JP2017020794A - Flame detection device and boiler - Google Patents

Flame detection device and boiler Download PDF

Info

Publication number
JP2017020794A
JP2017020794A JP2015136072A JP2015136072A JP2017020794A JP 2017020794 A JP2017020794 A JP 2017020794A JP 2015136072 A JP2015136072 A JP 2015136072A JP 2015136072 A JP2015136072 A JP 2015136072A JP 2017020794 A JP2017020794 A JP 2017020794A
Authority
JP
Japan
Prior art keywords
current level
flame
determination
deterioration
misfire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015136072A
Other languages
Japanese (ja)
Other versions
JP6536232B2 (en
Inventor
淳二 川又
Junji Kawamata
淳二 川又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2015136072A priority Critical patent/JP6536232B2/en
Publication of JP2017020794A publication Critical patent/JP2017020794A/en
Application granted granted Critical
Publication of JP6536232B2 publication Critical patent/JP6536232B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a configuration that enables quick detection of deterioration in flame detection devices, and enables effective prevention of faulty determinations arising from the deterioration of flame detection units therein.SOLUTION: A flame detection device 100 comprises: a UV phototube 110 in which a current flows when detecting light of flames; a control unit 80 that determines presence or absence of the flame on the basis of a current level to be acquired from the UV phototube 110; and a storage unit 90 that stores a determination current level. The control unit 80 includes: a deterioration determination unit that executes a deterioration determination of the UV phototube 110; and a timing determination unit that, when detecting that the current level of the UV phototube 110 is present in a prescribed range where the current level thereof is set higher than a determination current level and lower than a normal current level, causes the deterioration determination unit to execute the deterioration determination.SELECTED DRAWING: Figure 1

Description

本発明は、炎検出部の劣化判定を実行する炎検出装置及び該炎検出装置を備えるボイラに関する。   The present invention relates to a flame detection device that performs deterioration determination of a flame detection unit and a boiler including the flame detection device.

燃焼装置等に用いられる炎検出装置において、光の入射を遮る遮光手段を用いて燃焼中に紫外線光電管等の炎検出部の劣化判定を自ら行う構成が従来から知られている。この種の劣化判定に関する技術を開示するものとして、例えば、特許文献1や特許文献2がある。特許文献1には、燃焼中の所定燃焼時間経過毎に炎検出部の自己診断を行う制御方法が開示されている。特許文献2には、遮光手段を所定の時間間隔で作動させる際の作動時間を非作動時間より短くする制御が開示されている。   2. Description of the Related Art Conventionally, in a flame detection device used for a combustion device or the like, a configuration is known in which a deterioration detection unit such as an ultraviolet phototube is subjected to deterioration determination by itself using a light shielding unit that blocks light incidence. For example, Patent Document 1 and Patent Document 2 disclose techniques relating to this type of deterioration determination. Patent Document 1 discloses a control method for performing a self-diagnosis of a flame detection unit every time a predetermined combustion time elapses during combustion. Patent Document 2 discloses control for shortening the operation time when the light shielding means is operated at predetermined time intervals to be shorter than the non-operation time.

特開2004−138302号公報JP 2004-138302 A 特開2002−303420号公報JP 2002-303420 A

上述のような炎検出装置では、劣化が進行すると、炎が無い状態にも関わらず炎が有ると誤判定するようになる。炎が有ると判定されれば、炎が無い状態にも関わらず燃料が燃料装置に供給され続ける事態を招いてしまう。このような事態を避けるためにも、炎検出部の劣化は速やかに検出されることが好ましい。この点、特許文献1や特許文献2に開示される構成では、炎の燃焼中でも劣化判定を行うことができる。しかしながら、誤判定が頻繁に生じる使用限界まで劣化が進行していたとしても、次の劣化判定が行われるタイミングにならなければ当該劣化を検出することができず、速やかに劣化を検出するという点で改善の余地があった。   In the flame detection apparatus as described above, when deterioration progresses, it is erroneously determined that there is a flame despite the absence of flame. If it is determined that there is a flame, there will be a situation in which fuel continues to be supplied to the fuel device despite the absence of flame. In order to avoid such a situation, it is preferable that the deterioration of the flame detector is detected promptly. In this regard, in the configurations disclosed in Patent Document 1 and Patent Document 2, it is possible to perform deterioration determination even during flame combustion. However, even if deterioration has progressed to the use limit where frequent misjudgment frequently occurs, the deterioration cannot be detected unless the next deterioration determination is made, and the deterioration is detected quickly. There was room for improvement.

本発明は、炎検出装置において、劣化を速やかに検出することができ、炎検出部の劣化を原因とする誤判定を効果的に防止できる構成を提供することを目的とする。   An object of the present invention is to provide a configuration that can quickly detect deterioration in a flame detection device and can effectively prevent erroneous determination caused by deterioration of a flame detection unit.

本発明は、炎の光を検出すると電流が流れる炎検出部と、前記炎検出部から取得する電流レベルに基づいて炎の有無を判定する制御部と、炎を正常に検出している状態の正常電流レベルよりも低く設定され、炎の有無を判定する基準となる判定電流レベルを記憶する記憶部と、を備え、前記制御部は、前記炎検出部の劣化判定を実行する劣化判定部と、前記判定電流レベルよりも高く前記正常電流レベルよりも低く設定される所定範囲に、前記炎検出部の電流レベルがあることを検出すると、前記劣化判定部によって前記劣化判定を実行させるタイミング判定部と、を有する炎検出装置に関する。   The present invention includes a flame detection unit through which a current flows when a flame light is detected, a control unit that determines the presence / absence of a flame based on a current level acquired from the flame detection unit, and a state in which the flame is normally detected. A storage unit that stores a determination current level that is set lower than a normal current level and that serves as a reference for determining the presence or absence of a flame, and the control unit includes a deterioration determination unit that performs a deterioration determination of the flame detection unit. A timing determination unit that, when detecting that the current level of the flame detection unit is within a predetermined range set higher than the determination current level and lower than the normal current level, causes the deterioration determination unit to execute the deterioration determination And a flame detection device.

前記制御部は、電流レベルが前記所定範囲に入ると、予め設定される失火確認時間のカウントを開始し、該失火確認時間中に電流レベルが前記判定電流レベルを下回った場合に失火判定を行う失火判定部を更に有し、前記タイミング判定部は、失火確認時間中に電流レベルが前記判定電流レベルを下回らなかった場合に前記劣化判定を実行させることが好ましい。   When the current level enters the predetermined range, the control unit starts counting a preset misfire confirmation time, and performs a misfire determination when the current level falls below the determination current level during the misfire confirmation time. It is preferable to further include a misfire determination unit, and the timing determination unit performs the deterioration determination when the current level does not fall below the determination current level during the misfire confirmation time.

前記炎検出装置は、検出対象の炎と前記炎検出部の間を物理的に遮る遮光装置を更に備え、前記劣化判定部は、前記遮光装置によって光を遮った状態で前記劣化判定を行い、前記炎検出部の自己放電による炎の誤検出か否かを判定することが好ましい。   The flame detection device further includes a light shielding device that physically blocks between a flame to be detected and the flame detection unit, and the deterioration determination unit performs the deterioration determination in a state where light is blocked by the light blocking device, It is preferable to determine whether or not it is a false flame detection due to self-discharge of the flame detector.

