JP2017009502A - Current detection circuit - Google Patents

Current detection circuit Download PDF

Info

Publication number
JP2017009502A
JP2017009502A JP2015127012A JP2015127012A JP2017009502A JP 2017009502 A JP2017009502 A JP 2017009502A JP 2015127012 A JP2015127012 A JP 2015127012A JP 2015127012 A JP2015127012 A JP 2015127012A JP 2017009502 A JP2017009502 A JP 2017009502A
Authority
JP
Japan
Prior art keywords
current
detection circuit
primary winding
circuit
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015127012A
Other languages
Japanese (ja)
Inventor
雄司 藤田
Yuji Fujita
雄司 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kikusui Electronics Corp
Original Assignee
Kikusui Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kikusui Electronics Corp filed Critical Kikusui Electronics Corp
Priority to JP2015127012A priority Critical patent/JP2017009502A/en
Publication of JP2017009502A publication Critical patent/JP2017009502A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a current detection circuit that has high insulating performance between the detection circuit and a point to be measured, is high in sensitivity and compact, and can be made compact.SOLUTION: A current detection circuit 100 consists of a transformer T1 comprising a magnetic core of high-magnetic-permeability material, an AC current generation circuit 110 connected to the transformer T1, and a determination circuit 120 determining an output voltage of an operational amplifier U1 that the AC current generation circuit 110 comprises. The determination circuit 120 consists of a window comparator 121 and a counting circuit 122. When a current flows to primary winding of the transformer T1, a secondary winding current value until the magnetic core of the transformer T1 reaches saturation magnetic flux density with a secondary winding current varies in proportion to the direction and level of the current from that when no current flows to the primary winding. The shift quantity thereof is proportional to the primary winding current, so a numeral proportional to the primary winding current can be obtained through the window comparator 121 and counting circuit 122.SELECTED DRAWING: Figure 1

Description

本発明は、太陽光発電や蓄電池システムといった直流高電圧回路の地絡検出を行う電流検出回路に関する。   The present invention relates to a current detection circuit that detects a ground fault of a DC high voltage circuit such as a photovoltaic power generation or a storage battery system.

太陽光発電や定置型蓄電池システムにおいては、その発電効率を上げるために数百V以上の電圧で発電部とインバータ装置とが接続されることが多い。そのため、安全を確保することを目的として、地絡電流が所定値以上で検出されると電源を遮断する等、感電に対する保護が図られている。   In photovoltaic power generation and stationary storage battery systems, the power generation unit and the inverter device are often connected with a voltage of several hundred volts or more in order to increase the power generation efficiency. Therefore, for the purpose of ensuring safety, protection against electric shock is achieved, for example, power is cut off when a ground fault current is detected at a predetermined value or more.

太陽光発電や定置型蓄電池システムにおいて地絡電流を検出するためには、太陽光発電パネルや蓄電池が直流発電源であるため、直流から測定できる電流検出器が必要になる(特許文献1参照)。また、地絡電流検出における検出下限値は数100μAから数mA程度であるため、直流のドリフト特性は非常に小さいことが求められる。   In order to detect a ground fault current in a photovoltaic power generation or a stationary storage battery system, since a photovoltaic power generation panel or storage battery is a direct current power source, a current detector that can be measured from direct current is required (see Patent Document 1). . In addition, since the detection lower limit value in the ground fault current detection is about several hundred μA to several mA, the DC drift characteristic is required to be very small.

さらに、電流検出器において検出部と操作部は、同一コモンライン上に構成されることが多く、この場合は人が操作したり他の機器と通信したりする都合上、被測定点とは絶縁されていることが必要である。また、回路規模を大きくしないために、絶縁ポイントは被測定点の直近で行われることが好ましい。   Furthermore, in the current detector, the detection unit and the operation unit are often configured on the same common line. In this case, the detection unit and the measurement point are isolated from each other for convenience of human operation and communication with other devices. It is necessary to be. Further, in order not to increase the circuit scale, it is preferable that the insulation point is performed in the immediate vicinity of the measurement point.

