JP2017017868A - 直流交流変換回路及び電源装置 - Google Patents

直流交流変換回路及び電源装置 Download PDF

Info

Publication number
JP2017017868A
JP2017017868A JP2015132450A JP2015132450A JP2017017868A JP 2017017868 A JP2017017868 A JP 2017017868A JP 2015132450 A JP2015132450 A JP 2015132450A JP 2015132450 A JP2015132450 A JP 2015132450A JP 2017017868 A JP2017017868 A JP 2017017868A
Authority
JP
Japan
Prior art keywords
inverter
voltage
power supply
potential side
side power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015132450A
Other languages
English (en)
Inventor
友隆 中村
Tomotaka Nakamura
友隆 中村
翔平 今
Shohei Kon
翔平 今
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Ltd
Original Assignee
Takasago Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Ltd filed Critical Takasago Ltd
Priority to JP2015132450A priority Critical patent/JP2017017868A/ja
Publication of JP2017017868A publication Critical patent/JP2017017868A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】従来の直流交流変換回路は、高効率化が難しい問題があった。【解決手段】本発明にかかる直流交流変換回路は、高電位側電源配線NDHと、低電位側電源配線NDLと、高電位側電源配線NDHと直列ノードNDMとの間に接続される第1のインバータ10と、直列ノードNDMと低電位側電源配線NDLとの間に接続される第2のインバータ20と、第1のインバータ10と並列接続される第1のコンデンサC1と、第2のインバータ20と並列接続される第2のコンデンサC2と、第1のインバータ10内において第1の交流電圧Vo1の生成に用いられる複数のスイッチングトランジスタのうち1つのスイッチングトランジスタのソースドレイン間に発生する第1のパルス信号を平滑化して、第1のパルス信号の振幅に応じた第1の調整電圧V13を生成し、第1の調整電圧V13を第2のコンデンサの両端に与える第1の相互バランス回路30と、を有する。【選択図】図1

