JP2017017968A - Current differential relay system - Google Patents

Current differential relay system Download PDF

Info

Publication number
JP2017017968A
JP2017017968A JP2015135768A JP2015135768A JP2017017968A JP 2017017968 A JP2017017968 A JP 2017017968A JP 2015135768 A JP2015135768 A JP 2015135768A JP 2015135768 A JP2015135768 A JP 2015135768A JP 2017017968 A JP2017017968 A JP 2017017968A
Authority
JP
Japan
Prior art keywords
current
differential relay
terminal
current differential
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015135768A
Other languages
Japanese (ja)
Other versions
JP6645759B2 (en
Inventor
幸輝 柴田
Koki Shibata
幸輝 柴田
幸奈 倉田
Yukina Kurata
幸奈 倉田
大野 博文
Hirobumi Ono
博文 大野
修 小笠原
Osamu Ogasawara
修 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015135768A priority Critical patent/JP6645759B2/en
Publication of JP2017017968A publication Critical patent/JP2017017968A/en
Application granted granted Critical
Publication of JP6645759B2 publication Critical patent/JP6645759B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a current differential relay system constituted by a plurality of current differential relay devices which manage control commands output from a plurality of protection control devices in a power system.SOLUTION: A current differential relay system 1 is connected through terminals A-D to an external electric power system, to perform the protection of an electric power system E of a protection target. The current differential relay system 1 includes current differential relay devices 21-24 and a cutoff device CB. The current differential relay devices 21-24 are installed corresponding to the terminals A-D. The current differential relay devices 21-24 are annularly disposed with a wired cable 3 which becomes a transmission line. Each current differential relay device 21-24 includes: a transmission line abnormality detection unit 7 which detects the abnormality of the transmission line; and a detection method changeover unit 9 which changes the detection method of an accident in the electric power system E, according to the abnormality of the transmission line.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、複数台の電流差動リレー装置より構成される電流差動リレーシステムに関する。電流差動リレー装置は、電力系統における複数の保護制御装置から出力される制御指令を管理する。   Embodiments described herein relate generally to a current differential relay system including a plurality of current differential relay devices. The current differential relay device manages control commands output from a plurality of protection control devices in the power system.

一般に、電流差動リレー装置においては、動作原理が簡単で、高感度かつ高速で事故を検出できることから、電力系統の保護に広く採用されている。しかし、送電線保護においては、送電線の各端子の電流データを伝送し合い、全端子分の電流データを収集して差動演算する方式を採用しているため、伝送不良時は全端子分の電流データが揃わないために差動電流を生じ、誤動作する可能性がある。このため、伝送路構成がオープン構成の場合は1か所、ループ構成の場合は2か所で伝送不良が生じると、システムロックとしている。   In general, current differential relay devices are widely used for power system protection because they have a simple operation principle and can detect accidents with high sensitivity and high speed. However, in the transmission line protection, the current data of each terminal of the transmission line is transmitted to each other, and the current data for all terminals is collected and differential operation is adopted. Since the current data is not prepared, a differential current is generated, which may cause a malfunction. For this reason, if a transmission failure occurs at one location when the transmission path configuration is an open configuration and at two locations when the loop configuration is a system configuration, the system is locked.

一方、伝送を必要とせず、電流差動リレー装置にハード構成が類似しているリレーとして、回線選択リレー(以下、バランスリレー)装置がある。バランスリレーは外部事故の場合は第一の回線と第二の回線に流れる電流が同じであるが、内部事故の場合は事故回線側に流れる電流が、もう一方の回線の電流より大きくなることを利用し、第一の回線と第二の回線の交差電流により事故検出を行うリレーである。   On the other hand, there is a line selection relay (hereinafter referred to as a balance relay) device as a relay that does not require transmission and has a hardware configuration similar to that of a current differential relay device. In the case of an external accident, the balance relay has the same current flowing in the first line and the second line, but in the case of an internal accident, the current flowing in the accident line side is larger than the current in the other line. This relay is used to detect accidents by crossing current between the first line and the second line.

しかし、バランスリレーは、二回線多端子系統においては、分岐併用端子に事故電流が分流するため、併用端子数が多いほど、各端子に流れる電流が小さくなり、地絡事故の場合、検出が困難になる。また、事故点によってはシリーストリップとなるため、端子数が多いほど事故除去時間も長い。   However, in the case of a balanced relay, in a two-line multi-terminal system, the fault current is diverted to the branch combination terminal. become. Moreover, since it becomes a series strip depending on the accident point, the larger the number of terminals, the longer the accident removal time.

以上の理由から、バランスリレーは伝送に関する問題はないが、4端子以上の系統には適用が難しい。このような問題に対し、3端子目以降を伝送路で接続し、零相交差電流の合成値を用いることで、伝送路で接続した端子をまとめて1端子とみなし、系統全体をあたかも3端子系統とみなすことで、端子数の問題を克服した通信型バランスリレーもある。しかし、バランスリレーや通信型バランスリレーは、電流差動リレーに比べると、保護性能が劣る。また、通信型バランスリレーは、短絡事故の場合は転送遮断にて遮断を行うため、全端子同時トリップができない。   For the above reasons, the balance relay has no problem regarding transmission, but it is difficult to apply to a system having four terminals or more. To solve this problem, the third and subsequent terminals are connected by a transmission line, and by using the composite value of the zero-phase crossing current, the terminals connected by the transmission line are collectively regarded as one terminal, and the entire system is as if three terminals. Some communication-type balance relays have overcome the problem of the number of terminals by considering them as systems. However, the balance relay and the communication type balance relay are inferior in protection performance as compared with the current differential relay. In addition, the communication type balance relay shuts off at the time of transfer interruption in the case of a short-circuit accident, so that all terminals cannot be tripped simultaneously.

このため、ハード類似性に着目し、一つの装置ソフトの中に、ループ構成のPCM電流差動リレーと通信型バランスリレーの機能を持ち、端子台の配線をつなぎかえることで装置ソフトの機能を切替える、保護機能が切り替え可能な電流差動リレー装置もある。しかし、この保護機能が切り替え可能な電流差動リレー装置は、自動的に保護機能が切り替わるわけではなく、端子台で切替えを行うために、PCM電流差動リレーとして運用している場合と、通信型バランスリレーとして運用している場合それぞれで、上述した問題点を克服できていない。   For this reason, paying attention to hardware similarity, one device software has the function of a loop configuration PCM current differential relay and communication type balance relay, and the function of the device software can be changed by switching the wiring of the terminal block. There is also a current differential relay device that can be switched and the protection function can be switched. However, the current differential relay device that can switch this protection function does not automatically switch the protection function. In each case of operating as a type balance relay, the above-mentioned problems cannot be overcome.

特開2006-223055号公報JP 2006-223055 特開2012-135150号公報JP 2012-135150 A

上述した、保護機能が切り替え可能な電流差動リレー装置においては、保護方式の切替えが端子台切替えである。電流差動リレーとして運用している場合は、伝送不良によるシステムロックが発生する可能性がある。また、通信型バランスリレーとして運用している場合は、電流差動リレーよりも内外部事故判定の精度が低い。そのため、短絡事故の場合においては、転送遮断にて遮断を行うため、全端子同時トリップできないことが課題であった。   In the above-described current differential relay device in which the protection function can be switched, the switching of the protection method is the terminal block switching. When operating as a current differential relay, a system lock may occur due to a transmission failure. Moreover, when operating as a communication-type balance relay, the accuracy of internal / external accident determination is lower than that of a current differential relay. Therefore, in the case of a short-circuit accident, since the transfer is cut off, it is a problem that all terminals cannot be tripped simultaneously.

本発明の実施形態ではこの点を解決すべく、伝送路平常時は電流差動リレーと同等の保護性能を有し、伝送不良時もシステムロックすることなく保護を継続できる、電流差動リレーシステムを提供することを目的とする。   In order to solve this point, the embodiment of the present invention has a protection performance equivalent to that of a current differential relay in a normal transmission line, and can continue protection without locking the system even when transmission is defective. The purpose is to provide.

