクトルがそれぞれの指令である(VαMr,VβMr)や(VαLr,VβLr)に一致するようなスイッチング信号をそれぞれのPWM制御器74と75より出力する。その際に、中圧インバータ群29や低圧インバータ群39の直流電圧源であるコンデンサの電圧を制御するための工夫は必要である。例えば、中電圧差ベクトル(VαMr,VβMr)を3相のキャリア比較値に変換して三角波キャリアとの比較でPWM制御のスイッチング信号を得るならば、前記の3相のキャリア比較値変換の際に必要な零相電位を、各相コンデンサの誤差電圧と図12で得られた電流に依存した単位正弦波との各相同士の積の総和としてもよい。   When all of the DC power sources shown in FIG. 2 satisfying Expressions 5 and 6 are composed of capacitors, the voltage of each capacitor must be controlled to be maintained at a predetermined value. Since the controller shown in FIG. 11 cannot do this, the controller shown in FIG. 14 is used. The voltage vector closest to the sum of the command voltage vector (Vαr, Vβr) and the high voltage error correction voltage vector (ΔVHα, ΔVHβ) is selected from the 19 types of voltage vectors in the DC power supply voltage command VHr of the high voltage inverter group 19. It selects with the selector 70 and outputs it as VHS. That is, a switching signal corresponding to the selected voltage vector is output. The high voltage error correction voltage vectors (ΔVHα, ΔVHβ) can be obtained from the block diagram of FIG. By applying the correction using the high voltage error correction voltage vector, the voltage of the DC voltage source of each phase of the high voltage inverter group can be brought close to the high voltage command VHr by shifting the switching timing of the high voltage inverter group. Next, half of the difference between VHS and the command voltage vector is set as a medium voltage difference vector (VαMr, VβMr) and a low voltage difference vector (VαLr, VβLr). By PWM control of the medium voltage inverter group 29 and the low voltage inverter group 39, the average output voltage vector of each inverter group within a predetermined period is made to coincide with the respective commands (VαMr, VβMr) and (VαLr, VβLr). Switching signals are output from the PWM controllers 74 and 75, respectively. At that time, it is necessary to devise a device for controlling the voltage of the capacitor which is a DC voltage source of the medium voltage inverter group 29 and the low voltage inverter group 39. For example, if a medium voltage difference vector (VαMr, VβMr) is converted into a three-phase carrier comparison value to obtain a PWM control switching signal by comparison with a triangular wave carrier, the above three-phase carrier comparison value conversion is performed. The required zero-phase potential may be the sum of the products of the phases of the error voltage of each phase capacitor and the unit sine wave depending on the current obtained in FIG.

請求項6の電力変換装置を無効電力補償装置に適用した場合の主回路構成を図2に示す。これは従来技術と同じ図なので説明を省略する。高圧インバータ群19の各相の直流電圧源の電圧を共通のVHとし、中圧インバータ群29の各相の直流電圧源の電圧を共通のVMとし、低圧インバータ群39の各相の直流電圧源の電圧を共通のVLとすると、VHx、VMx、VLxとの関係は式21と式23で表される。よってVHとVMとVLの関係を式7と式8としても式15と式16を満たすことができるので、高圧インバータ群19の出力電圧ベクトルである高圧電圧ベクトルと中圧インバータ群29の出力電圧ベクトルである中圧電圧ベクトルと低圧インバータ群39の出力電圧ベクトルである低圧電圧ベクトルとの所定期間の平均合成電圧ベクトルは、図4〜8の一点鎖線で示された範囲内である高圧電圧ベクトルの空間内を隙間無く占めることができる。   FIG. 2 shows a main circuit configuration when the power conversion device according to claim 6 is applied to the reactive power compensation device. Since this is the same diagram as the prior art, description thereof is omitted. The DC voltage source of each phase of the high voltage inverter group 19 is set to a common VH, the DC voltage source of each phase of the medium voltage inverter group 29 is set to a common VM, and the DC voltage source of each phase of the low voltage inverter group 39 is set. Assuming that the common voltage is VL, the relationship between VHx, VMx, and VLx is expressed by Expression 21 and Expression 23. Therefore, even if the relationship between VH, VM, and VL is expressed as Expressions 7 and 8, Expressions 15 and 16 can be satisfied. Therefore, the high voltage vector that is the output voltage vector of the high voltage inverter group 19 and the output voltage of the medium voltage inverter group 29 are satisfied. The average composite voltage vector of the medium voltage vector that is a vector and the low voltage vector that is the output voltage vector of the low voltage inverter group 39 in a predetermined period is a high voltage vector that is within the range indicated by the one-dot chain line in FIGS. Can occupy the space without any gaps.