Description

本発明は直流交流変換回路及び電源装置に関し、特にインバータ回路により直流電圧から交流電圧を生成する直流交流変換回路及び電源装置に関する。
電源装置の一例が特許文献1〜3に開示されている。特許文献1に記載の電源装置は、太陽電池で生成された直流電圧をコンバータ回路により降圧した後に、インバータ回路を用いて当該降圧電圧に基づく交流電圧の生成を行う。
また、特許文献2に記載の電源装置は、複数のコンバータにより複数の太陽電池で生成された直流電圧をそれぞれ他の電圧に降圧する。そして降圧した複数の直流電圧を合成した後に、インバータ回路を用いて交流電圧を生成する。
特許文献3には、単相3線式の電力変換装置の一例が開示されている。
特開2004−147472号公報 特開2004−215439号公報 特開2014−87160号公報
電源装置では、高効率化が求められている。高効率化の一手段としては、インバータ回路に入力する直流電圧を高くすることが考えられる。しかしながら、インバータ回路に入力する直流電圧を高くした場合、インバータ回路に用いられるスイッチング素子及びコンデンサに高耐圧素子を利用しなければならない。しかし、高耐圧なスイッチング素子は電力損出が大きく、効率を低下させる要因になるという問題がある。更に、高耐圧な回路素子は、体積が大きく装置の体積が増大する問題がある。
本発明にかかる直流交流変換回路の一態様は、高電位側直流電圧が入力される高電位側電源配線と、低電位側直流電圧が入力される低電位側電源配線と、前記高電位側電源配線と直列ノードとの間に接続される第1のインバータと、前記直列ノードと前記低電位側電源配線との間に接続される第2のインバータと、前記第1のインバータと並列接続される第1のコンデンサと、前記第2のインバータと並列接続される第2のコンデンサと、を有する。
本発明にかかる電源装置の一態様は、少なくとも上記直流交流変換回路を含み、外部から与えられる交流信号を直流信号に変換して前記直流交流変換回路に与える交流直流変換回路と、前記直流交流変換回路が前記第1のインバータ及び前記第2のインバータにより出力する交流電圧をそれぞれ直流電圧に変換し、変換後の直流電圧を構成して負荷を駆動するコンバータ回路と、を有する。
本発明によれば、低い耐圧の回路素子を利用しながらインバータ回路の効率を高めることができる。
実施の形態1にかかる直流交流変換回路の回路図である。 実施の形態1にかかる電源装置のブロック図である。
実施の形態1
以下では、図面を参照して本発明の実施の形態について説明する。なお、説明の明確化のため、以下の記載及び図面は、適宜、省略、及び簡略化がなされている。また、各図面において、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略されている。
図1に実施の形態1にかかる交流直流変換回路1の回路図を示す。図1に示すように、実施の形態1にかかる交流直流変換回路1は、第1のインバータ10、第2のインバータ20、第1のPWM制御部30、第2のPWM制御部40、電圧バランス安定化回路50、第1のコンデンサC1、第2のコンデンサC2を有する。また、交流直流変換回路1は、入力端子TM1、TM2を有し、当該入力端子TM1、TM2を介して入力電圧Vinが与えられる。入力端子TM1には高電位側電源配線NDHが接続され、入力端子TM2には低電位側電源配線NDLが接続されている。以下の説明では、高電位側電源配線NDHに与えられる電圧を高電位側直流電圧と称し、低電位側電源配線NDLに与えられる電圧を低電位側直流電圧と称す。また、高電位側直流電圧と低電位側直流電圧との電圧差が入力電圧Vinとなる。
第1のインバータ10は、高電位側電源配線NDHと直列ノードNDMとの間に接続される。第2のインバータ20は、直列ノードNDMと低電位側電源配線NDLとの間に接続される。つまり、第1のインバータ10及び第2のインバータ20は、高電位側電源配線NDHと低電位側電源配線NDLとの間に直列に接続される。
第1のコンデンサC1は、高電位側電源配線NDHと直列ノードNDMとの間に接続される。第2のコンデンサC2は、直列ノードNDMと低電位側電源配線NDLとの間に接続される。つまり、第1のコンデンサC1は第1のインバータ10と並列に接続され、第2のコンデンサC2は第2のインバータと並列に接続される。また、別の観点では、第1のコンデンサC1及び第2のコンデンサC2は、高電位側電源配線NDHと低電位側電源配線NDLとの間に直列に接続される。
第1のPWM制御部30は、第1のインバータ10を駆動するPWM(Pulse Width Modulation)信号を出力する。この第1のPWM制御部30は、スイッチングトランジスタTR11及びスイッチングトランジスタTR14を同位相のPWM信号により駆動し、スイッチングトランジスタTR12及びスイッチングトランジスタTR13をスイッチングトランジスタTR11、TR14とは反転する位相のPWM信号により駆動する。