特開2006−187150号公報JP 2006-187150 A

しかしながら、従来、この地絡電流検出にはホール素子を用いた電流センサなどが用いられてきたが、感度が低いために地絡電流検出線を数ターンから数十ターンも巻きつけなければならず、直流ドリフトが大きく、価格も高いという課題があった。   However, in the past, a current sensor using a Hall element has been used for detecting the ground fault current. However, since the sensitivity is low, the ground fault current detection line must be wound for several to several tens of turns. There was a problem that the DC drift was large and the price was high.

本発明は、このような課題に鑑みてなされたもので、その目的とするところは、検出回路と被測定点との間で高い絶縁性能を持ち、高感度で、安価かつ小型化可能な電流検出回路を提供することにある。   The present invention has been made in view of such a problem, and an object of the present invention is to provide a current having high insulation performance between a detection circuit and a measurement point, high sensitivity, low cost, and miniaturization. It is to provide a detection circuit.

上記の課題を解決するために、本発明は、電流検出回路であって、磁性材料を磁心とした一次巻線および二次巻線を有するトランスと、前記二次巻線に接続され、前記磁心が磁気飽和する電流以上のピーク値を持つ交流電流を前記二次巻線に流す交流電流発生回路と、前記二次巻線の電圧波形のピーク位置の変化を判定する判定回路と、を備え、前記電圧波形のピーク位置の変化の判定結果から、前記一次巻線に流れた電流量を判定することを特徴とする。   In order to solve the above-described problems, the present invention provides a current detection circuit, a transformer having a primary winding and a secondary winding having a magnetic material as a magnetic core, and the magnetic core connected to the secondary winding. An AC current generation circuit for flowing an AC current having a peak value greater than or equal to a magnetic saturation current to the secondary winding, and a determination circuit for determining a change in the peak position of the voltage waveform of the secondary winding, The amount of current flowing through the primary winding is determined from the determination result of the change in the peak position of the voltage waveform.

請求項2に記載の発明は、請求項1に記載の電流検出回路において、前記交流電流は、三角波電流であることを特徴とする。   According to a second aspect of the present invention, in the current detection circuit according to the first aspect, the alternating current is a triangular wave current.

請求項3に記載の発明は、請求項1に記載の電流検出回路において、前記一次巻線は、1又は2巻きであることを特徴とする。   According to a third aspect of the present invention, in the current detection circuit according to the first aspect, the primary winding is one or two turns.

請求項4に記載の発明は、請求項1乃至3のいずれかに記載の電流検出回路において、前記磁心は、アモルファスパーマロイであることを特徴とする。   According to a fourth aspect of the present invention, in the current detection circuit according to any one of the first to third aspects, the magnetic core is an amorphous permalloy.

請求項5に記載の発明は、請求項1乃至4のいずれかに記載の電流検出回路において、前記判定回路は、ウィンドコンパレータおよび計数回路からなり、前記ウィンドコンパレータにより検出された正の電圧ピークと負の電圧ピークとの間隔を前記計数回路で測定することにより、前記一次巻線に流れた電流量を判定することを特徴とする。   According to a fifth aspect of the present invention, in the current detection circuit according to any one of the first to fourth aspects, the determination circuit includes a window comparator and a counting circuit, and a positive voltage peak detected by the window comparator is detected. The amount of current flowing in the primary winding is determined by measuring the interval from the negative voltage peak with the counting circuit.

請求項6に記載の発明は、請求項1乃至4のいずれかに記載の電流検出回路において、前記判定回路は、A/D変換器およびプロセッサからなることを特徴とする。   According to a sixth aspect of the present invention, in the current detection circuit according to any one of the first to fourth aspects, the determination circuit includes an A / D converter and a processor.

本発明は、電流検出器において、電流検出の感度を高め、低価格化、小型化する効果を奏する。また、直流ドリフトを低減することも容易に可能にする。   The present invention has the effect of increasing the sensitivity of current detection, reducing the price, and reducing the size of the current detector. Further, it is possible to easily reduce the DC drift.

