JP2017008478A - Substrate for artificial leather - Google Patents

Substrate for artificial leather Download PDF

Info

Publication number
JP2017008478A
JP2017008478A JP2016196461A JP2016196461A JP2017008478A JP 2017008478 A JP2017008478 A JP 2017008478A JP 2016196461 A JP2016196461 A JP 2016196461A JP 2016196461 A JP2016196461 A JP 2016196461A JP 2017008478 A JP2017008478 A JP 2017008478A
Authority
JP
Japan
Prior art keywords
artificial leather
fiber
base material
nonwoven fabric
elastic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016196461A
Other languages
Japanese (ja)
Other versions
JP6446012B2 (en
Inventor
目黒 将司
Masashi Meguro
将司 目黒
道憲 藤澤
Michinori Fujisawa
道憲 藤澤
聖 辺見
Sei Henmi
聖 辺見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Publication of JP2017008478A publication Critical patent/JP2017008478A/en
Application granted granted Critical
Publication of JP6446012B2 publication Critical patent/JP6446012B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a substrate for an artificial leather that has a material feeling excellent in mechanical properties, softness and texture, and has also lightness.SOLUTION: There is provided a substrate for an artificial leather including a three-dimensionally entangled nonwoven fabric and an elastomer. The substrate for the artificial leather satisfies the following requirements (1) to (3) and has an apparent density of less than 0.3 g/cm, in which a mass ratio (the elastomer/fibers forming the three-dimensionally entangled nonwoven fabric) of the elastomer to the fibers forming the three-dimensionally entangled nonwoven fabric is 15/85 to 30/70. Requirement (1) is that the elastomer discontinuously exists on a surface of the fibers forming the three-dimensionally entangled nonwoven fabric. Requirement (2) is that an average area of incircles between voids, except areas of incircles between voids of less than 350 μm, in a cross section parallel to a thickness direction of the substrate for the artificial leather is 1250 μmor less. Requirement (3) is that the number of incircles between voids of areas of incircles between voids of 400 to 3000 μmin a cross section parallel to a thickness direction of the substrate for the artificial leather is 85% or more with respect to the total number of incircles between voids.SELECTED DRAWING: None

Description

本発明は、人工皮革用基材に関する。詳しくは、三次元絡合不織布と高分子弾性体からなる人工皮革用基材であって、機械的諸物性、柔軟性、風合いに優れた素材感、さらに軽量性を兼ね備えた人工皮革用基材に関する。   The present invention relates to a base material for artificial leather. Specifically, it is a base material for artificial leather consisting of a three-dimensional entangled nonwoven fabric and a polymer elastic body, and has a mechanical feel, flexibility, texture, and a lightweight feel. About.

近年は、靴、鞄、衣料パーツ等の主要素材として人工皮革が広く用いられており、とりわけスポーツシューズ、カジュアルシューズ等の分野では、接着剥離強力や引裂き強力等の機械的諸物性に優れるだけでなく、軽量でかつ柔軟な素材による快適性能を備えた製品が求められている。
従来の人工皮革用基材の製造方法の多くは、概略次のようないくつかの工程からなる。溶解性、分解性を異にする2種類の重合体から紡糸した多成分系繊維をステープル化し、カード、クロスラッパー、ランダムウェーバー等を用いて所望の重量のウェブとし、次いでニードルパンチ、ウォータージェット等により繊維を互いに絡ませることで絡合不織布化した後、ポリウレタンに代表される高分子弾性体の溶液もしくはエマルジョン液を付与して凝固させ、その後で該多成分系繊維中の一成分の除去又は減量により極細繊維とする方法、あるいは前記において高分子弾性体を含浸・凝固させる工程と該多成分系繊維を極細繊維とする工程を逆の順序で行う方法である。
これらの方法により絡合不織布を構成する繊維を極細化させた柔軟な人工皮革用基材を得ることができ、それら基材をベースとする各種人工皮革素材を用いることで、製品は極細繊維特有の風合いと外観による優れた素材感が得られることが種々の製品市場で広く認知されている。
In recent years, artificial leather has been widely used as a main material for shoes, bags, clothing parts, etc. Especially in the field of sports shoes, casual shoes, etc., it has only excellent mechanical properties such as adhesive peel strength and tear strength. There is a need for a product that is comfortable and is made of lightweight and flexible materials.
Many of the conventional methods for producing a base material for artificial leather consist of several steps as follows. Multi-component fibers spun from two types of polymers with different solubility and degradability are stapled into a desired weight web using a card, cross wrapper, random weber, etc., then needle punch, water jet, etc. After the fibers are entangled with each other to form an entangled nonwoven fabric, a solution or emulsion solution of a polymer elastic body represented by polyurethane is applied and solidified, and then one component in the multicomponent fiber is removed or It is a method of making ultrafine fibers by weight reduction, or a method of performing the above-described steps of impregnating and solidifying a polymer elastic body and making the multicomponent fibers ultrafine fibers in the reverse order.
By these methods, it is possible to obtain flexible artificial leather base materials in which the fibers constituting the entangled nonwoven fabric are made ultrafine, and by using various artificial leather materials based on these base materials, the products are unique to ultrafine fibers. It is widely recognized in various product markets that an excellent texture due to the texture and appearance can be obtained.

