JP2015232489A - Current measuring device - Google Patents

Current measuring device Download PDF

Info

Publication number
JP2015232489A
JP2015232489A JP2014119154A JP2014119154A JP2015232489A JP 2015232489 A JP2015232489 A JP 2015232489A JP 2014119154 A JP2014119154 A JP 2014119154A JP 2014119154 A JP2014119154 A JP 2014119154A JP 2015232489 A JP2015232489 A JP 2015232489A
Authority
JP
Japan
Prior art keywords
current
voltage
power source
circuit
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014119154A
Other languages
Japanese (ja)
Inventor
國由 吉野
Kuniyoshi Yoshino
國由 吉野
陽通 加藤
Harumichi Kato
陽通 加藤
康晴 舘野
Yasuharu Tateno
康晴 舘野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terada Electric Works Co Ltd
Original Assignee
Terada Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terada Electric Works Co Ltd filed Critical Terada Electric Works Co Ltd
Priority to JP2014119154A priority Critical patent/JP2015232489A/en
Publication of JP2015232489A publication Critical patent/JP2015232489A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a current measuring device in which a magnetic material core of a current sensor is not magnetized at power-on and power shutdown.SOLUTION: A current measuring device comprises: a magnetic material core magnetically coupled with a conductor through which a measured current flows; and a current detection circuit detecting current using a Hall-effect element. The current measuring device further comprises: a feedback coil wound around the magnetic material core; a voltage current conversion circuit receiving a signal outputted from the Hall-effect element, and causing, to flow through the feedback coil, a current in proportion to the measured current and in a direction for cancelling a magnetic flux generated by the measured current; difference detection means for detecting that an absolute value difference in voltages of plus power and minus power of a bipolar power source is equal to or more than a predetermined value; and switching means for cutting current flowing to the feedback coil based on an output of the difference detection means. Magnetization of the magnetic material core is prevented at power-on and power shutdown.

Description

本発明は、直流電流測定装置に関するものであり、特にホール効果素子を使用した電流センサーを備えた直流電流測定装置に関するものである。   The present invention relates to a direct current measuring device, and more particularly to a direct current measuring device including a current sensor using a Hall effect element.

従来、ホール効果素子を使用した電流測定回路が各種提案されている。例えば下記の特許文献1には、ホール効果素子を使用した電力量計が開示されている。この電力量計は、ホール素子により計測電圧と計測電流の積に相当するホール電圧を出力し、スイッチング手段SWa1〜SWb2によりホール電圧の正負の極性を所定の周期毎に反転させ、差動増幅手段により差動増幅し、反転手段により差動増幅出力の極性をスイッチング手段による極性反転が戻った状態に再反転させ、積分手段により積分するようにしたものであり、ホール素子として、同一極性のホール電圧と異なる極性の不平衡電圧を出力する2つのホール素子を用い、不平衡電圧調整手段により2つのホール素子の不平衡電圧が等しくなるように調整し、積分手段による積分の前に、加算手段により2つのホール素子のそれぞれの差動増幅出力を加算するようにしている。   Conventionally, various current measurement circuits using Hall effect elements have been proposed. For example, Patent Document 1 below discloses a watt-hour meter using a Hall effect element. This watt-hour meter outputs a Hall voltage corresponding to the product of the measurement voltage and the measurement current by the Hall element, and inverts the positive / negative polarity of the Hall voltage at every predetermined period by the switching means SWa1 to SWb2, thereby differential amplification means And the polarity of the differential amplification output is inverted again by the inverting means to the state where the polarity inversion by the switching means has returned, and is integrated by the integrating means. The Hall element has the same polarity as the Hall element. Two Hall elements that output an unbalanced voltage with a polarity different from the voltage are used, and the unbalanced voltage adjusting means adjusts the two Hall elements so that the unbalanced voltages are equal to each other. Thus, the differential amplification outputs of the two Hall elements are added.

特開2001−159646号公報JP 2001-159646 A

上記したような従来のホール効果素子を使用した電流測定回路においては、被測定電流による磁界とホール効果素子とを結合させるために全体がロ状あるいはリング状の磁性体コアを使用している。ところが、直流電流測定装置の場合、磁性体コアにはヒステリシス特性があり、強い磁界をかけると着磁して特性が変化し、例えば被測定電流がなくなっても残留磁束が残って測定誤差が大きくなるという問題点がある。
そこで、磁性体コアに巻かれたフィードバックコイルに被測定電流による磁束を打ち消す方向の電流を流すフィードバック回路を設けて、磁性体コアに強い磁界がかからないようにする方法が提案されている。
In the current measuring circuit using the conventional Hall effect element as described above, a magnetic core having a whole or ring shape is used in order to couple the magnetic field generated by the current to be measured and the Hall effect element. However, in the case of a DC current measuring device, the magnetic core has a hysteresis characteristic. When a strong magnetic field is applied, the magnetic core is magnetized and the characteristic changes. For example, even if there is no current to be measured, residual magnetic flux remains and the measurement error is large. There is a problem of becoming.
In view of this, a method has been proposed in which a feedback circuit that causes a current in a direction to cancel the magnetic flux due to the current to be measured is provided in a feedback coil wound around the magnetic core so that a strong magnetic field is not applied to the magnetic core.

しかし、上記したようなフィードバック回路を備えた電流測定装置において、両極性電源回路の+−の負荷の違いなどによってプラス電源とマイナス電源の立ち上がりあるいは立ち下り時間が異なることがある。すると、電流測定装置の電源投入時や電源遮断時にフィードバックコイルに不所望の電流が流れて磁性体コアが着磁してしまうという問題点があった。   However, in the current measuring device including the feedback circuit as described above, the rise time or the fall time of the positive power source and the negative power source may be different depending on the difference in the + − load of the bipolar power source circuit. As a result, when the power source of the current measuring device is turned on or off, an undesired current flows through the feedback coil and the magnetic core is magnetized.