また、本発明は、前記炎検出装置と、前記炎検出装置によって炎の検出が行われる燃焼装置と、を備え、前記劣化判定部による前記炎検出部の異常が判定された場合は、前記燃焼装置への燃料の供給を停止するボイラに関する。   In addition, the present invention includes the flame detection device and a combustion device in which flame is detected by the flame detection device, and when the abnormality of the flame detection unit is determined by the deterioration determination unit, the combustion The present invention relates to a boiler that stops supply of fuel to an apparatus.

本発明の炎検出装置によれば、劣化を速やかに検出することができ、炎検出部の劣化を原因とする誤判定を効果的に防止できる。   According to the flame detection device of the present invention, it is possible to quickly detect deterioration, and it is possible to effectively prevent erroneous determination caused by deterioration of the flame detection unit.

本発明の一実施形態に係る炎検出装置が適用されるボイラの構成を模式的に示す図である。It is a figure showing typically composition of a boiler to which a flame detection device concerning one embodiment of the present invention is applied. 本実施形態の制御部の劣化判定に係る構成を模式的に示すブロック図である。It is a block diagram which shows typically the structure which concerns on the deterioration determination of the control part of this embodiment. 失火判定されるときの電流レベルの変動を模式的に示すグラフである。It is a graph which shows typically the change of the current level when misfire determination is carried out. 自己放電により炎の誤検知が生じたときの電流レベルの変動を模式的に示すグラフである。It is a graph which shows typically the fluctuation | variation of the current level when the misdetection of the flame arises by self-discharge. 汚れによって電流レベルが所定範囲まで低下したときの電流レベルの変動を模式的に示すグラフである。It is a graph which shows typically the fluctuation | variation of a current level when a current level falls to the predetermined range by dirt. 電流レベルの変化に基づいて行われる劣化判定の流れを示すフローチャートである。It is a flowchart which shows the flow of the deterioration determination performed based on the change of an electric current level. 変形例における電流レベルの変化に基づいて行われる劣化判定の流れを示すフローチャートである。It is a flowchart which shows the flow of the deterioration determination performed based on the change of the electric current level in a modification.

以下、本発明の炎検出装置の好ましい一実施形態について、図面を参照しながら説明する。図1は、本発明の一実施形態に係る炎検出装置100が適用されるボイラ1の構成を模式的に示す図である。図2は、本実施形態の制御部80の劣化判定に係る構成を模式的に示すブロック図である。   Hereinafter, a preferred embodiment of the flame detection device of the present invention will be described with reference to the drawings. FIG. 1 is a diagram schematically showing a configuration of a boiler 1 to which a flame detection apparatus 100 according to an embodiment of the present invention is applied. FIG. 2 is a block diagram schematically illustrating a configuration related to deterioration determination of the control unit 80 of the present embodiment.

まず、ボイラ1の全体構成について説明する。図1に示すように、ボイラ1は、ボイラ本体10と、バーナ11と、燃料弁12と、送風機13と、制御装置70と、炎検出装置100と、を備える。また、ボイラ1は、燃料供給ラインL10と、空気供給ラインL20と、を主要なラインとして備える。なお、本明細書における「ライン」とは、流路、経路、管路等の流体の流通が可能なラインの総称である。   First, the overall configuration of the boiler 1 will be described. As shown in FIG. 1, the boiler 1 includes a boiler body 10, a burner 11, a fuel valve 12, a blower 13, a control device 70, and a flame detection device 100. The boiler 1 includes a fuel supply line L10 and an air supply line L20 as main lines. The “line” in the present specification is a general term for lines capable of flowing a fluid such as a flow path, a path, and a pipeline.

ボイラ本体10は、複数の水管と、下部ヘッダと、上部ヘッダと、を備える筐体である。ボイラ本体10には、水管の水を加熱するための燃焼室が形成される。   The boiler body 10 is a housing that includes a plurality of water pipes, a lower header, and an upper header. The boiler body 10 is formed with a combustion chamber for heating water in the water pipe.

バーナ11は、ボイラ本体10の燃焼室に設けられる燃焼装置である。燃料の供給源に接続される燃料供給ラインL10によって燃焼に必要な燃料が供給される。燃料弁12は、燃料供給ラインL10の流路を開閉する開閉弁である。送風機13は、空気供給ラインL20を通じてバーナ11の燃焼に用いられる空気を供給する。   The burner 11 is a combustion device provided in the combustion chamber of the boiler body 10. Fuel required for combustion is supplied by a fuel supply line L10 connected to a fuel supply source. The fuel valve 12 is an on / off valve that opens and closes the flow path of the fuel supply line L10. The blower 13 supplies air used for combustion of the burner 11 through the air supply line L20.

制御装置70は、各種のセンサや制御対象の弁等が電気的に接続されるコンピュータである。本実施形態の制御装置70は、燃焼制御や炎の検出等の各種の制御を行う制御部80と、制御に関する各種の情報が記憶される記憶部90と、異常等の各種の情報を報知する報知部95と、を備える。報知部95としては、ブザー、ライト、タッチパネルディスプレイ等、異常を報知する音声の発音又は映像を表示する適宜のものを採用することができる。   The control device 70 is a computer to which various sensors and valves to be controlled are electrically connected. The control device 70 according to the present embodiment notifies a control unit 80 that performs various controls such as combustion control and flame detection, a storage unit 90 that stores various types of information related to control, and various types of information such as abnormalities. A notification unit 95. As the notification unit 95, an appropriate device that displays a sound generation or a video for notifying abnormality such as a buzzer, a light, and a touch panel display can be adopted.

炎検出装置100は、バーナ11の炎の有無を検出するための装置である。炎検出装置100は、炎検出部としての紫外線光電管110と、この紫外線光電管110の劣化判定に用いられるシャッタ装置111と、を備える。   The flame detection device 100 is a device for detecting the presence or absence of flame in the burner 11. The flame detection device 100 includes an ultraviolet photoelectric tube 110 as a flame detection unit, and a shutter device 111 used for determining deterioration of the ultraviolet photoelectric tube 110.

紫外線光電管110は、光電効果を利用して炎の検出を行う炎検出部である。紫外線光電管110は、駆動電圧が印加されている状態で、紫外線が入射すると放電電流が流れる受光部を有する。紫外線光電管110は制御部80に電気的に接続されており、制御部80は、紫外線光電管110を流れる電流(火炎信号)に基づいて炎の状態を判定する。   The ultraviolet photoelectric tube 110 is a flame detection unit that detects a flame using the photoelectric effect. The ultraviolet photoelectric tube 110 has a light receiving portion through which a discharge current flows when ultraviolet light is incident while a driving voltage is applied. The ultraviolet photoelectric tube 110 is electrically connected to the control unit 80, and the control unit 80 determines the flame state based on the current (flame signal) flowing through the ultraviolet photoelectric tube 110.