本発明の実施形態における電流差動リレーシステムは、端子にて外部の電力系統と接続し、保護対象の電力系統の保護を行う電流差動リレーシステムであって、前記端子に対して設置され、電流差動リレーシステム内に設置された他の電流差動リレー装置と伝送路を介して通信を行う接続する電流差動リレー装置と、前記保護対象の電力系統を前記外部の電力系統から遮断する遮断装置と、を備え、前記電流差動リレー装置は、前記伝送路の異常の検出を行う伝送路異常検出部と、前記伝送路の異常に応じて前記電力系統内の事故の検出方法を切り替える検出方法切替部と、を備えることを特徴とする。   A current differential relay system in an embodiment of the present invention is a current differential relay system that is connected to an external power system at a terminal and protects a power system to be protected, and is installed with respect to the terminal, A current differential relay device that communicates with another current differential relay device installed in the current differential relay system via a transmission line, and shuts off the power system to be protected from the external power system A transmission line abnormality detection unit that detects an abnormality of the transmission line, and a method of detecting an accident in the power system according to the abnormality of the transmission line. And a detection method switching unit.

第1実施形態の電流差動リレーシステムの構成を示すブロック図である。It is a block diagram which shows the structure of the current differential relay system of 1st Embodiment. 第1実施形態の電流差動リレー装置の構成を示すブロック図である。It is a block diagram which shows the structure of the current differential relay apparatus of 1st Embodiment. 第1実施形態での伝送路の異常パターンの例を示す図である。It is a figure which shows the example of the abnormal pattern of the transmission line in 1st Embodiment. 第1実施形態での短絡事故の様子を示す図である。It is a figure which shows the mode of the short circuit accident in 1st Embodiment. 第1実施形態の電流差動リレーシステムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the current differential relay system of 1st Embodiment. 第1実施形態の変形例における伝送路の異常パターンの例を示す図である。It is a figure which shows the example of the abnormal pattern of the transmission line in the modification of 1st Embodiment. 第2実施形態の電流差動リレーシステムの構成を示すブロック図である。It is a block diagram which shows the structure of the current differential relay system of 2nd Embodiment. 第2実施形態の電流差動リレー装置の構成を示すブロック図である。It is a block diagram which shows the structure of the current differential relay apparatus of 2nd Embodiment. 第2実施形態の電流差動リレーシステムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the current differential relay system of 2nd Embodiment.

以下、本発明に係る電流差動リレーシステムの実施形態について、図面を参照して説明する。   Hereinafter, embodiments of a current differential relay system according to the present invention will be described with reference to the drawings.

[1.第1実施形態]
以下には、実施形態の第1実施形態である電流差動リレーシステムを図1〜図6を用いて説明する。本実施形態の電流差動リレー装置は、端子間の伝送不良時に差動演算に用いる電気量を各端子の交差電流とすることで系統保護を継続できることを特徴とする。
[1. First Embodiment]
Below, the current differential relay system which is 1st Embodiment of embodiment is demonstrated using FIGS. The current differential relay device according to the present embodiment is characterized in that system protection can be continued by using the amount of electricity used for differential calculation when a transmission failure between terminals is used as a cross current of each terminal.

図1は、本実施形態の電流差動リレーシステムの構成を示すブロック図である。図1を参照しつつ、本実施形態の電流差動リレーシステム1を詳細に説明する。本実施形態の電流差動リレーシステム1は、以下の(a)、(b)の装置より構成される。
(a)電力系統Eに設置された変流器CTより算出した電気量に基づいて、電力系統Eの事故の検出を行い、事故を検出した場合には、遮断装置CBに対して遮断指令を出力する電流差動リレー装置2。
(b)電流差動リレー装置2から出力される遮断指令に基づいて、電力系統Eを他の電力系統から遮断させる遮断装置CB。
FIG. 1 is a block diagram showing the configuration of the current differential relay system of this embodiment. The current differential relay system 1 of the present embodiment will be described in detail with reference to FIG. The current differential relay system 1 of the present embodiment includes the following devices (a) and (b).
(A) Based on the amount of electricity calculated from the current transformer CT installed in the electric power system E, an accident in the electric power system E is detected, and when an accident is detected, an interruption command is issued to the interruption device CB. Current differential relay device 2 to output.
(B) A shut-off device CB that shuts off the power system E from other power systems based on a cut-off command output from the current differential relay device 2.

(電流差動リレー装置)
電流差動リレー装置2は、電力系統Eから取得した電気量に基づいて電力系統E内の事故の検出を行う。電力系統Eは、平行2回線4端子の例である。電力系統Eは、送電線1L、2Lからなる。電力系統Eは、端子A〜Dにより外部の電力系統と接続する。電力系統Eの4つの端子A〜Dには、2本の送電線1L、2Lが接続する。
(Current differential relay device)
The current differential relay device 2 detects an accident in the power system E based on the amount of electricity acquired from the power system E. The electric power system E is an example of parallel 2-line 4-terminal. The electric power system E includes transmission lines 1L and 2L. The power system E is connected to an external power system through terminals A to D. Two power transmission lines 1L and 2L are connected to the four terminals A to D of the power system E.

A端子とB端子とは、送電線1L、2Lにより接続される。送電線1L、2Lは、電気的に平行である。A端子とB端子とを接続する送電線1L、2Lには、それぞれ2つの節a、bが設けられる。それぞれの節a、bからは、送電線が1本ずつ枝分かれする。各節a、bにおいて、各送電線1L、2Lより枝分かれした2本の送電線1L、2Lは、電気的に平行となる。節aから枝分かれした2本の送電線1L、2Lは、端子Dと接続する。節bから枝分かれした2本の送電線1L、2Lは、端子Cと接続する。   The A terminal and the B terminal are connected by power transmission lines 1L and 2L. The power transmission lines 1L and 2L are electrically parallel. Two nodes a and b are provided in the power transmission lines 1L and 2L connecting the A terminal and the B terminal, respectively. From each node a and b, one transmission line branches. In each node a and b, the two power transmission lines 1L and 2L branched from the power transmission lines 1L and 2L are electrically parallel to each other. The two power transmission lines 1L and 2L branched from the node a are connected to the terminal D. The two power transmission lines 1L and 2L branched from the node b are connected to the terminal C.

電流差動リレー装置2は、電力系統Eの端子の数と同数設置される。電流差動リレー装置2は、1つの端子に対して1台設置される。電流差動リレー装置2は、各端子A〜Dの送電線に1L、2Lに設置された変流器CTと接続される。変流器CTは送電線1L、2Lに流れる電流の値及び向きを検出する。本実施形態では、4つの端子を有する電力系統Eに対して、4台の電流差動リレー装置21〜24が配置される。例えば、端子Aに対して設置された電流差動リレー装置21は、送電線L1の端子A近傍に設置された変流器CTAL1と、送電線L2の端子A近傍に設置された変流器CTAL2に接続される。 The current differential relay device 2 is installed in the same number as the number of terminals of the electric power system E. One current differential relay device 2 is installed for one terminal. The current differential relay device 2 is connected to current transformers CT installed at 1L and 2L on the power transmission lines of the terminals A to D. The current transformer CT detects the value and direction of the current flowing through the transmission lines 1L and 2L. In the present embodiment, four current differential relay devices 21 to 24 are arranged for a power system E having four terminals. For example, the current differential relay device 21 installed for the terminal A includes a current transformer CT AL1 installed in the vicinity of the terminal A of the transmission line L1, and a current transformer installed in the vicinity of the terminal A of the transmission line L2. Connected to CT AL2 .

電流差動リレー装置21〜24は、有線ケーブル3により接続される。有線ケーブル3が、電流差動リレー装置21〜24を繋ぐ伝送路となる。電流差動リレー装置21〜24は、有線ケーブル3により環状に接続される。図1では、電流差動リレー装置21は、電流差動リレー装置22と接続される。電流差動リレー装置22は、電流差動リレー装置23と接続される。電流差動リレー装置24は、電流差動リレー装置21と接続される。電流差動リレー装置21〜24は、有線ケーブル3を介して双方向に伝送可能に接続される。   The current differential relay devices 21 to 24 are connected by a wired cable 3. The wired cable 3 serves as a transmission line that connects the current differential relay devices 21 to 24. The current differential relay devices 21 to 24 are connected in a ring shape by a wired cable 3. In FIG. 1, the current differential relay device 21 is connected to the current differential relay device 22. The current differential relay device 22 is connected to the current differential relay device 23. The current differential relay device 24 is connected to the current differential relay device 21. The current differential relay devices 21 to 24 are connected via the wired cable 3 so as to be able to transmit in both directions.

