JP2017010787A - Cylindrical battery - Google Patents

Cylindrical battery Download PDF

Info

Publication number
JP2017010787A
JP2017010787A JP2015125277A JP2015125277A JP2017010787A JP 2017010787 A JP2017010787 A JP 2017010787A JP 2015125277 A JP2015125277 A JP 2015125277A JP 2015125277 A JP2015125277 A JP 2015125277A JP 2017010787 A JP2017010787 A JP 2017010787A
Authority
JP
Japan
Prior art keywords
lead
positive electrode
negative electrode
opening
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015125277A
Other languages
Japanese (ja)
Inventor
将綱 小浜
Masatsuna Kohama
将綱 小浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2015125277A priority Critical patent/JP2017010787A/en
Publication of JP2017010787A publication Critical patent/JP2017010787A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a cylindrical battery having a high capacity and excellent cycle characteristics by improving a shape of a lead connected to a pole plate of a rolled electrode body.SOLUTION: A cylindrical battery of the present invention includes: an electrode body around which a positive electrode plate to which a positive electrode lead is connected and a negative electrode plate to which a negative electrode lead is connected are wound via a separator; an electrolyte; a bottomed cylinder-like outer can; and a sealed body. At least one of the positive electrode lead and the negative electrode lead has an opening that is arranged in parallel with a winding shaft of the electrode body.SELECTED DRAWING: Figure 2

Description

本発明は巻回電極体を備えた円筒形電池に関する。   The present invention relates to a cylindrical battery provided with a wound electrode body.

非水電解液二次電池は高エネルギー密度を有するため、スマートフォン、タブレット型コンピュータ、ノートパソコン及び携帯型音楽プレイヤーなどの携帯型電子機器の駆動電源として広く用いられている。近年、非水電解液二次電池の用途は電動工具、電動アシスト自転車及び電気自動車などにも拡大しており、非水電解液二次電池は長期間の使用に亘って高い信頼性を確保することが求められている。   Since non-aqueous electrolyte secondary batteries have high energy density, they are widely used as driving power sources for portable electronic devices such as smartphones, tablet computers, notebook computers, and portable music players. In recent years, the use of non-aqueous electrolyte secondary batteries has expanded to power tools, electric assist bicycles, electric vehicles, etc., and non-aqueous electrolyte secondary batteries ensure high reliability over long-term use. It is demanded.

非水電解液二次電池は、電池の形状や外装体の種類に応じて円筒形電池、角形電池及びパウチ型電池に大別される。円筒形電池には、正極板と負極板をセパレータを介して巻回した電極体が用いられる。正極板と負極板にはそれぞれリードが接続されており、リードを介して電極体が封口体や外装缶の底部と電気的に接続される。   Nonaqueous electrolyte secondary batteries are roughly classified into cylindrical batteries, rectangular batteries, and pouch-type batteries according to the shape of the battery and the type of the outer package. For the cylindrical battery, an electrode body in which a positive electrode plate and a negative electrode plate are wound through a separator is used. Leads are connected to the positive electrode plate and the negative electrode plate, respectively, and the electrode body is electrically connected to the bottom of the sealing body and the outer can through the leads.

ところが、リードは極板の集電体として用いられる金属箔に比べて厚みが大きいため、電極体の作製時に極板を巻回してもリードが極板の変形に追随することができない。そのため、リードの幅方向の両端部が電極体を外周方向に圧迫するように作用し、セパレータを介して互いに対向する正極板と負極板の距離が他の領域に比べて不均一になりやすい。その結果、充電後の電圧低下や、不均一な電極反応に起因するサイクル特性の低下といった問題が生じる。また、リードに起因して電極体の断面形状が真円になりにくいため、電極体の外径が想定よりも大きくなってしまう。   However, since the lead is thicker than the metal foil used as the current collector of the electrode plate, the lead cannot follow the deformation of the electrode plate even if the electrode plate is wound during the production of the electrode body. Therefore, both ends in the width direction of the lead act so as to press the electrode body in the outer peripheral direction, and the distance between the positive electrode plate and the negative electrode plate facing each other via the separator is likely to be non-uniform compared to other regions. As a result, problems such as voltage drop after charging and deterioration of cycle characteristics due to non-uniform electrode reaction occur. In addition, since the cross-sectional shape of the electrode body is unlikely to be a perfect circle due to the lead, the outer diameter of the electrode body becomes larger than expected.

特許文献1には、極板に接続されるリードの表面に溝を設ける技術が開示されている。その技術によればリードの幅方向の端部に起因する内部短絡の発生率を低減することができる。   Patent Document 1 discloses a technique for providing a groove on the surface of a lead connected to an electrode plate. According to the technique, the occurrence rate of internal short circuit due to the end portion in the width direction of the lead can be reduced.

特開2004−146160号公報JP 2004-146160 A

特許文献1に記載されているようにリードの表面に溝を設けることで、リードの端部に起因する内部短絡は抑制されると考えられる。しかし溝が屈曲する場合は、その断面が曲線状になりにくく、屈曲した溝が電極体を外周方向に圧迫するように作用する。そのため、セパレータを介して対向する正極板と負極板の距離が他の領域に比べて不均一になることを避けることができない。   As described in Patent Document 1, it is considered that an internal short circuit caused by the end portion of the lead is suppressed by providing the groove on the surface of the lead. However, when the groove is bent, the cross section is not easily curved, and the bent groove acts to press the electrode body in the outer peripheral direction. Therefore, it cannot be avoided that the distance between the positive electrode plate and the negative electrode plate opposed via the separator becomes non-uniform compared to other regions.