本実施形態では、所定時間に印加された駆動電圧の回数に対して電流が検出された回数の割合を電流レベルとして算出する。例えば、所定時間内に駆動電圧が200回印加され、電流(火炎信号)が180回検出された場合は、電流レベルは0.9と算出される。   In the present embodiment, the ratio of the number of times the current is detected with respect to the number of drive voltages applied in a predetermined time is calculated as the current level. For example, when the drive voltage is applied 200 times within a predetermined time and the current (flame signal) is detected 180 times, the current level is calculated as 0.9.

記憶部90には、後述の失火判定や劣化判定で用いられる電流レベルの所定範囲、炎の有無を判定する基準となる判定電流レベル、失火判定を行う基準となる失火確認時間及び失火判定時間等の各種の情報が記憶される。失火判定及び劣化判定の処理の詳細については後述する。   The storage unit 90 includes a predetermined range of current levels used in misfire determination and deterioration determination described later, a determination current level serving as a reference for determining the presence or absence of flame, a misfire confirmation time and a misfire determination time serving as a reference for performing misfire determination, and the like. Are stored. Details of the misfire determination and the deterioration determination process will be described later.

次に、シャッタ装置111について説明する。シャッタ装置111は、受光部と炎の間を物理的に遮蔽可能な遮光装置である。本実施形態のシャッタ装置111は、非透光性の材料で構成される遮蔽部材と、遮蔽部材を移動させる駆動部と、を備える。シャッタ装置111は、炎の検出を行っている状態では受光部を露出させる開位置に遮蔽部材を位置させ、劣化判定時には受光部を覆う閉位置に遮蔽部材を移動させる。シャッタ装置111の制御は制御部80によって行われる。   Next, the shutter device 111 will be described. The shutter device 111 is a light shielding device capable of physically shielding between the light receiving unit and the flame. The shutter device 111 according to the present embodiment includes a shielding member made of a non-translucent material and a drive unit that moves the shielding member. The shutter device 111 positions the shielding member at an open position where the light receiving unit is exposed in a state where the flame is detected, and moves the shielding member to a closed position covering the light receiving unit when determining deterioration. The control of the shutter device 111 is performed by the control unit 80.

次に、紫外線光電管110による失火判定及び劣化判定について説明する。図2に示すように、制御部80は、劣化判定部81と、タイミング判定部82と、有する。   Next, misfire determination and deterioration determination by the ultraviolet phototube 110 will be described. As illustrated in FIG. 2, the control unit 80 includes a deterioration determination unit 81 and a timing determination unit 82.

劣化判定部81は、紫外線光電管110の劣化判定を予め設定された手順に基づいて実行する。劣化判定部81は、シャッタ装置111の遮光部を閉位置に位置させた状態で紫外線光電管110の電流を監視し、電流レベルが劣化基準値を上回った場合は、紫外線光電管110の劣化が使用限界に達したと判定する。   The deterioration determination unit 81 executes the deterioration determination of the ultraviolet phototube 110 based on a preset procedure. The deterioration determining unit 81 monitors the current of the ultraviolet phototube 110 with the light shielding portion of the shutter device 111 positioned at the closed position. If the current level exceeds the deterioration reference value, the deterioration of the ultraviolet phototube 110 is limited to the use limit. It is determined that it has reached.

タイミング判定部82は、劣化判定部81による劣化判定を実行させるタイミングを設定する。本実施形態のタイミング判定部82は、タイムスケジュールに基づいて劣化判定を行うとともに、紫外線光電管110の電流レベルに基づいて劣化判定を行う。また、タイミング判定部82は、紫外線光電管110の電流レベルを常時監視し、所定の条件を満たしたときにも劣化判定を行う。   The timing determination unit 82 sets a timing for executing the deterioration determination by the deterioration determination unit 81. The timing determination unit 82 according to the present embodiment performs deterioration determination based on the time schedule and performs deterioration determination based on the current level of the ultraviolet photoelectric tube 110. In addition, the timing determination unit 82 constantly monitors the current level of the ultraviolet photoelectric tube 110 and performs the deterioration determination even when a predetermined condition is satisfied.

失火判定部83は、失火しているか否かを電流レベルに基づいて判定する。失火判定部83は、紫外線光電管110の電流を監視し、電流レベルが失火基準値を下回った場合に、失火していると判定する。   The misfire determination unit 83 determines whether or not misfire has occurred based on the current level. The misfire determination unit 83 monitors the current of the ultraviolet photoelectric tube 110 and determines that a misfire has occurred when the current level falls below the misfire reference value.

まず、タイムスケジュールに基づいて劣化判定を行う場合について説明する。タイミング判定部82は、予め設定されるタイムスケジュールに基づいて定期的に劣化判定部81による劣化判定を行わせる。これにより、紫外線光電管110の劣化が定期的に判定される。   First, a case where deterioration determination is performed based on a time schedule will be described. The timing determination unit 82 causes the deterioration determination unit 81 to periodically perform deterioration determination based on a preset time schedule. Thereby, the deterioration of the ultraviolet phototube 110 is periodically determined.

次に、紫外線光電管110の電流レベルに基づいて劣化判定を行う場合について説明する。図3は、失火判定されるときの電流レベルの変動を模式的に示すグラフである。なお、図3のグラフは、電流レベルの変動を模式的に示すものであり、常時生じる電流レベルの振れ等は省略している。   Next, a case where the deterioration determination is performed based on the current level of the ultraviolet phototube 110 will be described. FIG. 3 is a graph schematically showing the fluctuation of the current level when the misfire is determined. Note that the graph of FIG. 3 schematically shows the fluctuation of the current level, and the fluctuation of the current level that always occurs is omitted.

電流レベルが所定範囲に入ったことをトリガとして失火判定又は劣化判定を行う。図3に示すように、所定範囲は、劣化や汚れの影響がない状態の紫外線光電管110が炎を正常に検出している状態の電流レベル(以下、正常電流レベルと称する)よりも低い範囲に設定されている。例えば、正常電流レベルが1.0〜0.9の範囲に設定されている場合、所定範囲は0.9よりも低い範囲に設定される。   A misfire determination or a deterioration determination is performed with the current level being in a predetermined range as a trigger. As shown in FIG. 3, the predetermined range is a range lower than a current level (hereinafter referred to as a normal current level) in a state where the ultraviolet phototube 110 in a state where there is no influence of deterioration or dirt normally detects a flame. Is set. For example, when the normal current level is set to a range of 1.0 to 0.9, the predetermined range is set to a range lower than 0.9.

判定電流レベルは、失火判定を行う基準となる電流レベルである。本実施形態の判定電流レベルは、所定範囲の下限値になっている。制御部80は、電流レベルがこの判定電流レベルを下回ると失火判定時間に入り、失火しているか否かを判定する。   The determination current level is a current level that serves as a reference for performing misfire determination. The determination current level of the present embodiment is a lower limit value within a predetermined range. When the current level falls below the determination current level, the control unit 80 enters a misfire determination time and determines whether or not a misfire has occurred.

