JP2012063218A - Current detection device - Google Patents

Current detection device Download PDF

Info

Publication number
JP2012063218A
JP2012063218A JP2010206972A JP2010206972A JP2012063218A JP 2012063218 A JP2012063218 A JP 2012063218A JP 2010206972 A JP2010206972 A JP 2010206972A JP 2010206972 A JP2010206972 A JP 2010206972A JP 2012063218 A JP2012063218 A JP 2012063218A
Authority
JP
Japan
Prior art keywords
current
rectangular wave
oscillation
output
wave voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010206972A
Other languages
Japanese (ja)
Inventor
Takashi Hashimoto
貴 橋本
Yasuhiro Takahashi
康弘 高橋
Toshio Nodera
俊夫 野寺
Yohei Hosooka
洋平 細岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2010206972A priority Critical patent/JP2012063218A/en
Publication of JP2012063218A publication Critical patent/JP2012063218A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a current detection device capable of detecting a minute current in a wide range with the compact size and low cost without being affected by ambient environmental condition and further capable of detecting the flow of an excessive DC current through conductors.SOLUTION: The current detection device is equipped with: an exciting coil 3 wound around a magnetic core 2 surrounding conductors 1a, 1b to which a measuring current flows, so as to be electrically insulated and magnetically combined; oscillation means 4 for generating a rectangular wave voltage which inverts a polarity of an excitation current supplying to the excitation coil in the saturation state or nearly that state of the magnetic core according to the set threshold; current detecting means 6 for detecting the measuring current based on a duty change of the rectangular wave voltage to be output from the oscillation means 4; and excessive DC current detecting means 20 supplied with the rectangular wave voltage output from the oscillation means 4 for detecting the flow of an excessive DC current through the conductors.

Description

本発明は、漏電検知等に用いる高透磁率材料の非線形な特性を利用する電流検知装置に関する。   The present invention relates to a current detection device that uses the non-linear characteristics of a high magnetic permeability material used for leakage detection and the like.

この種の電流検知装置としては、種々の構成を有するものが提案され、実施されているが、構造的に簡単で微小電流の検知が可能なものとしてフラックスゲート型の電流センサが知られている(例えば、特許文献1参照)。
この特許文献1に記載された従来例では、図7(a)に示す構成を有する。すなわち、軟質磁性体製の同形,等大に構成された円環状をなすコア101及び102と、各コア101及び102に等しい回数巻回された励磁コイル103と、各コア101及び102にわたるよう一括して巻回された検出コイル104とを備えている。
As this type of current detection device, devices having various configurations have been proposed and implemented, but a flux gate type current sensor is known as a device that is structurally simple and capable of detecting a minute current. (For example, refer to Patent Document 1).
The conventional example described in Patent Document 1 has the configuration shown in FIG. That is, the same shape and isometrically formed cores 101 and 102 made of a soft magnetic material, the exciting coil 103 wound around the cores 101 and 102, and the cores 101 and 102 in a lump. And a wound detection coil 104.

励磁コイル103には図示しない交流電源が、また検出コイル104には図示しない検出回路が接続されている。そして、両コア101及び102の中心に電流を測定する対象物たる被測定導線105が挿通されている。
励磁コイル103はこれに通電したとき両コア101及び102に生じる磁場が逆相であって互いに打ち消し合うようコア101及び102に巻回されている。
An AC power supply (not shown) is connected to the excitation coil 103, and a detection circuit (not shown) is connected to the detection coil 104. And the to-be-measured conducting wire 105 which is an object which measures an electric current is inserted in the center of both the cores 101 and 102.
The exciting coil 103 is wound around the cores 101 and 102 so that the magnetic fields generated in the cores 101 and 102 are opposite in phase when they are energized and cancel each other.

そして、励磁コイル103に励磁電流iexを通電したとき、各コア101及び102に生じる磁束密度Bの経時変化は、図7(b)に示すようになる。軟質磁性体製のコア101及び102の磁気特性は磁場の大きさHが所定の範囲内では磁場の大きさHと磁束密度Bとは直線的な関係にある。しかしながら、磁場の大きさHが所定値を超えると、磁束密度Bが変化しない磁気飽和の状態となる関係にあることから、励磁コイル103に励磁電流iexを通電すると、各コア101及び102に発生する磁束密度Bは実線図示のように上下対称の台形波状に変化し、しかも相互に180°位相がずれた状態となる。   When the exciting current iex is supplied to the exciting coil 103, the change with time in the magnetic flux density B generated in each of the cores 101 and 102 is as shown in FIG. The magnetic characteristics of the soft magnetic cores 101 and 102 have a linear relationship between the magnetic field magnitude H and the magnetic flux density B when the magnetic field magnitude H is within a predetermined range. However, when the magnitude H of the magnetic field exceeds a predetermined value, the magnetic flux density B does not change and the magnetic saturation state is established. Therefore, when the exciting current iex is supplied to the exciting coil 103, it is generated in each of the cores 101 and 102. The magnetic flux density B to be changed changes to a vertically symmetric trapezoidal wave shape as shown by the solid line, and the phases are 180 ° out of phase with each other.

今、被測定導線105に矢印で示す如く下向きに直流電流値Iが通電しているものとすると、この直流分に相当する磁束密度が重畳される結果、磁束密度Bは図7(b)に破線で示す如く、台形波のうち、上方の台形波はその幅が拡大され、一方下方の台形波はその幅が縮小された状態となる。
ここで、両コア101及び102に生じた磁束密度Bの変化を正弦波(起電力に対応)で表現すると図7(c)に示すようになる。この図7(c)では、前述した図7(b)で実線図示の台形波に対応して実線図示のように180°位相がずれた周波数fの正弦波(起電力)が表れるが、これらは180°ずれているため互いに打ち消し合う。一方、図7(b)で破線図示の台形波に対応して図7(c)には破線図示のような2倍の周波数2fの2次高調波が表れる。この2次高調波は位相が180°ずれているため、相互に重畳すると図7(c)の最下段に示すような正弦波信号となり、これが検出コイル104で検出される。
この検出コイル104で捉えられた検出信号は被測定導線105を流れる直流の電流値Iに対応しており、これを処理することで電流値Iを検出することができる。
Assuming that a direct current value I is energized downward as shown by an arrow in the lead 105 to be measured, a magnetic flux density corresponding to this direct current component is superimposed. As a result, the magnetic flux density B is as shown in FIG. As indicated by the broken line, the upper trapezoidal wave has an enlarged width while the lower trapezoidal wave has a reduced width.
Here, when the change in the magnetic flux density B generated in both the cores 101 and 102 is expressed by a sine wave (corresponding to the electromotive force), it is as shown in FIG. In FIG. 7C, a sine wave (electromotive force) having a frequency f shifted by 180 ° as shown in the solid line corresponding to the trapezoidal wave shown in the solid line in FIG. 7B is shown. Are offset by 180 °, so they cancel each other. On the other hand, corresponding to the trapezoidal wave shown by the broken line in FIG. 7B, the second harmonic of the double frequency 2f as shown by the broken line appears in FIG. 7C. Since the second harmonics are 180 ° out of phase, when they are superimposed on each other, a sine wave signal as shown in the lowermost stage of FIG. 7C is obtained, and this is detected by the detection coil 104.
The detection signal captured by the detection coil 104 corresponds to the direct current value I flowing through the conductor 105 to be measured, and the current value I can be detected by processing this.