第2のPWM制御部40は、第2のインバータ20を駆動するPWM信号を出力する。この第2のPWM制御部40は、スイッチングトランジスタTR21及びスイッチングトランジスタTR24を同位相のPWM信号により駆動し、スイッチングトランジスタTR22及びスイッチングトランジスタTR23をスイッチングトランジスタTR21、TR24とは反転する位相のPWM信号により駆動する。
電圧バランス安定化回路50は、第1のコンデンサC1の両端に発生する第1の電圧Vc1と第2のコンデンサC2の両端に発生する第2の電圧Vc2とが同電圧になるように制御する。
続いて、第1のインバータ10、第2のインバータ20、電圧バランス安定化回路50の回路構成についてそれぞれ説明する。
第1のインバータ10は、スイッチングトランジスタTR11〜TR14、トランスT11を有する。スイッチングトランジスタTR11〜TR14は同一導電型のトランジスタである。スイッチングトランジスタTR11及びスイッチングトランジスタTR12は、高電位側電源配線NDHと直列ノードNDMとの間に直列に接続される。スイッチングトランジスタTR13及びスイッチングトランジスタTR14は、高電位側電源配線NDHと直列ノードNDMとの間に直列に接続される。そして、スイッチングトランジスタTR11とスイッチングトランジスタTR12とを接続するノードが、トランスT11の一次側コイルの一端に接続される。また、スイッチングトランジスタTR13とスイッチングトランジスタTR14とを接続するノードが、トランスT11の一次側コイルの他端に接続される。第1のインバータ10では、スイッチングトランジスタTR11及びスイッチングトランジスタTR14を同位相のPWM信号により駆動し、スイッチングトランジスタTR12及びスイッチングトランジスタTR13をスイッチングトランジスタTR11、TR14とは反転する位相のPWM信号により駆動する。スイッチングトランジスタTR11〜TR14を駆動するPWM信号は第1のPWM制御部30により生成される。つまり、第1のインバータ10では、スイッチングトランジスタTR11〜TR14及びトランスT11の一次側コイルによりHブリッジ型駆動回路を構成する。また、第1のインバータ10は、トランスT11の二次側コイルの両端には第1の交流電圧Vo1を生成する。
第2のインバータ20は、スイッチングトランジスタTR21〜TR24、トランスT21を有する。スイッチングトランジスタTR21〜TR24は同一導電型のトランジスタである。スイッチングトランジスタTR21及びスイッチングトランジスタTR22は、直列ノードNDMと低電位側電源配線NDLとの間に直列に接続される。スイッチングトランジスタTR23及びスイッチングトランジスタTR24は、直列ノードNDMと低電位側電源配線NDLとの間に直列に接続される。そして、スイッチングトランジスタTR21とスイッチングトランジスタTR22とを接続するノードが、トランスT21の一次側コイルの一端に接続される。また、スイッチングトランジスタTR23とスイッチングトランジスタTR24とを接続するノードが、トランスT21の一次側コイルの他端に接続される。第2のインバータ20では、スイッチングトランジスタTR21及びスイッチングトランジスタTR24を同位相のPWM信号により駆動し、スイッチングトランジスタTR22及びスイッチングトランジスタTR23をスイッチングトランジスタTR21、TR24とは反転する位相のPWM信号により駆動する。スイッチングトランジスタTR21〜TR24を駆動するPWM信号は第2のPWM制御部40により生成される。つまり、第2のインバータ20では、スイッチングトランジスタTR21〜TR24及びトランスT21の一次側コイルによりHブリッジ型駆動回路を構成する。また、第2のインバータ20は、トランスT21の二次側コイルの両端には第2の交流電圧Vo2を生成する。
なお、実施の形態1にかかる交流直流変換回路1では、交流電圧Vo1、Vo2の振幅が安定する定常運転状態では第1のPWM制御部30及び第2のPWM制御部40が出力するPWM信号のデューティーが50%となるように制御される。
電圧バランス安定化回路50は、スイッチングトランジスタTRB1、TRB2、インダクタL、絶縁パルストランス51、反転回路52、PWM信号生成部53を有する。スイッチングトランジスタTRB1、TRB2は、同一導電型のトランジスタである。スイッチングトランジスタTRB1、TRB2は、高電位側電源配線NDHと低電位側電源配線NDLとの間に直列に接続される。
PWM信号生成部53は、デューティー比が固定されたPWM信号を出力する。例えば、PWM信号生成部53が出力するPWM信号は、デューティー比が50%程度に固定される。PWM信号生成部53が出力するPWM信号は、絶縁パルストランス51を介してスイッチングトランジスタTRB1に与えられる。絶縁パルストランス51は、PWM信号生成部53が出力するPWM信号の振幅範囲をスイッチングトランジスタTRB1の駆動に適した振幅範囲に変換する。また、PWM信号生成部53が出力するPWM信号は、反転回路52を介してスイッチングトランジスタTRB2に与えられる。反転回路52は、PWM信号生成部53が出力するPWM信号の位相を反転して出力する。つまり、スイッチングトランジスタTRB1、TRB2は、反転した位相のPWM信号で駆動される。なお、スイッチングトランジスタTRB1、TRB2に流れる突入電流を防止するために、PWM信号生成部53が出力するPWM信号は、50%にできるだけ近い固定されたデューティー比、かつ、スイッチングトランジスタTRB1、TRB2が共にオフするデットタイムを確保できる信号とすることが好ましい。