しかしながら、前記した従来の人工皮革用基材の製造工程では、多成分系繊維を極細繊維化する時に張力や圧縮等の外力が作用し絡合不織布の厚さが減少することによる、人工皮革用基材自身の見掛け密度の上昇は避け難い。このため、素材としての要求性能を確保した上で、軽量素材としての市場における優位性をも兼ね備えたものは、工業的には得ることができず、これまで様々な手法が提案されている。   However, in the manufacturing process of the conventional artificial leather substrate described above, when the multicomponent fiber is made into an ultrafine fiber, an external force such as tension or compression acts to reduce the thickness of the entangled nonwoven fabric. An increase in the apparent density of the substrate itself is unavoidable. For this reason, it is impossible to industrially obtain a material that has the required performance as a material and also has an advantage in the market as a lightweight material, and various methods have been proposed so far.

軽量性に優れた人工皮革として、中空繊維を用いた製造方法が種々検討されてきた。例えば、中空率が40%を越えるポリエステル系繊維を用いた人工皮革が提案されている(例えば、特許文献1参照。)。また、機械的物性、柔軟性、軽量性を兼ね備えた人工皮革として、0.5デシテックス以下の極細繊維(A)と、5デシテックス以下で横断面に5〜50個の中空部を有し、該中空部の総面積率が25〜50%の範囲であり、該中空部1個の占める面積が5%以下の繊維(B)とが、(A)/(B)の重量比で20/80〜80/20で三次元絡合されている不織布、及び高分子弾性体からなる人工皮革基体、その製造方法が提案されている(例えば、特許文献2参照。)。さらに、中空繊維、あるいは極細繊維に対する高分子弾性体の拘束を防ぐため、不織布へポリビニルアルコール系樹脂(以下、PVAと略記することがある。)を含浸した後、高分子弾性体を含浸する方法(例えば、特許文献3参照。)、さらには、不織布へ水系エマルジョンを含浸するにあたりエマルジョンと繊維との離型を目的として、水系エマルジョンへPVAを添加する方法がある(例えば、特許文献4参照。)。
一方、近年では有機溶剤の使用に対して、人体や環境への悪影響の懸念から無溶剤系での製造プロセスが要望されており、例えば、中空繊維発生型繊維の抽出成分として水溶性高分子成分を用いた繊維が提案されており(例えば、特許文献5参照。)、また人工皮革製造方法においては三次元絡合体不織布の内部に含浸する樹脂として高分子弾性体水分散液が検討されている。
Various production methods using hollow fibers have been studied as artificial leather having excellent lightness. For example, an artificial leather using polyester fibers having a hollowness of more than 40% has been proposed (for example, see Patent Document 1). In addition, as an artificial leather having mechanical properties, flexibility, and lightness, it has an ultrafine fiber (A) of 0.5 dtex or less and 5 to 50 hollow parts in a cross section of 5 dtex or less, The total area ratio of the hollow portion is in the range of 25 to 50%, and the fiber (B) in which the area occupied by one hollow portion is 5% or less is 20/80 by weight ratio of (A) / (B). A non-woven fabric that is three-dimensionally intertwined at 80/20, an artificial leather base made of a polymer elastic body, and a method for producing the same have been proposed (for example, see Patent Document 2). Further, a method of impregnating a polymer elastic body after impregnating a non-woven fabric with a polyvinyl alcohol resin (hereinafter sometimes abbreviated as PVA) in order to prevent restraint of the polymer elastic body on hollow fibers or ultrafine fibers. (For example, refer to Patent Document 3) Furthermore, there is a method of adding PVA to an aqueous emulsion for the purpose of releasing the emulsion and fibers in impregnating the aqueous emulsion into a nonwoven fabric (for example, refer to Patent Document 4). ).
On the other hand, in recent years, there has been a demand for a solvent-free manufacturing process for the use of organic solvents because of the concern of adverse effects on the human body and the environment. (For example, refer to Patent Document 5), and in a method for producing artificial leather, a polymer elastic water dispersion is studied as a resin impregnated into the interior of a three-dimensional entangled nonwoven fabric. .