失火確認時間は、失火判定を行うか否かを判断するために設けられる所定時間である。本実施形態では、制御部80は、所定範囲の上限を下回ると失火確認時間のカウントを行い、この失火確認時間中に判定電流レベルを下回ると失火判定を行うための失火判定時間に入る。失火判定時間は、失火しているか否かを判定するための時間であり、当該失火判定時間中に電流レベルが失火基準値を下回っている場合は失火していると判定される。なお、失火判定時間中は、後述の劣化判定は行われず、紫外線光電管110の受光部はシャッタ装置111によって遮光されない。   The misfire confirmation time is a predetermined time provided to determine whether or not to perform misfire determination. In the present embodiment, the control unit 80 counts the misfire confirmation time when it falls below the upper limit of the predetermined range, and enters the misfire judgment time for making the misfire judgment if the judgment current level falls below this misfire confirmation time. The misfire determination time is a time for determining whether or not a misfire has occurred. If the current level falls below the misfire reference value during the misfire determination time, it is determined that a misfire has occurred. During the misfire determination time, deterioration determination described later is not performed, and the light receiving portion of the ultraviolet phototube 110 is not shielded by the shutter device 111.

図3に示すように、所定範囲は、失火判定を行うか否かの基準になっている。紫外線光電管110が正常な状態(劣化が生じていない状態)では、バーナ11の炎が失火すると、電流レベルが低下し、所定範囲に達する。所定範囲に達すると失火確認時間のカウントが開始される。この失火確認時間中に、電流レベルが判定電流レベルを下回ると失火判定が行われる。紫外線光電管110が正常な状態で失火した場合、電流レベルは判定電流レベルを下回るので、失火判定時間に入り、失火か否かが判定される。   As shown in FIG. 3, the predetermined range is a criterion for determining whether or not to make a misfire determination. In a normal state (a state in which no deterioration has occurred) of the ultraviolet phototube 110, when the flame of the burner 11 is misfired, the current level decreases and reaches a predetermined range. When the predetermined range is reached, the misfire confirmation time is counted. If the current level falls below the determination current level during the misfire confirmation time, a misfire determination is performed. When the ultraviolet phototube 110 is misfired in a normal state, the current level is lower than the determination current level. Therefore, a misfire determination time is entered, and it is determined whether or not a misfire has occurred.

次に、電流レベルが所定範囲内に所定時間以上留まる場合の処理について説明する。図4は、自己放電により炎の誤検知が生じたときの電流レベルの変動を模式的に示すグラフである。図5は、汚れによって電流レベルが所定範囲まで低下したときの電流レベルの変動を模式的に示すグラフである。図4及び図5においても、図3と同様に、常時生じる電流レベルの振れ等は省略している。   Next, processing when the current level stays within a predetermined range for a predetermined time or more will be described. FIG. 4 is a graph schematically showing fluctuations in the current level when an erroneous flame detection occurs due to self-discharge. FIG. 5 is a graph schematically showing fluctuations in the current level when the current level is reduced to a predetermined range due to contamination. Also in FIGS. 4 and 5, like the case of FIG. 3, current level fluctuations that occur constantly are omitted.

紫外線光電管110の電流レベルが所定範囲に留まる原因として、紫外線光電管110の劣化による自己放電による場合(図4参照)と、紫外線光電管110の受光部の汚れ等を原因として紫外線光電管110の電流レベルが所定範囲に入る場合(図5参照)と、が考えられる。   The reason why the current level of the ultraviolet phototube 110 stays within a predetermined range is that the current level of the ultraviolet phototube 110 is caused by self-discharge due to deterioration of the ultraviolet phototube 110 (see FIG. 4) and due to contamination of the light receiving portion of the ultraviolet phototube 110. The case of entering the predetermined range (see FIG. 5) is considered.

まず、自己放電を原因として紫外線光電管110の電流レベルが所定範囲に入る場合について説明する。図4に示すように、誤判定を招くほどの劣化が進行している状態で、バーナ11の炎が失火した場合、電流レベルは正常電流レベルより低下するものの、シャッタ装置111で遮光状態にあっても自己放電の影響により判定電流レベルを下回らない。即ち、紫外線光電管110の劣化が進行している状態で、失火をきっかけとして電流レベルが所定範囲に入った場合、シャッタ装置111によって紫外線光電管110の受光部が遮光されても、自己放電によって炎有りと判定される。紫外線光電管110の劣化によって炎が誤検出されている場合、安全上の観点から速やかに燃料ガスの供給を停止することが望ましい。   First, the case where the current level of the ultraviolet phototube 110 falls within a predetermined range due to self-discharge will be described. As shown in FIG. 4, when the flame of the burner 11 is misfired in a state where deterioration that causes misjudgment has progressed, the current level is lower than the normal current level, but the shutter device 111 is in a light shielding state. However, it does not fall below the judgment current level due to the effect of self-discharge. That is, when the current level is in a predetermined range due to misfiring in a state where the deterioration of the ultraviolet phototube 110 is in progress, even if the light receiving portion of the ultraviolet phototube 110 is shielded by the shutter device 111, there is a flame due to self-discharge. It is determined. When a flame is erroneously detected due to deterioration of the ultraviolet phototube 110, it is desirable to stop the supply of fuel gas promptly from the viewpoint of safety.

次に、紫外線光電管110の受光部の汚れ等を原因として紫外線光電管110の電流レベルが所定範囲に入る場合について説明する。図5に示すように、紫外線光電管110の受光部が汚れることによっても、炎の紫外線の入射量が徐々に小さくなり、電流レベルが徐々に低下し、やがて電流レベルは所定範囲まで低下する。紫外線光電管110の受光部の汚れが進み、判定電流レベルを下回った場合は、炎が有るにも関わらず炎が無いと判断されることになるが、この場合は燃料ガスの供給が停止されるので、炎が無い状態にも関わらず燃料ガスが供給され続けることにはならない。従って、自己放電を原因として紫外線光電管110の電流レベルが所定範囲に入った場合に比べ、燃料ガスの供給を即座に停止する必要性は少ない。   Next, a case where the current level of the ultraviolet phototube 110 falls within a predetermined range due to contamination of the light receiving portion of the ultraviolet phototube 110 will be described. As shown in FIG. 5, even when the light receiving portion of the ultraviolet phototube 110 becomes dirty, the amount of incident ultraviolet rays of the flame gradually decreases, the current level gradually decreases, and eventually the current level decreases to a predetermined range. If the contamination of the light receiving portion of the UV photoelectric tube 110 progresses and falls below the determination current level, it is determined that there is no flame despite the presence of a flame. In this case, the supply of fuel gas is stopped. Therefore, the fuel gas will not continue to be supplied despite the absence of flame. Therefore, compared with the case where the current level of the ultraviolet photocell 110 falls within a predetermined range due to self-discharge, it is less necessary to stop the supply of fuel gas immediately.