また、他の従来例として、検知すべき電流を流す1次巻線と、この1次巻線から電気的に絶縁され磁気コアにより1次巻線に磁気的に結合されている2次巻線とを具備している1以上の第1の検知変成器と、飽和を検出してそれに応じて磁化電流の方向を反転させる手段を含む前記磁気コアを周期的に飽和状態に駆動するために前記2次巻線に交互に反対方向の磁化電流を供給する手段と、感知される電流に実質上比例する出力信号を出力する処理手段とを備えている検知手段を具備して電流センサが提案されている(例えば、特許文献2参照)。この電流センサは、さらに、前記第1の検知変成器の2次巻線に接続されて感知する電流によって前記2次巻線中に生成された磁化電流の低周波または直流成分を分離するローパスフィルタと、感知される電流が通過する1次巻線と、2次巻線とを有し、その2次巻線の入力側は前記ローパスフィルタの出力部に結合され、その出力側は前記装置の出力信号が生成される抵抗によって設置されている第2の検知変成器とを具備している。   Further, as another conventional example, a primary winding for passing a current to be detected, and a secondary winding electrically insulated from the primary winding and magnetically coupled to the primary winding by a magnetic core For periodically driving the magnetic core to saturation, including one or more first sensing transformers comprising: and means for detecting saturation and reversing the direction of the magnetization current accordingly A current sensor is proposed comprising sensing means comprising means for alternately supplying magnetizing currents in opposite directions to the secondary winding and processing means for outputting an output signal substantially proportional to the sensed current. (For example, refer to Patent Document 2). The current sensor further includes a low-pass filter that separates a low frequency or direct current component of the magnetizing current generated in the secondary winding by a current sensed by being connected to the secondary winding of the first sensing transformer. And a primary winding through which a sensed current passes, and a secondary winding, the input side of the secondary winding being coupled to the output of the low-pass filter, the output side of which is the device And a second sensing transformer installed by a resistor from which an output signal is generated.

特開2000−162244号公報JP 2000-162244 A 特許第2923307号公報Japanese Patent No. 2923307

しかしながら、上記特許文献1に記載された従来例にあっては、2つのコア101及び102を使用するため、実際にはコア101及び102の磁気特性を完全に一致させることは困難であるため、磁気特性の違いにより励磁電流iexによる電圧が完全に打ち消されることなく発生してしまう。これが2次高調波成分に対応した検出電圧のS/N比を悪化させ、微小電流の検知が難しいという未解決の課題がある。
また、検出コイル104から出力される電流値Iに対応した2次高調波は、電流値Iが大きくなり過ぎると、図7(c)で破線図示のように台形波の形が歪んでしまうために、電流Iと2次高調波成分の関係が比例関係ではなくなる。これにより、電流値Iの検知範囲が制限されてしまうために、広い範囲の電流を検出できないという未解決の課題もある。
However, in the conventional example described in Patent Document 1, since the two cores 101 and 102 are used, it is actually difficult to completely match the magnetic characteristics of the cores 101 and 102. Due to the difference in magnetic characteristics, the voltage generated by the exciting current iex is generated without being completely canceled out. This deteriorates the S / N ratio of the detection voltage corresponding to the second harmonic component, and there is an unsolved problem that it is difficult to detect a minute current.
Further, the second harmonic corresponding to the current value I output from the detection coil 104 has a trapezoidal wave shape distorted as shown by the broken line in FIG. 7C when the current value I becomes too large. In addition, the relationship between the current I and the second harmonic component is not proportional. Accordingly, since the detection range of the current value I is limited, there is an unsolved problem that a wide range of current cannot be detected.

また、少なくとも2つのコアを使用するので、小型化や低コスト化を実現し難いという未解決の課題もある。
また、特許文献2に記載された従来例にあっても、第1の検知変成器と第2の検知変成器とを設ける必要があり、1つの磁気コアによって広い範囲の電流を検出できないという未解決の課題がある。
さらに、被測定電線に過大な直流電流が流れた場合に、これを検知することができないという未解決の課題もある。
そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、1台で広い電流範囲を測定可能で、周囲環境条件により影響を受けることが少なく、小型、低コストで、広い範囲の微小電流検知が可能で、さらに導線に過大な直流電流が流れたことを検出可能な電流検知装置を提供することを目的としている。
Moreover, since at least two cores are used, there is an unsolved problem that it is difficult to realize miniaturization and cost reduction.
Further, even in the conventional example described in Patent Document 2, it is necessary to provide the first detection transformer and the second detection transformer, and it is not possible to detect a wide range of current by one magnetic core. There is a problem to be solved.
Furthermore, there is an unsolved problem that when an excessive direct current flows through the wire to be measured, this cannot be detected.
Therefore, the present invention has been made paying attention to the unsolved problems of the above-described conventional example, can measure a wide current range with one unit, is hardly affected by ambient environmental conditions, and is small and low cost. Therefore, an object of the present invention is to provide a current detection device that can detect a minute current in a wide range and can detect that an excessive direct current flows through a conducting wire.