式7や式8が等号で表される場合のベクトル関係図も図4となり、Vmaxは式17で得られる。そのVmaxを例えば、7.26kVとすると、VH=4.271kV、VM=1.068kV、VL=0.356kVとなる。よって低圧インバータ群39のスイッチング素子として広く市場に出回っている耐圧600Vの6つ素子入りのモジュールを使うことが可能となり、電力変換装置の小型化と低コスト化を図ることができる。また、低圧インバータ群の電圧を従来技術の場合の約半分にできることから、スイッチング周波数やリアクトル値を上げることなくリアクトル電流の高調波成分を小さくすることができる。   A vector relationship diagram in the case where Expression 7 and Expression 8 are expressed by an equal sign is also shown in FIG. 4, and Vmax is obtained by Expression 17. For example, when the Vmax is 7.26 kV, VH = 4.271 kV, VM = 1.068 kV, and VL = 0.356 kV. Therefore, it becomes possible to use a module containing six elements having a withstand voltage of 600 V, which is widely available on the market, as the switching elements of the low-voltage inverter group 39, and the power converter can be reduced in size and cost. In addition, since the voltage of the low-voltage inverter group can be reduced to about half that in the prior art, the harmonic component of the reactor current can be reduced without increasing the switching frequency and the reactor value.

式7と式8を満たした図2の電力変換装置において、指令電圧ベクトル(Vαr,Vβr)相当の出力電圧を得るための制御器は、図10と同じである。また式7と式8を満たした図2の全ての直流電源をコンデンサで構成した場合においては図10の代わりに図13となる。どちらの図も既に説明しているのでここでの説明は省略する。   In the power conversion apparatus of FIG. 2 that satisfies Expressions 7 and 8, the controller for obtaining the output voltage corresponding to the command voltage vector (Vαr, Vβr) is the same as that of FIG. Further, when all the DC power sources in FIG. 2 satisfying Expressions 7 and 8 are constituted by capacitors, FIG. 13 is obtained instead of FIG. Since both figures have already been explained, the explanation here is omitted.

高電圧の電力系統に直接接続する無効電力補償装置に本発明の電力変換装置を適用することで、高効率・小型・低コストとすることができる。また、補償電流の高調波成分を低減できる効果がある。   By applying the power converter of the present invention to a reactive power compensator that is directly connected to a high-voltage power system, high efficiency, small size, and low cost can be achieved. In addition, there is an effect that harmonic components of the compensation current can be reduced.

40〜42 リアクトル
19 高圧インバータ群
29 中圧インバータ群
39 低圧インバータ群
36 3相フルブリッジインバータ
40 to 42 Reactors 19 High-voltage inverter group 29 Medium-voltage inverter group 39 Low-voltage inverter group 36 Three-phase full-bridge inverter

Claims (11)