電流差動リレー装置21〜24は、電力系統Eに設置された変流器CTより算出した電気量に基づいて、電力系統Eの事故の検出を行い、事故を検出した場合には、遮断装置CBに対して遮断指令を出力する。図2は、本実施形態における電流差動リレー装置2の構成を示すブロック図である。図2に示す通り、電気量取得部4、電気量記憶部5、伝送手段6、伝送路異常検出部7、伝送路異常判定部8、検出方法切替部9、差動電流算出部10、内部事故検出部11、保護指令出力部12、交差電流算出部13、及び短絡検出部14を備える。   The current differential relay devices 21 to 24 detect an accident in the electric power system E based on the amount of electricity calculated from the current transformer CT installed in the electric power system E. A shutoff command is output to CB. FIG. 2 is a block diagram showing a configuration of the current differential relay device 2 in the present embodiment. As shown in FIG. 2, the electric quantity acquisition unit 4, the electric quantity storage unit 5, the transmission unit 6, the transmission line abnormality detection unit 7, the transmission line abnormality determination unit 8, the detection method switching unit 9, the differential current calculation unit 10, the internal An accident detection unit 11, a protection command output unit 12, a cross current calculation unit 13, and a short circuit detection unit 14 are provided.

電気量取得部4は、端子近傍の送電線1L、2Lに設置される変流器CTと接続される。電気量取得部4は、接続する変流器CTが計測した電流値I1L、I2Lを受信する。電気量取得部4は、受信した電流値I1L、I2Lを電気量記憶部5に転送する。例えば、端子Aに対して設置された電流差動リレー装置21の電気量取得部4は、端子Aにおける電流値I1L、I2Lを取得する。 The electric quantity acquisition unit 4 is connected to a current transformer CT installed in the power transmission lines 1L and 2L near the terminals. The electrical quantity acquisition unit 4 receives the current values I 1L and I 2L measured by the connected current transformer CT. The electrical quantity acquisition unit 4 transfers the received current values I 1L and I 2L to the electrical quantity storage unit 5. For example, the electrical quantity acquisition unit 4 of the current differential relay device 21 installed with respect to the terminal A acquires the current values I 1L and I 2L at the terminal A.

伝送手段6は、有線ケーブル3を介して他の電流差動リレー装置の伝送手段6と接続される。伝送手段6は、他の電流差動リレー装置の伝送手段6が送信する電気量を受信する。一方、伝送手段6は、電気量記憶部5に記憶された電気量を他の電流差動リレー装置に対して送信する。例えば、端子Aに対して設置された電流差動リレー装置21の伝送手段6は、端子B〜Dにおける電流値I1L、I2Lを受信する。また、端子B〜Dに対して設置された電流差動リレー装置22〜24に対して電流値I1L、I2Lを送信する。この場合、端子Aに対して設置された電流差動リレー装置21と、端子Cに対して設置された電流差動リレー装置24とは、有線ケーブル3で直接で接続されていない。そのため、電流差動リレー装置21と電流差動リレー装置23との通信は、端子Bに設置された電流差動リレー装置22または端子Dに対して設置された電流差動リレー装置24を介して行われる。 The transmission means 6 is connected to the transmission means 6 of another current differential relay device via the wired cable 3. The transmission means 6 receives the amount of electricity transmitted by the transmission means 6 of another current differential relay device. On the other hand, the transmission means 6 transmits the electrical quantity stored in the electrical quantity storage unit 5 to other current differential relay devices. For example, the transmission means 6 of the current differential relay device 21 installed with respect to the terminal A receives the current values I 1L and I 2L at the terminals B to D. In addition, current values I 1L and I 2L are transmitted to the current differential relay devices 22 to 24 installed for the terminals B to D. In this case, the current differential relay device 21 installed for the terminal A and the current differential relay device 24 installed for the terminal C are not directly connected by the wired cable 3. Therefore, communication between the current differential relay device 21 and the current differential relay device 23 is performed via the current differential relay device 22 installed at the terminal B or the current differential relay device 24 installed at the terminal D. Done.

電気量記憶部5は、差動電流及び交差電流の計算に必要な電気量を記憶する。差動電流の計算は、後述するように、送電線1L、2Lごとに差動電流の計算を行う。差動電流の計算に必要な電気量は、各端子における電流値及び向きである。電気量記憶部には、自電流差動リレー装置2で取得した送電線1L及び2Lの電流値I1L、I2Lと、他の電流差動リレー装置2より転送された送電線1L及び2Lの電流値I1L、I2Lと、が記憶される。 The electric quantity storage unit 5 stores an electric quantity necessary for calculating the differential current and the crossing current. As will be described later, the differential current is calculated for each of the power transmission lines 1L and 2L. The amount of electricity required for calculating the differential current is the current value and direction at each terminal. In the electric quantity storage unit, the current values I 1L and I 2L of the power transmission lines 1L and 2L acquired by the self-current differential relay device 2 and the power transmission lines 1L and 2L transferred from other current differential relay devices 2 are stored. The current values I 1L and I 2L are stored.

伝送路異常検出部7は、電流差動リレー装置21〜24間の状態を監視し、電流差動リレー装置21〜24間の伝送異常の検出を行う。電流差動リレー装置21〜24間で例えば監視フレームを送信し、その応答を監視することにより伝送異常の検出を行う。伝送路異常検出部7は、2区間以上の伝送異常を検出した場合、電流差動リレー装置21の伝送路異常検出部7は、電流差動リレー装置22〜24の伝送路異常検出部7に対して監視フレームを送信する。監視フレームを受信した電流差動リレー装置22〜24の伝送路異常検出部7では、監視フレームの発信元である電流差動リレー装置21に対して受信結果を送信する。電流差動リレー装置21の伝送異常検出部7から電流差動リレー装置22に対して送信した監視フレームに対する応答がない場合には、電流差動リレー装置21と電流差動リレー装置22との間で2区間以上の伝送異常が発生していると特定する。   The transmission line abnormality detection unit 7 monitors the state between the current differential relay devices 21 to 24 and detects a transmission abnormality between the current differential relay devices 21 to 24. For example, a monitoring frame is transmitted between the current differential relay devices 21 to 24, and a response is detected by monitoring the response. When the transmission line abnormality detection unit 7 detects a transmission abnormality in two or more sections, the transmission line abnormality detection unit 7 of the current differential relay device 21 is connected to the transmission line abnormality detection unit 7 of the current differential relay devices 22 to 24. A monitoring frame is transmitted. The transmission line abnormality detection unit 7 of the current differential relay devices 22 to 24 that has received the monitoring frame transmits the reception result to the current differential relay device 21 that is the transmission source of the monitoring frame. When there is no response to the monitoring frame transmitted from the transmission abnormality detection unit 7 of the current differential relay device 21 to the current differential relay device 22, the current differential relay device 21 and the current differential relay device 22 are not connected. In this case, it is determined that a transmission abnormality has occurred in two or more sections.

伝送路異常判定部8は、伝送路異常検出部7での検出結果に基づいて、伝送路の状態の判定を行う。伝送路異常判定部8は、伝送路の状態を以下のように判定する。
(i)伝送路異常無し
(ii)電流差動リレー装置の何れかが、他の電流差動リレー装置とは伝送不可能
The transmission line abnormality determination unit 8 determines the state of the transmission line based on the detection result in the transmission line abnormality detection unit 7. The transmission line abnormality determination unit 8 determines the state of the transmission line as follows.
(I) No transmission line abnormality (ii) Any of the current differential relay devices cannot transmit to other current differential relay devices

図3(a)〜(d)は、本実施形態の電流差動リレー装置21〜24間の伝送状態を示す図である。   3A to 3D are diagrams illustrating transmission states between the current differential relay devices 21 to 24 of the present embodiment.