上記目的を達成するために、本発明の一の形態に係る電流検知装置は、測定電流が流れる導線を囲む磁気コアに巻回した励磁コイルと、設定した閾値に応じて、前記磁気コアを飽和状態又はその近傍の状態で、前記励磁コイルに供給する励磁電流の極性を反転させる矩形波電圧を発生する発振手段と、該発振手段から出力される前記矩形波電圧のデューティ変化に基づいて前記測定電流を検知する電流検知手段と、前記発振手段から出力される前記矩形波電圧が供給され、前記導線に過大直流電流が流れたことを検知する過大直流電流検知手段とを備えている。   In order to achieve the above object, a current detection device according to an embodiment of the present invention saturates an excitation coil wound around a magnetic core surrounding a conducting wire through which a measurement current flows, and the magnetic core according to a set threshold value. An oscillating means for generating a rectangular wave voltage for inverting the polarity of an exciting current supplied to the exciting coil in a state near the state, and the measurement based on a duty change of the rectangular wave voltage output from the oscillating means Current detecting means for detecting current, and excessive DC current detecting means for detecting that an excessive DC current has been supplied to the conducting wire by supplying the rectangular wave voltage output from the oscillating means.

この構成によると、発振手段で励磁コイルに矩形波電圧を印加することにより、励磁コイルのインダクタンスで決まる鋸歯状波となる励磁電流が流れ、その励磁電流の極性が切り換わる電流を、電流が零のときに磁気コアのインダクタンスが飽和電流と一致させることにより、導線を流れる測定電流に応じて励磁電流の極性が切り換わる電流が変化し、これに応じて矩形波電圧の立ち下がりを変化させる。これによって矩形波電圧のデューティを検出することにより、測定電流を検知することができる。   According to this configuration, when a rectangular wave voltage is applied to the exciting coil by the oscillating means, an exciting current having a sawtooth wave determined by the inductance of the exciting coil flows, and the current that switches the polarity of the exciting current is zero. When the inductance of the magnetic core coincides with the saturation current at this time, the current at which the polarity of the excitation current switches according to the measurement current flowing through the conductor changes, and the falling of the rectangular wave voltage changes accordingly. Accordingly, the measurement current can be detected by detecting the duty of the rectangular wave voltage.

また、矩形波電圧を過大直流電流検知手段にも供給するので、導線に過大な直流電流が流れて、発振手段の発振が停止したときに、導線に過大直流電流が流れていることを検知することができる。
また、本発明の一の形態に係る電流検知装置は、前記過大直流電流検知手段は、前記発振手段から出力される前記矩形波電圧が供給されるフィルタ回路と、該フィルタ回路のフィルタ出力に基づいて前記導線に過大直流電流が流れたことによる前記矩形波電圧の発振状態の停止を検出する発振停止検出回路とを備えている。
In addition, since the rectangular wave voltage is also supplied to the excessive DC current detecting means, when the excessive DC current flows through the conducting wire and the oscillation of the oscillating means stops, it is detected that the excessive DC current is flowing through the conducting wire. be able to.
In the current detection device according to one aspect of the present invention, the excessive direct current detection unit is based on a filter circuit to which the rectangular wave voltage output from the oscillation unit is supplied, and a filter output of the filter circuit. And an oscillation stop detection circuit for detecting a stop of the oscillation state of the rectangular wave voltage due to an excessive direct current flowing through the conducting wire.

この構成によると、発振手段から出力される矩形波電圧を例えばハイパスフィルタ、バンドパスフィルタ等のフィルタ回路に供給することにより、発振手段で矩形波電圧が出力されている状態では、この矩形波電圧が発振停止検出回路にそのまま入力されることになり、発振手段の発振状態を検知することができる。この状態から、導線に過大な直流電流が流れて発振手段から出力される矩形波電圧の出力が停止されると、フィルタ回路からフィルタ出力が出力されなくなるため、発振停止検出回路で、発振手段の過大な直流電流による発振停止状態を検知することができる。   According to this configuration, when the rectangular wave voltage is output from the oscillating means by supplying the rectangular wave voltage output from the oscillating means to a filter circuit such as a high pass filter or a band pass filter, the rectangular wave voltage is output. Is directly input to the oscillation stop detection circuit, and the oscillation state of the oscillation means can be detected. From this state, if the output of the rectangular wave voltage output from the oscillating means is stopped due to an excessive direct current flowing through the conducting wire, the filter output is not output from the filter circuit. An oscillation stop state due to an excessive direct current can be detected.

本発明によれば、磁気コアのインダクタンスが飽和電流付近で急に消失する特性が内部を貫通する導線の電流によってシフトすることを利用して、励磁手段で、励磁コイルに、矩形波電圧を印加して、磁気コアを飽和状態又はその近傍の状態とする励磁電流を供給し、励磁コイルに磁気コアのインダクタンス消失に応じた電流変化を生じさせ、この電流変化で矩形波電圧の立ち下がりを変化させる。このため、矩形波電圧のデューティを検出することにより、導線に流れる測定電流を検知する。このため、電流検知装置を1つの磁気コアを用いて構成することができ、磁気コアの材料特性の違いによりS/N比が低下することがなく、微小電流を高精度で検出することができる。   According to the present invention, a rectangular wave voltage is applied to the exciting coil by the exciting means by utilizing the fact that the characteristic that the inductance of the magnetic core suddenly disappears near the saturation current is shifted by the current of the conducting wire passing through the inside. Then, an exciting current is supplied to bring the magnetic core into a saturated state or in the vicinity thereof, and a current change corresponding to the disappearance of the inductance of the magnetic core is generated in the exciting coil. Let For this reason, the measurement current flowing through the conducting wire is detected by detecting the duty of the rectangular wave voltage. For this reason, the current detection device can be configured using one magnetic core, and the S / N ratio does not decrease due to the difference in the material characteristics of the magnetic core, and a minute current can be detected with high accuracy. .

また、電流検知装置を1つの磁気コアと1つの巻線とで構成できるので、小型、低コスト化が可能となる。
さらに、磁気センサ等を使用しないので、堅牢で、周囲環境条件により影響を受けることが少ない電流検知装置を提供できる。
しかも、発振手段から出力される矩形波電圧を過大電流検知手段に供給することにより、導線に過大直流電流が流れることによる発振手段の発振停止を検出して過大直流電流が流れたことを確実に検出することが可能となる。
In addition, since the current detection device can be configured with one magnetic core and one winding, it is possible to reduce the size and cost.
Furthermore, since a magnetic sensor or the like is not used, it is possible to provide a current detection device that is robust and less affected by ambient environmental conditions.
In addition, by supplying the rectangular wave voltage output from the oscillating means to the excessive current detecting means, it is possible to detect the oscillation stop of the oscillating means due to the excessive DC current flowing through the conductor and to ensure that the excessive DC current has flowed. It becomes possible to detect.