以上説明したように、紫外線光電管110の劣化による自己放電を原因として電流レベルが正常電流レベルの範囲から所定範囲に低下した場合、失火していても炎有りと判定することになる。この場合、炎が無い状態にも関わらず、燃料供給ラインL10から燃料ガスが供給され続けるおそれがある。安全上の観点から、このような状態は速やかに検出することが好ましい。一方、上述のように、受光部の汚れによっても電流レベルが正常電流レベルの範囲から所定範囲に低下する場合もある。   As described above, when the current level falls from the normal current level range to the predetermined range due to self-discharge due to deterioration of the ultraviolet phototube 110, it is determined that there is a flame even if a misfire has occurred. In this case, the fuel gas may continue to be supplied from the fuel supply line L10 despite the absence of flame. From the viewpoint of safety, it is preferable to detect such a state promptly. On the other hand, as described above, the current level may fall from the range of the normal current level to the predetermined range due to contamination of the light receiving unit.

本実施形態の制御部80は、電流レベルが所定範囲に入った後に失火確認時間を経過しても所定範囲にある場合は、シャッタ装置111を用いた劣化判定を行う。図4に示すように、シャッタ装置111による遮光を行っても、電流レベルが判定電流レベルを上回る所定範囲にある場合は、自己放電を原因とする紫外線光電管110が使用限界に達していると判定する。   The control unit 80 according to the present embodiment performs deterioration determination using the shutter device 111 when the current level is within the predetermined range even after the misfire confirmation time has elapsed after entering the predetermined range. As shown in FIG. 4, even when light is shielded by the shutter device 111, if the current level is within a predetermined range that exceeds the determination current level, it is determined that the ultraviolet photoelectric tube 110 caused by self-discharge has reached the use limit. To do.

一方で、電流レベルが所定範囲に入っただけでは、紫外線光電管110の劣化が原因ではない可能性があるので、タイミング判定部82が、電流レベルが所定範囲に入り、失火確認時間を経過したことをトリガとして劣化判定部81に劣化判定を実行させることにより、電流レベルが所定範囲に入った原因を特定する。図5に示すように、紫外線光電管110の汚れを原因として電流レベルが所定範囲に入った場合、シャッタ装置111によって紫外線光電管110の受光部を遮光すると電流レベルは大きく低下する。このように、シャッタ装置111による遮光を行うと判定電流レベルを下回り所定範囲外になった場合は、受光部の汚れ等が原因であると判定するのである。電流レベルの挙動の違いにより、電流レベルが所定範囲に入った原因が、自己放電か紫外線光電管110の汚れかのいずれかを特定できるのである。   On the other hand, there is a possibility that the deterioration of the ultraviolet phototube 110 is not caused only by the current level being in the predetermined range. Therefore, the timing determination unit 82 has entered the predetermined range and the misfire confirmation time has elapsed. Is used as a trigger to cause the deterioration determination unit 81 to perform deterioration determination, thereby identifying the cause of the current level entering the predetermined range. As shown in FIG. 5, when the current level enters a predetermined range due to contamination of the ultraviolet phototube 110, the current level is greatly reduced when the light receiving portion of the ultraviolet phototube 110 is shielded by the shutter device 111. As described above, when the light is blocked by the shutter device 111 and falls below the determination current level and out of the predetermined range, it is determined that the light receiving portion is contaminated. Depending on the difference in the behavior of the current level, it is possible to specify whether the cause of the current level being in the predetermined range is self-discharge or contamination of the ultraviolet photoelectric tube 110.

また、本実施形態のタイミング判定部82は、上記の劣化判定に関する制御に加え、劣化判定の繰り返しを防ぐ劣化判定のタイミング制御を行っている。このタイミング制御について説明する。   Further, the timing determination unit 82 of the present embodiment performs deterioration determination timing control that prevents the deterioration determination from being repeated, in addition to the above-described control regarding deterioration determination. This timing control will be described.

劣化判定において、自己放電によって電流レベルがある程度上昇していても、電流レベルが判定電流レベルを上回らないことがある。このような状態でも炎の検知はできるため、紫外線光電管110の劣化が軽度な状態と言える(図5中の一点鎖線に示す軽度の劣化)。この場合、シャッタ装置111による遮光が行われても劣化判定は行われず、遮光が解除されると電流レベルは再び所定範囲に入る状態となる。本実施形態のタイミング判定部82は、このように電流レベルが所定範囲に入ったものの遮光された状態では判定電流レベルを下回る場合は、所定時間経過後に劣化判定を行うようにタイミング制御を行う。これにより、劣化判定の繰り返しを防ぐとともに、劣化が更に進行していると考えられるタイミングで劣化判定が行われるので、劣化判定を適切に行うことができる。   In the deterioration determination, even if the current level has increased to some extent due to self-discharge, the current level may not exceed the determination current level. Since the flame can be detected even in such a state, it can be said that the ultraviolet phototube 110 is slightly deteriorated (the light deterioration indicated by the one-dot chain line in FIG. 5). In this case, even if the shutter device 111 performs light shielding, the deterioration determination is not performed, and when the light shielding is released, the current level again enters a predetermined range. The timing determination unit 82 according to the present embodiment performs timing control so that the deterioration determination is performed after the elapse of a predetermined time when the current level falls within a predetermined range but is below the determination current level in a light-shielded state. Thereby, the deterioration determination is prevented and repeated, and the deterioration determination is performed at a timing at which the deterioration is considered to be further progressing. Therefore, the deterioration determination can be appropriately performed.

次に、紫外線光電管110の電流レベルを監視し、紫外線光電管110の失火判定及び劣化判定を実行する処理の流れについて説明する。図6は、電流レベルの変化に基づいて行われる劣化判定の流れを示すフローチャートである。なお、図5において、予め設定されたスケジュールに基づいて劣化判定を実行する処理及びタイミング制御については省略しており、このフローチャートは劣化判定に至る過程を概略的に示したものである。   Next, a flow of processing for monitoring the current level of the ultraviolet phototube 110 and executing the misfire determination and the deterioration determination of the ultraviolet phototube 110 will be described. FIG. 6 is a flowchart showing a flow of deterioration determination performed based on a change in current level. In FIG. 5, the process of performing the deterioration determination based on the preset schedule and the timing control are omitted, and this flowchart schematically shows the process leading to the deterioration determination.

タイミング判定部82は、紫外線光電管110の電流レベルを監視し、所定範囲内か否かを判定する(S101)。   The timing determination unit 82 monitors the current level of the ultraviolet photocell 110 and determines whether it is within a predetermined range (S101).

電流レベルが所定範囲に入った場合、失火確認時間のカウントが開始され、この失火確認時間中に電流レベルが判定電流レベルを下回ったか否かを判定する(S102)。   When the current level falls within the predetermined range, the misfire confirmation time is counted, and it is determined whether or not the current level has fallen below the determination current level during the misfire confirmation time (S102).