本発明の実施形態1に係る電流検出回路の構成を示す図である。It is a figure which shows the structure of the current detection circuit which concerns on Embodiment 1 of this invention. 高透磁率材料の磁気飽和特性を示す図である。It is a figure which shows the magnetic saturation characteristic of a high magnetic permeability material. 本発明の一実施形態において電流検出回路を動作させたときのトランスT1の二次巻線に誘起される電圧を示す図である。It is a figure which shows the voltage induced by the secondary winding of the trans | transformer T1 when operating a current detection circuit in one Embodiment of this invention. 本発明の一実施形態においてトランスT1の一次巻線に電流が流れたときのトランスT1の二次巻線に誘起される電圧を示す図である。It is a figure which shows the voltage induced by the secondary winding of the transformer T1 when an electric current flows into the primary winding of the transformer T1 in one Embodiment of this invention. 本発明の別の実施形態に係る電流検出回路の構成を示す図である。It is a figure which shows the structure of the current detection circuit which concerns on another embodiment of this invention.

本発明は太陽光発電や蓄電池システムといった直流高電圧回路の地絡検出のように高感度で優れた安定性と絶縁性能が求められる直流電流検出を、磁性材料の磁気飽和特性を利用して安価かつシンプルに実現するものである。以下、本発明の実施の形態について、詳細に説明する。   The present invention uses a magnetic saturation characteristic of a magnetic material to detect DC current detection that requires high sensitivity and excellent stability and insulation performance, such as ground fault detection of a DC high voltage circuit such as a photovoltaic power generation system or a storage battery system. And it is realized simply. Hereinafter, embodiments of the present invention will be described in detail.

図1に、本発明の一実施形態に係る電流検出回路の構成を示す。実施形態1に係る電流検出回路100は、高透磁率材料の磁心を備えたトランスT1と、トランスT1に接続された交流電流発生回路110と、交流電流発生回路110が備える演算増幅器U1の出力電圧を判定する判定回路120とからなる。判定回路120は、ウィンドコンパレータ121と計数回路122とからなる。   FIG. 1 shows a configuration of a current detection circuit according to an embodiment of the present invention. The current detection circuit 100 according to the first embodiment includes a transformer T1 having a magnetic core made of a high permeability material, an AC current generation circuit 110 connected to the transformer T1, and an output voltage of an operational amplifier U1 provided in the AC current generation circuit 110. And a determination circuit 120 for determining whether or not. The determination circuit 120 includes a window comparator 121 and a counting circuit 122.

トランスT1は、一次巻線が1又は2巻き程度であるのに対し、二次巻線は20巻き程度とすることができる。   In the transformer T1, the primary winding has about 1 or 2 turns, whereas the secondary winding can have about 20 turns.

交流電流発生回路110は、三角波電圧源111と、抵抗R1と、演算増幅器U1とからなる。トランスT1の二次巻線を演算増幅器U1の出力と負入力間の帰還路に接続し、演算増幅器U1の正入力は接地電位としておく。尚、三角波電圧源111の周波数は、1kHz程度で良い。また、図1に示す実施形態では、三角波電圧源111としたが、電圧源で発生させる電圧は三角波に限定されずサイン波等でも良い。   The alternating current generation circuit 110 includes a triangular wave voltage source 111, a resistor R1, and an operational amplifier U1. The secondary winding of the transformer T1 is connected to a feedback path between the output of the operational amplifier U1 and the negative input, and the positive input of the operational amplifier U1 is set to the ground potential. The frequency of the triangular wave voltage source 111 may be about 1 kHz. In the embodiment shown in FIG. 1, the triangular wave voltage source 111 is used. However, the voltage generated by the voltage source is not limited to the triangular wave and may be a sine wave or the like.