本発明に係る電流検知装置の第1の実施形態を示す構成図である。1 is a configuration diagram illustrating a first embodiment of a current detection device according to the present invention. FIG. 図1の発振回路の一例を示す回路図である。FIG. 2 is a circuit diagram illustrating an example of the oscillation circuit of FIG. 1. 発振回路の出力電圧波形と励磁コイルの電流波形とを示す模式図である。It is a schematic diagram which shows the output voltage waveform of an oscillation circuit, and the current waveform of an exciting coil. 磁気コアの磁界の強さと磁束密度の関係を示す特性線図及び磁気コアのインダクタンス特性を示す特性線図である。It is a characteristic diagram which shows the relationship between the magnetic field strength of a magnetic core, and a magnetic flux density, and a characteristic diagram which shows the inductance characteristic of a magnetic core. 導線に微小電流が流れている時の磁気コアの磁界の強さと磁束密度の関係を示す特性線図及び発振回路の発振出力との関係を示す図である。FIG. 4 is a characteristic diagram showing the relationship between the magnetic field strength of the magnetic core and the magnetic flux density when a minute current is flowing through the conducting wire, and a diagram showing the relationship between the oscillation output of the oscillation circuit. 導線に過大な直流電流が流れた時の磁気コアの磁界の強さと磁束密度の関係を示す特性線図及び発振回路の発振出力との関係を示す図である。FIG. 4 is a characteristic diagram showing the relationship between the magnetic field strength of the magnetic core and the magnetic flux density when an excessive direct current flows through the conducting wire, and a diagram showing the relationship between the oscillation output of the oscillation circuit. 従来例を示す説明図であって、(a)センサ部の構成図、(b)は励磁コイルに励磁電流を通電したときの各磁気コアの磁束密度を示す図、(c)は各磁気コアの磁束密度を正弦波で表現した図である。It is explanatory drawing which shows a prior art example, Comprising: (a) The block diagram of a sensor part, (b) is a figure which shows the magnetic flux density of each magnetic core when an exciting current is supplied to an exciting coil, (c) is each magnetic core It is the figure which expressed the magnetic flux density of sine wave.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は本発明に係る電流検知装置の一実施形態を示す構成図である。図中、1a,1bは例えば漏電検知等の対象物に設けられた例えば10A〜800Aの往復の電流Iが流れる導線であって、健全状態では導線1a,1bに流れる電流の和はゼロであるが、漏電や地絡などで導線1a,1bに流れる電流の和が零にならず、検出対象とする例えば15mA〜500mA程度の微小な差異電流が流れる。これら導線1a,1bの回りにリング状の磁気コア2が配設されている。つまり、磁気コア2内に導線1a,1bが挿通されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram showing an embodiment of a current detection device according to the present invention. In the figure, reference numerals 1a and 1b denote conductors, for example, 10A to 800A of a reciprocating current I provided on an object such as leakage detection, and the sum of currents flowing to the conductors 1a and 1b is zero in a healthy state. However, the sum of the currents flowing through the conductors 1a and 1b does not become zero due to electric leakage or ground fault, and a minute difference current of, for example, about 15 mA to 500 mA to be detected flows. A ring-shaped magnetic core 2 is disposed around the conducting wires 1a and 1b. That is, the conducting wires 1 a and 1 b are inserted into the magnetic core 2.

磁気コア2には、励磁コイル3が所定巻数で巻回されており、この励磁コイル3に発振手段としての発振回路4から励磁電流が供給される。
発振回路4は、図2に示すように、コンパレータとして動作するオペアンプ11を備えている。このオペアンプ11の出力側と反転入力側との間に励磁コイル3が接続されている。また、オペアンプ11の反転入力側は抵抗12を介してグランドに接続され、オペアンプ11の非反転入力側は、オペアンプ11の出力側及びグランド間に直列に接続された分圧抵抗13及び14間に接続されている。
An excitation coil 3 is wound around the magnetic core 2 with a predetermined number of turns, and an excitation current is supplied to the excitation coil 3 from an oscillation circuit 4 as an oscillation means.
As shown in FIG. 2, the oscillation circuit 4 includes an operational amplifier 11 that operates as a comparator. An exciting coil 3 is connected between the output side and the inverting input side of the operational amplifier 11. The inverting input side of the operational amplifier 11 is connected to the ground via the resistor 12, and the non-inverting input side of the operational amplifier 11 is connected between the voltage dividing resistors 13 and 14 connected in series between the output side of the operational amplifier 11 and the ground. It is connected.

そして、オペアンプ11の出力側が出力端子toに接続されている。
このため、発振回路4では、分圧抵抗13及び14の接続点Eの閾値電圧Vthがオペアンプ11の非反転入力側に供給されており、この閾値電圧Vthと励磁コイル3及び抵抗12との接続点Dの電圧Vdとが比較されて、その比較出力が図3(a)に示す矩形波の出力電圧Vaとして出力側から出力される。
今、図3(a)に示すように、時点t1で、オペアンプ11の出力側の出力電圧Vaがハイレベルとなると、これが励磁コイル3に印加される。このため、励磁コイル3を出力電圧Vaと抵抗12の抵抗値R12とに応じた励磁電流Ibで励磁する。このとき、励磁電流Ibは、図3(b)に示すように、出力電圧Vaの立ち上がり時点t1から比較的急峻に立ち上がり、その後緩やかに増加する放物線状に増加する。
The output side of the operational amplifier 11 is connected to the output terminal to.
Therefore, in the oscillation circuit 4, the threshold voltage Vth at the connection point E between the voltage dividing resistors 13 and 14 is supplied to the non-inverting input side of the operational amplifier 11, and the threshold voltage Vth is connected to the exciting coil 3 and the resistor 12. The voltage Vd at the point D is compared, and the comparison output is output from the output side as the rectangular wave output voltage Va shown in FIG.
As shown in FIG. 3A, when the output voltage Va on the output side of the operational amplifier 11 becomes high level at time t1, this is applied to the exciting coil 3. For this reason, the exciting coil 3 is excited with an exciting current Ib corresponding to the output voltage Va and the resistance value R12 of the resistor 12. At this time, as shown in FIG. 3B, the excitation current Ib rises relatively steeply from the rise time t1 of the output voltage Va, and then increases in a parabolic shape that gradually increases.