本発明は上記に鑑みてなされたものであり、巻回電極体を構成する極板に接続されるリードの形状を改良することにより、リードに起因する電極体の外径の増加や電極体内部の不均一な電極反応を防止し、高容量でサイクル特性に優れた円筒形電池を提供することを目的とする。   The present invention has been made in view of the above, and by improving the shape of the lead connected to the electrode plate constituting the wound electrode body, the increase in the outer diameter of the electrode body caused by the lead and the inside of the electrode body It is an object of the present invention to provide a cylindrical battery that prevents a non-uniform electrode reaction and has a high capacity and excellent cycle characteristics.

上記課題を解決するために本発明の一態様に係る密閉型電池は、正極リードが接続された正極板、及び負極リードが接続された負極板がセパレータを介して巻回された電極体と
、電解液と、有底筒状の外装缶と、封口体と、を備え、正極リード及び負極リードの少なくとも一方のリードが電極体の巻回軸に平行に配置された開口部を有することを特徴としている。
In order to solve the above problems, a sealed battery according to one embodiment of the present invention includes a positive electrode plate to which a positive electrode lead is connected, and an electrode body in which a negative electrode plate to which a negative electrode lead is connected is wound through a separator; An electrolyte solution, a bottomed cylindrical outer can, and a sealing body, wherein at least one of the positive electrode lead and the negative electrode lead has an opening disposed in parallel with the winding axis of the electrode body It is said.

本発明の一態様によれば極板に接続されたリードに起因する電極体の外径の増加や電極体内部の不均一な電極反応を抑制することができる。そのため本発明に一態様によれば、高容量でサイクル特性に優れた円筒形電池を提供することができる。   According to one embodiment of the present invention, it is possible to suppress an increase in the outer diameter of the electrode body and a non-uniform electrode reaction inside the electrode body due to the leads connected to the electrode plate. Therefore, according to one embodiment of the present invention, a cylindrical battery having a high capacity and excellent cycle characteristics can be provided.

図1は本発明の一実施形態に係る円筒形非水電解液二次電池の断面斜視図である。FIG. 1 is a cross-sectional perspective view of a cylindrical non-aqueous electrolyte secondary battery according to an embodiment of the present invention. 図2(a)は本発明の一実施形態に係る円筒形非水電解液二次電池の正極板の平面図であり、図2(b)は本発明の一実施形態に係る円筒形非水電解液二次電池の負極板の平面図である。2A is a plan view of a positive electrode plate of a cylindrical non-aqueous electrolyte secondary battery according to an embodiment of the present invention, and FIG. 2B is a cylindrical non-aqueous electrode according to an embodiment of the present invention. It is a top view of the negative electrode plate of an electrolyte secondary battery. 図3は本発明の一実施形態に係る電極体の斜視図である。FIG. 3 is a perspective view of an electrode body according to an embodiment of the present invention. 図4は本発明の一実施形態に係るリードの平面図である。FIG. 4 is a plan view of a lead according to an embodiment of the present invention.

本発明の一実施形態に係る円筒形電池について、図1に示した円筒形の非水電解液二次電池10を用いて説明する。なお、本発明は下記の実施形態に限定されず、本発明の要旨を変更しない範囲において適宜変更して実施することができる。   A cylindrical battery according to an embodiment of the present invention will be described using the cylindrical nonaqueous electrolyte secondary battery 10 shown in FIG. In addition, this invention is not limited to the following embodiment, In the range which does not change the summary of this invention, it can change suitably and can implement.

正極板11は図2(a)に示すように、正極集電体の両面に正極活物質層11aが形成されている。正極板11の一部に、正極集電体の両面に正極活物質層11aが形成されていない正極集電体露出部11bが設けられている。その正極集電体露出部11bに正極リード21が正極板11の短辺方向と平行に接続されている。   As shown in FIG. 2A, the positive electrode plate 11 has positive electrode active material layers 11a formed on both surfaces of the positive electrode current collector. A part of the positive electrode plate 11 is provided with a positive electrode current collector exposed portion 11b in which the positive electrode active material layer 11a is not formed on both surfaces of the positive electrode current collector. The positive electrode lead 21 is connected to the positive electrode current collector exposed portion 11 b in parallel with the short side direction of the positive electrode plate 11.

正極集電体には非水電解液中で正極電位に曝されても安定に存在することができる金属箔を用いることができる。具体例として、アルミニウム箔及びアルミニウム合金箔が挙げられる。正極集電体に接続される正極リードには正極集電体に比べて厚みの大きい長方形の金属片を用いることができる。その金属片にはアルミニウム及びアルミニウム合金を用いることができる。   As the positive electrode current collector, a metal foil that can exist stably even when exposed to the positive electrode potential in a non-aqueous electrolyte can be used. Specific examples include aluminum foil and aluminum alloy foil. As the positive electrode lead connected to the positive electrode current collector, a rectangular metal piece having a thickness larger than that of the positive electrode current collector can be used. Aluminum and an aluminum alloy can be used for the metal piece.

正極活物質層は、例えば、正極活物質スラリーを正極集電体の表面に塗布し、乾燥して形成される。正極活物質層はローラーにより所定厚みに圧縮される。正極合剤スラリーは、正極活物質及び結着剤を分散媒へ投入し、混練することで作製される。正極合剤スラリーには導電剤を添加することもできる。分散媒は結着剤の種類に応じてN−メチル−2−ピロリドンのような有機溶媒、及び水を用いることができる。正極合剤層は正極集電体の片面又は両面に形成される。   The positive electrode active material layer is formed, for example, by applying a positive electrode active material slurry to the surface of the positive electrode current collector and drying it. The positive electrode active material layer is compressed to a predetermined thickness by a roller. The positive electrode mixture slurry is prepared by charging a positive electrode active material and a binder into a dispersion medium and kneading. A conductive agent can also be added to the positive electrode mixture slurry. As the dispersion medium, an organic solvent such as N-methyl-2-pyrrolidone and water can be used depending on the kind of the binder. The positive electrode mixture layer is formed on one side or both sides of the positive electrode current collector.