特許3924360号公報Japanese Patent No. 3924360 特開2002−242077号公報JP 2002-242077 A 特公平7−42652号公報Japanese Patent Publication No. 7-42652 特公平6−55999号公報Japanese Examined Patent Publication No. 6-55999 特開2003−73924号公報JP 2003-73924 A

しかしながら、特許文献1に開示された人工皮革において、中空率が40%を越える中空繊維は、紡糸工程、不織布製造工程、さらにはその後の諸工程において、断面形状に由来する剛性不足により中空部が潰れて扁平化したり、中空部を形成するための外壁や隔壁が破壊されてしまいやすい。また、一度扁平化すると元のような高い中空率の断面形状には極めて回復し難く、中空部の壁が一度破壊されると中空部自体が無くなるため、40%以上といった高い中空率を有する繊維は不織布や人工皮革を製造する過程で中空繊維としての効果そのものを失いやすい。また、特許文献2に開示された製造方法は、高分子弾性体により中空繊維が拘束され易い構造であるため、機械的物性と柔軟性を高めるためには極細繊維の比率を高く設定する必要があり、また、極細繊維を用いることで中空繊維本来の軽量性が損なわれ、これらすべてを満足することができなかった。   However, in the artificial leather disclosed in Patent Document 1, hollow fibers having a hollow ratio of more than 40% have a hollow portion due to insufficient rigidity derived from the cross-sectional shape in the spinning process, the nonwoven fabric manufacturing process, and the subsequent processes. It tends to be crushed and flattened, or the outer wall and partition walls for forming the hollow portion are easily destroyed. In addition, once flattened, it is very difficult to recover the original high-hollow cross-sectional shape, and once the wall of the hollow part is broken, the hollow part itself disappears, so that the fiber having a high hollow ratio of 40% or more Tends to lose its effect as a hollow fiber in the process of manufacturing non-woven fabric and artificial leather. Moreover, since the manufacturing method disclosed in Patent Document 2 has a structure in which hollow fibers are easily constrained by a polymer elastic body, it is necessary to set the ratio of ultrafine fibers high in order to increase mechanical properties and flexibility. In addition, the use of ultrafine fibers impairs the inherent lightness of the hollow fibers, and all of these cannot be satisfied.