(i)伝送路異常無し
伝送異常無しの状態とは、電流差動リレー装置21〜24間で伝送可能な状態を示す。つまり、図3(a)に示すように、どの区間でも伝送不良が発生していない状態や、図3(b)に示すように、電流差動リレー装置21〜24間で1か所伝送不良が発生した状態を示す。電流差動リレー装置21〜24は、環状に接続されている。そのため、1か所伝送不良が発生しても、正常な伝送経路により電流差動リレー装置21〜24は接続される。
(I) No transmission line abnormality The state without transmission abnormality indicates a state in which transmission between the current differential relay devices 21 to 24 is possible. That is, as shown in FIG. 3 (a), a transmission failure does not occur in any section, or as shown in FIG. 3 (b), transmission failure occurs at one place between the current differential relay devices 21-24. Indicates the state where has occurred. The current differential relay devices 21 to 24 are connected in a ring shape. Therefore, even if a transmission failure occurs at one place, the current differential relay devices 21 to 24 are connected through a normal transmission path.

(ii)電流差動リレー装置の何れかが、他の電流差動リレー装置とは伝送不可能
電流差動リレー装置2の何れかが、他の電流差動リレー装置とは伝送不可能な状態とは、伝送路に異常がある状態を示す。そのため、電力系統内の電流差動リレー装置21〜24の何れかが、他の電流差動リレー装置とは伝送不可能となる状態を示す。例えば、図3(d)では、電流差動リレー装置21が他の電流差動リレー装置22〜24と伝送不可能な状態である。
(Ii) Any of the current differential relay devices cannot transmit to other current differential relay devices Any of the current differential relay devices 2 cannot transmit to other current differential relay devices Indicates a state in which there is an abnormality in the transmission path. Therefore, one of the current differential relay devices 21 to 24 in the power system indicates a state in which transmission with other current differential relay devices is impossible. For example, in FIG.3 (d), the current differential relay apparatus 21 is a state which cannot transmit with the other current differential relay apparatuses 22-24.

検出方法切替部9は、伝送路異常検出部7における伝送異常の検出結果に基づいて、電力系統での事故の検出方法の切替えを行う。検出方法切替部9は、差動電流による内部事故の検出と、交差電流による電力系統内での短絡の検出とを切替える。検出方法切替部9では、伝送路異常判定部8で、「(i)伝送異常無し」と判定した場合には、差動電流による内部事故の検出を選択する。一方、伝送路異常判定部8で、「(ii)電流差動リレー装置の何れかが、他の電流差動リレー装置とは伝送不可能」と判定した場合には、交差電流の差動電流による短絡の検出を選択する。   The detection method switching unit 9 switches an accident detection method in the power system based on the detection result of the transmission abnormality in the transmission line abnormality detection unit 7. The detection method switching unit 9 switches between detection of an internal accident due to a differential current and detection of a short circuit in the power system due to a cross current. In the detection method switching unit 9, when the transmission line abnormality determination unit 8 determines “(i) No transmission abnormality”, it selects detection of an internal accident due to a differential current. On the other hand, when the transmission line abnormality determination unit 8 determines that “(ii) any of the current differential relay devices cannot transmit to other current differential relay devices”, the cross-current differential current Select short-circuit detection by.

差動電流算出部10は、電気量記憶部5に記憶された自電流差動リレー装置2で取得した電気量と、他電流差動リレー装置2で取得した電気量より差動電流を算出する。差動電流とは、電力系統Eに流入する電流、及び電力系統Eから流出する電流の総和である。差動電流算出部10は、送電線L1及び送電線L2において、それぞれの送電線における差動電流ΣI1L、ΣI2Lを算出する。差動電流ΣI1L、ΣI2Lは、下記の式(1)より算出される。 The differential current calculation unit 10 calculates a differential current from the amount of electricity acquired by the self-current differential relay device 2 stored in the amount-of-electricity storage unit 5 and the amount of electricity acquired by the other current differential relay device 2. . The differential current is the sum of the current flowing into the power system E and the current flowing out from the power system E. The differential current calculation unit 10 calculates the differential currents ΣI 1L and ΣI 2L in the respective transmission lines in the transmission line L1 and the transmission line L2. The differential currents ΣI 1L and ΣI 2L are calculated from the following equation (1).

[式1]
差動電流ΣI1L=I1L(端子A)+I1L(端子B)+I1L(端子C)+I1L(端子D)
差動電流ΣI2L=I2L(端子A)+I2L(端子B)+I2L(端子C)+I2L(端子D)
・・・・(1)
[Formula 1]
Differential current ΣI 1L = I 1L (terminal A) + I 1L (terminal B) + I 1L (terminal C) + I 1L (terminal D)
Differential current ΣI 2L = I 2L (terminal A) + I 2L (terminal B) + I 2L (terminal C) + I 2L (terminal D)
(1)

内部事故検出部11は、電力系統E内の事故の検出を行う。事故の検出は、差動電流算出部10での算出結果に基づく。内部事故検出部11は、差動電流ΣI1L、または差動電流ΣI2Lが0であるか否かで内部事故の検出を行う。すなわち、差動電流ΣI1L、または差動電流ΣI2Lが0(ΣI1L=0orΣI2L=0)であれば、電力系統E内で事故が発生していないとする。一方、差動電流ΣI1L、または差動電流ΣI2Lが0でない場合(ΣI1L≠0orΣI2L≠0)には、電力系統E内で事故が発生したとする。但し、一般的には所定の大きさを超えた場合に事故が発生したとする。 The internal accident detection unit 11 detects an accident in the electric power system E. The detection of the accident is based on the calculation result in the differential current calculation unit 10. The internal accident detection unit 11 detects an internal accident depending on whether the differential current ΣI 1L or the differential current ΣI 2L is zero. That is, if the differential current .SIGMA.I 1L or differential current .SIGMA.I 2L is 0, (ΣI 1L = 0orΣI 2L = 0), the accident in the power system E does not occur. On the other hand, when the differential current ΣI 1L or the differential current ΣI 2L is not 0 (ΣI 1L ≠ 0 or ΣI 2L ≠ 0), it is assumed that an accident has occurred in the power system E. However, in general, it is assumed that an accident occurs when a predetermined size is exceeded.

交差電流算出部13は、電気量記憶部5に記憶された電気量より交差電流の算出を行う。交差電流とは、端子に接続する送電線L1に流れる電流I1Lと、送電線L2に流れる電流I2Lの差より算出する。端子A〜Dの交差電流を交差電流IAR〜IDRとする。交差電流IAR〜IDRは、下記の式(2)より算出される。 The cross current calculation unit 13 calculates the cross current from the amount of electricity stored in the electricity amount storage unit 5. The crossing current is calculated from the difference between the current I1L flowing through the power transmission line L1 connected to the terminal and the current I2L flowing through the power transmission line L2. The cross currents of the terminals A to D are defined as cross currents I AR to I DR . The cross currents I AR to I DR are calculated from the following equation (2).

[式2]
交差電流IAR=I1L(端子A)−I2L(端子A)
交差電流IBR=I1L(端子B)−I2L(端子B)
交差電流ICR=I1L(端子C)−I2L(端子C)
交差電流IDR=I1L(端子D)−I2L(端子D)
・・・・(2)
[Formula 2]
Cross current I AR = I 1L (terminal A) −I 2L (terminal A)
Cross current I BR = I 1L (terminal B) −I 2L (terminal B)
Cross current I CR = I 1L (terminal C) −I 2L (terminal C)
Cross current I DR = I 1L (terminal D) −I 2L (terminal D)
(2)

短絡検出部14は、電力系統E内の短絡の検出を行う。短絡の検出方法としては、交差電流IAR〜IDRが所定の大きさを超えた場合に、事故が発生したとする。 The short circuit detection unit 14 detects a short circuit in the power system E. As a short-circuit detection method, it is assumed that an accident occurs when the cross currents I AR to I DR exceed a predetermined magnitude.

保護指令出力部12は、内部事故検出部11で内部事故を検出した場合、または短絡検出部14で短絡の発生を検出した場合に、遮断装置CBに対して、遮断指令を出力する。   The protection command output unit 12 outputs a cutoff command to the cutoff device CB when the internal fault detection unit 11 detects an internal fault or when the short-circuit detection unit 14 detects the occurrence of a short circuit.

(遮断装置)
遮断装置CBは、遮断指令を受けて電力系統Eを他の電力系統から切り離す。遮断装置CBは、メカニカルな接点である。遮断装置CBは、通常時には接点を閉じている。一方、遮断指令を受信した場合には、接点を開放する。
(Blocking device)
The cutoff device CB receives the cutoff command and disconnects the power system E from the other power systems. The breaking device CB is a mechanical contact. The breaker CB normally closes the contacts. On the other hand, when the interruption command is received, the contact is opened.