S102の処理で、電流レベルが失火確認時間中に判定電流レベルを下回った場合、失火判定処理を行う(S103)。本実施形態では、失火確認時間中に電流レベルが失火基準値を下回った場合に失火と判定する(S104)。失火判定の方法は、適宜変更することができる。S104の処理で失火状態にあると判定された場合は、報知部95による異常を報知するとともに燃料弁12を制御して燃料ガスの供給を停止する処理に移行する(S107)。失火していない場合は、S101の処理に戻る。   If the current level falls below the determination current level during the misfire confirmation time in the process of S102, a misfire determination process is performed (S103). In this embodiment, when the current level falls below the misfire reference value during the misfire confirmation time, it is determined that misfire has occurred (S104). The method of misfire determination can be changed as appropriate. If it is determined in the process of S104 that the vehicle is misfired, the abnormality is notified by the notification unit 95, and the process proceeds to the process of controlling the fuel valve 12 to stop the supply of fuel gas (S107). If there is no misfire, the process returns to S101.

S102の処理で、電流レベルが失火確認時間中に判定電流レベルを下回らなかった場合、劣化判定部81によって劣化判定処理を実行する(S105)。劣化判定処理では、シャッタ装置111の遮光部を閉位置に移動させて上述の劣化判定が行われる(S106)。   In the process of S102, when the current level does not fall below the determination current level during the misfire confirmation time, the deterioration determination unit 81 executes the deterioration determination process (S105). In the deterioration determination process, the above-described deterioration determination is performed by moving the light shielding portion of the shutter device 111 to the closed position (S106).

S106の劣化判定の結果、紫外線光電管110の劣化が使用限界に達したと判定された場合は、燃料弁12を閉位置に制御して燃料ガスの供給停止を行う(S107)。これにより、失火しているにも関わらず、燃料ガスが供給され続ける事態を確実に防止できる。なお、S103の劣化判定の結果、劣化状態でなかった場合は燃料ガスの供給停止は行わない。   As a result of the deterioration determination in S106, when it is determined that the deterioration of the ultraviolet photoelectric tube 110 has reached the use limit, the fuel valve 12 is controlled to the closed position and the supply of fuel gas is stopped (S107). As a result, it is possible to reliably prevent a situation in which fuel gas continues to be supplied despite a misfire. Note that if the result of the deterioration determination in S103 is that the deterioration state is not reached, the fuel gas supply is not stopped.

以上説明した本実施形態の炎検出装置100によれば、以下のような効果を奏する。本実施形態の炎検出装置100は、炎の光を検出すると電流が流れる紫外線光電管110と、紫外線光電管110から取得する電流レベルに基づいて炎の有無を判定する制御部80と、判定電流レベルを記憶する記憶部90と、を備える。制御部80は、紫外線光電管110の劣化判定を実行する劣化判定部81と、判定電流レベルよりも高く正常電流レベルよりも低く設定される所定範囲に、紫外線光電管110の電流レベルがあることを検出すると、劣化判定部81によって劣化判定を実行させるタイミング判定部82と、を有する。この構成により、誤判定を招く紫外線光電管110の劣化を速やかに検出することができる。また、紫外線光電管110の劣化を速やかに検出できるので、炎が無い状態にも関わらず有ると判定する炎の誤検出が生じる時間を効果的に削減できる。   According to the flame detection apparatus 100 of the present embodiment described above, the following effects can be obtained. The flame detection apparatus 100 according to the present embodiment includes an ultraviolet photoelectric tube 110 through which a current flows when flame light is detected, a control unit 80 that determines presence / absence of flame based on a current level acquired from the ultraviolet photoelectric tube 110, and a determination current level. And a storage unit 90 for storing. The control unit 80 detects that the current level of the ultraviolet photocell 110 is within a predetermined range that is set higher than the determination current level and lower than the normal current level. Then, it has the timing determination part 82 which makes the deterioration determination part 81 perform deterioration determination. With this configuration, it is possible to quickly detect deterioration of the ultraviolet phototube 110 that causes erroneous determination. Moreover, since the deterioration of the ultraviolet photoelectric tube 110 can be detected quickly, it is possible to effectively reduce the time during which a false detection of a flame that is determined to be present despite the absence of a flame occurs.

制御部80は、電流レベルが所定範囲に入ると、予め設定される失火確認時間のカウントを開始し、該失火確認時間中に電流レベルが判定電流レベルを下回った場合に失火判定を行う失火判定部83を更に有する。また、タイミング判定部82は、失火確認時間中に電流レベルが判定電流レベルを下回らなかった場合に劣化判定を実行させる。これにより、電流レベルが所定範囲に低下し、失火確認時間中に判定電流レベルを下回った場合は、劣化判定を行う前に失火判定が行われることになる。従って、劣化判定が行われた後に失火判定が行われる事態を回避でき、速やかな紫外線光電管110の劣化の検出とともに速やかな失火の検出を実現できる。   When the current level enters the predetermined range, the control unit 80 starts counting a preset misfire confirmation time, and performs misfire determination when the current level falls below the determination current level during the misfire confirmation time. A part 83 is further provided. In addition, the timing determination unit 82 causes the deterioration determination to be performed when the current level does not fall below the determination current level during the misfire confirmation time. As a result, when the current level falls to a predetermined range and falls below the determination current level during the misfire confirmation time, the misfire determination is performed before the deterioration determination is performed. Therefore, it is possible to avoid the situation where the misfire determination is performed after the deterioration determination is performed, and it is possible to realize the rapid detection of the misfire as well as the rapid detection of the deterioration of the ultraviolet photoelectric tube 110.

炎検出装置100は、検出対象の炎と紫外線光電管110の間を物理的に遮るシャッタ装置111を更に備える。劣化判定部81は、シャッタ装置111によって光を遮った状態で劣化判定を行い、紫外線光電管110の自己放電による炎の誤検出か否かを判定する。この構成により、電流レベルが所定範囲に入った原因を劣化によるものか、汚れによるものか、を正確に特定することができる。従って、紫外線光電管110の状況に即した制御を行うことができる。また、劣化判定を速やかに検出することができるので、定期的に劣化判定を行う間隔を大きくとることもでき、シャッタ装置111の耐用期間を延ばすことにも寄与できる。   The flame detection device 100 further includes a shutter device 111 that physically blocks between the flame to be detected and the ultraviolet photoelectric tube 110. The deterioration determination unit 81 performs deterioration determination in a state where light is blocked by the shutter device 111, and determines whether or not the flame is erroneously detected due to self-discharge of the ultraviolet phototube 110. With this configuration, it is possible to accurately specify whether the cause that the current level has entered the predetermined range is due to deterioration or contamination. Therefore, it is possible to perform control in accordance with the situation of the ultraviolet photoelectric tube 110. In addition, since the deterioration determination can be detected promptly, the interval for periodically performing the deterioration determination can be increased, which can contribute to extending the useful life of the shutter device 111.

本実施形態の炎検出装置100は、ボイラ1が備えるバーナ11の炎の検出を行う。このボイラ1は、劣化判定部81による紫外線光電管110の異常が判定された場合は、バーナ11への燃料の供給を停止する。これにより、炎が無い状態にも関わらず、燃料ガスが供給され続ける事態を確実に防止することができ、ボイラ1の安定的な稼動を実現できる。   The flame detection apparatus 100 of this embodiment detects the flame of the burner 11 with which the boiler 1 is provided. The boiler 1 stops supplying fuel to the burner 11 when the deterioration determination unit 81 determines that the ultraviolet phototube 110 is abnormal. Thereby, it is possible to reliably prevent the situation in which the fuel gas is continuously supplied in spite of the absence of the flame, and the boiler 1 can be stably operated.