発明の目的は、上記した従来の問題点を解決し、装置の電源投入時や電源遮断時であっても電流センサーの磁性体コアが着磁しない電流測定装置を提供することにある。   An object of the present invention is to solve the above-mentioned conventional problems and to provide a current measuring device in which the magnetic core of the current sensor is not magnetized even when the device is turned on or off.

本発明の電流測定装置は、被測定電流が流れる導体と磁気結合した磁性体コアを備え、前記磁性体コアを通る磁束をホール効果素子を使用して検出する電流検出回路を備えた電流測定装置において、前記磁性体コアに巻回されたフィードバックコイルと、両極性の電源を使用し、前記ホール効果素子から出力される信号が入力される差動増幅回路からなり、前記被測定電流に比例する信号を出力すると共に、前記被測定電流に比例し、かつ前記被測定電流によって前記磁性体コアに発生する磁束を打ち消す方向の電流を前記フィードバックコイルに流す電圧電流変換回路と、前記電圧電流変換回路の両極性電源のプラス電源とマイナス電源の電圧の絶対値の差が所定値以上であることを検出する差検出手段と、前記差検出手段の出力に基づいて前記フィードバックコイルへ流れる電流を遮断するスイッチ手段とを備えていることを主要な特徴とする。   A current measuring device of the present invention includes a magnetic core magnetically coupled to a conductor through which a current to be measured flows, and a current measuring device including a current detection circuit that detects a magnetic flux passing through the magnetic core using a Hall effect element In this embodiment, a feedback coil wound around the magnetic core and a bipolar power source are used, and a differential amplifier circuit to which a signal output from the Hall effect element is input is proportional to the current to be measured. A voltage-current converter that outputs a signal to the feedback coil in a direction that is proportional to the measured current and that cancels out the magnetic flux generated in the magnetic core by the measured current; and the voltage-current converter Based on the difference detection means for detecting that the difference between the absolute values of the positive power supply and the negative power supply voltage of the bipolar power supply is greater than or equal to a predetermined value, and the output of the difference detection means To mainly characterized in that a switch means for interrupting the flow of current to the feedback coil.

また、上記した電流測定装置において、前記差検出手段は、マイナス電源の絶対値の方がプラス電源の電圧よりも所定値以上大きいときにのみ、差がある旨の信号を出力する点にも特徴がある。また、上記した電流測定装置において、前記差検出手段は、前記マイナス電源とプラス電源の間に直列接続された複数の抵抗からなる抵抗回路と、前記抵抗回路の抵抗間の接続点にベースが接続されたトランジスタを含み、前記スイッチ手段はフォトMOSリレーからなる点にも特徴がある。   Further, in the above-described current measuring device, the difference detecting means also outputs a signal indicating that there is a difference only when the absolute value of the negative power source is larger than the positive power source voltage by a predetermined value or more. There is. Further, in the above-described current measuring device, the difference detecting means has a resistance circuit composed of a plurality of resistors connected in series between the minus power source and the plus power source, and a base connected to a connection point between the resistors of the resistor circuit. The switch means is composed of a photo MOS relay.

本発明によれば電源投入時や電源遮断時においてフィードバックコイルに不所望な電流が流れることによる磁性体コアへの着磁を防止することができるので、測定誤差の増加を防止することができ、測定精度を向上させることができるという効果がある。   According to the present invention, it is possible to prevent the magnetic core from being magnetized due to an undesired current flowing through the feedback coil when the power is turned on or when the power is turned off, thereby preventing an increase in measurement error. There is an effect that the measurement accuracy can be improved.

図1は本発明における電流測定装置の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a current measuring apparatus according to the present invention. 図2は本発明における電流センサー回路の構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of the current sensor circuit in the present invention. 図3は本発明における電流センサー回路の構成を示す回路図である。FIG. 3 is a circuit diagram showing the configuration of the current sensor circuit in the present invention. 図4は本発明における着磁防止回路の動作を示す波形図である。FIG. 4 is a waveform diagram showing the operation of the magnetization preventing circuit in the present invention. 図5は本発明における着磁防止回路の第2実施例を示す回路図である。FIG. 5 is a circuit diagram showing a second embodiment of the magnetization preventing circuit according to the present invention. 図6は本発明における着磁防止回路の第3実施例を示す回路図である。FIG. 6 is a circuit diagram showing a third embodiment of the magnetization preventing circuit according to the present invention. 図7は本発明における着磁防止回路の第4実施例を示す回路図である。FIG. 7 is a circuit diagram showing a fourth embodiment of the magnetization preventing circuit according to the present invention. 図8は本発明における着磁防止回路の第5実施例を示す回路図である。FIG. 8 is a circuit diagram showing a fifth embodiment of the magnetization preventing circuit according to the present invention. 図9は本発明における着磁防止回路の第6実施例を示す回路図である。FIG. 9 is a circuit diagram showing a sixth embodiment of the magnetization preventing circuit according to the present invention.

以下に図面を参照して実施例について説明する。   Embodiments will be described below with reference to the drawings.

図1は、本発明における電流測定装置の構成を示すブロック図である。電流測定装置は、磁気カップリング装置と後述する電流センサー回路40とからなる。磁気カップリング装置は、被測定電流が流れる導体(電線)45と磁気結合した磁性体コア43、44、磁性体コア43の隙間に配置されたホール効果素子41、磁性体コア43に巻回されたフィードバックコイル42からなる。   FIG. 1 is a block diagram showing a configuration of a current measuring apparatus according to the present invention. The current measuring device includes a magnetic coupling device and a current sensor circuit 40 described later. The magnetic coupling device is wound around the magnetic cores 43 and 44 magnetically coupled to the conductor (electric wire) 45 through which the current to be measured flows, the Hall effect element 41 disposed in the gap between the magnetic cores 43, and the magnetic core 43. Feedback coil 42.