正極活物質として、リチウムイオンを吸蔵、放出することができるリチウム遷移金属複合酸化物を用いることができる。リチウム遷移金属複合酸化物としては、一般式LiMO2(MはCo、Ni、及びMnの少なくとも1つ)、LiMn24及びLiFePO4が挙げられる。これらは、1種単独で又は2種以上を混合して用いることができ、Al、Ti、Mg、及びZrからなる群から選ばれる少なくとも1つを添加し、又は遷移金属元素と置換して用いることもできる。 As the positive electrode active material, a lithium transition metal composite oxide capable of inserting and extracting lithium ions can be used. Examples of the lithium transition metal composite oxide include general formula LiMO 2 (M is at least one of Co, Ni and Mn), LiMn 2 O 4 and LiFePO 4 . These can be used singly or in combination of two or more, and at least one selected from the group consisting of Al, Ti, Mg, and Zr is added, or substituted with a transition metal element. You can also.

負極板12は図2(b)に示すように、負極集電体の両面に負極活物質層12aが形成されている。負極板の一部に、負極集電体の両面に負極活物質層12aが形成されていな
い負極集電体露出部12bが設けられている。その負極集電体露出部12bに負極リード22が負極板12の短辺方向に平行に接続されている。
As shown in FIG. 2B, the negative electrode plate 12 has negative electrode active material layers 12a formed on both surfaces of a negative electrode current collector. A negative electrode current collector exposed portion 12 b in which the negative electrode active material layer 12 a is not formed on both surfaces of the negative electrode current collector is provided on a part of the negative electrode plate. A negative electrode lead 22 is connected to the negative electrode current collector exposed portion 12 b in parallel with the short side direction of the negative electrode plate 12.

負極集電体には非水電解液中で負極電位に曝されても安定に存在することができる金属箔を用いることができる。具体例として、銅箔及び銅合金箔が挙げられる。負極集電体に接続される負極リードには負極集電体に比べて厚みの大きい長方形の金属片を用いることができる。その金属片にはニッケル、ニッケル合金、銅、及び銅合金を用いることができる。   As the negative electrode current collector, a metal foil that can exist stably even when exposed to a negative electrode potential in a nonaqueous electrolytic solution can be used. Specific examples include copper foil and copper alloy foil. As the negative electrode lead connected to the negative electrode current collector, a rectangular metal piece having a thickness larger than that of the negative electrode current collector can be used. Nickel, nickel alloy, copper, and copper alloy can be used for the metal piece.

負極活物質層は、例えば、負極活物質スラリーを負極集電体の表面に塗布し、乾燥して形成される。負極活物質層はローラーにより所定厚みに圧縮される。負極合剤スラリーは、負極活物質及び結着剤を分散媒へ投入し、混練することで作製される。分散媒は結着剤の種類に応じてN−メチル−2ピロリドンのような有機溶媒、及び水を用いることができる。負極合剤層は負極集電体の片面又は両面に形成される。   The negative electrode active material layer is formed, for example, by applying a negative electrode active material slurry to the surface of the negative electrode current collector and drying it. The negative electrode active material layer is compressed to a predetermined thickness by a roller. The negative electrode mixture slurry is prepared by charging a negative electrode active material and a binder into a dispersion medium and kneading. As the dispersion medium, an organic solvent such as N-methyl-2-pyrrolidone and water can be used depending on the kind of the binder. The negative electrode mixture layer is formed on one side or both sides of the negative electrode current collector.

負極活物質として、リチウムイオンを吸蔵、放出することができる炭素材料やリチウムと合金化することができる金属材料を用いることができる。炭素材料としては、天然黒鉛及び人造黒鉛などの黒鉛が例示される。金属材料としては、ケイ素及びスズ並びにこれらの酸化物が例示される。炭素材料及び金属材料は1種単独で又は2種以上を混合して用いることができる。   As the negative electrode active material, a carbon material that can occlude and release lithium ions or a metal material that can be alloyed with lithium can be used. Examples of the carbon material include graphite such as natural graphite and artificial graphite. Examples of the metal material include silicon and tin, and oxides thereof. A carbon material and a metal material can be used individually by 1 type or in mixture of 2 or more types.

正極板11と負極板12とをセパレータ13を介して巻回することで図3に示すような電極体14が得られる。正極リード21と負極リード22はいずれも電極体14の巻回軸と平行に配置されている。   The electrode body 14 as shown in FIG. 3 is obtained by winding the positive electrode plate 11 and the negative electrode plate 12 through the separator 13. Both the positive electrode lead 21 and the negative electrode lead 22 are arranged in parallel with the winding axis of the electrode body 14.

本発明では、正極リード21及び負極リード22の少なくとも一方のリードが電極体14の巻回軸に平行に配置された開口部を有することを特徴としている。これにより、電極体14の作製時に正極板11と負極板12の変形にリードが追随することができ、リードの断面が曲線状となるようにリードが変形しやすくなる。開口部は、正極リード21及び負極リード22の両方に設けることが好ましいが、正極リード21及び負極リード22のいずれか一方に形成してもよい。いずれか一方のリードにのみ開口部を設ける場合は、電極体14の内周側に配置されるリードに開口部を形成することが好ましい。   The present invention is characterized in that at least one of the positive electrode lead 21 and the negative electrode lead 22 has an opening disposed in parallel with the winding axis of the electrode body 14. Thereby, the lead can follow the deformation of the positive electrode plate 11 and the negative electrode plate 12 when the electrode body 14 is manufactured, and the lead is easily deformed so that the cross section of the lead is curved. The opening is preferably provided in both the positive electrode lead 21 and the negative electrode lead 22, but may be formed in either the positive electrode lead 21 or the negative electrode lead 22. In the case where an opening is provided in only one of the leads, it is preferable to form the opening in a lead arranged on the inner peripheral side of the electrode body 14.