遮断装置CBは、送電線L1及び送電線L2の端子A〜Dの近傍に設置される。遮断装置CBは、図示しないネットワークにより電流差動リレー装置21〜24と接続される。遮断装置CBには、電流差動リレー装置21〜24の遮断指令出力部12が出力した遮断指令が転送される。   The blocking device CB is installed in the vicinity of the terminals A to D of the power transmission line L1 and the power transmission line L2. The breaking device CB is connected to the current differential relay devices 21 to 24 through a network (not shown). The cutoff command output by the cutoff command output unit 12 of the current differential relay devices 21 to 24 is transferred to the cutoff device CB.

[1−2.作用]
以上の様な構成を有する本実施形態の電流差動リレーシステム1における動作について説明する。図5は、本実施形態の電流差動リレーシステム1の動作を示すフローチャートである。
[1-2. Action]
The operation in the current differential relay system 1 of the present embodiment having the above configuration will be described. FIG. 5 is a flowchart showing the operation of the current differential relay system 1 of the present embodiment.

以下のフローチャートでは、説明のために図4のように電流差動リレー装置21と電流差動リレー装置24との間、及び電流差動リレー装置22と電流差動リレー装置23との間で伝送不良が発生したとする。この状態で、送電線L1の端子Aと端子Bとの間で短絡事故が発生したとする。   In the following flowchart, transmission is performed between the current differential relay device 21 and the current differential relay device 24 and between the current differential relay device 22 and the current differential relay device 23 as illustrated in FIG. Assume that a defect has occurred. In this state, it is assumed that a short circuit accident has occurred between the terminal A and the terminal B of the power transmission line L1.

電流差動リレーシステム1が運用を開始すると、各電流差動リレー装置21〜24は自端子に設置された変流器CTから電流値I1L、I2Lを取得する。ここで取得した電流値I1L、I2Lは、電気量として電気量記憶部5に記憶される(STEP101)。 When the current differential relay system 1 starts operation, each of the current differential relay devices 21 to 24 acquires the current values I 1L and I 2L from the current transformer CT installed at its own terminal. The current values I 1L and I 2L acquired here are stored in the electric quantity storage unit 5 as electric quantities (STEP 101).

次に、各電流差動リレー装置21〜24間で、電気量の共有を図る(STEP102)。電気量の共有は、各電流差動リレー装置21〜24を繋ぐ有線ケーブル3を介して行われる。各電流差動リレー装置21〜24の伝送手段6は、自電流差動リレー装置2で取得した電気量を他の電流差動リレー装置2に送信する。一方、他の電流差動リレー装置2から送信される電気量を受信し、電気量記憶部5に記憶する。   Next, the amount of electricity is shared between the current differential relay devices 21 to 24 (STEP 102). Sharing of the amount of electricity is performed via a wired cable 3 that connects the current differential relay devices 21 to 24. The transmission means 6 of each current differential relay device 21 to 24 transmits the amount of electricity acquired by the self-current differential relay device 2 to the other current differential relay device 2. On the other hand, the electric quantity transmitted from the other current differential relay device 2 is received and stored in the electric quantity storage unit 5.

STEP101、STEP102と並行して、伝送路の異常検出を行う(STEP103)。伝送路の異常検出には、各電流差動リレー装置21〜24より、監視フレームを送信することで行う。   In parallel with STEP 101 and STEP 102, the transmission line abnormality is detected (STEP 103). Transmission line abnormality detection is performed by transmitting a monitoring frame from each of the current differential relay devices 21 to 24.

伝送路異常判定部8は、伝送路の異常検出の結果に基づいて、伝送路の異常を判定する。伝送路の異常判定は、伝送路に2以上の異常の有無(S104)の判定を行う。   The transmission line abnormality determination unit 8 determines the abnormality of the transmission line based on the detection result of the transmission line abnormality. In the transmission line abnormality determination, it is determined whether or not there are two or more abnormalities in the transmission line (S104).

伝送路に2以上の異常がない場合(STEP104:NO)には、電気量記憶部5を参照して、送電線L1、L2毎の差動電流のΣI1L、ΣI2Lを算出する(STEP105)。そして、差動電流ΣI1L、ΣI2Lより内部事故の検出を行う(STEP106)。内部事故が検出された場合には、その遮断装置CBに対して遮断指令を出力する(STEP107)。遮断装置CBでは、遮断指令の受信に基づいて、電力系統Eを他の電力系統から切り離すように接点を開放する。 When there are no two or more abnormalities in the transmission line (STEP 104: NO), the ΣI 1L and ΣI 2L of the differential current for each of the transmission lines L1 and L2 are calculated with reference to the electrical quantity storage unit 5 (STEP 105). . Then, an internal accident is detected from the differential currents ΣI 1L and ΣI 2L (STEP 106). When an internal accident is detected, a cutoff command is output to the cutoff device CB (STEP 107). In the interruption | blocking apparatus CB, based on reception of interruption | blocking instruction | command, a contact is open | released so that the electric power grid | system E may be cut off from another electric power grid | system.

一方、2以上の伝送路に異常がある場合(STEP104:YES)には、電気量記憶部5を参照して、自端子と伝送可能な他端子における交差電流を算出する(STEP108)。そして、算出した交差電流より短絡の検出を行う(S109)。短絡が検出され場合には、遮断装置CBに対して遮断指令を出力する(STEP107)。遮断装置CBでは、遮断指令の受信に基づいて、電力系統Eを他の電力系統から切り離すように接点を開放する。   On the other hand, when there is an abnormality in two or more transmission paths (STEP 104: YES), the crossover current at the other terminal that can transmit with the own terminal is calculated with reference to the electric quantity storage unit 5 (STEP 108). Then, a short circuit is detected from the calculated crossing current (S109). If a short circuit is detected, a cutoff command is output to the cutoff device CB (STEP 107). In the interruption | blocking apparatus CB, based on reception of interruption | blocking instruction | command, a contact is open | released so that the electric power grid | system E may be cut off from another electric power grid | system.

[1−3.効果]
以上のような構成及び作用を有する本実施形態によれば、以下のような効果を奏する。
[1-3. effect]
According to the present embodiment having the configuration and operation as described above, the following effects can be obtained.

(1)電流差動リレーシステム1内の電流差動リレー装置21〜24の伝送経路の状態に応じて、その状態に適した電力系統の保護を実施することができる。すなわち、通常時においては、差動電流のΣI1L、ΣI2Lに基づいて、内部事故の検出を行う。一方、伝送路において、2以上の異常が検出され全端子の電流値が揃わない場合には、交差電流IAR〜IDRに基づいて短絡の有無の検出を行う。 (1) Depending on the state of the transmission path of the current differential relay devices 21 to 24 in the current differential relay system 1, protection of the power system suitable for that state can be implemented. That is, in the normal state, an internal accident is detected based on the differential currents ΣI 1L and ΣI 2L . On the other hand, when two or more abnormalities are detected in the transmission line and the current values of all the terminals are not uniform, the presence / absence of a short circuit is detected based on the cross currents I AR to I DR .

差動電流のΣI1L、ΣI2Lに基づく、内部事故の検出では、全ての端子の電流情報を検出できないと、電流差が生じる。そのため、系統の保護を正常に行うことができなくなる。しかしながら、伝送路に異常が発生した場合に演算方法を切替えることで、系統の保護を継続することが可能となる。これにより、システムロックを防止することが可能となる。 In the detection of an internal accident based on the differential currents ΣI 1L and ΣI 2L , current information is generated if current information of all terminals cannot be detected. As a result, the system cannot be normally protected. However, the system protection can be continued by switching the calculation method when an abnormality occurs in the transmission path. As a result, system lock can be prevented.

(2)また、本実施形態では、4つの電流差動リレー装置21〜24からなる電流リレーシステムについて説明したが、電流差動リレー装置の数は2つ以上であればこれに限らない。例えば、6つの電流差動リレー装置21〜26から構成することもできる。その場合には、伝送路において、3つの伝送異常が発生した場合でも、図6に示すように、電流差動リレー装置21〜26が、交差電流に基づき短絡の発生を検出することができる。 (2) Moreover, although this embodiment demonstrated the current relay system which consists of the four current differential relay apparatuses 21-24, if the number of current differential relay apparatuses is two or more, it will not restrict to this. For example, it can also be comprised from six current differential relay apparatuses 21-26. In that case, even when three transmission abnormalities occur in the transmission line, the current differential relay devices 21 to 26 can detect the occurrence of a short circuit based on the cross current as shown in FIG.