以上、本発明の炎検出装置100の好ましい一実施形態について説明したが、本発明は、上述の実施形態に制限されるものではなく、適宜変更が可能である。   As mentioned above, although one preferable embodiment of the flame detection apparatus 100 of this invention was described, this invention is not restrict | limited to the above-mentioned embodiment, It can change suitably.

上記実施形態の図6を参照して説明した制御の流れは、一例であり、適宜変更することができる。例えば、劣化判定と失火判定をそれぞれ別々の制御とし、図6の処理から所定範囲をトリガとする失火確認の処理を省略することもできる。図7は、変形例における電流レベルの変化に基づいて行われる劣化判定の流れを示すフローチャートである。図7に示すフローチャートでは、失火確認時間中に電流レベルが判定電流レベルを下回るか否かの判定処理(S102)、失火判定処理(S103)及び失火判定(S104)に係る処理が省略されている。この変形例では、失火判定は、所定範囲に入ったか否かとは関係なく別のフローで処理されることになる。このように、本発明の劣化判定を行うための制御の流れは、事情に応じて適宜変更することができる。   The flow of control described with reference to FIG. 6 of the above embodiment is an example, and can be changed as appropriate. For example, the deterioration determination and the misfire determination may be separately controlled, and the misfire confirmation process using the predetermined range as a trigger from the process of FIG. 6 may be omitted. FIG. 7 is a flowchart showing a flow of deterioration determination performed based on a change in current level in the modification. In the flowchart shown in FIG. 7, the processes related to the determination process (S102), the misfire determination process (S103), and the misfire determination (S104) regarding whether or not the current level falls below the determination current level during the misfire confirmation time are omitted. . In this modification, the misfire determination is processed in a separate flow regardless of whether or not the predetermined range is entered. Thus, the flow of control for performing the deterioration determination of the present invention can be appropriately changed according to the circumstances.

上記実施形態では、所定時間に印加された駆動電圧の回数に対して電流が検出された回数の割合を電流レベルとして算出し、当該電流レベルに基づいて劣化判定を行っているが、この方式に限定されない。例えば、放電電流の回数や電流値を電流レベルとし、当該電流レベルの変動に基づいて劣化判定を行う構成としてもよい。このように、検出対象の電流レベルの算出方法又は取得方法は、事情に応じて適宜変更することができる。   In the above embodiment, the ratio of the number of times the current is detected with respect to the number of times of the drive voltage applied for the predetermined time is calculated as the current level, and the deterioration determination is performed based on the current level. It is not limited. For example, the number of discharge currents and the current value may be set as the current level, and the deterioration determination may be performed based on the change in the current level. Thus, the calculation method or acquisition method of the current level to be detected can be changed as appropriate according to circumstances.

上記実施形態では、シャッタ装置111を利用して劣化判定を行っているが、劣化判定は、この方式に限定されず、紫外線光電管110の受光部と炎との間を物理的に遮る構成に適宜変更することができる。また、シャッタ装置111による遮光以外の方法で劣化判定を行う構成としてもよい。例えば、紫外線光電管110に非劣化時の放電開始電圧より低い劣化判定電圧を印加し、この劣化判定電圧印加時に炎有り信号が出力されたとき、紫外線光電管の劣化と判定するようにしてもよい。このように、劣化判定の方式は事情に応じて適宜変更することができる。   In the above-described embodiment, the deterioration determination is performed using the shutter device 111. However, the deterioration determination is not limited to this method, and may be appropriately configured to physically block between the light receiving portion of the ultraviolet phototube 110 and the flame. Can be changed. Moreover, it is good also as a structure which performs degradation determination by methods other than the light shielding by the shutter apparatus 111. FIG. For example, a deterioration determination voltage lower than the discharge start voltage at the time of non-deterioration may be applied to the ultraviolet phototube 110, and it may be determined that the ultraviolet phototube has deteriorated when a flame signal is output when the deterioration determination voltage is applied. Thus, the deterioration determination method can be changed as appropriate according to circumstances.

上記実施形態では、電流レベルが所定範囲に入っていない場合であっても、予め設定されるタイムスケジュールに基づいて定期的に劣化判定を行う構成であるが、定期的に劣化判定を行う処理を省略することもできる。   In the above embodiment, even if the current level is not within the predetermined range, the deterioration determination is periodically performed based on a preset time schedule. It can be omitted.

上記実施形態では、ボイラ1に適用される炎検出装置100を例に本発明を説明したが、ボイラ1以外の炎が検出される必要がある種々の装置に本発明の炎検出装置100を適用することができる。   In the above embodiment, the present invention has been described by taking the flame detection device 100 applied to the boiler 1 as an example. However, the flame detection device 100 of the present invention is applied to various devices in which flames other than the boiler 1 need to be detected. can do.

1 ボイラ
11 バーナ(燃焼装置)
80 制御部
90 記憶部
81 劣化判定部
82 タイミング判定部
83 失火判定部
110 紫外線光電管
111 シャッタ装置(遮光装置)
1 Boiler 11 Burner (combustion device)
DESCRIPTION OF SYMBOLS 80 Control part 90 Memory | storage part 81 Degradation determination part 82 Timing determination part 83 Misfire determination part 110 Ultraviolet photoelectric tube 111 Shutter apparatus (light-shielding device)

Claims (4)