ロ形状の磁性体コアは分割されており、一方の磁性体コア44を外して内部空間に導体45を通し、磁性体コア44を装着することによって被測定装置が稼働中であっても電線等の導体45と磁気結合させることができる。また、後述するフィードバック(サーボ)制御が行われている場合には、磁性体コア43、44内部の磁束密度は小さく、被測定装置の稼働中に磁性体コア43、44を導体45に装着しても磁性体コア43、44が着磁することはない。   The B-shaped magnetic core is divided, and one of the magnetic cores 44 is removed and the conductor 45 is passed through the internal space. The conductor 45 can be magnetically coupled. Further, when feedback (servo) control described later is performed, the magnetic flux density inside the magnetic cores 43 and 44 is small, and the magnetic cores 43 and 44 are attached to the conductor 45 during operation of the device under measurement. However, the magnetic cores 43 and 44 are not magnetized.

図2は、本発明における電流センサー回路40の構成を示すブロック図である。電圧電流変換回路52は、ホール効果素子41から出力される信号が入力される、所定の増幅率の差動増幅回路からなる。電圧電流変換回路52の出力信号は、後述する着磁防止回路53およびフィードバックコイル42を経由して抵抗54の一端に接続され、抵抗54の他端は接地されている。従って、抵抗54にはほぼ導体45に流れる電流に比例した電流が流れ、抵抗54の両端にはほぼ導体45に流れる電流に比例した電圧が発生する。抵抗54の一端は電流センサー出力信号として図示しない外部の計測装置に出力され、計測装置においては電流センサー回路40からの出力電圧を読み取ることによって導体45の電流値を得る。   FIG. 2 is a block diagram showing the configuration of the current sensor circuit 40 in the present invention. The voltage-current conversion circuit 52 is composed of a differential amplifier circuit having a predetermined amplification factor to which a signal output from the Hall effect element 41 is input. The output signal of the voltage / current conversion circuit 52 is connected to one end of a resistor 54 via a magnetization preventing circuit 53 and a feedback coil 42 described later, and the other end of the resistor 54 is grounded. Therefore, a current approximately proportional to the current flowing through the conductor 45 flows through the resistor 54, and a voltage approximately proportional to the current flowing through the conductor 45 is generated at both ends of the resistor 54. One end of the resistor 54 is output as a current sensor output signal to an external measuring device (not shown). In the measuring device, the current value of the conductor 45 is obtained by reading the output voltage from the current sensor circuit 40.

電圧電流変換回路52は磁性体コア43、44を通る被測定電流に比例し、かつ被測定電流による磁束を打ち消す方向の電流をフィードバックコイル42に流すように接続されている。従って、フィードバックコイル42には導体45に流れる電流に比例した電流が流れることになるが、ネガティブフィードバックがかかるので、磁性体コア43、44内部の磁束密度は導体45に流れる電流による磁束密度よりもかなり小さな値となる。この結果、磁性体コア43、44内部の磁束密度が大きな値とならないので磁性体コア43、44が着磁することがなく、着磁による測定誤差の発生を防止できる。   The voltage-current conversion circuit 52 is connected so that a current proportional to the current to be measured passing through the magnetic cores 43 and 44 and flowing in the direction to cancel the magnetic flux due to the current to be measured flows through the feedback coil 42. Therefore, a current proportional to the current flowing through the conductor 45 flows through the feedback coil 42, but negative feedback is applied. Therefore, the magnetic flux density inside the magnetic cores 43 and 44 is higher than the magnetic flux density due to the current flowing through the conductor 45. It is a fairly small value. As a result, since the magnetic flux density inside the magnetic cores 43 and 44 does not become a large value, the magnetic cores 43 and 44 are not magnetized, and the occurrence of measurement errors due to magnetization can be prevented.

電流センサー回路40の電源投入時および電源遮断時にプラス電源およびマイナス電源の2つの電源の立ち上がり時間が相違すると+Vbおよび−Vbの2つの電源も立ち上がり時間が異なり、このずれによってフィードバックコイル42に不所望な電流が流れて磁性体コア43、44が着磁してしまうことがある。着磁防止回路53は、詳細は後述するが、この着磁を防止するために電圧電流変換回路52とフィードバックコイル42との接続を切り離す回路である。   If the rise times of the two power sources, the positive power source and the negative power source, are different when the current sensor circuit 40 is turned on and off, the two power sources, + Vb and -Vb, also have different rise times. Current may flow and the magnetic cores 43 and 44 may be magnetized. The magnetization prevention circuit 53 is a circuit that disconnects the connection between the voltage-current conversion circuit 52 and the feedback coil 42 in order to prevent this magnetization, as will be described in detail later.

電源回路55は図示しない装置の電源回路から供給される両極性電源であるプラス電源およびマイナス電源からそれぞれ+Vb、−Vb(例えば+12V、−12V)の電源を生成し、更に+Vb電源から+Vh(例えば+3V)の電源を生成する公知の定電圧電源回路である。   The power supply circuit 55 generates + Vb and −Vb (for example, + 12V and −12V) power supplies from a positive power supply and a negative power supply, which are bipolar power supplies supplied from a power supply circuit of a device (not shown), and further generates a + Vh (for example, This is a known constant voltage power supply circuit that generates a power supply of + 3V).

図3は、本発明における電流センサー回路40の構成を示す回路図である。ホール効果素子41から出力される信号が入力される電圧電流変換回路52は、2個の演算増幅器62、63からなる所定の増幅率の差動増幅回路、消磁信号発生回路72からなる。   FIG. 3 is a circuit diagram showing a configuration of the current sensor circuit 40 in the present invention. The voltage-current conversion circuit 52 to which a signal output from the Hall effect element 41 is input includes a differential amplification circuit having a predetermined amplification rate composed of two operational amplifiers 62 and 63, and a demagnetization signal generation circuit 72.