(3)また、差動電流による内部事故の検出方法、及び交差電流による短絡の検出方法は、他の方法を利用することもできる。例えば、本実施形態では、電気量記憶部5に記憶された端子に接続する送電線L1に流れる電流I1Lと、送電線L2に流れる電流I2Lの差より交差電流を算出したが、交差電流を計測する変流器CTを電力系統Eに設置しても良い。 (3) In addition, other methods can be used as a method for detecting an internal accident due to a differential current and a method for detecting a short circuit due to a cross current. For example, in the present embodiment, the cross current is calculated from the difference between the current I 1L flowing through the power transmission line L1 connected to the terminal stored in the electrical quantity storage unit 5 and the current I 2L flowing through the power transmission line L2, but the cross current A current transformer CT for measuring the current may be installed in the electric power system E.

(4)本実施形態では、伝送路の異常が発生した場合に、電力系統Eにおける事故の検出方法を、差動電流による内部事故の検出から、交差電流の差動による短絡の検出に切り替えた。しかしながら、事故の検出方法の切替えは、これに限らない。例えば、通常時には、差動電流による内部事故の検出と、交差電流による短絡の検出と、を併用しておく。そして、伝送路の異常が2以上発生した場合には、交差電流による短絡の検出のみに切替ても良い。 (4) In the present embodiment, when a transmission line abnormality occurs, the detection method of the accident in the power system E is switched from the detection of the internal fault by the differential current to the detection of the short circuit by the differential of the cross current. . However, the switching of the accident detection method is not limited to this. For example, at the normal time, detection of an internal accident by a differential current and detection of a short circuit by a cross current are used in combination. And when two or more abnormalities of the transmission line occur, it may be switched only to the detection of the short circuit due to the cross current.

内部事故検出部11では、差動電流ΣI1L、または差動電流ΣI2Lが0であるか否かで内部事故の検出を行ったが、これに限らない。例えば、所定の値を設定しておき、差動電流ΣI1L、または差動電流ΣI2Lが所定の値を超えた場合に、内部事故を検出したとしても良い。 The internal accident detection unit 11 detects an internal accident based on whether the differential current ΣI 1L or the differential current ΣI 2L is 0, but is not limited thereto. For example, a predetermined value may be set and an internal accident may be detected when the differential current ΣI 1L or the differential current ΣI 2L exceeds a predetermined value.

[2.第2の実施形態]
本実施形態の電流差動リレーシステムは、伝送路に2以上の異常か発生していない平常時には、自端子と他端子の零相電流より算出した第1の零相差動電流と、自端子の零相電圧とを用いた方向判定により地絡事故の検出を行う。一方、伝送路に2以上の異常が発生した場合には、零相交差電流から算出した第2の零相差動電流と、自端子の零相電圧とを用いた方向判定により地絡事故の検出を行う。
[2. Second Embodiment]
In the current differential relay system of the present embodiment, in normal times when two or more abnormalities have not occurred in the transmission line, the first zero-phase differential current calculated from the zero-phase current of the own terminal and the other terminal, A ground fault is detected by direction determination using zero-phase voltage. On the other hand, when two or more abnormalities occur in the transmission line, a ground fault is detected by direction determination using the second zero-phase differential current calculated from the zero-phase crossing current and the zero-phase voltage of its own terminal. I do.

[2−1.構成]
図7は、本実施形態の電流差動リレーシステムの構成を示すブロック図である。すなわち、本実施形態の電流差動リレーシステムは、図7に示すように、各端子A〜Dにおいて、送電線L1と送電線L2との間にかかる電圧を検出する電圧計VTを備える。なお、第1実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。
[2-1. Constitution]
FIG. 7 is a block diagram showing the configuration of the current differential relay system of this embodiment. That is, the current differential relay system of this embodiment includes a voltmeter VT that detects a voltage applied between the power transmission line L1 and the power transmission line L2 at each of the terminals A to D, as shown in FIG. In addition, the same code | symbol is attached | subjected to the structure same as 1st Embodiment, and the overlapping description is abbreviate | omitted.

図8は、本実施形態の電流差動リレー装置の構成を示すブロック図である。本実施形態の電流差動リレー装置は、前記実施形態の電流差動リレー装置2の差動電流算出部10に代えて第1の零相差動電流算出部15を配置し、交差電流算出部13に代えて第2の零相差動電流算出部16を配置し、内部事故検出部11と短絡検出部14に代えて地絡事故検出部17を配置した構成とする。   FIG. 8 is a block diagram showing the configuration of the current differential relay device of this embodiment. In the current differential relay device of the present embodiment, a first zero-phase differential current calculation unit 15 is arranged instead of the differential current calculation unit 10 of the current differential relay device 2 of the above-described embodiment, and the cross current calculation unit 13 is arranged. Instead of this, the second zero-phase differential current calculation unit 16 is arranged, and the ground fault detection unit 17 is arranged instead of the internal fault detection unit 11 and the short circuit detection unit 14.

電気量取得部4は、電気量として、自端子の送電線1L及び2Lにおける電流値I1L、I2Lに加えて、自端子の電圧値Vを取得する。自端子の電圧値Vは、各端子に配置された電圧計Vより取得する。所得した自端子の電圧値Vは、送電線1L及び2Lにおける電流値と同様に、電気量記憶部5に記憶される。 The electric quantity acquisition unit 4 acquires the voltage value V of the own terminal in addition to the current values I 1L and I 2L in the transmission lines 1L and 2L of the own terminal as the electric quantity. The voltage value V of the own terminal is obtained from a voltmeter V arranged at each terminal. The obtained voltage value V of the own terminal is stored in the electrical quantity storage unit 5 in the same manner as the current values in the transmission lines 1L and 2L.

第1の零相差動電流算出部15は、電気量記憶部5に記憶された自電流差動リレー装置2で取得した自端子の零相電流と、他電流差動リレー装置2で取得した他端子の第1の零相電流の差動電流を算出する。   The first zero-phase differential current calculation unit 15 includes the zero-phase current of the own terminal acquired by the own-current differential relay device 2 stored in the electric quantity storage unit 5 and the other acquired by the other-current differential relay device 2. The differential current of the first zero-phase current of the terminal is calculated.

第2の零相差動電流算出部16は、自端子の零相の交差電流と、他端子の零相の交差電流より第2の零相差動電流を算出する。   The second zero-phase differential current calculation unit 16 calculates a second zero-phase differential current from the zero-phase cross current of its own terminal and the zero-phase cross current of the other terminal.

地絡事故検出部17は、第1及び第2の零相差動電流算出部で算出した零相差動電流と、自端の零相電圧より、地絡事故の検出を行う。   The ground fault detection unit 17 detects a ground fault from the zero phase differential current calculated by the first and second zero phase differential current calculation units and the zero phase voltage at its own end.

[2−2.作用]
以上の様な構成を有する本実施形態の電流差動リレーシステム1における動作について説明する。図9は、本実施形態の電流差動リレーシステム1の動作を示すフローチャートである。図9のフローチャートは、前記実施形態のフローチャートである図5のSTEP105、106、108、109を変更したものである。
[2-2. Action]
The operation in the current differential relay system 1 of the present embodiment having the above configuration will be described. FIG. 9 is a flowchart showing the operation of the current differential relay system 1 of the present embodiment. The flowchart of FIG. 9 is obtained by changing STEPs 105, 106, 108, and 109 of FIG.