U相高圧直流電圧源でU相出力端子を持つU相高圧単相フルブリッジインバータとV相高圧直流電圧源でV相出力端子を持つV相高圧単相フルブリッジインバータとW相高圧直流電圧源でW相出力端子を持つW相高圧単相フルブリッジインバータから成る高圧インバータ群と、U相中圧直流電圧源でU相出力端子を持つU相中圧単相フルブリッジインバータとV相中圧直流電圧源でV相出力端子を持つV相中圧単相フルブリッジインバータとW相中圧直流電圧源でW相出力端子を持つW相中圧単相フルブリッジインバータから成る中圧インバータ群と、低圧直流電圧源の3相フルブリッジインバータとで構成され、該3相フルブリッジインバータのU相端子と前記中圧インバータ群のU相出力端子と前記高圧インバータ群のU相出力端子が直列に接続され、前記3相フルブリッジインバータのV相端子と前記中圧インバータ群のV相出力端子と前記高圧インバータ群のV相出力端子が直列に接続され、前記3相フルブリッジインバータのW相端子と前記中圧インバータ群のW相出力端子と前記高圧インバータ群のW相出力端子が直列に接続されている電力変換装置。 U-phase high-voltage single-phase full-bridge inverter with U-phase high-voltage DC voltage source and U-phase output terminal, V-phase high-voltage single-phase full-bridge inverter with V-phase high-voltage DC voltage source and V-phase output terminal, and W-phase high-voltage DC voltage source High-voltage inverter group consisting of W-phase high-voltage single-phase full-bridge inverter with W-phase output terminal, U-phase medium-voltage single-phase full-bridge inverter with U-phase output terminal and U-phase medium-voltage DC voltage source, and V-phase medium pressure Medium-voltage inverter group consisting of a V-phase medium-voltage single-phase full-bridge inverter with a DC voltage source and a V-phase output terminal, and a W-phase medium-voltage single-phase full-bridge inverter with a W-phase medium-voltage DC voltage source and a W-phase output terminal; A three-phase full-bridge inverter of a low-voltage DC voltage source, and a U-phase terminal of the three-phase full-bridge inverter, a U-phase output terminal of the medium-voltage inverter group, and a U-phase output terminal of the high-voltage inverter group are directly connected. A V-phase terminal of the three-phase full-bridge inverter, a V-phase output terminal of the medium-voltage inverter group, and a V-phase output terminal of the high-voltage inverter group are connected in series, and the W-phase of the three-phase full-bridge inverter A power converter in which a terminal, a W-phase output terminal of the medium-voltage inverter group, and a W-phase output terminal of the high-voltage inverter group are connected in series. 前記高圧インバータ群の出力電圧ベクトルである高圧電圧ベクトルと前記中圧インバータ群の出力電圧ベクトルである中圧電圧ベクトルと前記3相フルブリッジインバータの出力電圧ベクトルである低圧電圧ベクトルとの所定期間の平均合成電圧ベクトルが指令電圧ベクトルとなるように、前記高圧インバータ群と前記中圧インバータ群と前記3相フルブリッジインバータの制御信号を生成する制御器を備えた請求項1記載の電力変換装置。 The high voltage vector that is the output voltage vector of the high voltage inverter group, the medium voltage vector that is the output voltage vector of the medium voltage inverter group, and the low voltage vector that is the output voltage vector of the three-phase full-bridge inverter. The power converter according to claim 1, further comprising a controller that generates control signals for the high-voltage inverter group, the intermediate-voltage inverter group, and the three-phase full-bridge inverter so that an average combined voltage vector becomes a command voltage vector. U相高圧直流電圧源でU相出力端子を持つU相高圧単相フルブリッジインバータとV相高圧直流電圧源でV相出力端子を持つV相高圧単相フルブリッジインバータとW相高圧直流電圧源でW相出力端子を持つW相高圧単相フルブリッジインバータから成る高圧インバータ群と、
U相中圧直流電圧源でU相出力端子を持つU相中圧単相フルブリッジインバータとV相中圧直流電圧源でV相出力端子を持つV相中圧単相フルブリッジインバータとW相中圧直流電圧源でW相出力端子を持つW相中圧単相フルブリッジインバータから成る中圧インバータ群と、
U相低圧直流電圧源でU相出力端子を持つU相低圧単相フルブリッジインバータとV相低圧直流電圧源でV相出力端子を持つV相低圧単相フルブリッジインバータとW相低圧直流電圧源でW相出力端子を持つW相低圧単相フルブリッジインバータから成る低圧インバータ群とで構成され、前記低圧インバータ群のU相出力端子と前記中圧インバータ群のU相出力端子と前記高圧インバータ群のU相出力端子が直列に接続され、前記低圧インバータ群のV相出力端子と前記中圧インバータ群のV相出力端子と前記高圧インバータ群のV相出力端子が直列に接続され、前記低圧インバータ群のW相出力端子と前記中圧インバータ群のW相出力端子と前記高圧インバータ群のW相出力端子が直列に接続され、前記低圧インバータ群または高圧インバータ群の他方のU相出力端子と他方のV相出力端子と他方のW相出力端子が短絡されている電力変換装置において、
前記高圧インバータ群の出力電圧ベクトルである高圧電圧ベクトルと前記中圧インバータ群の出力電圧ベクトルである中圧電圧ベクトルと前記低圧インバータ群の出力電圧ベクトルである低圧電圧ベクトルとの所定期間の平均合成電圧ベクトルが指令電圧ベクトルとなるように、前記高圧インバータ群と前記中圧インバータ群と前記低圧インバータ群の制御信号を生成する制御器を備えた電力変換装置。
U-phase high-voltage single-phase full-bridge inverter with U-phase high-voltage DC voltage source and U-phase output terminal, V-phase high-voltage single-phase full-bridge inverter with V-phase high-voltage DC voltage source and V-phase output terminal, and W-phase high-voltage DC voltage source A high-voltage inverter group consisting of a W-phase high-voltage single-phase full-bridge inverter having a W-phase output terminal;