差動増幅回路は両極性の電源を使用し、ホール効果素子41から出力される被測定電流に比例した電圧信号を入力して、フィードバックコイル42および負荷抵抗となる抵抗54にほぼ被測定電流と比例した電流を逆向きに流すように機能する。従って、フィードバックコイル42を介してネガティブフィードバックがかかるので、磁性体コア43、44内部の磁束密度は導体45に流れる電流による磁束密度よりもかなり小さな値となる。この結果、磁性体コア43、44内部の磁束密度が大きな値とならないので磁性体コア43、44が着磁することがなく、着磁による測定誤差の発生を防止できる。
なお、実施例においては電圧の絶対値が等しい両極性の電源+Vb、−Vbを使用しているが、両極性電源のプラス電源とマイナス電源の電圧の絶対値は等しくなくても差動増幅回路は飽和領域に入らない限り正常に動作可能であり、本発明を実施可能である。
The differential amplifier circuit uses a bipolar power supply, inputs a voltage signal proportional to the current to be measured output from the Hall effect element 41, and substantially supplies the current to be measured to the feedback coil 42 and the resistor 54 serving as a load resistance. It functions to pass a proportional current in the opposite direction. Accordingly, since negative feedback is applied via the feedback coil 42, the magnetic flux density inside the magnetic cores 43 and 44 is considerably smaller than the magnetic flux density caused by the current flowing through the conductor 45. As a result, since the magnetic flux density inside the magnetic cores 43 and 44 does not become a large value, the magnetic cores 43 and 44 are not magnetized, and the occurrence of measurement errors due to magnetization can be prevented.
In the embodiment, the bipolar power supplies + Vb and -Vb having the same absolute voltage value are used. However, the differential amplifier circuit may be used even if the positive power supply voltage and the negative power supply voltage of the bipolar power supply are not equal. Can operate normally as long as they do not enter the saturation region, and the present invention can be implemented.

消磁信号発生回路72は、通常は出力は0ボルトであるが、図示しない外部装置から出力される消磁制御信号により起動されて、両極性の減衰交流信号(所定の周期で転極し、時間と共に振幅が0まで小さくなる交流信号)を発生する。減衰交流信号の発生方法は公知の任意の方法を採用可能であるが、例えば本出願人が特許出願し、公開された交流信号発生装置(特開2011−176662号公報)を採用してもよい。   The demagnetization signal generation circuit 72 normally has an output of 0 volts, but is activated by a demagnetization control signal output from an external device (not shown), and is attenuated by alternating polarity signals (polarized at a predetermined cycle and with time). AC signal whose amplitude is reduced to 0) is generated. Any known method can be adopted as a method for generating the attenuated AC signal. For example, an AC signal generator (Japanese Patent Laid-Open No. 2011-176661) filed by the applicant of the present application and published may be used. .

フィードバック制御中に消磁信号発生回路72から減衰交流信号が出力されると、演算増幅器63によって減衰交流信号と被測定電流に比例した電圧信号が加算され、フィードバックコイル42には「被測定電流と比例した電流」+「減衰交流信号に比例した電流」が逆向きに流れる。しかし、「被測定電流と比例した電流」による磁束密度は被測定電流による磁束密度とほぼ打消し合うので、磁性体コア43、44内の磁束密度はほぼ「減衰交流信号に比例した電流」による磁束密度となり、磁性体コア43、44が消磁される。なお、消磁信号発生回路72は本発明の実施に必須の回路ではなく、省略してもよい。   When the attenuated AC signal is output from the degaussing signal generation circuit 72 during the feedback control, the operational amplifier 63 adds a voltage signal proportional to the attenuated AC signal and the current to be measured, and the feedback coil 42 is proportional to the current to be measured. Current "+" current proportional to the attenuated AC signal "flows in the opposite direction. However, since the magnetic flux density due to the “current proportional to the measured current” almost cancels out the magnetic flux density due to the measured current, the magnetic flux density in the magnetic cores 43 and 44 is almost due to the “current proportional to the attenuated AC signal”. Magnetic flux cores 43 and 44 are demagnetized due to the magnetic flux density. The degaussing signal generation circuit 72 is not an essential circuit for implementing the present invention and may be omitted.

着磁防止回路53は、電圧電流変換回路52とフィードバックコイル42との接続を切り離すための周知のフォトMOSリレー素子71および、+Vb電源の電圧値が−Vb電源の電圧の絶対値よりも所定値以上低い場合にオン状態になるトランジスタ69を含んでいる。フォトMOSリレー素子71はA接点タイプ(ノーマリーオフタイプ)であり、内蔵する発光ダイオードが点灯した場合に出力端子間がオン(低抵抗)になる。   The anti-magnetization circuit 53 includes a known photo MOS relay element 71 for disconnecting the connection between the voltage-current conversion circuit 52 and the feedback coil 42, and the voltage value of the + Vb power source is a predetermined value than the absolute value of the voltage of the -Vb power source. It includes a transistor 69 that is turned on when lower than this. The photo MOS relay element 71 is an A contact type (normally off type), and when the built-in light emitting diode is turned on, the output terminals are turned on (low resistance).

トランジスタ69のベースには、両極性の電源の+Vb電源および−Vb電源の間に直列接続された2個以上の抵抗回路の抵抗同士の接続点が接続されている。抵抗66と抵抗67は同じ値の抵抗であり、抵抗68はそれより大きな値の抵抗である。従って、抵抗67、68の合成抵抗は抵抗66より少し小さな値となり、+Vb電源および−Vb電源の電圧が正常に印加されている状態においては、3つの抵抗からなる抵抗回路によってPNPタイプのトランジスタ69のベース電圧はトランジスタ69がオン状態となるような電圧(例えば−0.6V)よりもわずかに高い(プラス側の)電圧(例えば−0.3V程度)に維持され、トランジスタ69はオフ状態である。   The base of the transistor 69 is connected to a connection point between resistors of two or more resistor circuits connected in series between the + Vb power source and the −Vb power source of the bipolar power source. The resistor 66 and the resistor 67 are resistors having the same value, and the resistor 68 is a resistor having a larger value. Accordingly, the combined resistance of the resistors 67 and 68 is a little smaller than that of the resistor 66. When the voltages of the + Vb power source and the −Vb power source are normally applied, a PNP type transistor 69 is formed by a resistor circuit composed of three resistors. Is maintained at a slightly higher voltage (for example, about −0.3 V) than a voltage at which the transistor 69 is turned on (for example, −0.6 V), and the transistor 69 is turned off. is there.