このとき、オペアンプ11の非反転入力側に出力電圧Vaを分圧抵抗13及び14の接続点Eで得られる分圧抵抗13及び14の抵抗値R13及びR14で分圧された比較的大きな閾値電圧Vthが入力されている。一方、オペアンプ11の反転入力側の励磁コイル3及び抵抗12の接続点Dの電圧Vdは、励磁コイル3の励磁電流Ibの増加に応じて増加し、この電圧Vdが時点t2で非反転入力側の閾値電圧Vthを上回ると、オペアンプ11の出力電圧Vaが図3(a)に示すように、ローレベルに反転する。   At this time, a relatively large threshold voltage obtained by dividing the output voltage Va on the non-inverting input side of the operational amplifier 11 by the resistance values R13 and R14 of the voltage dividing resistors 13 and 14 obtained at the connection point E of the voltage dividing resistors 13 and 14. Vth is input. On the other hand, the voltage Vd at the connection point D between the exciting coil 3 on the inverting input side of the operational amplifier 11 and the resistor 12 increases as the exciting current Ib of the exciting coil 3 increases, and this voltage Vd is increased to the non-inverting input side at time t2. When the threshold voltage Vth is exceeded, the output voltage Va of the operational amplifier 11 is inverted to a low level as shown in FIG.

これに応じて励磁コイル3を流れる励磁電流Ibの極性が反転し、励磁電流Ibが最初は急峻に低下し、その後緩やかに低下する放物線状に減少する。
このとき、閾値電圧Vthは、ローレベルとなっていることにより、閾値電圧Vthも低い電圧となっている。そして、オペアンプ11の反転入力側の励磁コイル3及び抵抗12の接続点Dの電圧Vdが、励磁コイル3の励磁電流Ibの減少に応じて減少し、この電圧Vdが時点t3で非反転入力側の閾値電圧Vthを下回ると、オペアンプ11の出力電圧Vaが図3(a)に示すように、時点t1と同様にハイレベルに反転する。
このため、出力電圧Vaは、図3(a)に示すように、ハイレベル及びローレベルを繰り返す矩形波電圧となり、発振回路4が非安定マルチバイブレータとして動作する。そして、励磁コイル3の励磁電流は、図3(b)に示すように増加及び減少を繰り返す鋸歯状波電流となる。
In response to this, the polarity of the excitation current Ib flowing through the excitation coil 3 is reversed, and the excitation current Ib decreases sharply at first and then decreases to a parabolic shape that gradually decreases.
At this time, since the threshold voltage Vth is at a low level, the threshold voltage Vth is also low. Then, the voltage Vd at the connection point D between the exciting coil 3 on the inverting input side of the operational amplifier 11 and the resistor 12 decreases in accordance with the decrease in the exciting current Ib of the exciting coil 3, and this voltage Vd is reduced to the non-inverting input side at time t3. When the output voltage Va falls below the threshold voltage Vth, as shown in FIG. 3A, the output voltage Va is inverted to the high level as at the time t1.
Therefore, as shown in FIG. 3A, the output voltage Va becomes a rectangular wave voltage that repeats a high level and a low level, and the oscillation circuit 4 operates as an unstable multivibrator. The exciting current of the exciting coil 3 becomes a sawtooth wave current that repeatedly increases and decreases as shown in FIG.

ところで、磁気コア2は、図4(a)に示すように角型比の大きな磁束密度Bと磁界の強さHとの関係を表すB−H特性を有し、高透磁率材料の非線型な特性を有する。このB−H特性を有する磁気コア2のインダクタンスは、導線1a,1bの差電流が零であるときに、図4(b)に示すように飽和電流付近Gで急激に消失する。磁気コア2を貫通する導線1a,1bに任意の検出対象となる微小な差電流Cが生じると、図3(b)のB−H特性は、破線図示のように差電流Cに応じて磁界の強さHの正方向にシフトしてインダクタンスが消失するタイミングが変化する。   By the way, the magnetic core 2 has a BH characteristic representing a relationship between a magnetic flux density B having a large squareness ratio and a magnetic field strength H as shown in FIG. It has special characteristics. The inductance of the magnetic core 2 having the BH characteristic disappears abruptly in the vicinity of the saturation current G as shown in FIG. 4B when the difference current between the conducting wires 1a and 1b is zero. When a minute difference current C to be detected is generated in the conducting wires 1a and 1b penetrating the magnetic core 2, the BH characteristic in FIG. 3B shows a magnetic field corresponding to the difference current C as shown by the broken line. The timing at which the inductance disappears is changed by shifting in the positive direction of the intensity H.

このため、電流が零のときにインダクタンスが飽和する電流(図4のG)と励磁電流Ibの極性が切り換わる電流(図3のF)とを一致させる。そうすると、インダクタンスが飽和する電流(図4のJ)が導線1a,1bの差電流の電流値Cに応じて変化するので、励磁電流Ibの極性が切り換わる電流(図3(b)のH)も同様に変化することになる。
この励磁電流Ibの極性が切り換わる電流値が変化することにより、励磁コイル3と抵抗12との接続点Dの電圧Vdが閾値電圧Vthを上回るタイミングが遅れることになる。このため、オペアンプ11から出力される出力電圧Vaの立ち下がり時点が導線1a,1bの差電流の電流値Cに応じて図3(a)で破線図示のように遅れる。この結果、出力電圧Vaの矩形波電圧のデューティ比が導線1a,1bの差電流の電流値Cに応じて変化する。
For this reason, the current at which the inductance is saturated when the current is zero (G in FIG. 4) and the current at which the polarity of the excitation current Ib is switched (F in FIG. 3) are matched. Then, since the current at which the inductance is saturated (J in FIG. 4) changes according to the current value C of the difference current between the conductors 1a and 1b, the current at which the polarity of the exciting current Ib is switched (H in FIG. 3B). Will change as well.
By changing the current value at which the polarity of the excitation current Ib changes, the timing at which the voltage Vd at the connection point D between the excitation coil 3 and the resistor 12 exceeds the threshold voltage Vth is delayed. For this reason, the falling point of the output voltage Va output from the operational amplifier 11 is delayed as shown by the broken line in FIG. 3A according to the current value C of the difference current between the conductors 1a and 1b. As a result, the duty ratio of the rectangular wave voltage of the output voltage Va changes according to the current value C of the difference current between the conducting wires 1a and 1b.