開口部の寸法や位置については、正極リード及び負極リードの間に異なる点はないため、正極リードと負極リードの共通図面である図4を参照しながら説明する。開口部21a、22aを形成する位置は特に限定されないが、リード21、22の幅方向(リードの短辺方向)の中心部に開口部21a、22aを形成することが好ましい。一方、開口部21a、22aは以下に述べるように、リード21、22の長さ方向の中心部から一方の端部側にずらして形成することが好ましい。リード21、22の長さ方向の両端部に開口部21a、22aが形成されていない領域の長さをA及びBとする。そして、リード21、22のA側が極板から突出し、リード21、22のB側が極板に接続されるものとした場合、A>Bとすることで電極体14の作製時にリード21、22が極板の変形に追随しやすくなる。さらに、リード21、22が極板から導出した部分を封口体18又は外装缶19の底部に接続することが容易になる。具体的には、A及びBはリード21、22の長さの3%以上であることが好ましく、さらにAはリード21、22の長さの10%以上であることがより好ましい。   Since there is no difference between the positive electrode lead and the negative electrode lead, the size and position of the opening will be described with reference to FIG. 4 which is a common drawing of the positive electrode lead and the negative electrode lead. The positions where the openings 21a and 22a are formed are not particularly limited, but the openings 21a and 22a are preferably formed at the center in the width direction of the leads 21 and 22 (the short side direction of the leads). On the other hand, as described below, the openings 21a and 22a are preferably formed so as to be shifted from the central portion in the length direction of the leads 21 and 22 to one end side. The lengths of the regions where the openings 21a and 22a are not formed at both ends in the length direction of the leads 21 and 22 are A and B, respectively. If the A side of the leads 21, 22 protrudes from the electrode plate and the B side of the leads 21, 22 is connected to the electrode plate, the lead 21, 22 is formed when the electrode body 14 is manufactured by setting A> B. It becomes easy to follow the deformation of the electrode plate. Furthermore, it is easy to connect the portions where the leads 21 and 22 are led out from the electrode plate to the sealing body 18 or the bottom of the outer can 19. Specifically, A and B are preferably 3% or more of the length of the leads 21 and 22, and A is more preferably 10% or more of the length of the leads 21 and 22.

開口部21a、22aの寸法についても特に限定されないが、開口部21a、22aの幅は、リード21、22の幅の3%以上30%以下であることが好ましい。開口部21a、22aの長さL2はリード21、22の長さL1に対して30%以上90%以下であることが好ましい。開口部21a、22aの幅及び長さが上記の範囲内にあれば、本発明の効果が効果的に発揮されるとともに、リード21、22の機械的強度やリード21、22と極板との接続強度を十分に確保することができる。   The dimensions of the openings 21a and 22a are not particularly limited, but the width of the openings 21a and 22a is preferably 3% to 30% of the width of the leads 21 and 22. The length L2 of the openings 21a and 22a is preferably 30% or more and 90% or less with respect to the length L1 of the leads 21 and 22. If the widths and lengths of the openings 21a and 22a are within the above ranges, the effects of the present invention can be effectively exerted, and the mechanical strength of the leads 21 and 22 and between the leads 21 and 22 and the electrode plate can be improved. Sufficient connection strength can be secured.

開口部21a、22aの形状は、電極体14の巻回軸と平行に形成されるものであれば特に限定することなく用いることができる。開口部の形状として、図4に示す長方形状の他に、開口部の長さ方向の両端部を半円状とした長円形状を採用することもできる。開口部は一つの開口から構成ことが好ましいが、リードの長さ方向に沿って複数の開口を設けることで開口部を構成することもできる。複数の開口を設ける場合は、開口部の長さはそれぞれの開口の長さの和で表すものとする。   The shapes of the openings 21a and 22a can be used without any particular limitation as long as they are formed in parallel with the winding axis of the electrode body 14. As the shape of the opening, in addition to the rectangular shape shown in FIG. 4, an oval shape in which both end portions in the length direction of the opening are semicircular may be employed. The opening is preferably formed from a single opening, but the opening can also be formed by providing a plurality of openings along the length direction of the lead. When a plurality of openings are provided, the length of the opening is represented by the sum of the lengths of the openings.

開口部を設けるリードにはアニール処理を施すことができる。アニール処理により、リードが軟化するため電極体の巻回時に極板の変形に追随してリードが変形しやすくなる。アニール処理は、リードを構成する金属材料に応じて適宜の温度、時間により行うことができる。   An annealing treatment can be applied to the lead provided with the opening. Since the lead is softened by the annealing treatment, the lead is easily deformed following the deformation of the electrode plate when the electrode body is wound. The annealing process can be performed at an appropriate temperature and time depending on the metal material constituting the lead.

セパレータとして、ポリエチレン(PE)やポリプロピレン(PP)のようなポリオレフィンを主成分とする微多孔膜を用いることができる。微多孔膜は1層単独で又は2層以上を積層して用いることができる。2層以上の積層セパレータにおいては、融点が低いポリエチレン(PE)を主成分とする層を中間層に、対酸化性に優れたポリプロピレン(PP)を表面層とすることが好ましい。さらに、セパレータには酸化アルミニウム(Al23)、酸化チタン(TiO2)及び酸化ケイ素(SiO2)のような無機粒子を添加することができる。このような無機粒子はセパレータ中に担持させることができ、セパレータ表面に結着剤とともに塗布することもできる。 As the separator, a microporous film mainly composed of polyolefin such as polyethylene (PE) or polypropylene (PP) can be used. The microporous membrane can be used singly or as a laminate of two or more layers. In a laminated separator having two or more layers, it is preferable that a layer mainly composed of polyethylene (PE) having a low melting point is used as an intermediate layer and polypropylene (PP) having excellent oxidation resistance is used as a surface layer. Furthermore, inorganic particles such as aluminum oxide (Al 2 O 3 ), titanium oxide (TiO 2 ), and silicon oxide (SiO 2 ) can be added to the separator. Such inorganic particles can be carried in the separator and can be applied together with a binder on the separator surface.