この結果、接地−発光ダイオード−抵抗70−−Vb電源の経路で電流が流れ、フォトMOSリレー素子71の発光ダイオードが点灯するので、フォトMOSリレー素子71はオン状態を維持する。なお、ベースに接続されているダイオードはトランジスタ69を破壊から保護する為のものであり、コンデンサーはノイズ吸収用であって、このコンデンサーによる遅延はほとんどない。   As a result, a current flows through the path of the ground, the light emitting diode, the resistor 70, and the Vb power source, and the light emitting diode of the photo MOS relay element 71 is turned on, so that the photo MOS relay element 71 is maintained in an on state. The diode connected to the base is for protecting the transistor 69 from destruction, and the capacitor is for absorbing noise, and there is almost no delay due to this capacitor.

図4は、本発明における着磁防止回路の電源投入時および電源遮断時の動作を示す波形図である。電流測定装置の電源投入時(図4左側)には、一般に+Vb電源の負荷の方が重いので、+Vb電源の立ち上がりが−Vb電源よりも遅れる。この時、+Vb電源の電圧値が−Vb電源の電圧の絶対値よりも所定値以上低い期間においては抵抗66と抵抗67の接続点の電圧が低くなり、PNPタイプのトランジスタ69のベース電流が流れてトランジスタ69がオン状態になる。するとフォトMOSリレー素子71の入力端子間の電圧はほぼ0Vとなり、入力端子間に接続されている発光ダイオードに電流が流れなくなって消灯する。   FIG. 4 is a waveform diagram showing the operation of the magnetization preventing circuit according to the present invention when the power is turned on and when the power is turned off. When the current measuring device is turned on (left side in FIG. 4), the load of the + Vb power supply is generally heavier, so that the rise of the + Vb power supply is delayed from the −Vb power supply. At this time, during the period when the voltage value of the + Vb power source is lower than the absolute value of the voltage of the −Vb power source by a predetermined value or more, the voltage at the connection point of the resistor 66 and the resistor 67 becomes low, and the base current of the PNP type transistor 69 flows. Thus, the transistor 69 is turned on. Then, the voltage between the input terminals of the photo MOS relay element 71 becomes almost 0 V, and the current stops flowing through the light emitting diode connected between the input terminals, and the light is turned off.

その後、+Vb電源が立ち上がるとトランジスタ69がオフとなり、フォトMOSリレー素子71の発光ダイオードに電流が流れて点灯する。そして、フォトMOSリレー素子71がオン状態、即ち出力電導度が所定値以上となる。従って、+Vb電源が立ち上がった後にフォトMOSリレー素子71がオン状態となる。   Thereafter, when the + Vb power supply rises, the transistor 69 is turned off, and a current flows through the light emitting diode of the photoMOS relay element 71 to light it. Then, the photo MOS relay element 71 is in the on state, that is, the output conductivity becomes a predetermined value or more. Accordingly, the photoMOS relay element 71 is turned on after the + Vb power supply is turned on.

電源遮断時(図4右側)には、+Vb電源の立ち下りが−Vb電源よりも速くなる。この時、+Vb電源の電圧値が−Vb電源の電圧の絶対値よりも所定値以上低くなると抵抗66と抵抗67の接続点の電圧が低くなり、PNPタイプのトランジスタ69のベース電流が流れてトランジスタ69がオン状態になる。するとフォトMOSリレー素子71の発光ダイオードには電流が流れなくなり、消灯するので、フォトMOSリレー素子71はオフ状態となる。   When the power is shut off (right side in FIG. 4), the fall of the + Vb power supply is faster than that of the -Vb power supply. At this time, when the voltage value of the + Vb power source becomes lower than the absolute value of the voltage of the −Vb power source by a predetermined value or more, the voltage at the connection point of the resistor 66 and the resistor 67 becomes low, and the base current of the PNP type transistor 69 flows. 69 is turned on. Then, no current flows through the light emitting diode of the photo MOS relay element 71 and the light is turned off, so that the photo MOS relay element 71 is turned off.

その後、+Vb電源の電圧値と−Vb電源の電圧の絶対値との差が小さくなるとトランジスタ69がオフ状態になるが、このころには+Vb電源および−Vb電源の双方とも電圧の絶対値が低下しており、フィードバックコイル42に磁性体コア43、44が着磁してしまうほどの不所望な電流が流れることはない。   Thereafter, when the difference between the voltage value of the + Vb power supply and the absolute value of the voltage of the −Vb power supply becomes small, the transistor 69 is turned off. At this time, the absolute value of the voltage of both the + Vb power supply and the −Vb power supply decreases. Therefore, an undesired current that causes the magnetic cores 43 and 44 to be magnetized does not flow through the feedback coil 42.

図5は、本発明における着磁防止回路の第2実施例を示す回路図である。第1実施例においてはフォトMOSリレー素子71としてA接点タイプ(ノーマリーオフタイプ)を使用しているが、第2実施例はフォトMOSリレー素子としてB接点タイプ(ノーマリーオンタイプ)を使用した例である。第1実施例と異なる点は、フォトMOSリレー素子72としてB接点タイプを使用した点、及びトランジスタ113がフォトMOSリレー素子72の発光ダイオードと直列に接続されている点である。   FIG. 5 is a circuit diagram showing a second embodiment of the magnetization preventing circuit according to the present invention. In the first embodiment, the A contact type (normally off type) is used as the photo MOS relay element 71, but in the second embodiment, the B contact type (normally on type) is used as the photo MOS relay element. It is an example. The difference from the first embodiment is that a B-contact type is used as the photo MOS relay element 72 and that the transistor 113 is connected in series with the light emitting diode of the photo MOS relay element 72.