ここで抵抗R1を通じて三角波電圧vを演算増幅器U1の負入力加えると、トランスT1の二次巻線に流れる電流Iは、演算増幅器U1のオープンループゲインが十分に大きな値とすると、
I=v/R1
となり、電圧vに比例した三角波電流となる。尚、抵抗R1は、三角波電流Iのピーク値がトランスT1の磁心が飽和磁束密度に達する以上の値となるように設定する。これにより、磁心が帯磁しても消磁することができる。
Here, when a triangular wave voltage v is added to the negative input of the operational amplifier U1 through the resistor R1, the current I flowing through the secondary winding of the transformer T1 is set to a sufficiently large value of the open loop gain of the operational amplifier U1.
I = v / R1
Thus, a triangular wave current proportional to the voltage v is obtained. The resistor R1 is set so that the peak value of the triangular wave current I is higher than the saturation magnetic flux density of the magnetic core of the transformer T1. Thereby, even if a magnetic core is magnetized, it can degauss.

図2に、高透磁率材料の磁気飽和特性を示す。トランスT1の磁心には、図2に示すように急峻な磁気飽和特性と小さいヒステリシスの磁性材料、例えば比透磁率が1×104程度の、アモルファスパーマロイなどを使用することができる。 FIG. 2 shows the magnetic saturation characteristics of the high permeability material. As the magnetic core of the transformer T1, as shown in FIG. 2, a magnetic material having a steep magnetic saturation characteristic and a small hysteresis, for example, an amorphous permalloy having a relative permeability of about 1 × 10 4 can be used.

一般に透磁率μはB−H曲線の傾き、すなわち
μ=B/H
で表される。この曲線からわかるように、磁気飽和するまでは非常に大きな透磁率を示し、飽和磁束密度に達すると傾きは急激にゼロに近づく特性を示している。
In general, the permeability μ is the slope of the BH curve, that is, μ = B / H.
It is represented by As can be seen from this curve, the magnetic permeability is very high until the magnetic saturation occurs, and when the saturation magnetic flux density is reached, the slope suddenly approaches zero.

従って、トランスT1の二次巻線電流によってトランスT1の磁心が飽和磁束密度に達したときの二次巻線インダクタンスは非常に小さくなり、磁心が非飽和状態のときには大きなインダクタンスとなる。   Therefore, when the magnetic core of the transformer T1 reaches the saturation magnetic flux density due to the secondary winding current of the transformer T1, the secondary winding inductance becomes very small, and when the magnetic core is in the non-saturated state, the inductance becomes large.

図3、本発明の一実施形態において電流検出回路を動作させたときのトランスT1の二次巻線に誘起される電圧を示す。二次巻線に誘起される電圧、すなわち演算増幅器U1の出力電圧(2)は、トランスT1の二次巻線のインダクタンス変化に応じて図3に示すように大きなピークを伴って変化する。   FIG. 3 shows the voltage induced in the secondary winding of the transformer T1 when the current detection circuit is operated in one embodiment of the present invention. The voltage induced in the secondary winding, that is, the output voltage (2) of the operational amplifier U1, changes with a large peak as shown in FIG. 3 according to the inductance change of the secondary winding of the transformer T1.

ここでトランスT1の一次巻線に電流が流れると、その向きと大きさに比例して、二次巻線電流によってトランスT1の磁心が飽和磁束密度に達するまでの二次巻線電流値が、一次巻線に電流が流れていないときに対して変化する。図4に、一次巻線に電流が流れたときのトランスT1の二次巻線に誘起される電圧を示す。このため、一次巻線電流が正方向に流れるとU1出力電圧(2)は一点鎖線で示す波形のようにピーク位置がシフトし、一次巻線電流が負方向に流れると点線で示す波形のようにシフトする。周波数が1kHz程度の場合、正の電圧ピークと負の電圧ピーク間でシフト量は数十パーセントであり、0.1〜0.2ms程度の変化が生じる。   Here, when a current flows through the primary winding of the transformer T1, the secondary winding current value until the magnetic core of the transformer T1 reaches the saturation magnetic flux density due to the secondary winding current is proportional to the direction and magnitude thereof. Changes when no current is flowing through the primary winding. FIG. 4 shows a voltage induced in the secondary winding of the transformer T1 when a current flows through the primary winding. For this reason, when the primary winding current flows in the positive direction, the peak position of the U1 output voltage (2) is shifted as shown by the dashed line, and when the primary winding current flows in the negative direction, the waveform shown by the dotted line is obtained. Shift to. When the frequency is about 1 kHz, the shift amount is several tens percent between the positive voltage peak and the negative voltage peak, and a change of about 0.1 to 0.2 ms occurs.