電流差動リレーシステム1が運用を開始され、伝送路に2以上の異常がない場合(STEP204:NO)には、電気量記憶部5を参照して、送電線L1、L2毎の零相の差動電流のΣI1L、ΣI2Lを算出する(STEP205)。そして、零相の差動電流ΣI1L、ΣI2Lと、自端の零相電圧を用いた方向判定を行い地絡事故の検出を行う(STEP206)。地絡事故が検出された場合には、その遮断装置CBに対して遮断指令を出力する(STEP207)。遮断装置CBでは、遮断指令の受信に基づいて、電力系統Eを他の電力系統から切り離すように接点を開放する。 When the operation of the current differential relay system 1 is started and there are no two or more abnormalities in the transmission line (STEP 204: NO), the zero-phase for each of the transmission lines L1 and L2 is referred to by referring to the electric quantity storage unit 5. ΣI 1L and ΣI 2L of the differential current are calculated (STEP 205). Then, the direction determination using the zero-phase differential currents ΣI 1L and ΣI 2L and the zero-phase voltage at its own end is performed to detect a ground fault (STEP 206). When a ground fault is detected, a cutoff command is output to the cutoff device CB (STEP 207). In the interruption | blocking apparatus CB, based on reception of interruption | blocking instruction | command, a contact is open | released so that the electric power grid | system E may be cut off from another electric power grid | system.

一方、伝送路に2以上の異常がある場合(STEP204:YES)には、電流差動リレー装置21〜24が、自端子及び伝送可能な他端子における零相の交差電流を算出する。そして算出した交差電流より零相の差動電流を算出する。この差動電流が、第2の差動電流となる(STEP208)。そして、第2の差動電流と、自端の零相電圧を用いた方向判定を行い地絡事故の検出を行う(STEP206)。地絡事故が検出された場合には、その遮断装置CBに対して遮断指令を出力する(STEP207)。遮断装置CBでは、遮断指令の受信に基づいて、電力系統Eを他の電力系統から切り離すように接点を開放する。   On the other hand, when there are two or more abnormalities in the transmission line (STEP 204: YES), the current differential relay devices 21 to 24 calculate a zero-phase crossing current at the own terminal and other terminals that can be transmitted. Then, a zero-phase differential current is calculated from the calculated crossing current. This differential current becomes the second differential current (STEP 208). Then, the direction determination using the second differential current and the zero-phase voltage at its own end is performed to detect a ground fault (STEP 206). When a ground fault is detected, a cutoff command is output to the cutoff device CB (STEP 207). In the interruption | blocking apparatus CB, based on reception of interruption | blocking instruction | command, a contact is open | released so that the electric power grid | system E may be cut off from another electric power grid | system.

[2−3.効果]
以上のような構成及び作用を有する本実施形態によれば、以下のような効果を奏する。第1の実施形態と同様に、電流差動リレーシステム1内の電流差動リレー装置2の伝送経路の状態に応じて、その状態に適した電力系統Eの保護を実施することができる。
[2-3. effect]
According to the present embodiment having the configuration and operation as described above, the following effects can be obtained. Similarly to the first embodiment, according to the state of the transmission path of the current differential relay device 2 in the current differential relay system 1, protection of the electric power system E suitable for the state can be performed.

[3.他の実施形態]
本明細書においては、本発明に係る複数の実施形態を説明したが、これらの実施形態は例として提示したものであって、発明の範囲を限定することを意図していない。具体的には、平行2回線系統を保護する電流差動リレーにおいて、全端子の電流値が揃った場合には、各回線単位で電流差動を行い、全端子の電流値が揃わない場合には交差電流の差動を行うことにあり、発明の範囲を逸脱しない範囲で、種々の省略や置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
[3. Other Embodiments]
In the present specification, a plurality of embodiments according to the present invention have been described. However, these embodiments are presented as examples and are not intended to limit the scope of the invention. Specifically, in a current differential relay that protects a parallel two-line system, when the current values of all terminals are aligned, current differential is performed for each line unit, and the current values of all terminals are not aligned. Is to perform cross current differential, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the invention described in the claims and equivalents thereof as well as included in the scope and gist of the invention.

1 …電流差動リレーシステム
2 …電流差動リレー装置
3 …有線ケーブル
4 …電気量取得部
5 …電気量記憶部
6 …伝送手段
7 …伝送路異常検出部
8 …伝送路異常判定部
9 …検出方法切替部
10…差動電流算出部
11…内部事故検出部
12…保護指令出力部
13…交差電流算出部
14…短絡検出部
15…第1の零相差動電流算出部
16…第2の零相差動電流算出部
17…地絡事故検出部
CT…変流器
CV…電圧計
CB…遮断装置
A〜D…端子
a、b…節
DESCRIPTION OF SYMBOLS 1 ... Current differential relay system 2 ... Current differential relay apparatus 3 ... Wire cable 4 ... Electric quantity acquisition part 5 ... Electric quantity storage part 6 ... Transmission means 7 ... Transmission path abnormality detection part 8 ... Transmission path abnormality determination part 9 ... Detection method switching unit 10 ... differential current calculation unit 11 ... internal accident detection unit 12 ... protection command output unit 13 ... cross current calculation unit 14 ... short circuit detection unit 15 ... first zero-phase differential current calculation unit 16 ... second Zero phase differential current calculation unit 17 ... Ground fault detection unit CT ... Current transformer CV ... Voltmeter CB ... Breaking devices AD ... Terminals a, b ... Section

Claims (9)