通常はトランジスタ113はオフ状態であり、発光ダイオードは消灯しており、フォトMOSリレー素子72はオン状態である。+Vb電源の電圧値が−Vb電源の電圧の絶対値よりも所定値以上低い期間においてはトランジスタ113がオン状態になり、発光ダイオードが点灯してフォトMOSリレー素子72はオフ状態となる。従って、実施例1と同様に着磁を防止できる。   Normally, the transistor 113 is off, the light emitting diode is off, and the photoMOS relay element 72 is on. In a period in which the voltage value of the + Vb power supply is lower than the absolute value of the voltage of the −Vb power supply by a predetermined value or more, the transistor 113 is turned on, the light emitting diode is turned on, and the photoMOS relay element 72 is turned off. Accordingly, magnetization can be prevented as in the first embodiment.

図6は、本発明における着磁防止回路の第3実施例を示す回路図である。第1、2実施例においては+Vb電源の立ち上がりが−Vb電源の立ち上がりよりも遅く、+Vb電源の立ち下がりが−Vb電源の立ち下がりよりも速いことが前提であるが、第2実施例は−Vb電源の立ち上がりが+Vb電源の立ち上がりよりも遅い場合の例である。第1実施例と異なる点は、抵抗回路105〜107の構成が+−逆になっている点およびトランジスタ108としてNPNタイプのトランジスタが用いられている点である。   FIG. 6 is a circuit diagram showing a third embodiment of the magnetization preventing circuit according to the present invention. In the first and second embodiments, it is assumed that the rise of the + Vb power supply is slower than the rise of the −Vb power supply and the fall of the + Vb power supply is faster than the fall of the −Vb power supply. In this example, the rise of the Vb power supply is slower than the rise of the + Vb power supply. The difference from the first embodiment is that the configurations of the resistance circuits 105 to 107 are + -inverted and that an NPN type transistor is used as the transistor 108.

通常はトランジスタ108はオフ状態であり、発光ダイオードは点灯しており、フォトMOSリレー素子71はオン状態である。−Vb電源の電圧値の絶対値が+Vb電源の電圧よりも所定値以上低い期間においてはトランジスタ108がオン状態になり、発光ダイオードが消灯してフォトMOSリレー素子71はオフ状態となる。従って、実施例1と同様に着磁を防止できる。   Normally, the transistor 108 is off, the light emitting diode is lit, and the photoMOS relay element 71 is on. In a period in which the absolute value of the voltage value of the −Vb power supply is lower than the voltage of the + Vb power supply by a predetermined value or more, the transistor 108 is turned on, the light emitting diode is turned off, and the photoMOS relay element 71 is turned off. Accordingly, magnetization can be prevented as in the first embodiment.

図7は、本発明における着磁防止回路の第4実施例を示す回路図である。第3実施例においてはフォトMOSリレー素子71としてA接点タイプを使用しているが、第4実施例はフォトMOSリレー素子としてB接点タイプを使用した例である。第3実施例と異なる点は、フォトMOSリレー素子72としてB接点タイプを使用した点、及びトランジスタ103がフォトMOSリレー素子72の発光ダイオードと直列に接続されている点である。   FIG. 7 is a circuit diagram showing a fourth embodiment of the magnetization preventing circuit according to the present invention. In the third embodiment, the A contact type is used as the photoMOS relay element 71, but in the fourth embodiment, the B contact type is used as the photoMOS relay element. The difference from the third embodiment is that a B contact type is used as the photoMOS relay element 72 and that the transistor 103 is connected in series with the light emitting diode of the photoMOS relay element 72.

通常はトランジスタ103はオフ状態であり、発光ダイオードは消灯しており、フォトMOSリレー素子72はオン状態である。−Vb電源の電圧値の絶対値が+Vb電源の電圧よりも所定値以上低い期間においてはトランジスタ103がオン状態になり、発光ダイオードが点灯してフォトMOSリレー素子72はオフ状態となる。従って、実施例1と同様に着磁を防止できる。   Normally, the transistor 103 is off, the light emitting diode is off, and the photoMOS relay element 72 is on. In a period in which the absolute value of the voltage value of the −Vb power supply is lower than the voltage of the + Vb power supply by a predetermined value or more, the transistor 103 is turned on, the light emitting diode is turned on, and the photoMOS relay element 72 is turned off. Accordingly, magnetization can be prevented as in the first embodiment.

図8は、本発明における着磁防止回路の第5実施例を示す回路図である。実施例1〜4においては+Vb電源の立ち上がりあるいは−Vb電源の立ち上がりの一方が必ず他方よりも遅いことが前提であるが、第5実施例は、+Vb電源の立ち上がりおよび−Vb電源の立ち上がりのいずれか一方が他方よりも遅い場合にも適用可能な例である。この実施例は、図3の第1実施例の着磁防止回路の出力と図6に示す第3実施例の着磁防止回路の出力を直列に接続したものである。抵抗回路120〜122は双方の着磁防止回路で共用している。   FIG. 8 is a circuit diagram showing a fifth embodiment of the magnetization preventing circuit according to the present invention. In the first to fourth embodiments, it is premised that either the rise of the + Vb power supply or the rise of the −Vb power supply is always slower than the other, but the fifth embodiment is any of the rise of the + Vb power supply and the rise of the −Vb power supply. This is an example applicable to the case where one of them is slower than the other. In this embodiment, the output of the magnetization preventing circuit of the first embodiment shown in FIG. 3 and the output of the magnetization preventing circuit of the third embodiment shown in FIG. 6 are connected in series. The resistance circuits 120 to 122 are shared by both magnetization prevention circuits.

通常はNPNタイプのトランジスタ123およびPNPタイプのトランジスタ124は共にオフ状態であり、発光ダイオードは双方とも点灯しており、フォトMOSリレー素子72はオン状態である。+Vb電源の電圧値が−Vb電源の電圧の絶対値よりも所定値以上低い期間においてはトランジスタ124がオン状態になり、発光ダイオードが消灯してフォトMOSリレー素子71−2はオフ状態となる。   Normally, both the NPN type transistor 123 and the PNP type transistor 124 are in an off state, both the light emitting diodes are lit, and the photoMOS relay element 72 is in an on state. In a period in which the voltage value of the + Vb power supply is lower than the absolute value of the voltage of the −Vb power supply by a predetermined value or more, the transistor 124 is turned on, the light emitting diode is turned off, and the photoMOS relay element 71-2 is turned off.