また、特許文献3に開示された製造方法では、含浸したポリビニルアルコール系樹脂が、乾燥時のマイグレーションにより表面層へ移動するため、不織布内部へ残る量は少なくなり、特に中空繊維や直接紡糸繊維からなる不織布内部の高分子弾性体と繊維との離型性を充分に確保することはできず、ボキ折れ等がない十分な風合いが得られなかった。また、特許文献4に開示された製造方法はスエード前提のため、一度含浸したPVAは染色時に抽出することを想定しており、染色しない場合は別途抽出工程が必要となるばかりか、極細発生型繊維、あるいは中空繊維が溶剤抽出により発現する繊維であれば抽出工程が2段階必要になり、処理工程が増えることで生産プロセスが複雑化する問題がある。また、高分子弾性体水分散液を三次元絡合体不織布の内部に含浸する製造方法では、高分子弾性体を水系エマルジョンの形態で付与する場合は、中空繊維の表面に高分子弾性体が接着して、柔軟性の低下や物性の低下が顕著になるばかりでなく、中空繊維発生型繊維から島成分を抽出する際の抽出効率の低下をまねき、生産効率や軽量性が低下する問題がある。   Further, in the production method disclosed in Patent Document 3, since the impregnated polyvinyl alcohol-based resin moves to the surface layer by migration during drying, the amount remaining in the nonwoven fabric is reduced, particularly from hollow fibers or directly spun fibers. The release property between the polymer elastic body and the fiber inside the nonwoven fabric could not be sufficiently secured, and a sufficient texture without cracking or the like could not be obtained. Moreover, since the manufacturing method disclosed in Patent Document 4 is based on suede, it is assumed that PVA once impregnated is extracted at the time of dyeing. If the fiber or the hollow fiber is a fiber that is expressed by solvent extraction, two extraction steps are required, and there is a problem that the production process becomes complicated due to an increase in processing steps. In addition, in the production method of impregnating the inside of a three-dimensional entangled nonwoven fabric with an aqueous dispersion of a polymer elastic body, when the polymer elastic body is applied in the form of an aqueous emulsion, the polymer elastic body adheres to the surface of the hollow fiber. In addition, not only is the decrease in flexibility and physical properties noticeable, but there is also a problem in that the production efficiency and lightness are reduced due to the decrease in extraction efficiency when extracting island components from hollow fiber generating fibers. .

また、人工皮革の各分野で一般的に用いられている0.3〜3.0mmの厚さ範囲の中で、より軽く、機械的物性に優れた、柔軟な製品が求められているが、特に製品が柔軟かつ軽量であることと機械的物性に優れていることとは裏腹の関係にあり、これらすべてを満足した無用剤系の人工皮革用基材は未だ開発されていない。   In addition, in the thickness range of 0.3 to 3.0 mm that is generally used in each field of artificial leather, there is a demand for flexible products that are lighter and have excellent mechanical properties. In particular, the product is flexible and lightweight, and has excellent mechanical properties, and a useless artificial leather base material that satisfies all these requirements has not yet been developed.

そこで本発明は、機械的諸物性、柔軟性、風合いに優れた素材感、さらに軽量性を兼ね備えた人工皮革用基材を提供することを目的とする。   Then, an object of this invention is to provide the base material for artificial leather which has the mechanical property, the softness | flexibility, the material feeling excellent in the texture, and also the lightness.

すなわち、本発明は、下記の人工皮革用基材を提供する。
1.三次元絡合不織布と高分子弾性体とからなる人工皮革用基材であって、下記要件(1)〜(3)をみたす人工皮革用基材。
要件(1):三次元絡合不織布を形成する繊維の表面に高分子弾性体が不連続で存在する。
要件(2):人工皮革用基材の厚さ方向に平行な断面における350μm未満の空隙間内接円面積を除いた空隙間内接円面積の平均が1250μm以下である。
要件(3):人工皮革用基材の厚さ方向に平行な断面における空隙間内接円面積350〜3000μmの空隙間内接円数が、全空隙間内接円数に対し85%以上である。
2.前記高分子弾性体が、三次元絡合不織布に水系エマルジョン樹脂を含浸、凝固させて形成されたものである、前記1に記載の人工皮革用基材。
3.前記三次元絡合不織布を形成する繊維が、中空繊維発生型長繊維である、前記1又は2に記載の人工皮革用基材。
4.人工皮革用基材において、前記高分子弾性体と前記三次元絡合不織布を形成する繊維の水難溶性高分子成分との質量比(高分子弾性体/三次元絡合不織布を形成する繊維の水難溶性高分子成分)が、固形分換算で5/95〜50/50の範囲である、前記1〜3のいずれかに記載の人工皮革用基材。
That is, this invention provides the following base material for artificial leather.
1. A base material for artificial leather comprising a three-dimensional entangled nonwoven fabric and a polymer elastic body, which satisfies the following requirements (1) to (3).
Requirement (1): The polymer elastic body exists discontinuously on the surface of the fiber forming the three-dimensional entangled nonwoven fabric.
Requirement (2): The average gap inscribed circle area excluding the gap inscribed circle area of less than 350 μm 2 in the cross section parallel to the thickness direction of the base material for artificial leather is 1250 μm 2 or less.
Requirement (3): The number of void inscribed circles with a gap inscribed circle area of 350 to 3000 μm 2 in a cross section parallel to the thickness direction of the base material for artificial leather is 85% or more with respect to the number of all indented circle inscribed circles It is.
2. 2. The artificial leather substrate according to 1, wherein the polymer elastic body is formed by impregnating and solidifying a three-dimensional entangled nonwoven fabric with an aqueous emulsion resin.
3. The base material for artificial leather as described in 1 or 2 above, wherein the fibers forming the three-dimensional entangled nonwoven fabric are hollow fiber generating long fibers.
4). In the base material for artificial leather, the mass ratio of the polymer elastic body and the poorly water-soluble polymer component of the fiber forming the three-dimensional entangled nonwoven fabric (polymer elastic body / water fragility of the fiber forming the three-dimensional entangled nonwoven fabric) The base material for artificial leather according to any one of 1 to 3, wherein the soluble polymer component) is in the range of 5/95 to 50/50 in terms of solid content.