続いて、実施の形態1にかかる交流直流変換回路1の動作について説明する。実施の形態1にかかる交流直流変換回路1は、第1のインバータ10及び第2のインバータ20にPWM信号を与えることで、入力電圧Vinに基づき交流電圧Vo1、Vo2を生成する。ここで、実施の形態1にかかる交流直流変換回路1では、第1のインバータ10と第2のインバータ20との間の素子バラツキ、交流電圧Vo1、Vo2が印加される回路のバラツキ等に起因して第1のコンデンサC1の両端に発生する第1の電圧Vc1と第2のコンデンサC2の両端に発生する第2の電圧Vc2との間にずれが生じる。
しかし、実施の形態1にかかる交流直流変換回路1では、電圧バランス安定化回路50を動作させることで第1の電圧Vc1と第2の電圧Vc2との間のずれを解消する。電圧バランス安定化回路50は、デューティー比がほぼ50%に固定されたPWM信号によりスイッチングトランジスタTRB1、TRB2を駆動することで第1のコンデンサC1と第2のコンデンサC2に蓄積される電荷量を揃える。これにより、第1の電圧Vc1と第2の電圧Vc2とがほぼ同じ電圧となる。
上記説明より、実施の形態1にかかる交流直流変換回路1は、入力電圧Vinが印加される高電位側電源配線NDHと低電位側電源配線NDLとの間にインバータ回路を直列に接続した。また、実施の形態1にかかる交流直流変換回路1では、入力電圧Vinが印加される高電位側電源配線NDHと低電位側電源配線NDLとの間に2つのコンデンサを直列に接続した。これにより、実施の形態1にかかる交流直流変換回路1では、入力電圧Vinが各インバータ及び各コンデンサに入力電圧Vinを分散させることができるため、インバータ及びコンデンサの両端に印加される電圧を入力電圧Vinに比べて小さくすことができる。これにより、実施の形態1にかかる交流直流変換回路1では、インバータ回路を構成する回路素子及びコンデンサとして、入力電圧Vinよりも低い耐圧の素子を利用することができる。
また、耐圧の低い素子によりインバータ回路を構成することで、交流直流変換回路1の効率を高めることができる。さらに、耐圧の低い素子によりインバータ回路を構成することで、交流直流変換回路1の実装時の体積を抑制することができる。
また、実施の形態1にかかる交流直流変換回路1では、定常運転状態において、第1のインバータ10及び第2のインバータ20を動作させるPWM信号のデューティーを50%に固定しても第1のインバータ10及び第2のインバータ20に印加される電圧を揃えることができる。つまり、実施の形態1にかかる交流直流変換回路1では、第1のインバータ10及び第2のインバータ20に印加される電圧を揃えるために、PWM信号のデューティー比を制御する等の複雑な制御が不要である。
また、実施の形態1にかかる交流直流変換回路1では、電圧バランス安定化回路50を備えることで、第1のコンデンサC1の両端に生じる第1の電圧Vc1と第2のコンデンサVc2の両端に生じる第2の電圧Vc2との電圧ずれを解消することができる。このように、第1の電圧Vc1と第2の電圧Vc2とのずれを解消することで、第1のインバータ10を構成する素子、第2のインバータ20を構成する素子、第1のコンデンサC1及び第2のコンデンサC2として耐圧のマージンを小さくし、低い耐圧の素子の利用を容易にする。
ここで、実施の形態1にかかる交流直流変換回路1は、電源装置内のインバータ回路として利用することに適している。そこで、実施の形態1にかかる交流直流変換回路1を用いた電源装置のブロック図を図2に示す。図2に示すように、実施の形態1にかかる交流直流変換回路1を用いた電源装置では、交流直流変換回路1に与える直流信号(例えば入力電圧Vin)を外部の交流信号Vsを直流電圧に変換する交流直流変換回路3により生成する。また、実施の形態1にかかる電源装置では、コンバータ回路4を用いて、交流直流変換回路1が出力する2つの交流信号Vo1、Vo2を直流電圧に変換し、変換後の直流電圧を合成することで負荷5に与える出力電圧VLを生成する。
このように、実施の形態1にかかる交流直流変換回路1を用いることで、電源装置の小型化、高効率化を実現することができる。
なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。
1 交流直流変換回路
2 交流電源
3 交流直流変換回路
4 コンバータ回路
5 負荷
10 第1のインバータ
20 第2のインバータ
30 第1のPWM制御部
40 第2のPWM制御部
50 電圧バランス安定化回路
51 絶縁パルストランス
52 反転回路
53 PWM信号生成部
NDH 高電位側電源配線
NDL 低電位側電源配線
NDM 直列ノード