また、−Vb電源の電圧値の絶対値が+Vb電源の電圧よりも所定値以上低い期間においてはトランジスタ123がオン状態になり、発光ダイオードが消灯してフォトMOSリレー素子71−1はオフ状態となる。従って、第5実施例においては、+Vb電源の立ち上がりおよび−Vb電源の立ち上がりのいずれか一方が他方よりも遅い場合にも着磁を防止できる。   Further, the transistor 123 is turned on during a period in which the absolute value of the voltage value of the −Vb power supply is lower than the voltage of the + Vb power supply by a predetermined value or more, the light emitting diode is turned off, and the photoMOS relay element 71-1 is turned off. Become. Therefore, in the fifth embodiment, magnetization can be prevented even when either the rise of the + Vb power supply or the rise of the -Vb power supply is slower than the other.

図9は、本発明における着磁防止回路の第6実施例を示す回路図である。第6実施例は、第5実施例と同様に、+Vb電源の立ち上がりおよび−Vb電源の立ち上がりのいずれか一方が他方よりも遅い場合にも適用可能な例である。この実施例は、図5の第2実施例の着磁防止回路の出力と図7に示す第4実施例の着磁防止回路の出力を直列に接続したものである。抵抗回路130〜132は双方の着磁防止回路で共用している。   FIG. 9 is a circuit diagram showing a sixth embodiment of the magnetization preventing circuit according to the present invention. As in the fifth embodiment, the sixth embodiment is an example applicable to the case where either the rise of the + Vb power supply or the rise of the −Vb power supply is slower than the other. In this embodiment, the output of the magnetization preventing circuit of the second embodiment of FIG. 5 and the output of the magnetization preventing circuit of the fourth embodiment shown in FIG. 7 are connected in series. The resistance circuits 130 to 132 are shared by both magnetization preventing circuits.

通常はNPNタイプのトランジスタ133およびPNPタイプのトランジスタ134は共にオフ状態であり、発光ダイオードは双方とも消灯しており、フォトMOSリレー素子72はオン状態である。+Vb電源の電圧値が−Vb電源の電圧の絶対値よりも所定値以上低い期間においてはトランジスタ134がオン状態になり、発光ダイオードが点灯してフォトMOSリレー素子72−2はオフ状態となる。   Normally, both the NPN type transistor 133 and the PNP type transistor 134 are off, the light emitting diodes are both extinguished, and the photoMOS relay element 72 is on. In a period in which the voltage value of the + Vb power supply is lower than the absolute value of the voltage of the −Vb power supply by a predetermined value or more, the transistor 134 is turned on, the light emitting diode is turned on, and the photoMOS relay element 72-2 is turned off.

また、−Vb電源の電圧値の絶対値が+Vb電源の電圧よりも所定値以上低い期間においてはトランジスタ133がオン状態になり、発光ダイオードが点灯してフォトMOSリレー素子72−1はオフ状態となる。従って、第6実施例においては、やはり+Vb電源の立ち上がりおよび−Vb電源の立ち上がりのいずれか一方が他方よりも遅い場合にも着磁を防止できる。   In addition, the transistor 133 is turned on in a period in which the absolute value of the voltage value of the −Vb power supply is lower than the voltage of the + Vb power supply by a predetermined value or more, the light emitting diode is turned on, and the photoMOS relay element 72-1 is turned off. Become. Therefore, in the sixth embodiment, magnetization can be prevented even when either the rise of the + Vb power supply or the rise of the -Vb power supply is slower than the other.

本発明は直流の電流を高精度で測定する必要のある任意の装置に適用可能である。   The present invention can be applied to any apparatus that needs to measure a direct current with high accuracy.

40…電流センサー回路
41…ホール効果素子
42…フィードバックコイル
43…磁性体コア
44…磁性体コア
DESCRIPTION OF SYMBOLS 40 ... Current sensor circuit 41 ... Hall effect element 42 ... Feedback coil 43 ... Magnetic body core 44 ... Magnetic body core

Claims (3)

被測定電流が流れる導体と磁気結合した磁性体コアを備え、前記磁性体コアを通る磁束をホール効果素子を使用して検出する電流検出回路を備えた電流測定装置において、
前記磁性体コアに巻回されたフィードバックコイルと、
両極性の電源を使用し、前記ホール効果素子から出力される信号が入力される差動増幅回路からなり、前記被測定電流に比例する信号を出力すると共に、前記被測定電流に比例し、かつ前記被測定電流によって前記磁性体コアに発生する磁束を打ち消す方向の電流を前記フィードバックコイルに流す電圧電流変換回路と、
前記電圧電流変換回路の両極性電源のプラス電源とマイナス電源の電圧の絶対値の差が所定値以上であることを検出する差検出手段と、
前記差検出手段の出力に基づいて前記フィードバックコイルへ流れる電流を遮断するスイッチ手段と
を備えていることを特徴とする電流測定装置。
In a current measuring device including a magnetic core magnetically coupled to a conductor through which a current to be measured flows, and including a current detection circuit that detects a magnetic flux passing through the magnetic core using a Hall effect element,
A feedback coil wound around the magnetic core;
Using a bipolar power supply, comprising a differential amplifier circuit to which a signal output from the Hall effect element is input, outputting a signal proportional to the measured current, proportional to the measured current, and A voltage-current conversion circuit for passing a current in a direction to cancel the magnetic flux generated in the magnetic core by the measured current to the feedback coil;
A difference detection means for detecting that the difference between the absolute values of the positive power source and the negative power source voltage of the bipolar power source of the voltage-current conversion circuit is a predetermined value or more;
A current measuring apparatus comprising: a switching unit that cuts off a current flowing to the feedback coil based on an output of the difference detecting unit.
前記差検出手段は、マイナス電源の絶対値の方がプラス電源の電圧よりも所定値以上大きいときにのみ、差がある旨の信号を出力することを特徴とする請求項1に記載の電流測定装置。   2. The current measurement according to claim 1, wherein the difference detection unit outputs a signal indicating that there is a difference only when the absolute value of the negative power source is larger than the voltage of the positive power source by a predetermined value or more. apparatus. 前記差検出手段は、前記マイナス電源とプラス電源の間に直列接続された複数の抵抗からなる抵抗回路と、前記抵抗回路の抵抗間の接続点にベースが接続されたトランジスタを含み、前記スイッチ手段はフォトMOSリレーからなることを特徴とする請求項1に記載の電流測定装置。   The difference detecting means includes a resistor circuit composed of a plurality of resistors connected in series between the minus power source and the plus power source, and a transistor having a base connected to a connection point between the resistors of the resistor circuit. 2. The current measuring device according to claim 1, comprising a photo MOS relay.
JP2014119154A 2014-06-10 2014-06-10 Current measuring device Pending JP2015232489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014119154A JP2015232489A (en) 2014-06-10 2014-06-10 Current measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014119154A JP2015232489A (en) 2014-06-10 2014-06-10 Current measuring device