非水電解液として、非水溶媒中に電解質塩としてのリチウム塩を溶解させたものを用いることができる。   As the non-aqueous electrolyte, a solution obtained by dissolving a lithium salt as an electrolyte salt in a non-aqueous solvent can be used.

非水溶媒として、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステル及び鎖状カルボン酸エステルを用いることができ、これらは2種以上を混合して用いることが好ましい。環状炭酸エステルとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)及びブチレンカーボネート(BC)が例示される。また、フルオロエチレンカーボネート(FEC)のように、水素の一部をフッ素で置換した環状炭酸エステルを用いることもできる。鎖状炭酸エステルとしては、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)及びメチルプロピルカーボネート(MPC)などが例示される。環状カルボン酸エステルとしてはγ−ブチロラクトン(γ−BL)及びγ−バレロラクトン(γ−VL)が例示され、鎖状カルボン酸エステルとしてはピバリン酸メチル、ピバリン酸エチル、メチルイソブチレート及びメチルプロピオネートが例示される。   As the non-aqueous solvent, a cyclic carbonate, a chain carbonate, a cyclic carboxylic acid ester and a chain carboxylic acid ester can be used, and it is preferable to use a mixture of two or more. Examples of the cyclic carbonate include ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC). In addition, a cyclic carbonate in which part of hydrogen is substituted with fluorine, such as fluoroethylene carbonate (FEC), can also be used. Examples of the chain carbonate include dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), and methyl propyl carbonate (MPC). Examples of cyclic carboxylic acid esters include γ-butyrolactone (γ-BL) and γ-valerolactone (γ-VL). Examples of chain carboxylic acid esters include methyl pivalate, ethyl pivalate, methyl isobutyrate, and methyl Pionate is exemplified.

リチウム塩として、LiPF6、LiBF4、LiCF3SO3、LiN(CF3SO22、LiN(C25SO22、LiN(CF3SO2)(C49SO2)、LiC(CF3SO23、LiC(C25SO23、LiAsF6、LiClO4、Li210Cl10及びLi212Cl12が例示される。これらの中でもLiPF6が特に好ましく、非水電解液中の濃度は0.5〜2.0mol/Lであることが好ましい。LiPF6にLiBF4など他のリチウム塩を混合することもできる。 LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ) LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 and Li 2 B 12 Cl 12 are exemplified. Among these, LiPF 6 is particularly preferable, and the concentration in the nonaqueous electrolytic solution is preferably 0.5 to 2.0 mol / L. Another lithium salt such as LiBF 4 can be mixed with LiPF 6 .

本発明の一実施形態について、以下に具体的な実施例を用いて詳細に説明する。   An embodiment of the present invention will be described in detail below using a specific example.

(実施例1)
(リードの作製)
正極リード21には長方形状のアルミニウム片を用いた。正極リード21には、図4に示すように長方形状の開口部21aを正極リード21の幅方向の中心部に形成して正極リード21を作製した。開口部21aの長さL2は正極リード21の長さL1の85%とし、開口部21aの幅は正極リード21の幅の15%とした。また、Aを正極リード21の長さL1の10%とし、Bを正極リード21の長さL1の5%とした。負極リード22は長方形状のニッケル片を用いたことを除いては正極リード21と同様に作製した。
Example 1
(Lead production)
A rectangular aluminum piece was used for the positive electrode lead 21. In the positive electrode lead 21, a rectangular opening 21 a was formed in the center of the positive electrode lead 21 in the width direction as shown in FIG. The length L2 of the opening 21a was 85% of the length L1 of the positive electrode lead 21, and the width of the opening 21a was 15% of the width of the positive electrode lead 21. Further, A is 10% of the length L1 of the positive electrode lead 21, and B is 5% of the length L1 of the positive electrode lead 21. The negative electrode lead 22 was produced in the same manner as the positive electrode lead 21 except that a rectangular nickel piece was used.

(正極板の作製)
正極活物質としてのコバルト酸リチウム(LiCoO2)が94質量部、導電剤としてのアセチレンブラックが3質量部、結着剤としてのポリフッ化ビニリデンが3質量部となるように混合した。この混合物を分散媒としてのN−メチル−2−ピロリドン(NMP)に投入し、混練して正極活物質スラリーを調製した。この正極活物質スラリーを厚み15μmのアルミニウム製の正極集電体の両面に塗布し、乾燥して正極活物質層11aを形成した。このとき、正極板11の一部に正極活物質層11aが形成されていない正極集電体露出部11bを設けた。この正極活物質層11aをローラーにより所定厚みに圧縮し、所定のサイズに切断した。最後に、正極集電体露出部11bにアルミニウム製の正極リード21を接続して図2(a)に示す正極板11を作製した。
(Preparation of positive electrode plate)
94 parts by mass of lithium cobaltate (LiCoO 2 ) as a positive electrode active material, 3 parts by mass of acetylene black as a conductive agent, and 3 parts by mass of polyvinylidene fluoride as a binder were mixed. This mixture was put into N-methyl-2-pyrrolidone (NMP) as a dispersion medium and kneaded to prepare a positive electrode active material slurry. This positive electrode active material slurry was applied to both surfaces of an aluminum positive electrode current collector having a thickness of 15 μm and dried to form a positive electrode active material layer 11a. At this time, the positive electrode current collector exposed portion 11b in which the positive electrode active material layer 11a was not formed was provided on a part of the positive electrode plate 11. This positive electrode active material layer 11a was compressed to a predetermined thickness by a roller and cut into a predetermined size. Finally, an aluminum positive electrode lead 21 was connected to the positive electrode current collector exposed portion 11b to produce the positive electrode plate 11 shown in FIG.