炎の光を検出すると電流が流れる炎検出部と、
前記炎検出部から取得する電流レベルに基づいて炎の有無を判定する制御部と、
炎を正常に検出している状態の正常電流レベルよりも低く設定され、炎の有無を判定する基準となる判定電流レベルを記憶する記憶部と、
を備え、
前記制御部は、
前記炎検出部の劣化判定を実行する劣化判定部と、
前記判定電流レベルよりも高く前記正常電流レベルよりも低く設定される所定範囲に、前記炎検出部の電流レベルがあることを検出すると、前記劣化判定部によって前記劣化判定を実行させるタイミング判定部と、
を有する炎検出装置。
A flame detection unit through which an electric current flows when detecting the light of the flame,
A controller that determines the presence or absence of flame based on the current level acquired from the flame detector;
A storage unit that stores a determination current level that is set lower than a normal current level in a state in which a flame is normally detected and serves as a reference for determining the presence or absence of a flame;
With
The controller is
A deterioration determination unit for performing deterioration determination of the flame detection unit;
A timing determination unit that executes the deterioration determination by the deterioration determination unit when detecting that the current level of the flame detection unit is within a predetermined range that is higher than the determination current level and lower than the normal current level; ,
A flame detection device.
前記制御部は、
電流レベルが前記所定範囲に入ると、予め設定される失火確認時間のカウントを開始し、該失火確認時間中に電流レベルが前記判定電流レベルを下回った場合に失火判定を行う失火判定部を更に有し、
前記タイミング判定部は、失火確認時間中に電流レベルが前記判定電流レベルを下回らなかった場合に前記劣化判定を実行させる請求項1に記載の炎検出装置。
The controller is
A misfire determination unit that starts counting a preset misfire confirmation time when the current level enters the predetermined range, and performs a misfire determination when the current level falls below the determination current level during the misfire confirmation time; Have
The flame detection device according to claim 1, wherein the timing determination unit causes the deterioration determination to be executed when a current level does not fall below the determination current level during a misfire confirmation time.
検出対象の炎と前記炎検出部の間を物理的に遮る遮光装置を更に備え、
前記劣化判定部は、
前記遮光装置によって光を遮った状態で前記劣化判定を行い、前記炎検出部の自己放電による炎の誤検出か否かを判定する請求項1又は2に記載の炎検出装置。
A light-shielding device that physically shields between the flame to be detected and the flame detector;
The deterioration determination unit
The flame detection device according to claim 1, wherein the deterioration determination is performed in a state where light is blocked by the light shielding device, and it is determined whether or not a flame is erroneously detected by self-discharge of the flame detection unit.
請求項1から3までの何れかに記載の炎検出装置と、
前記炎検出装置によって炎の検出が行われる燃焼装置と、
を備え、
前記劣化判定部による前記炎検出部の異常が判定された場合は、前記燃焼装置への燃料の供給を停止するボイラ。
The flame detection device according to any one of claims 1 to 3,
A combustion device in which flame is detected by the flame detection device;
With
The boiler which stops supply of the fuel to the said combustion apparatus, when the abnormality of the said flame | frame detection part is determined by the said deterioration determination part.
JP2015136072A 2015-07-07 2015-07-07 Flame detection device and boiler Active JP6536232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015136072A JP6536232B2 (en) 2015-07-07 2015-07-07 Flame detection device and boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015136072A JP6536232B2 (en) 2015-07-07 2015-07-07 Flame detection device and boiler

Publications (2)

Publication Number Publication Date
JP2017020794A true JP2017020794A (en) 2017-01-26
JP6536232B2 JP6536232B2 (en) 2019-07-03

Family

ID=57889401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015136072A Active JP6536232B2 (en) 2015-07-07 2015-07-07 Flame detection device and boiler

Country Status (1)

Country Link
JP (1) JP6536232B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200002551U (en) * 2019-05-16 2020-11-25 센서나인(주) Photoelectric tube using optical devices with different amplification and combustion control system including the photoelectric tube
KR20210105293A (en) * 2020-02-18 2021-08-26 아즈빌주식회사 Light detection system, discharge probability calculation method and light receiving amount measurement method
KR20210105299A (en) * 2020-02-18 2021-08-26 아즈빌주식회사 Light detection system, discharge probability calculation method, and light receiving amount measurement method
KR20210105292A (en) * 2020-02-18 2021-08-26 아즈빌주식회사 Light detection system, discharge probability calculation method and light receiving amount measurement method
KR20210105298A (en) * 2020-02-18 2021-08-26 아즈빌주식회사 Light detection system and discharge probability calculation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50104683A (en) * 1974-01-22 1975-08-18
JPH0238214Y2 (en) * 1985-06-26 1990-10-16
US6024561A (en) * 1999-01-20 2000-02-15 Autoflame Engineering Limited Monitoring for the presence of a flame in a burner
JP2002303420A (en) * 2001-04-02 2002-10-18 Miura Co Ltd Method for controlling flame detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50104683A (en) * 1974-01-22 1975-08-18
JPH0238214Y2 (en) * 1985-06-26 1990-10-16
US6024561A (en) * 1999-01-20 2000-02-15 Autoflame Engineering Limited Monitoring for the presence of a flame in a burner
JP2002303420A (en) * 2001-04-02 2002-10-18 Miura Co Ltd Method for controlling flame detector

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200002551U (en) * 2019-05-16 2020-11-25 센서나인(주) Photoelectric tube using optical devices with different amplification and combustion control system including the photoelectric tube
KR200493212Y1 (en) 2019-05-16 2021-02-18 센서나인(주) Photoelectric tube using optical devices with different amplification and combustion control system including the photoelectric tube
KR20210105293A (en) * 2020-02-18 2021-08-26 아즈빌주식회사 Light detection system, discharge probability calculation method and light receiving amount measurement method
KR20210105299A (en) * 2020-02-18 2021-08-26 아즈빌주식회사 Light detection system, discharge probability calculation method, and light receiving amount measurement method
KR20210105292A (en) * 2020-02-18 2021-08-26 아즈빌주식회사 Light detection system, discharge probability calculation method and light receiving amount measurement method
KR20210105298A (en) * 2020-02-18 2021-08-26 아즈빌주식회사 Light detection system and discharge probability calculation method
CN113340413A (en) * 2020-02-18 2021-09-03 阿自倍尔株式会社 Light detection system, discharge probability calculation method, and light receiving amount measurement method
KR102574676B1 (en) 2020-02-18 2023-09-04 아즈빌주식회사 Light detection system, discharge probability calculation method and light receiving amount measurement method
KR102574678B1 (en) 2020-02-18 2023-09-04 아즈빌주식회사 Light detection system and discharge probability calculation method
KR102574675B1 (en) 2020-02-18 2023-09-04 아즈빌주식회사 Light detection system, discharge probability calculation method and light receiving amount measurement method
KR102574680B1 (en) 2020-02-18 2023-09-04 아즈빌주식회사 Light detection system, discharge probability calculation method, and light receiving amount measurement method

Also Published As

Publication number Publication date
JP6536232B2 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
JP2017020794A (en) Flame detection device and boiler
JP5335057B2 (en) Gas leakage detection and supply control system and gas leakage detection and supply control method
JP2561981B2 (en) UV discharge tube failure detection device
JP4467447B2 (en) Leak sensor
JP2004219259A (en) Gas meter
JP2008089283A (en) Condition detection device for safety device
KR20140014744A (en) Method for control of empty heating in dishwasher water tank
JPH10267273A (en) Abnormality detecting method for flame detecting device for combustion device
CN111664936B (en) Method for detecting burner failure
JP4254074B2 (en) Method for controlling flame detector
KR101444840B1 (en) Flare line and monitoring system thereof
JP2005207965A (en) Gas cut-off method, and gas cut-off device
JP6454838B1 (en) Water level detection device and water level control device
JP5793693B2 (en) Flow measuring device
JP5393529B2 (en) Flame detection device
KR20140040945A (en) Flare line and monitoring system thereof
JP4669062B2 (en) Return safety confirmation method and electronic gas meter
JP5273966B2 (en) Water heater
JP6377897B2 (en) Alarm
JP2018179475A (en) Boiler system
JP4296915B2 (en) Gas shut-off device
JP6490949B2 (en) CO detection combustion equipment
TWI650519B (en) Flame current detecting and analyzing method of hot-water heater, and hot-water heater having the same
JP3663818B2 (en) Failure determination method in boiler
JP4550381B2 (en) Gas meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190520

R150 Certificate of patent or registration of utility model

Ref document number: 6536232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250