Claims (4)

  1. 高電位側直流電圧が入力される高電位側電源配線と、
    低電位側直流電圧が入力される低電位側電源配線と、
    前記高電位側電源配線と直列ノードとの間に接続される第1のインバータと、
    前記直列ノードと前記低電位側電源配線との間に接続される第2のインバータと、
    前記第1のインバータと並列接続される第1のコンデンサと、
    前記第2のインバータと並列接続される第2のコンデンサと、
    を有する直流交流変換回路。
  2. 前記第1のコンデンサの両端に発生する第1の電圧と前記第2のコンデンサの両端に発生する第2の電圧とが同電圧になるように制御する電圧バランス安定化回路を有する請求項1に記載の直流交流変換回路。
  3. 前記高電位側電源配線と前記低電位側電源配線との間に直列に接続され、前記第1のコンデンサ及び前記第2のコンデンサと並列に接続される第1のトランジスタ及び第2のトランジスタと、
    前記第1のトランジスタと前記第2のトランジスタを、位相が反転し、かつ、デューティー比が固定されるパルス信号で駆動するPWM信号生成部と、を有する請求項2に記載の直流交流変換回路。
  4. 請求項1乃至3のいずれか1項に記載の直流交流変換回路と、
    外部から与えられる交流信号を直流信号に変換して前記直流交流変換回路に与える交流直流変換回路と、
    前記直流交流変換回路が前記第1のインバータ及び前記第2のインバータにより出力する交流電圧をそれぞれ直流電圧に変換し、変換後の直流電圧を構成して負荷を駆動するコンバータ回路と、
    を有する電源装置。
JP2015132450A 2015-07-01 2015-07-01 直流交流変換回路及び電源装置 Pending JP2017017868A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015132450A JP2017017868A (ja) 2015-07-01 2015-07-01 直流交流変換回路及び電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015132450A JP2017017868A (ja) 2015-07-01 2015-07-01 直流交流変換回路及び電源装置

Publications (1)

Publication Number Publication Date
JP2017017868A true JP2017017868A (ja) 2017-01-19

Family

ID=57831213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015132450A Pending JP2017017868A (ja) 2015-07-01 2015-07-01 直流交流変換回路及び電源装置

Country Status (1)

Country Link
JP (1) JP2017017868A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11303214B2 (en) 2020-02-19 2022-04-12 Kabushiki Kaisha Toshiba Power conversion device and power supply device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000037078A (ja) * 1998-07-16 2000-02-02 Mitsubishi Electric Corp マルチレベル電力変換装置
JP2005033967A (ja) * 2003-07-11 2005-02-03 Origin Electric Co Ltd 電力変換装置
JP2014087160A (ja) * 2012-10-23 2014-05-12 Panasonic Corp 電力変換装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000037078A (ja) * 1998-07-16 2000-02-02 Mitsubishi Electric Corp マルチレベル電力変換装置
JP2005033967A (ja) * 2003-07-11 2005-02-03 Origin Electric Co Ltd 電力変換装置
JP2014087160A (ja) * 2012-10-23 2014-05-12 Panasonic Corp 電力変換装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11303214B2 (en) 2020-02-19 2022-04-12 Kabushiki Kaisha Toshiba Power conversion device and power supply device

Similar Documents

Publication Publication Date Title
JP5995139B2 (ja) 双方向dc/dcコンバータ
JP4715429B2 (ja) 交直変換回路
JP6454936B2 (ja) 電力変換装置、およびそれを用いたパワーコンディショナ
WO2012001828A1 (ja) Dc/dc電力変換装置
WO2015004825A1 (ja) Dc/dcコンバータ
US10840814B2 (en) Power conversion system
JP2014087134A (ja) Dc/dcコンバータ
JP6168155B2 (ja) 電力変換装置及び電力変換方法
JP5731923B2 (ja) インバータ回路、電力変換回路、及び電気推進車両
EP2681836A2 (en) Method of shoot-through generation for modified sine wave z-source, quasi-z-source and trans-z-source inverters
CN110945770A (zh) 直流耦合电气转换器
JP6140007B2 (ja) 電力変換装置
JP5060962B2 (ja) Dc電圧を3相ac出力に変換する方法及びインバータ
JPWO2018198893A1 (ja) 電力変換システム
JP2013118776A (ja) 電力変換装置
JP2017017868A (ja) 直流交流変換回路及び電源装置
JP2017112657A (ja) 電力変換装置
JP2010246183A (ja) 電源装置
JP2016171631A (ja) 電力変換回路およびそれを用いた電力変換装置
JP2016149888A (ja) 電力変換装置
JP5423264B2 (ja) 電力変換装置
US9923480B2 (en) DC-to-AC power converter with high efficiency
JP2017070002A (ja) 直流交流変換回路及び電源装置
WO2016194712A1 (ja) 絶縁型電力変換装置
CN217428014U (zh) 双h桥移相变换器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190910