(負極板の作製)
負極活物質としての天然黒鉛が98質量部、結着剤としてのスチレンブタジエンゴムが1質量部、増粘剤としてのカルボキシメチルセルロースが1質量部となるように混合した。この混合物を分散媒としての水に投入し、混練して負極活物質スラリーを調製した。この負極活物質スラリーを、厚みが8μmの銅製の負極集電体の両面にドクターブレード法により塗布し、乾燥して負極活物質層12aを形成した。このとき、負極集電体の一部に負極活物質層12aが両面に形成されていない負極集電体露出部12bを設けた。最後に、負極集電体露出部12bにニッケル製の負極リード22を接続して図2(b)に示す負極板12を作製した。
(Preparation of negative electrode plate)
Natural graphite as a negative electrode active material was mixed in an amount of 98 parts by mass, styrene butadiene rubber as a binder was 1 part by mass, and carboxymethyl cellulose as a thickener was 1 part by mass. This mixture was put into water as a dispersion medium and kneaded to prepare a negative electrode active material slurry. This negative electrode active material slurry was applied to both sides of a copper negative electrode current collector having a thickness of 8 μm by a doctor blade method and dried to form a negative electrode active material layer 12a. At this time, the negative electrode current collector exposed portion 12b in which the negative electrode active material layer 12a was not formed on both surfaces was provided on a part of the negative electrode current collector. Finally, a negative electrode lead 22 made of nickel was connected to the negative electrode current collector exposed portion 12b to produce the negative electrode plate 12 shown in FIG.

(電極体の作製)
上記のようにして作製した正極板11及び負極板12をポリエチレン製微多孔膜からなるセパレータ13を介して巻回して、図3に示す電極体14を作製した。電極体14の最外周にはセパレータ13を配置し、その巻終り端部に巻き止めテープ20を貼り付けて電極体を固定した。
(Production of electrode body)
The positive electrode plate 11 and the negative electrode plate 12 produced as described above were wound through a separator 13 made of a polyethylene microporous film to produce an electrode body 14 shown in FIG. A separator 13 was disposed on the outermost periphery of the electrode body 14, and a winding stopper tape 20 was attached to the end of the winding to fix the electrode body.

(非水電解液の調製)
エチレンカーボネート(EC)とジメチルカーボネート(DMC)を30:70の体積比で混合して非水溶媒を調製した。この非水溶媒に電解質塩としてのヘキサフルオロリン酸リチウム(LiPF6)を1mol/Lの濃度で溶解して非水電解液を調製した。
(Preparation of non-aqueous electrolyte)
Ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed at a volume ratio of 30:70 to prepare a non-aqueous solvent. Lithium hexafluorophosphate (LiPF 6 ) as an electrolyte salt was dissolved in this non-aqueous solvent at a concentration of 1 mol / L to prepare a non-aqueous electrolyte.

(非水電解液二次電池の作製)
電極体14の下部に下部絶縁板16を配置し電極体14を外装缶19へ挿入した後、負極リード22を外装缶19の底部に接続した。次いで、電極体14の上部に上部絶縁板15を挿入し、外装缶19の側面のうち上部絶縁板15よりも上側の位置に回転している溝入れ加工用の円板を押し当てて溝入れ加工を行った。その溝入れ部に絶縁ガスケット17を挿入し、正極リード21を封口体18に接続した。最後に、非水電解液を外装缶19の内部へ注入した後、封口体18を外装缶19の溝入れ部に絶縁ガスケット17を介してかしめ固定することにより図1に示す直径18mm、高さ65mmの円筒形の非水電解液二次電池10を作製した。
(Preparation of non-aqueous electrolyte secondary battery)
After the lower insulating plate 16 was disposed below the electrode body 14 and the electrode body 14 was inserted into the outer can 19, the negative electrode lead 22 was connected to the bottom of the outer can 19. Next, the upper insulating plate 15 is inserted into the upper part of the electrode body 14, and a grooving disk rotating at a position above the upper insulating plate 15 on the side surface of the outer can 19 is pressed against the groove. Processing was performed. The insulating gasket 17 was inserted into the grooved portion, and the positive electrode lead 21 was connected to the sealing body 18. Finally, after injecting the non-aqueous electrolyte into the outer can 19, the sealing body 18 is caulked and fixed to the grooved portion of the outer can 19 via the insulating gasket 17, and the diameter 18 mm and height shown in FIG. A 65 mm cylindrical nonaqueous electrolyte secondary battery 10 was produced.

(実施例2〜5)
正極リード及び負極リードの開口部の幅を表1に示す値としたことを除いては実施例1と同様に実施例2〜5に係る円筒形の非水電解液二次電池を作製した。なお、表1に示す開口部の幅はリードの幅に対する百分率として表したものである。
(Examples 2 to 5)
Cylindrical non-aqueous electrolyte secondary batteries according to Examples 2 to 5 were produced in the same manner as in Example 1 except that the widths of the openings of the positive electrode lead and the negative electrode lead were set to the values shown in Table 1. The width of the opening shown in Table 1 is expressed as a percentage with respect to the width of the lead.

(比較例)
正極リード及び負極リードに開口部を形成しなかったことを除いては実施例1と同様に比較例に係る円筒形の非水電解液二次電池を作製した。
(Comparative example)
A cylindrical non-aqueous electrolyte secondary battery according to a comparative example was produced in the same manner as in Example 1 except that no opening was formed in the positive electrode lead and the negative electrode lead.