本発明の人工皮革用基材は、高分子弾性体が繊維と一定の離型構造を有して繊維表面に不連続に存在し、かつ高分子弾性体が内部に均一に分散することで、繊維間空隙が均一に分布しており、スポーツシューズ等に用いられる、機械的物性に優れ、柔軟かつ軽量で風合いに優れた素材感を有する人工皮革基材である。   The base material for artificial leather according to the present invention is such that the polymer elastic body has a constant release structure with the fiber and is discontinuously present on the fiber surface, and the polymer elastic body is uniformly dispersed inside, It is an artificial leather base material that has a uniform distribution of inter-fiber voids, is excellent in mechanical properties, is soft, lightweight, and has a good texture that is used in sports shoes and the like.

実施例1で得られた人工皮革用基材の断面を走査型電子顕微鏡で観察した写真である。It is the photograph which observed the cross section of the base material for artificial leather obtained in Example 1 with the scanning electron microscope. 実施例1で得られた人工皮革用基材の断面を走査型電子顕微鏡で観察した写真を動的閾値法で二値化した画像である。It is the image which binarized the photograph which observed the cross section of the base material for artificial leather obtained in Example 1 with the scanning electron microscope by the dynamic threshold method. 実施例1で得られた人工皮革用基材の断面を走査型電子顕微鏡で観察した写真を動的閾値法で二値化し、空隙部に内接円を描いた画像である。It is the image which binarized the photograph which observed the cross section of the base material for artificial leather obtained in Example 1 with the scanning electron microscope by the dynamic threshold method, and drawn the inscribed circle in the space | gap part.

本発明の人工皮革用基材は、三次元絡合不織布と高分子弾性体とからなる人工皮革用基材であって、下記要件(1)〜(3)をみたす。
要件(1):三次元絡合不織布を形成する繊維の表面に高分子弾性体が不連続で存在する。
要件(2):人工皮革用基材の厚さ方向に平行な断面における350μm未満の空隙間内接円面積を除いた空隙間内接円面積の平均が1250μm以下である。
要件(3):人工皮革用基材の厚さ方向に平行な断面における空隙間内接円面積350〜3000μmの空隙間内接円数が、全空隙間内接円数に対し85%以上である。
The base material for artificial leather of the present invention is a base material for artificial leather comprising a three-dimensional entangled nonwoven fabric and a polymer elastic body, and satisfies the following requirements (1) to (3).
Requirement (1): The polymer elastic body exists discontinuously on the surface of the fiber forming the three-dimensional entangled nonwoven fabric.
Requirement (2): The average gap inscribed circle area excluding the gap inscribed circle area of less than 350 μm 2 in the cross section parallel to the thickness direction of the base material for artificial leather is 1250 μm 2 or less.
Requirement (3): The number of void inscribed circles with a gap inscribed circle area of 350 to 3000 μm 2 in a cross section parallel to the thickness direction of the base material for artificial leather is 85% or more with respect to the number of all indented circle inscribed circles It is.