U-phase medium-voltage single-phase full-bridge inverter with U-phase medium-voltage DC voltage source and U-phase output terminal V-phase medium-voltage single-phase full-bridge inverter with V-phase output terminal with V-phase medium-voltage DC voltage source and W-phase A medium-voltage inverter group consisting of a W-phase medium-voltage single-phase full-bridge inverter with a medium-voltage DC voltage source and a W-phase output terminal;
U-phase low-voltage DC voltage source with U-phase output terminal U-phase low-voltage single-phase full-bridge inverter and V-phase low-voltage DC voltage source with V-phase output terminal V-phase low-voltage single-phase full-bridge inverter and W-phase low-voltage DC voltage source And a low-voltage inverter group comprising a W-phase low-voltage single-phase full-bridge inverter having a W-phase output terminal, the U-phase output terminal of the low-voltage inverter group, the U-phase output terminal of the intermediate-voltage inverter group, and the high-voltage inverter group A U-phase output terminal of the low-voltage inverter group, a V-phase output terminal of the medium-voltage inverter group, and a V-phase output terminal of the high-voltage inverter group are connected in series. A W-phase output terminal of the group, a W-phase output terminal of the medium-voltage inverter group, and a W-phase output terminal of the high-voltage inverter group are connected in series, and the low-voltage inverter group or the high-voltage inverter The power converter according to other U-phase output terminal of the data group and the other of the V-phase output terminal and the other of the W-phase output terminal is short-circuited,
Average synthesis of a high voltage vector, which is an output voltage vector of the high voltage inverter group, an intermediate voltage vector, which is an output voltage vector of the medium voltage inverter group, and a low voltage vector, which is an output voltage vector of the low voltage inverter group, for a predetermined period A power converter comprising a controller that generates control signals for the high-voltage inverter group, the intermediate-voltage inverter group, and the low-voltage inverter group so that the voltage vector becomes a command voltage vector.
前記U相高圧直流電圧源と前記V相高圧直流電圧源と前記W相高圧直流電圧源の電圧を共通のVHとし、前記U相中圧直流電圧源と前記V相中圧直流電圧源と前記W相中圧直流電圧源の電圧を共通のVMとし、前記低圧直流電圧源の電圧をVLとした場合、
VM≦1.5・VL
VH≦3・VM+1.5・VL
とすることを特徴とする請求項2記載の電力変換装置。
The U-phase high-voltage DC voltage source, the V-phase high-voltage DC voltage source, and the W-phase high-voltage DC voltage source have a common voltage VH, and the U-phase medium-voltage DC voltage source, the V-phase medium-voltage DC voltage source, and the When the voltage of the W-phase medium voltage DC voltage source is a common VM and the voltage of the low voltage DC voltage source is VL,
VM ≦ 1.5 ・ VL
VH ≦ 3 ・ VM + 1.5 ・ VL
The power conversion device according to claim 2, wherein:
前記U相高圧直流電圧源と前記V相高圧直流電圧源と前記W相高圧直流電圧源の電圧を共通のVHとし、前記U相中圧直流電圧源と前記V相中圧直流電圧源と前記W相中圧直流電圧源の電圧を共通のVMとし、前記U相低圧直流電圧源と前記V相低圧直流電圧源と前記W相低圧直流電圧源の電圧を共通のVLとした場合、
VM=VL
VH≦6・VL
とすることを特徴とする請求項3記載の電力変換装置。
The U-phase high-voltage DC voltage source, the V-phase high-voltage DC voltage source, and the W-phase high-voltage DC voltage source have a common voltage VH, and the U-phase medium-voltage DC voltage source, the V-phase medium-voltage DC voltage source, and the When the voltage of the W-phase medium-voltage DC voltage source is a common VM and the voltages of the U-phase low-voltage DC voltage source, the V-phase low-voltage DC voltage source, and the W-phase low-voltage DC voltage source are common VL,
VM = VL
VH ≦ 6 ・ VL
The power conversion device according to claim 3, wherein:
前記U相高圧直流電圧源と前記V相高圧直流電圧源と前記W相高圧直流電圧源の電圧を共通のVHとし、前記U相中圧直流電圧源と前記V相中圧直流電圧源と前記W相中圧直流電圧源の電圧を共通のVMとし、前記U相低圧直流電圧源と前記V相低圧直流電圧源と前記W相低圧直流電圧源の電圧を共通のVLとした場合、
VM≦3・VL
VH≦3・(VM+VL)
とすることを特徴とする請求項3記載の電力変換装置。