端子にて外部の電力系統と接続し、保護対象の電力系統の保護を行う電流差動リレーシステムであって、
前記端子に対して設置され、電流差動リレーシステム内に設置された他の電流差動リレー装置と伝送路を介して通信を行う接続する電流差動リレー装置と、
前記保護対象の電力系統を前記外部の電力系統から遮断する遮断装置と、
を備え、
前記電流差動リレー装置は、
前記伝送路の異常の検出を行う伝送路異常検出部と、
前記伝送路の異常に応じて前記電力系統内の事故の検出方法を切り替える検出方法切替部と、
を備えることを特徴とする電流差動リレーシステム。
A current differential relay system that connects to an external power system at a terminal and protects the power system to be protected.
A current differential relay device that is installed with respect to the terminal and that communicates with other current differential relay devices installed in the current differential relay system via a transmission line;
A shut-off device that shuts off the power system to be protected from the external power system;
With
The current differential relay device is:
A transmission line abnormality detection unit for detecting abnormality of the transmission line;
A detection method switching unit that switches a detection method of an accident in the power system according to an abnormality in the transmission path;
A current differential relay system comprising:
前記伝送路異常検出部は、検出した前記伝送路の異常の箇所の特定をし、
前記電流差動リレー装置は、
前記伝送路の異常の箇所が2未満であるか、前記伝送路の異常の箇所が2以上であるか、の判定を行う伝送路異常判定部と、
を更に備えること特徴とする請求項1に記載の電流差動リレーシステム。
The transmission line abnormality detection unit identifies the detected abnormality of the transmission line,
The current differential relay device is:
A transmission line abnormality determination unit that determines whether the abnormality of the transmission line is less than 2 or the abnormality part of the transmission line is 2 or more;
The current differential relay system according to claim 1, further comprising:
前記伝送路異常判定部は、前記伝送路の異常の箇所が2以上である場合に、
前記伝送路の異常により自電流差動リレー装置が他の電流差動リレー装置と伝送が可能か否かの判定を行うことを特徴とする請求項1または請求項2に記載の電流差動リレーシステム。
The transmission line abnormality determination unit, when the number of abnormalities in the transmission line is 2 or more,
3. The current differential relay according to claim 1, wherein a self-current differential relay device determines whether transmission with another current differential relay device is possible due to an abnormality in the transmission path. 4. system.
前記電流差動リレー装置は、
設置される自端子の電気量を取得する電気量取得部と、
他の電流差動リレー装置が取得した他端子の電気量を前記伝送路を介して受信する伝送手段と、
を備えることを特徴とする請求項1乃至3のいずれか1項に記載の電流差動リレーシステム。
The current differential relay device is:
An electric quantity acquisition unit that acquires the electric quantity of the installed own terminal;
Transmission means for receiving the electric quantity of the other terminal acquired by the other current differential relay device via the transmission line;
The current differential relay system according to any one of claims 1 to 3, further comprising:
前記電気量取得部は、電気量として自端子の電流値を取得し、
前記電流差動リレー装置は、
前記保護対象の電力系統内の各端子に流れる電流値から差動電流を算出する差動電流算出部と、
前記差動電流より、前記電力系統における内部事故の検出を行う内部事故検出部と、
を更に備え、
前記検出方法切替部は、前記伝送路において伝送路の異常箇所が2未満の場合には、前記電力系統内の事故の検出方法を前記差動電流より前記電気系統における内部事故の検出に切り替えることを特徴とする請求項4に記載の電流差動リレーシステム。
The electrical quantity acquisition unit acquires the current value of the terminal as an electrical quantity,
The current differential relay device is:
A differential current calculation unit that calculates a differential current from a current value flowing through each terminal in the power system to be protected;
From the differential current, an internal accident detection unit for detecting an internal accident in the power system,
Further comprising
The detection method switching unit switches the fault detection method in the power system from the differential current to the detection of an internal fault in the electric system when the number of abnormal points in the transmission path is less than 2 in the transmission path. The current differential relay system according to claim 4.
前記電気量取得部は、電気量として自端子の電流値を取得し、
前記電流差動リレー装置は、
自端子における交差電流と、伝送可能な他端子の交差電流の算出を行う交差電流算出部と、
前記交差電流より短絡の検出を行う短絡検出部と、
を更に備え、
前記検出方法切替部は、前記伝送路において前記伝送路の異常の箇所が2以上の場合には、
前記電力系統内の事故の検出方法を前記交差電流による前記電気系統における短絡の検出に切り替えることを特徴とする請求項4または請求項5に記載の電流差動リレーシステム。
The electrical quantity acquisition unit acquires the current value of the terminal as an electrical quantity,
The current differential relay device is:
A cross current calculation unit for calculating a cross current at its own terminal and a cross current of another terminal capable of transmission;
A short-circuit detector for detecting a short circuit from the cross current;
Further comprising
When the detection method switching unit has two or more abnormalities in the transmission path in the transmission path,
6. The current differential relay system according to claim 4, wherein a method for detecting an accident in the power system is switched to detection of a short circuit in the electric system due to the cross current.
電気量取得部は、電気量として自端子の電流値及び電圧値を取得し、
前記電流差動リレー装置は、
自端子の零相電流と他端子の零相電流とから第1の零相差動電流を算出する第1の零相差動電流算出部と、
前記第1の差動電流より前記電気系統における地絡事故の検出を行う地絡事故検出部と、
を更に備え、
前記検出方法切替部は、前記伝送路において伝送路の異常箇所が2未満の場合には、前記電力系統内の事故の検出方法を前記第1の差動電流より前記電気系統における地絡事故の検出に切り替えることを特徴とする請求項4に記載の電流差動リレーシステム。
The electricity quantity acquisition unit obtains the current value and voltage value of its own terminal as the electricity quantity,
The current differential relay device is:
A first zero-phase differential current calculation unit that calculates a first zero-phase differential current from the zero-phase current of the own terminal and the zero-phase current of the other terminal;
A ground fault detection unit for detecting a ground fault in the electrical system from the first differential current;
Further comprising
The detection method switching unit is configured to change the detection method of an accident in the power system from the first differential current in the case of a ground fault in the electrical system when the number of abnormal locations in the transmission path is less than 2. The current differential relay system according to claim 4, wherein the current differential relay system is switched to detection.
前記電気量取得部は、電気量として自端子の電流値を取得し、
前記電流差動リレー装置は、
自端子の交差電流と、伝送可能な他端子の交差電流から第2の零相差動電流を算出する第2の零相差動電流算出部と、
前記第2の零相差動電流より前記電気系統における地絡事故の検出を行う地絡事故検出部と、
を更に備え、
前記検出方法切替部は、前記伝送路において前記伝送路の異常の箇所が2以上の場合には、
前記電力系統内の事故の検出方法を前記第2の零相差動電流より前記電気系統における地絡事故の検出に切り替えることを特徴とする請求項4または請求項7に記載の電流差動リレーシステム。
The electrical quantity acquisition unit acquires the current value of the terminal as an electrical quantity,
The current differential relay device is:
A second zero-phase differential current calculation unit that calculates a second zero-phase differential current from the cross-current of the own terminal and the cross-current of another terminal that can be transmitted;
A ground fault detector for detecting a ground fault in the electrical system from the second zero-phase differential current;
Further comprising
When the detection method switching unit has two or more abnormalities in the transmission path in the transmission path,
The current differential relay system according to claim 4 or 7, wherein the fault detection method in the electric power system is switched from the second zero-phase differential current to the detection of a ground fault in the electric system. .
前記電力系統は、平行2回線2端子であることを特徴とする請求項1乃至8に記載の電流差動リレーシステム。   The current differential relay system according to any one of claims 1 to 8, wherein the power system is a parallel 2-line 2-terminal system.
JP2015135768A 2015-07-07 2015-07-07 Current differential relay system Active JP6645759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015135768A JP6645759B2 (en) 2015-07-07 2015-07-07 Current differential relay system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015135768A JP6645759B2 (en) 2015-07-07 2015-07-07 Current differential relay system

Publications (2)

Publication Number Publication Date
JP2017017968A true JP2017017968A (en) 2017-01-19
JP6645759B2 JP6645759B2 (en) 2020-02-14

Family

ID=57829421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015135768A Active JP6645759B2 (en) 2015-07-07 2015-07-07 Current differential relay system

Country Status (1)

Country Link
JP (1) JP6645759B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232548A (en) * 1975-09-05 1977-03-11 Mitsubishi Electric Corp Differential protection relay device
JPS544343A (en) * 1977-06-13 1979-01-13 Tokyo Electric Power Co Inc:The Protective control equipment
JPH03122574A (en) * 1989-10-05 1991-05-24 Kansai Electric Power Co Inc:The Trouble point locating apparatus for parallel two-circuit power system
JPH08163771A (en) * 1994-11-30 1996-06-21 Meidensha Corp System locking control in current differential relay system using loop transmission line
JP2012135150A (en) * 2010-12-22 2012-07-12 Kansai Electric Power Co Inc:The Digital protective relay device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232548A (en) * 1975-09-05 1977-03-11 Mitsubishi Electric Corp Differential protection relay device
JPS544343A (en) * 1977-06-13 1979-01-13 Tokyo Electric Power Co Inc:The Protective control equipment
JPH03122574A (en) * 1989-10-05 1991-05-24 Kansai Electric Power Co Inc:The Trouble point locating apparatus for parallel two-circuit power system
JPH08163771A (en) * 1994-11-30 1996-06-21 Meidensha Corp System locking control in current differential relay system using loop transmission line
JP2012135150A (en) * 2010-12-22 2012-07-12 Kansai Electric Power Co Inc:The Digital protective relay device

Also Published As

Publication number Publication date
JP6645759B2 (en) 2020-02-14

Similar Documents

Publication Publication Date Title
US10379991B2 (en) Systems and methods for routing sampled values upon loss of primary measurement equipment
US8718959B2 (en) Method and apparatus for high-speed fault detection in distribution systems
US9941739B2 (en) Process bus associated protective control system, merging unit, and calculation device
US9007731B2 (en) Leveraging inherent redundancy in a multifunction IED
EP2862252B1 (en) A power bay protection device and a method for protecting power bays
EP2206208B1 (en) Differential protection method, system and device
US11258249B2 (en) Primary and system protection for an electric power delivery system
US11489365B2 (en) Non-three-phase fault isolation and restoration systems
JP2019507573A (en) Improvements in or related to power systems
Rahman et al. Cyber vulnerabilities on agent-based smart grid protection system
JP2013062974A (en) Protection relay system
US11114892B2 (en) Electric power system transducer failure monitor and measurement recovery
JP2017017968A (en) Current differential relay system
JP2001258145A (en) Protective relay system
JP5044328B2 (en) Network power transmission protection device
KR20200000747A (en) Protecting and interlocking system for plurality of circuit breakers
JP6129679B2 (en) Power system stabilization system and power system stabilization method
RU2611059C2 (en) Method of measurement for detecting fault of three-phase network
EP4339625A1 (en) Improvements in or relating to sensors for use in hvdc power transmission networks
Darabi et al. Application of IEC61850-enabled SAS in CBF protection of transformers
Muzi Computer relaying for smart grid protection
JP4960328B2 (en) Network power transmission protection device
Yazdaninejadi et al. Fault Identification, Protection Schemes, and Restoration Requirements of Microgrids
Chiu et al. Rough balance busbar protection and breaker failure protection for the HK electric's distribution network
KR20240021619A (en) Substation Integrated Protection System and Substation Integrated Monitoring Method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171204

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200109

R150 Certificate of patent or registration of utility model

Ref document number: 6645759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150