したがって、発振回路4の出力端子toにデューティ比を検出する電流検知手段としての検出回路6を接続する。この検出回路6で、出力電圧Vaのハイレベル状態を維持している時間とローレベル状態を維持している時間とを計測することにより、デューティ比を検出することができ、検出したデューティ比に基づいて導線1a,1bの微小差電流の電流値Cを検知することができる。
また、発振回路4の出力端子toから出力される矩形波電圧Vaは、過大直流電流検知手段としての過大直流電流検知回路20に供給されている。この過大直流電流検知回路20は、矩形波電圧Vaが入力されるハイパスフィルタ回路21と、このハイパスフィルタ回路21から出力されるフィルタ出力が供給された発振停止検出回路22とを備えている。
Therefore, the detection circuit 6 as a current detection means for detecting the duty ratio is connected to the output terminal to of the oscillation circuit 4. The detection circuit 6 can detect the duty ratio by measuring the time during which the output voltage Va is maintained in the high level state and the time during which the output voltage Va is maintained at the low level state. Based on this, it is possible to detect the current value C of the minute difference current of the conducting wires 1a and 1b.
The rectangular wave voltage Va output from the output terminal to of the oscillation circuit 4 is supplied to an excessive DC current detection circuit 20 as an excessive DC current detection means. The excessive DC current detection circuit 20 includes a high-pass filter circuit 21 to which a rectangular wave voltage Va is input, and an oscillation stop detection circuit 22 to which a filter output output from the high-pass filter circuit 21 is supplied.

ここで、ハイパスフィルタ回路21は、通常の微小差電流を検出している状態で発振回路4から出力される矩形波電圧Vaを通過させるようにカットオフ周波数が設定されている。
また、発振停止検出回路22では、フィルタ回路21のフィルタ出力が矩形波電圧Vaである場合には、微小差電流を検出している状態であると判断するが、フィルタ回路21のフィルタ出力が出力されない状態となると、発振回路4の発振出力が停止した発振停止状態であると判断して導線1a,1bの少なくとも一方に過大な直流電流が流れていることを検知することができる。
Here, the high-pass filter circuit 21 is set to have a cutoff frequency so as to pass the rectangular wave voltage Va output from the oscillation circuit 4 in a state where a normal minute difference current is detected.
Further, when the filter output of the filter circuit 21 is the rectangular wave voltage Va, the oscillation stop detection circuit 22 determines that a minute difference current is being detected, but the filter output of the filter circuit 21 is output. If not, it can be determined that the oscillation output of the oscillation circuit 4 is stopped and the oscillation is stopped, and it can be detected that an excessive direct current is flowing in at least one of the conductors 1a and 1b.

すなわち、発振回路4では、前述したように、導線1a,1bに流れる微小差電流を検出している状態では、図3(a)に示す矩形波電圧Vaを出力している。このとき、発振回路4は、図5に示すように、磁気コア2のB−H特性線上の変化点で発振することが可能であり、電流検出が可能である。このため、この矩形波電圧Vaがハイパスフィルタ回路21を介して過大直流電圧検知回路22に入力されることにより、発振回路4が発振状態であり、微小電流検出状態であることを検知することができる。微小差電流が零である場合も矩形波電圧Vaは出力される。   In other words, as described above, the oscillation circuit 4 outputs the rectangular wave voltage Va shown in FIG. 3A when the minute difference current flowing through the conducting wires 1a and 1b is detected. At this time, the oscillation circuit 4 can oscillate at a change point on the BH characteristic line of the magnetic core 2 as shown in FIG. 5 and can detect a current. For this reason, when this rectangular wave voltage Va is input to the excessive DC voltage detection circuit 22 via the high-pass filter circuit 21, it is possible to detect that the oscillation circuit 4 is in an oscillation state and is in a minute current detection state. it can. The rectangular wave voltage Va is also output when the minute difference current is zero.

ところが、導線1a,1bの少なくとも一方に過大な直流電流が供給されると、磁気コア2が磁気飽和状態となって、発振回路4の発振出力は図5に示すように、発振出力がB−H特性線の変化点で発振することはできず、図6に示すように、B−H特性線の磁気飽和領域側に大きくシフトして発振することになる。このため、発振回路4の発振出力は、図6に示すように、振幅が変化しない直流状態となって発振停止状態となってしまう。   However, when an excessive direct current is supplied to at least one of the conducting wires 1a and 1b, the magnetic core 2 becomes magnetically saturated, and the oscillation output of the oscillation circuit 4 is B− It is not possible to oscillate at the changing point of the H characteristic line, and as shown in FIG. 6, oscillation occurs with a large shift toward the magnetic saturation region side of the BH characteristic line. For this reason, the oscillation output of the oscillation circuit 4 becomes a direct current state in which the amplitude does not change, as shown in FIG.

このように発振回路4が発振停止状態となると、ハイパスフィルタ回路21を通過する高周波成分がないことからからフィルタ出力が得られなくなり、発振停止検出回路22の入力信号が低レベルに維持される。このため、発振停止検出回路22で発振回路4の発振停止状態を検出することができ、発振停止状態を表す例えばハイレベルの発振停止検出信号を出力する。この発振停止検出信号により、導線1a,1bの少なくとも一方に過大な直流電流が流れたことによるものと判断することができる。   Thus, when the oscillation circuit 4 is in the oscillation stop state, there is no high-frequency component passing through the high-pass filter circuit 21, so that no filter output can be obtained, and the input signal of the oscillation stop detection circuit 22 is maintained at a low level. Therefore, the oscillation stop detection circuit 22 can detect the oscillation stop state of the oscillation circuit 4 and outputs, for example, a high level oscillation stop detection signal indicating the oscillation stop state. Based on this oscillation stop detection signal, it can be determined that an excessive direct current flows in at least one of the conducting wires 1a and 1b.