The U-phase high-voltage DC voltage source, the V-phase high-voltage DC voltage source, and the W-phase high-voltage DC voltage source have a common voltage VH, and the U-phase medium-voltage DC voltage source, the V-phase medium-voltage DC voltage source, and the When the voltage of the W-phase medium-voltage DC voltage source is a common VM and the voltages of the U-phase low-voltage DC voltage source, the V-phase low-voltage DC voltage source, and the W-phase low-voltage DC voltage source are common VL,
VM ≦ 3 ・ VL
VH ≦ 3 ・ (VM + VL)
The power conversion device according to claim 3, wherein:
請求項2記載の前記制御器において、19種類の高圧電圧ベクトルの中から前記指令電圧ベクトルに最も近いものを選択してそれをVHSとして前記高圧インバータ群が前記VHSを出力するようにし、前記VHSと前記指令電圧ベクトルとの差である中電圧差ベクトルを求め、19種類の中圧電圧ベクトルの中から前記中電圧差ベクトルに最も近いものを選択してそれをVMSとして前記中圧インバータ群が前記VMSを出力するようにし、前記VMSと前記中電圧差ベクトルとの差である低電圧差ベクトルを求め、前記3相フルブリッジインバータ出力の所定期間内の平均電圧ベクトルが前記低電圧差ベクトルとなるようにすることを特徴とする電力変換装置。 3. The controller according to claim 2, wherein a voltage closest to the command voltage vector is selected from 19 types of high voltage vectors, and is set as VHS so that the high voltage inverter group outputs the VHS, and the VHS is output. The intermediate voltage difference vector, which is the difference between the intermediate voltage difference vector and the command voltage vector, is selected from among 19 types of intermediate voltage vectors and the one closest to the intermediate voltage difference vector is used as VMS, and the intermediate voltage inverter group The VMS is output, a low voltage difference vector that is a difference between the VMS and the medium voltage difference vector is obtained, and an average voltage vector within a predetermined period of the three-phase full-bridge inverter output is the low voltage difference vector A power conversion device characterized by comprising: 請求項5かつ請求項3記載の前記制御器において、19種類の高圧電圧ベクトルの中から前記指令電圧ベクトルに最も近いものを選択してそれをVHSとして前記高圧インバータ群が前記VHSを出力するようにし、前記VHSと前記指令電圧ベクトルとの差である中電圧差ベクトルを求め、前記中圧インバータ群出力の所定期間内の平均電圧ベクトルや前記低圧インバータ群出力の所定期間内の平均電圧ベクトルが前記中電圧差ベクトルの半分となるようにすることを特徴とする電力変換装置。 5. The controller according to claim 5 or 3, wherein a voltage closest to the command voltage vector is selected from 19 types of high voltage vectors and is used as VHS so that the high voltage inverter group outputs the VHS. An intermediate voltage difference vector which is a difference between the VHS and the command voltage vector is obtained, and an average voltage vector within a predetermined period of the intermediate voltage inverter group output and an average voltage vector within a predetermined period of the low voltage inverter group output are obtained. A power conversion device characterized in that it is half of the medium voltage difference vector. 請求項6かつ請求項3記載の前記制御器において、19種類の高圧電圧ベクトルの中から前記指令電圧ベクトルに最も近いものを選択してそれをVHSとして前記高圧インバータ群が前記VHSを出力するようにし、前記VHSと前記指令電圧ベクトルとの差である中電圧差ベクトルを求め、19種類の中圧電圧ベクトルの中から前記中電圧差ベクトルに最も近いものを選択してそれをVMSとして前記中圧インバータ群が前記VMSを出力するようにし、前記VMSと前記中電圧差ベクトルとの差である低電圧差ベクトルを求め、前記低圧インバータ群出力の所定期間内の平均電圧ベクトルが前記低電圧差ベクトルとなるようにすることを特徴とする電力変換装置。 4. The controller according to claim 6 or 3, wherein the one that is closest to the command voltage vector is selected from the 19 types of high voltage vectors and is used as VHS so that the high voltage inverter group outputs the VHS. The medium voltage difference vector, which is the difference between the VHS and the command voltage vector, is obtained, and the closest one to the medium voltage difference vector is selected from 19 types of medium voltage vectors and is used as the VMS. A voltage inverter group that outputs the VMS, obtains a low voltage difference vector that is a difference between the VMS and the medium voltage difference vector, and an average voltage vector within a predetermined period of the low voltage inverter group output is the low voltage difference A power converter characterized by being a vector. 3相交流の電力系統に連系される自励式の無効電力補償装置に適用される際に、前記各相高圧直流電圧源や前記各相中圧直流電圧源や前記各相低圧直流電圧源または前記低圧直流電圧源がそれぞれコンデンサで構成されることを特徴とする請求項1から9記載の電力変換装置。 