(電極体の外径測定)
実施例1〜5及び比較例のそれぞれの電極体の外径を定圧ノギスで測定した。電極体の外径は測定する箇所によって異なる値を示すため、電極体の高さ方向の中央部で測定した値の中の最大値をその電極体の外径として記録した。表1に実施例1〜5及び比較例の各10個の電極体の外径の平均値を示す。
(Measurement of outer diameter of electrode body)
The outer diameters of the electrode bodies of Examples 1 to 5 and the comparative example were measured with a constant pressure caliper. Since the outer diameter of the electrode body shows different values depending on the location to be measured, the maximum value among the values measured at the central portion in the height direction of the electrode body was recorded as the outer diameter of the electrode body. Table 1 shows the average value of the outer diameters of the 10 electrode bodies of Examples 1 to 5 and Comparative Example.

(サイクル特性の評価)
実施例1〜5及び比較例のそれぞれの電池を25℃の環境下で、1Itの定電流で電池電圧が4.2Vになるまで充電し、その後4.2Vの定電圧で電流が0.01Itになるまで充電した。10分の休止後、それぞれの電池を1Itの定電流で電池電圧が2.75Vになるまで放電した。この充放電を1サイクルとして、200サイクルの充放電サイクルを繰り返した。1サイクル目の放電容量と200サイクル目の放電容量を測定し、以下の式から200サイクル後の容量維持率を算出し、その値をサイクル特性として評価した。表1に各実施例及び比較例の3個の電池の容量維持率の平均値を示す。
容量維持率(%)
=(200サイクル目の放電容量/1サイクル目の放電容量)×100
(Evaluation of cycle characteristics)
The batteries of Examples 1 to 5 and the comparative example were charged at a constant current of 1 It in a 25 ° C. environment until the battery voltage reached 4.2 V, and then the current was 0.01 It at a constant voltage of 4.2 V. Charged until After 10 minutes of rest, each battery was discharged at a constant current of 1 It until the battery voltage reached 2.75V. With this charge / discharge as one cycle, 200 charge / discharge cycles were repeated. The discharge capacity at the first cycle and the discharge capacity at the 200th cycle were measured, the capacity retention rate after 200 cycles was calculated from the following formula, and the value was evaluated as the cycle characteristics. Table 1 shows the average values of the capacity retention rates of the three batteries of each example and comparative example.
Capacity maintenance rate (%)
= (Discharge capacity at 200th cycle / Discharge capacity at 1st cycle) × 100

Figure 2017010787
Figure 2017010787

実施例1〜5及び比較例の各電極体には同じサイズの極板を用いた。それにも関わらず、表1から実施例1〜5の電極体の外径は比較例に比べて小さいことわかる。比較例の電極体では、リードの端部が電極体の外径を大きくする原因となっていた。表1に示された結果は、リードに開口部を形成することが電極体の外径増加の抑制に効果的であることを示している。   The electrode plates of the same size were used for the electrode bodies of Examples 1 to 5 and the comparative example. Nevertheless, it can be seen from Table 1 that the outer diameters of the electrode bodies of Examples 1 to 5 are smaller than those of the comparative example. In the electrode body of the comparative example, the end portion of the lead is a cause of increasing the outer diameter of the electrode body. The results shown in Table 1 indicate that forming an opening in the lead is effective in suppressing increase in the outer diameter of the electrode body.

また、実施例1〜5は比較例に比べて優れたサイクル特性を発揮していることがわかる。巻回電極体では、リードの近傍では他の領域に比べてセパレータを介して対向する正極板と負極板の間の距離が不均一になりやすい。しかし、リードに開口部を形成することにより電極体がより真円に近づくため、セパレータ介して対抗する正極板と負極板の間の距離が電極体の内部で均一になる。また表1に示された結果から、リードに開口部を形成することが電極体の物理的な形状だけでなくサイクル特性のような電気化学特性にも好ましい影響を与えることがわかる。   Moreover, it turns out that Examples 1-5 are exhibiting the cycling characteristics outstanding compared with the comparative example. In the wound electrode body, the distance between the positive electrode plate and the negative electrode plate facing each other through the separator is more likely to be non-uniform in the vicinity of the lead than in other regions. However, since the electrode body is closer to a perfect circle by forming the opening in the lead, the distance between the positive electrode plate and the negative electrode plate that oppose each other through the separator becomes uniform inside the electrode body. Further, from the results shown in Table 1, it can be seen that the formation of the opening in the lead has a positive influence on not only the physical shape of the electrode body but also electrochemical characteristics such as cycle characteristics.

表1から、本発明の効果がより効果的に発揮されるために開口部の幅はリードの幅に対して3%以上であることが好ましく、10%以上であることがより好ましいことがわかる。しかし、本発明の効果の、開口部の幅に対する依存性はあまり大きくはないので、開口部の幅についてはリードの機械的強度や、リードと極板との接続強度から適宜決定することができる。そのような観点から、開口部の幅はリードの幅の30%以下であることが好ましい。   From Table 1, it can be seen that the width of the opening is preferably 3% or more, more preferably 10% or more with respect to the width of the lead in order to achieve the effect of the present invention more effectively. . However, the dependency of the effect of the present invention on the width of the opening is not so large, and the width of the opening can be appropriately determined from the mechanical strength of the lead and the connection strength between the lead and the electrode plate. . From such a viewpoint, the width of the opening is preferably 30% or less of the width of the lead.

以上説明したように本発明によれば、極板に接続されたリードに起因する電極体の外径の増加やサイクル特性の低下を防止することができる。すなわち、本発明は円筒形電池の高容量化やサイクル特性の向上に寄与することができるため、産業上の利用可能性は大きい。   As described above, according to the present invention, it is possible to prevent an increase in the outer diameter of the electrode body and a decrease in cycle characteristics due to the leads connected to the electrode plate. That is, since the present invention can contribute to an increase in capacity and cycle characteristics of a cylindrical battery, the industrial applicability is great.