Publications (1)

Publication Number Publication Date
JP2015232489A true JP2015232489A (en) 2015-12-24

Family

ID=54934018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014119154A Pending JP2015232489A (en) 2014-06-10 2014-06-10 Current measuring device

Country Status (1)

Country Link
JP (1) JP2015232489A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109001622A (en) * 2018-08-01 2018-12-14 宁波三星智能电气有限公司 A kind of detection method of the external on-load switch of electric energy meter
CN110824229A (en) * 2019-11-12 2020-02-21 中国船舶重工集团公司第七一九研究所 Single-magnetic-core multi-winding magnetic balance type current detection device
CN111157775A (en) * 2019-11-20 2020-05-15 江苏轶一电力科技有限公司 Double-coil current sensor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5167655U (en) * 1974-11-25 1976-05-28
JPS51108668U (en) * 1975-02-27 1976-08-31
JPS60136521U (en) * 1984-02-21 1985-09-10 パイオニア株式会社 Negative feedback amplifier circuit
JPH02245806A (en) * 1989-03-20 1990-10-01 Asahi Chem Ind Co Ltd Power source synchronizing circuit
JPH06109770A (en) * 1992-09-30 1994-04-22 Asahi Kasei Denshi Kk High-precision current sensor
US5493211A (en) * 1993-07-15 1996-02-20 Tektronix, Inc. Current probe
JP2001264362A (en) * 2000-03-23 2001-09-26 Denso Corp Dc current sensor
JP2010283740A (en) * 2009-06-08 2010-12-16 Yokogawa Electric Corp Photo mos relay drive circuit, and semiconductor test device using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5167655U (en) * 1974-11-25 1976-05-28
JPS51108668U (en) * 1975-02-27 1976-08-31
JPS60136521U (en) * 1984-02-21 1985-09-10 パイオニア株式会社 Negative feedback amplifier circuit
JPH02245806A (en) * 1989-03-20 1990-10-01 Asahi Chem Ind Co Ltd Power source synchronizing circuit
JPH06109770A (en) * 1992-09-30 1994-04-22 Asahi Kasei Denshi Kk High-precision current sensor
US5493211A (en) * 1993-07-15 1996-02-20 Tektronix, Inc. Current probe
JP2001264362A (en) * 2000-03-23 2001-09-26 Denso Corp Dc current sensor
JP2010283740A (en) * 2009-06-08 2010-12-16 Yokogawa Electric Corp Photo mos relay drive circuit, and semiconductor test device using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109001622A (en) * 2018-08-01 2018-12-14 宁波三星智能电气有限公司 A kind of detection method of the external on-load switch of electric energy meter
CN109001622B (en) * 2018-08-01 2020-10-27 宁波三星智能电气有限公司 Detection method for external load switch of electric energy meter
CN110824229A (en) * 2019-11-12 2020-02-21 中国船舶重工集团公司第七一九研究所 Single-magnetic-core multi-winding magnetic balance type current detection device
CN110824229B (en) * 2019-11-12 2022-04-19 中国船舶重工集团公司第七一九研究所 Single-magnetic-core multi-winding magnetic balance type current detection device
CN111157775A (en) * 2019-11-20 2020-05-15 江苏轶一电力科技有限公司 Double-coil current sensor

Similar Documents

Publication Publication Date Title
EP3121609B1 (en) Direct-current residual-current detecting device
US9804203B2 (en) Compensation current sensor arrangement
WO2012011306A1 (en) Current sensor
JP6220748B2 (en) DC leakage current detector
JP2015232489A (en) Current measuring device
JP2016188790A (en) Current detector
US9134345B2 (en) Method and device for AC/DC sensitive current measurement
JP6298581B2 (en) Current detection device and substation equipment provided with the same
JP2019074337A (en) Magnetic sensor and current sensor provided with the same
CN111273079B (en) Fluxgate direct current sensor circuit and method based on double-pulse width measurement
JP2007033222A (en) Current sensor
JP4769883B2 (en) DC current sensor
JP6551448B2 (en) Current sensor
JP2019152473A (en) Current sensor
WO2014185263A1 (en) Inspection circuit for magnetic field detector, and inspection method for same
JP2016102778A (en) Electric leak detecting circuit
JP2016194483A (en) Current detection device
JP2011169833A (en) Current sensor
WO2015104776A1 (en) Current detection device
JP6191267B2 (en) Current detector
JP6370620B2 (en) Magnetic sensor
JP6695054B2 (en) Magnetization prevention device and current detection device using the same
JP2004347501A (en) Current sensor
JP2516205B2 (en) Current detector
JP2019138796A (en) Zero-flux type current sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180904