When applied to a self-excited reactive power compensator linked to a three-phase AC power system, each phase high-voltage DC voltage source, each phase medium-voltage DC voltage source, each phase low-voltage DC voltage source, The power converter according to any one of claims 1 to 9, wherein each of the low-voltage DC voltage sources includes a capacitor. 請求項10の前記制御器において、電流指令から求めたU相電流の単位正弦波GUとV相電流の単位正弦波GVとW相電流の単位正弦波GWを求め、前記U相高圧直流電圧源の電圧と高圧電圧指令との差と前記GUとの積からU相高圧誤差補正電圧を求め、前記V相高圧直流電圧源の電圧と前記高圧電圧指令との差と前記GVとの積からV相高圧誤差補正電圧を求め、前記W相高圧直流電圧源の電圧と前記高圧電圧指令との差と前記GWとの積からW相高圧誤差補正電圧を求め、前記U相高圧誤差補正電圧と前記V相高圧誤差補正電圧と前記W相高圧誤差補正電圧から所定ゲイン倍した高圧誤差補正電圧ベクトルを求め、19種類の高圧電圧ベクトルの中から前記高圧インバータ群が選択出力する際に前記指令電圧ベクトルの代わりに前記指令電圧ベクトルと前記高圧誤差補正電圧ベクトルとの和のベクトルを用い、
請求項10で請求項7または9記載の前記制御器において、
前記U相中圧直流電圧源の電圧と中圧電圧指令との差と前記GUとの積からU相中圧誤差補正電圧を求め、前記V相中圧直流電圧源の電圧と前記中圧電圧指令との差と前記GVとの積からV相中圧誤差補正電圧を求め、前記W相中圧直流電圧源の電圧と前記中圧電圧指令との差と前記GWとの積からW相中圧誤差補正電圧を求め、前記U相中圧誤差補正電圧と前記V相中圧誤差補正電圧と前記W相中圧誤差補正電圧から所定ゲイン倍した中圧誤差補正電圧ベクトルを求め、19種類の中圧電圧ベクトルの中から前記中圧インバータ群が選択出力する際に前記中電圧差ベクトルの代わりに前記中電圧差ベクトルと前記中圧誤差補正電圧ベクトルとの和のベクトルを用いることを特徴とする電力変換器。
11. The controller of claim 10, wherein a U-phase current unit sine wave GU, a V-phase current unit sine wave GV, and a W-phase current unit sine wave GW obtained from a current command are obtained, and the U-phase high-voltage DC voltage source is obtained. A U-phase high-voltage error correction voltage is obtained from the product of the difference between the voltage and the high-voltage command and the GU, and V is obtained from the product of the difference between the voltage of the V-phase high-voltage DC voltage source and the high-voltage command and the GV. A phase high voltage error correction voltage is obtained, a W phase high voltage error correction voltage is obtained from the product of the difference between the voltage of the W phase high voltage DC voltage source and the high voltage command and the GW, and the U phase high voltage error correction voltage and the A high-voltage error correction voltage vector obtained by multiplying a V-phase high-voltage error correction voltage and the W-phase high-voltage error correction voltage by a predetermined gain is obtained, and the command voltage vector is selected when the high-voltage inverter group selectively outputs from 19 types of high-voltage inverter vectors. Instead of the finger Using a vector of the sum of the high error correction voltage vector and the voltage vector,
The controller according to claim 7 or 9, wherein:
A U-phase medium voltage error correction voltage is obtained from the product of the difference between the voltage of the U-phase medium voltage DC voltage source and the medium voltage command and the GU, and the voltage of the V-phase medium voltage DC voltage source and the medium voltage A V-phase medium pressure error correction voltage is obtained from the product of the difference from the command and the GV, and the W-phase medium pressure error correction voltage is calculated from the product of the difference between the voltage of the W-phase medium voltage DC voltage source and the medium voltage command and the GW. A pressure error correction voltage is obtained, and an intermediate pressure error correction voltage vector obtained by multiplying the U phase intermediate pressure error correction voltage, the V phase intermediate pressure error correction voltage, and the W phase intermediate pressure error correction voltage by a predetermined gain is obtained. When the medium voltage inverter group selectively outputs from the medium voltage vectors, a vector of the sum of the medium voltage difference vector and the medium voltage error correction voltage vector is used instead of the medium voltage difference vector. To power converter.
JP2015138678A 2015-07-10 2015-07-10 Power conversion device Pending JP2017022882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015138678A JP2017022882A (en) 2015-07-10 2015-07-10 Power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015138678A JP2017022882A (en) 2015-07-10 2015-07-10 Power conversion device