本発明の人工皮革用基材は、要件(1):三次元絡合不織布を形成する繊維の表面に高分子弾性体が不連続で存在する。
ここで、「不連続」とは、高分子弾性体が、繊維の表面に帯状、面状等の連続した状態で存在するのではなく、繊維の表面に点状及び斑点状等の空間(高分子弾性体が存在しない部分)を規則的あるいは不規則的かつ均一に有して存在することである。
In the base material for artificial leather of the present invention, requirement (1): the elastic polymer is discontinuously present on the surface of the fiber forming the three-dimensional entangled nonwoven fabric.
Here, the term “discontinuous” means that the polymer elastic body does not exist in a continuous state such as a band shape or a planar shape on the surface of the fiber, but a space such as a dot or spot on the surface of the fiber (high A portion where no molecular elastic body exists) regularly or irregularly and uniformly.

従来では、有機溶剤に溶解したバインダー樹脂を繊維質シート状物に含浸付与し、非溶剤で処理して湿式凝固させる方法が採用されており、バインダー樹脂が連続した発泡状態を形成して、少量のバインダー樹脂で形態安定化と天然皮革様の風合いを付与することが可能であった。しかし、化学薬品を使用せずに水系エマルジョン樹脂を用いる場合においては、バインダー樹脂が連続した構造体となるために多量の樹脂が必要となり、結果として風合いの硬化や軽量性や物性の低下を引き起こしてしまう。また、水系エマルジョン樹脂の使用量を単純に減らすと、均一な不連続状態ではなく部分的に連続層を形成してしまい、全体として不均一な構造体となり、結果として軽量性を確保できたとしてもボキ折れ等風合いの低下を招いてしまう。   Conventionally, a method has been adopted in which a fibrous resin is impregnated with a binder resin dissolved in an organic solvent, and wet-solidified by treatment with a non-solvent. It was possible to stabilize the form and give a natural leather-like texture with the binder resin. However, when an aqueous emulsion resin is used without using chemicals, a large amount of resin is required because the binder resin becomes a continuous structure, resulting in the hardening of the texture and the reduction in weight and physical properties. End up. In addition, simply reducing the amount of water-based emulsion resin used resulted in a partially continuous layer rather than a uniform discontinuous state, resulting in a non-uniform structure as a whole, and as a result, it was possible to secure light weight. However, it will cause a decrease in texture such as cracks.

そこで、本発明では、三次元絡合不織布に高分子弾性体を付与する場合、水溶性高分子成分を添加した高分子弾性体からなる水系エマルジョン樹脂を三次元絡合不織布に含浸、凝固させ、乾燥処理を行うことが好ましい。高分子弾性体からなる水系エマルジョン樹脂に水溶性高分子成分を添加することで、後述する抽出工程により、該水溶性高分子成分が抽出除去され、三次元絡合不織布の中空繊維発生型繊維を構成する繊維、すなわち水難溶性高分子成分と、水系エマルジョン樹脂に含まれる高分子弾性体との間の界面で空間が形成された離型構造が得られ、かつ高分子弾性体が繊維表面に不連続に存在することが可能となり、繊維間に形成される空隙が均一に分布した構造体が得られる。これによって柔軟性に優れ、挫掘皺の無いシートを得ることができるため、付与するバインダー樹脂の量を低減することも可能となり軽量化することができる。   Therefore, in the present invention, when a polymer elastic body is imparted to a three-dimensional entangled nonwoven fabric, a three-dimensional entangled nonwoven fabric is impregnated with a water-based emulsion resin composed of a polymer elastic body added with a water-soluble polymer component, and solidified. It is preferable to perform a drying process. By adding a water-soluble polymer component to a water-based emulsion resin made of a polymer elastic body, the water-soluble polymer component is extracted and removed by an extraction step described later, and a hollow fiber generating fiber of a three-dimensional entangled nonwoven fabric is obtained. A release structure in which a space is formed at the interface between the constituent fibers, that is, the poorly water-soluble polymer component and the polymer elastic body contained in the water-based emulsion resin, is obtained, and the polymer elastic body is not present on the fiber surface. It becomes possible to exist continuously, and a structure in which voids formed between fibers are uniformly distributed is obtained. This makes it possible to obtain a sheet that is excellent in flexibility and has no burrows, so that the amount of the binder resin to be applied can be reduced, and the weight can be reduced.