このとき、検出回路6では、発振回路4の出力電圧Vaが一定レベルとなることにより、デューティ比の測定が不能となる。
しかしながら、上述したように、過大直流電流検知回路20で導線1a,1bの少なくとも一方に過大直流電流が流れたことを検知することができるので、検出回路6での測定不能状態が、過大直流電流によるものと容易に判断することができる。
なお、発振停止検出回路22から出力される発振停止検出信号をブザーや点滅表示器などで構成される警報回路に供給することにより、発振停止状態を音又は光で警報することができる。
At this time, the detection circuit 6 becomes unable to measure the duty ratio because the output voltage Va of the oscillation circuit 4 becomes a constant level.
However, as described above, since the excessive DC current detection circuit 20 can detect that an excessive DC current has flowed through at least one of the conductors 1a and 1b, the detection circuit 6 cannot detect the excessive DC current. Can be easily determined.
The oscillation stop detection signal output from the oscillation stop detection circuit 22 is supplied to an alarm circuit composed of a buzzer, a blinking indicator, etc., so that the oscillation stop state can be warned with sound or light.

このように、上記実施形態によると、測定電流が流れる導線を貫通させた1つの磁気コア2と、この磁気コア2に巻回された1つの励磁コイル3とを備え、励磁コイル3に発振回路4で矩形波電圧を印加したときの励磁コイル3を流れる励磁電流Ibの極性切り換わり電流と電流が零であるときに磁気コア2のインダクタンスが飽和する電流とを一致させることにより、発振回路4の矩形波電圧Vaのデューティ比を測定電流の電流値Cに応じて変化させ、このときのデューティ比を検出回路6で検出するだけの簡易な構成で、磁気コア2を貫通する導線1a,1bを流れる微小電流を広範囲に確実に検知することができ、低コスト化を図ることができる。   As described above, according to the above embodiment, the magnetic core 2 that passes through the conducting wire through which the measurement current flows and the exciting coil 3 wound around the magnetic core 2 are provided. 4, the polarity switching current of the exciting current Ib flowing through the exciting coil 3 when the rectangular wave voltage is applied is matched with the current at which the inductance of the magnetic core 2 is saturated when the current is zero. The conductors 1a and 1b penetrating the magnetic core 2 with a simple configuration in which the duty ratio of the rectangular wave voltage Va is changed according to the current value C of the measurement current and the detection circuit 6 detects the duty ratio at this time. Thus, a minute current flowing through can be reliably detected in a wide range, and the cost can be reduced.

また、前述した従来例のように2つの磁気コアを使用する場合のようにコア材料特性の違いによるS/N比の低下が生じることはなく、微小電流を高精度で検知することができる。
しかも、前述した従来例のように磁気センサ等を使用することなしに電流検知が可能であるので、堅牢で、周囲環境条件により影響を受けることが少ない電流検知装置を提供することができる。
Further, unlike the case of using the two magnetic cores as in the conventional example described above, the S / N ratio is not lowered due to the difference in core material characteristics, and a minute current can be detected with high accuracy.
In addition, since current detection is possible without using a magnetic sensor or the like as in the conventional example described above, it is possible to provide a current detection device that is robust and less affected by ambient environmental conditions.

さらに、発振回路4から出力される矩形波電圧Vaを過大電流検知回路20に供給するので、導線1a,1bの少なくとも一方に過大直流電流が流れて、発振回路4が発振停止状態となったときに、この発振停止状態を発振停止検出回路22で検出することができ、導線1a,1bの少なくとも一方に過大直流電流が流れていることを確実に検知することができる。   Further, since the rectangular wave voltage Va output from the oscillation circuit 4 is supplied to the excessive current detection circuit 20, an excessive direct current flows through at least one of the conductors 1a and 1b, and the oscillation circuit 4 is in an oscillation stop state. In addition, this oscillation stop state can be detected by the oscillation stop detection circuit 22, and it can be reliably detected that an excessive DC current is flowing in at least one of the conductors 1a and 1b.

なお、上記実施形態においては、過大直流電流検知回路20のフィルタ回路としてハイパスフィルタ回路21を適用した場合について説明したが、これに限定されるものではなく、微小差電流検出時の発振回路4の矩形波電圧Vaを通過させるバンドパスフィルタ回路を適用してもよい。さらには、ローパスフィルタ回路を適用して矩形波電圧Vaを平均化し、その平均値のレベルを発振停止検出回路で判別するようにしてもよい。
また、上記実施形態においては、2本の導線1a及び1bの差電流を検知する場合について説明したが、これに限定されるものではなく、1本の導線に流れる微小電流を検出することもできる。
In the above embodiment, the case where the high-pass filter circuit 21 is applied as the filter circuit of the excessive DC current detection circuit 20 has been described. However, the present invention is not limited to this, and the oscillation circuit 4 at the time of detecting a minute difference current is not limited thereto. A band-pass filter circuit that passes the rectangular wave voltage Va may be applied. Furthermore, the rectangular wave voltage Va may be averaged by applying a low-pass filter circuit, and the level of the average value may be determined by the oscillation stop detection circuit.
Moreover, in the said embodiment, although the case where the difference electric current of the two conducting wires 1a and 1b was detected was demonstrated, it is not limited to this, The minute electric current which flows into one conducting wire can also be detected. .

1a,1b…導線、2…磁気コア、3…励磁コイル、4…発振回路、6…検出回路、11…オペアンプ、12〜14…抵抗、20…過大電流検知回路、21…ハイパスフィルタ回路、22…発振停止検出回路   DESCRIPTION OF SYMBOLS 1a, 1b ... Conductor, 2 ... Magnetic core, 3 ... Excitation coil, 4 ... Oscillation circuit, 6 ... Detection circuit, 11 ... Operational amplifier, 12-14 ... Resistance, 20 ... Overcurrent detection circuit, 21 ... High pass filter circuit, 22 ... Oscillation stop detection circuit

Claims (2)