このシフト量は一次巻線電流に比例した値となるので、図1に示すように、ウィンドコンパレータ121と計数回路122で一次巻線電流に比例した数値を得ることができる。すなわち、正の電圧ピークと負の電圧ピークとの時間間隔を計数回路122で測定することで、予め求めておいた一次巻線電流値と時間間隔との対応関係からその時間間隔に応じた一次巻線電流値を判定することができる。もちろん、図5に示すように、判定回路220として、A/D変換器221とプロセッサ222を用いて波形の変化量を判別して一次巻線電流値を求めることも可能である。   Since this shift amount is a value proportional to the primary winding current, a numerical value proportional to the primary winding current can be obtained by the window comparator 121 and the counting circuit 122 as shown in FIG. That is, the time interval between the positive voltage peak and the negative voltage peak is measured by the counting circuit 122, so that the primary corresponding to the time interval is obtained from the correspondence relationship between the primary winding current value and the time interval obtained in advance. The winding current value can be determined. Of course, as shown in FIG. 5, it is also possible to determine the amount of change in the waveform using the A / D converter 221 and the processor 222 as the determination circuit 220 and obtain the primary winding current value.

以上のように、本発明は、トランスの磁心が正負に磁気飽和する以上の交番三角波電流を流すため磁心が帯磁しづらく、ホール素子などを用いた電流センサに比べて帯磁によるオフセットドリフトが生じ難くすることができる。また、磁心が磁気飽和する点は温度に対して安定であるため、温度安定性も高い。   As described above, according to the present invention, an alternating triangular wave current exceeding the magnetic saturation of the transformer core positively and negatively flows, so that the magnetic core is hard to be magnetized, and offset drift due to magnetism is less likely to occur than a current sensor using a Hall element or the like. can do. Moreover, since the magnetic saturation point of the magnetic core is stable with respect to temperature, the temperature stability is also high.

また、本発明は、高透磁率で急峻な磁気飽和特性を有するアモルファスパーマロイを磁心材料とすることで、磁気飽和点と非飽和点の間を遷移する際に大きく急峻な検出電圧を得られる。それにより、ウィンドコンパレータのように簡単な回路で一次回路電流に比例したパルス間隔を得ることができるので、小型で低コストの電流検出回路を提供することができる。   Further, the present invention can obtain a large and steep detection voltage when transitioning between a magnetic saturation point and a non-saturation point by using amorphous permalloy having a high magnetic permeability and steep magnetic saturation characteristics as a magnetic core material. Thereby, since a pulse interval proportional to the primary circuit current can be obtained with a simple circuit such as a window comparator, a small and low-cost current detection circuit can be provided.

110、210 交流電流発生回路
111 電圧源
120、220 判定回路
121 計数回路
122 ウィンドコンパレータ
221 A/D変換器
222 プロセッサ
U1 演算増幅器
110, 210 AC current generation circuit 111 Voltage source 120, 220 Determination circuit 121 Count circuit 122 Window comparator 221 A / D converter 222 Processor U1 Operational amplifier

Claims (6)