10 非水電解液二次電池
11 正極板
11a 正極活物質層
11b 正極集電体露出部
12 負極板
12a 負極活物質層
12b 負極集電体露出部
13 セパレータ
14 電極体
15 上部絶縁板
16 下部絶縁板
17 絶縁ガスケット
18 封口体
19 外装缶
20 巻き止めテープ
21 正極リード
21a 開口部
22 負極リード
22a 開口部
DESCRIPTION OF SYMBOLS 10 Nonaqueous electrolyte secondary battery 11 Positive electrode plate 11a Positive electrode active material layer 11b Positive electrode collector exposed part 12 Negative electrode plate 12a Negative electrode active material layer 12b Negative electrode collector exposed part 13 Separator 14 Electrode body 15 Upper insulating plate 16 Lower insulation Plate 17 Insulating gasket 18 Sealing body 19 Exterior can 20 Winding tape 21 Positive electrode lead 21a Opening portion 22 Negative electrode lead 22a Opening portion

Claims (5)

正極リードが接続された正極板、及び負極リードが接続された負極板がセパレータを介して巻回された電極体と、
電解液と、
有底筒状の外装缶と、
封口体と、
を備える円筒形電池であって、
前記正極リード及び前記負極リードの少なくとも一方のリードが前記電極体の巻回軸に平行に配置された開口部を有する、
円筒形電池。
A positive electrode plate to which a positive electrode lead is connected, and an electrode body in which a negative electrode plate to which a negative electrode lead is connected is wound through a separator;
An electrolyte,
A bottomed cylindrical outer can,
A sealing body,
A cylindrical battery comprising:
At least one of the positive electrode lead and the negative electrode lead has an opening disposed in parallel with a winding axis of the electrode body;
Cylindrical battery.
前記開口部は、前記リードの長さ方向の両端部のそれぞれから前記リードの長さの3%の位置までの範囲を除く範囲内に配置されている請求項1記載の円筒形電池。   2. The cylindrical battery according to claim 1, wherein the opening is disposed within a range excluding a range from each of both ends in the length direction of the lead to a position of 3% of the length of the lead. 前記開口部の長さは前記リードの長さの30%以上90%以下である請求項1又は2記載の円筒形電池。   The cylindrical battery according to claim 1 or 2, wherein a length of the opening is 30% or more and 90% or less of a length of the lead. 前記開口部は前記リードの幅方向の中心部に配置されている請求項1から3のいずれかに記載の円筒形電池。   The cylindrical battery according to any one of claims 1 to 3, wherein the opening is disposed at a center portion of the lead in the width direction. 前記開口部の幅は前記リードの幅の3%以上30%以下である請求項1から4のいずれかに記載の円筒形電池。   5. The cylindrical battery according to claim 1, wherein a width of the opening is not less than 3% and not more than 30% of a width of the lead.
JP2015125277A 2015-06-23 2015-06-23 Cylindrical battery Pending JP2017010787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015125277A JP2017010787A (en) 2015-06-23 2015-06-23 Cylindrical battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015125277A JP2017010787A (en) 2015-06-23 2015-06-23 Cylindrical battery

Publications (1)

Publication Number Publication Date
JP2017010787A true JP2017010787A (en) 2017-01-12

Family

ID=57764496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015125277A Pending JP2017010787A (en) 2015-06-23 2015-06-23 Cylindrical battery

Country Status (1)

Country Link
JP (1) JP2017010787A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108539254A (en) * 2017-03-03 2018-09-14 丰田自动车株式会社 Lithium rechargeable battery and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108539254A (en) * 2017-03-03 2018-09-14 丰田自动车株式会社 Lithium rechargeable battery and its manufacturing method
JP2018147669A (en) * 2017-03-03 2018-09-20 トヨタ自動車株式会社 Lithium ion secondary battery and method for manufacturing the same
US10714794B2 (en) 2017-03-03 2020-07-14 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery and method of producing the lithium ion secondary battery
CN108539254B (en) * 2017-03-03 2021-02-26 丰田自动车株式会社 Lithium ion secondary battery and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP5094084B2 (en) Nonaqueous electrolyte secondary battery
JP2011081931A (en) Lithium ion secondary battery
JP2019016483A (en) Nonaqueous electrolyte secondary battery
JP5849234B2 (en) Nonaqueous electrolyte secondary battery
JP5396902B2 (en) Lithium ion secondary battery
JP5618698B2 (en) Non-aqueous electrolyte battery
JP2011034893A (en) Nonaqueous electrolyte secondary battery
JP2013201077A (en) Nonaqueous electrolytic secondary battery
JP2011049114A (en) Lithium-ion secondary battery
WO2017122251A1 (en) Non-aqueous electrolyte secondary battery
US10637048B2 (en) Silicon anode materials
JP6051038B2 (en) Foil for positive electrode current collector of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP6547750B2 (en) Non-aqueous electrolyte secondary battery
JP2013152870A (en) Nonaqueous electrolytic secondary battery and method of manufacturing the same
JP5888512B2 (en) Non-aqueous electrolyte secondary battery positive electrode, manufacturing method thereof, and non-aqueous electrolyte secondary battery
JP6484995B2 (en) Lithium ion secondary battery
JPWO2014136794A1 (en) Lithium secondary battery
JP2015082381A (en) Nonaqueous electrolyte secondary battery
US11456460B2 (en) Nonaqueous electrolyte secondary battery
JP5296971B2 (en) Method for producing negative electrode for secondary battery
JP6646370B2 (en) Charge / discharge method of lithium secondary battery
JP5405353B2 (en) Non-aqueous electrolyte secondary battery
JP2018133284A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery using the same
JP2017010787A (en) Cylindrical battery
WO2012086618A1 (en) Negative electrode active material, negative electrode, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20170419