Publications (1)

Publication Number Publication Date
JP2017022882A true JP2017022882A (en) 2017-01-26

Family

ID=57888496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015138678A Pending JP2017022882A (en) 2015-07-10 2015-07-10 Power conversion device

Country Status (1)

Country Link
JP (1) JP2017022882A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019009888A (en) * 2017-06-23 2019-01-17 東洋電機製造株式会社 Reactive power compensator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004007941A (en) * 2002-04-05 2004-01-08 Mitsubishi Electric Corp Power conversion device
JP2007037355A (en) * 2005-07-29 2007-02-08 Mitsubishi Electric Corp Power converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004007941A (en) * 2002-04-05 2004-01-08 Mitsubishi Electric Corp Power conversion device
JP2007037355A (en) * 2005-07-29 2007-02-08 Mitsubishi Electric Corp Power converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019009888A (en) * 2017-06-23 2019-01-17 東洋電機製造株式会社 Reactive power compensator

Similar Documents

Publication Publication Date Title
JP6615012B2 (en) Reactive power compensator
EP2611019B1 (en) Control apparatus for regenerative medium voltage inverter
US20160111975A1 (en) Control device of neutral-point-clamped power converter apparatus, and control method of neutral-point-clamped power converter apparatus
CA2285846C (en) Power converting system multiplexed with voltage dividing transformers, the voltage transformers, and controller for the system
US10389269B2 (en) Inverter apparatus including control circuit employing two-phase modulation control, and interconnection inverter system including the inverter apparatus
KR102009512B1 (en) Apparatus and method for generating offset voltage of 3-phase inverter
EP3522358B1 (en) Inverter control device
EP3220529B1 (en) Method for controlling three phase equivalent voltage of multilevel inverter
JP2013162536A (en) Power conversion device
JP6494378B2 (en) Power conversion system and method for controlling power conversion system
JP6369517B2 (en) Control device for power converter
US7821802B2 (en) Control method for direct power converter
JPWO2018066087A1 (en) POWER CONVERTER AND CONTROL METHOD OF POWER CONVERTER
JP5147624B2 (en) Inverter device
JP2004304868A (en) Motor controller
WO2019073761A1 (en) Power conversion device
EP3432467B1 (en) Motor control device and drive system
JP2017022882A (en) Power conversion device
JP2010220332A (en) Power converting device
JP2009153297A (en) Controller of self-excited converter
US10630200B2 (en) Inverter apparatus including control circuit employing two-phase modulation control, and interconnection inverter system including the inverter apparatus
JP7202189B2 (en) POWER CONVERTER, RAIL VEHICLE, AND POWER CONVERTER CONTROL METHOD
EP3413456B1 (en) Power conversion device
JP2017153277A (en) Self-excited reactive power compensation apparatus
JP7040077B2 (en) Power converter

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160125

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190820