磁性材料を磁心とした一次巻線および二次巻線を有するトランスと、
前記二次巻線に接続され、前記磁心が磁気飽和する電流以上のピーク値を持つ交流電流を前記二次巻線に流す交流電流発生回路と、
前記二次巻線の電圧波形のピーク位置の変化を判定する判定回路と、
を備え、前記電圧波形のピーク位置の変化の判定結果から、前記一次巻線に流れた電流量を判定することを特徴とする電流検出回路。
A transformer having a primary winding and a secondary winding with a magnetic material as a magnetic core;
An alternating current generating circuit that is connected to the secondary winding and causes an alternating current having a peak value equal to or higher than a current at which the magnetic core is magnetically saturated to flow to the secondary winding;
A determination circuit for determining a change in the peak position of the voltage waveform of the secondary winding;
And a current detection circuit for determining an amount of current flowing through the primary winding from a determination result of a change in a peak position of the voltage waveform.
前記交流電流は、三角波電流であることを特徴とする請求項1に記載の電流検出回路。   The current detection circuit according to claim 1, wherein the alternating current is a triangular wave current. 前記一次巻線は、1又は2巻きであることを特徴とする請求項1に記載の電流検出回路。   The current detection circuit according to claim 1, wherein the primary winding is one or two turns. 前記磁心は、アモルファスパーマロイであることを特徴とする請求項1乃至3のいずれかに記載の電流検出回路。   The current detection circuit according to claim 1, wherein the magnetic core is an amorphous permalloy. 前記判定回路は、ウィンドコンパレータおよび計数回路からなり、前記ウィンドコンパレータにより検出された正の電圧ピークと負の電圧ピークとの間隔を前記計数回路で測定することにより、前記一次巻線に流れた電流量を判定することを特徴とする請求項1乃至4のいずれかに記載の電流検出回路。   The determination circuit includes a window comparator and a counting circuit, and the current flowing in the primary winding is measured by measuring the interval between the positive voltage peak and the negative voltage peak detected by the window comparator with the counting circuit. The current detection circuit according to claim 1, wherein the amount is determined. 前記判定回路は、A/D変換器およびプロセッサからなることを特徴とする請求項1乃至4のいずれかに記載の電流検出回路。   The current detection circuit according to claim 1, wherein the determination circuit includes an A / D converter and a processor.
JP2015127012A 2015-06-24 2015-06-24 Current detection circuit Pending JP2017009502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015127012A JP2017009502A (en) 2015-06-24 2015-06-24 Current detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015127012A JP2017009502A (en) 2015-06-24 2015-06-24 Current detection circuit

Publications (1)

Publication Number Publication Date
JP2017009502A true JP2017009502A (en) 2017-01-12

Family

ID=57763661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015127012A Pending JP2017009502A (en) 2015-06-24 2015-06-24 Current detection circuit

Country Status (1)

Country Link
JP (1) JP2017009502A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019027987A (en) * 2017-08-02 2019-02-21 泰和電気工業株式会社 Device and method for detecting leakage of direct current

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013096848A (en) * 2011-11-01 2013-05-20 Hirose Electric Co Ltd Current sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013096848A (en) * 2011-11-01 2013-05-20 Hirose Electric Co Ltd Current sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019027987A (en) * 2017-08-02 2019-02-21 泰和電気工業株式会社 Device and method for detecting leakage of direct current
JP6990061B2 (en) 2017-08-02 2022-01-12 泰和電気工業株式会社 DC leakage detector and DC leakage detection method

Similar Documents

Publication Publication Date Title
JP5948958B2 (en) Current detector
EP3121609B1 (en) Direct-current residual-current detecting device
EP3121921A1 (en) Residual current protection device
JP2011017618A (en) Electric current sensor
JP5625525B2 (en) Current detector
CN203133146U (en) Transformer neutral point current measuring device
JP2009210406A (en) Current sensor and watthour meter
JP6220748B2 (en) DC leakage current detector
JP2010025918A (en) Voltage detection device and line voltage detection device
JP2016125863A (en) Current detection device
IES20100604A2 (en) DC & AC current detection circuit
JP6106909B2 (en) Current sensor
CN105842511A (en) Dual-coil anti-magnetic-type current transformer
CN109270325B (en) Self-excitation type open-loop fluxgate current sensor circuit and self-excitation oscillation method thereof
JP2016050921A (en) Current detector
JP2012233718A (en) Current detection device
JP6210193B2 (en) Current detector
JP6298581B2 (en) Current detection device and substation equipment provided with the same
JP2017009502A (en) Current detection circuit
JP6024162B2 (en) Current detector
JP2003262655A (en) Dc electric leakage detector
JP2016194510A (en) Current detection device
JP2012063218A (en) Current detection device
JP2015232489A (en) Current measuring device
JP6191267B2 (en) Current detector

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161011