測定電流が流れる導線を囲む磁気コアに巻回した励磁コイルと、
設定した閾値に応じて、前記磁気コアを飽和状態又はその近傍の状態で、前記励磁コイルに供給する励磁電流の極性を反転させる矩形波電圧を発生する発振手段と、
該発振手段から出力される前記矩形波電圧のデューティ変化に基づいて前記測定電流を検知する電流検知手段と、
前記発振手段から出力される前記矩形波電圧が供給され、前記導線に過大直流電流が流れたことを検知する過大直流電流検知手段と
を備えたことを特徴とする電流検知装置。
An exciting coil wound around a magnetic core surrounding a conducting wire through which a measurement current flows;
Oscillating means for generating a rectangular wave voltage that reverses the polarity of the excitation current supplied to the excitation coil in a state where the magnetic core is saturated or in the vicinity thereof in accordance with a set threshold value;
Current detection means for detecting the measurement current based on a duty change of the rectangular wave voltage output from the oscillation means;
An overcurrent direct current detection means for detecting that an overcurrent direct current has been supplied to the conducting wire by being supplied with the rectangular wave voltage output from the oscillation means.
前記過大直流電流検知手段は、前記発振手段から出力される前記矩形波電圧が供給されるフィルタ回路と、該フィルタ回路のフィルタ出力に基づいて前記導線に過大直流電流が流れたことによる前記矩形波電圧の発振状態の停止を検出する発振停止検出回路とを備えていることを特徴とする請求項1に記載の電流検知装置。   The excessive direct current detection means includes a filter circuit to which the rectangular wave voltage output from the oscillating means is supplied, and the rectangular wave caused by an excessive direct current flowing through the conductor based on the filter output of the filter circuit. The current detection device according to claim 1, further comprising: an oscillation stop detection circuit that detects a stop of the oscillation state of the voltage.
JP2010206972A 2010-09-15 2010-09-15 Current detection device Pending JP2012063218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010206972A JP2012063218A (en) 2010-09-15 2010-09-15 Current detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010206972A JP2012063218A (en) 2010-09-15 2010-09-15 Current detection device

Publications (1)

Publication Number Publication Date
JP2012063218A true JP2012063218A (en) 2012-03-29

Family

ID=46059083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010206972A Pending JP2012063218A (en) 2010-09-15 2010-09-15 Current detection device

Country Status (1)

Country Link
JP (1) JP2012063218A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213725A (en) * 2012-04-02 2013-10-17 Fuji Electric Fa Components & Systems Co Ltd Current detection device
CN105301346A (en) * 2015-11-30 2016-02-03 国网山东省电力公司烟台供电公司 High-voltage power transmission cable earth current automatic detection device
JP2016031253A (en) * 2014-07-28 2016-03-07 光商工株式会社 Dc leakage current detection device
CN112230048A (en) * 2020-10-10 2021-01-15 浙江巨磁智能技术有限公司 Method for measuring current by combining fluxgate oscillation and magnetic saturation oscillation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4730781B1 (en) * 1967-11-02 1972-08-10
JPS5210514A (en) * 1975-07-16 1977-01-26 Mitsubishi Electric Corp Transformation device
JPS5772069A (en) * 1980-08-29 1982-05-06 Aisin Seiki Co Ltd Dc current detector
JPS5913959A (en) * 1982-07-15 1984-01-24 Matsushita Electric Works Ltd Current detector
JPS60161564A (en) * 1984-02-02 1985-08-23 Mishima Kosan Co Ltd Automatic exciting bridge type electric current sensor
JPH0714385U (en) * 1993-08-10 1995-03-10 富士精密電機株式会社 Current detector starter
JPH0933574A (en) * 1995-07-21 1997-02-07 Meisei Electric Co Ltd Method and device for detecting current
JP2001174485A (en) * 1999-12-17 2001-06-29 Hitachi Metals Ltd Dc current detector

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4730781B1 (en) * 1967-11-02 1972-08-10
JPS5210514A (en) * 1975-07-16 1977-01-26 Mitsubishi Electric Corp Transformation device
JPS5772069A (en) * 1980-08-29 1982-05-06 Aisin Seiki Co Ltd Dc current detector
JPS5913959A (en) * 1982-07-15 1984-01-24 Matsushita Electric Works Ltd Current detector
JPS60161564A (en) * 1984-02-02 1985-08-23 Mishima Kosan Co Ltd Automatic exciting bridge type electric current sensor
JPH0714385U (en) * 1993-08-10 1995-03-10 富士精密電機株式会社 Current detector starter
JPH0933574A (en) * 1995-07-21 1997-02-07 Meisei Electric Co Ltd Method and device for detecting current
JP2001174485A (en) * 1999-12-17 2001-06-29 Hitachi Metals Ltd Dc current detector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213725A (en) * 2012-04-02 2013-10-17 Fuji Electric Fa Components & Systems Co Ltd Current detection device
JP2016031253A (en) * 2014-07-28 2016-03-07 光商工株式会社 Dc leakage current detection device
CN105301346A (en) * 2015-11-30 2016-02-03 国网山东省电力公司烟台供电公司 High-voltage power transmission cable earth current automatic detection device
CN112230048A (en) * 2020-10-10 2021-01-15 浙江巨磁智能技术有限公司 Method for measuring current by combining fluxgate oscillation and magnetic saturation oscillation
CN112230048B (en) * 2020-10-10 2023-12-08 浙江巨磁智能技术有限公司 Method for measuring current by composite fluxgate oscillation and magnetic saturation oscillation

Similar Documents

Publication Publication Date Title
JP5948958B2 (en) Current detector
JP5625525B2 (en) Current detector
CN107342578B (en) Trip control circuit for circuit breaker
CN100468066C (en) Device for the reading of direct and/or alternating currents
JP5606521B2 (en) Closed loop fluxgate current sensor
JP6123275B2 (en) Current detector
JP6547294B2 (en) Current detection device
WO2014010187A1 (en) Current detection device
JP6220748B2 (en) DC leakage current detector
JP2012063218A (en) Current detection device
JP6210193B2 (en) Current detector
JP2012233718A (en) Current detection device
CN103969488A (en) Current transformer and current detection circuit thereof
JP6024162B2 (en) Current detector
JP5702592B2 (en) Current detector
JP5516079B2 (en) Current detector
JP2014130061A (en) Direct current detecting device
JP6119384B2 (en) Current detector
JP2016194483A (en) Current detection device
JP6191267B2 (en) Current detector
JP2016050921A (en) Current detector
JP2022123748A (en) Current detection device
JP5793021B2 (en) Current detector
US20080042637A1 (en) Magnetic toroid self resonant current sensor
JP6476851B2 (en) Current detector

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20130214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140107