上記のような効果を発現させるには、要件(2):人工皮革用基材の厚さ方向に平行な断面における350μm未満の空隙間内接円面積を除いた空隙間内接円面積の平均が1250μm以下であり、好ましくは1240μm以下、より好ましくは1200μm以下、さらに好ましくは1100μm以下である。また、上記空隙間内接円面積の平均の下限値としては、好ましくは350μm以上であり、より好ましくは400μm以上である。同時に、要件(3):人工皮革用基材の厚さ方向に平行な断面における空隙間内接円面積350〜3000μmの空隙間内接円数が、全空隙間内接円数に対し85%以上であり、好ましくは86%以上、より好ましくは88%以上、さらに好ましくは90%以上である。
該空隙間内接円平均面積が1250μmを超えると軽量性を損ない、該空隙間内接円面積350〜3000μmの割合が85%を下回ると、空隙の大きさが不均一となり人工皮革用基材を折り曲げたときにボキ折れ、挫掘皺等を生じ風合い面で問題が生じてしまう。
In order to exhibit the above effects, requirement (2): the gap inscribed circle area excluding the gap inscribed circle area of less than 350 μm 2 in the cross section parallel to the thickness direction of the base material for artificial leather average may be 1250 micrometers 2 or less, preferably 1240Myuemu 2 or less, more preferably 1200 [mu] m 2 or less, still more preferably at 1100 .mu.m 2 or less. The average lower limit value of the air gap inscribed circle area is preferably 350 μm 2 or more, and more preferably 400 μm 2 or more. At the same time, Requirement (3): The number of void inscribed circles with a gap inscribed circle area of 350 to 3000 μm 2 in the cross section parallel to the thickness direction of the artificial leather substrate is 85 with respect to the number of all inscribed void inscribed circles. % Or more, preferably 86% or more, more preferably 88% or more, and further preferably 90% or more.
When the air gap inscribed circle average area exceeds 1250 μm 2 , the lightness is impaired, and when the air gap inscribed circle area of 350 to 3000 μm 2 is less than 85%, the size of the air gap becomes non-uniform and for artificial leather When the base material is bent, it breaks, creating a burrowing pit and the like, causing a problem in the texture.

なお、「空隙間内接円」とは、人工皮革用基材の厚さ方向に平行な断面を30倍の倍率により走査型電子顕微鏡で観察し、得られた写真を画像解析ソフトを用い、動的閾値法で画像を二値化し、繊維と繊維との空隙部、高分子弾性体が付着した繊維と繊維又は高分子弾性体が付着した繊維との空隙部に描かれる円であり、繊維と2点以上接した円のことである。空隙間内接円面積及び数の具体的な測定法は、実施例において後述する走査型電子顕微鏡を用いた繊維間空隙面積測定のとおりである。   In addition, "air gap inscribed circle" is a cross section parallel to the thickness direction of the base material for artificial leather is observed with a scanning electron microscope at a magnification of 30 times, and the obtained photograph is used image analysis software, The image is binarized by the dynamic threshold method, and is a circle drawn in the gap between the fiber and the fiber, the gap between the fiber attached with the polymer elastic body and the fiber or the fiber attached with the polymer elastic body, and the fiber Is a circle that touches two or more points. A specific method for measuring the inscribed circle area and the number of air gaps is the same as the measurement of the inter-fiber void area using a scanning electron microscope described later in Examples.

本発明の人工皮革用基材において、高分子弾性体と三次元絡合不織布を形成する繊維の水難溶性高分子成分との質量比(高分子弾性体/水難溶性高分子成分)が、固形分換算で好ましくは5/95〜50/50、より好ましくは10/90〜40/60、さらに好ましくは15/85〜30/70である。すなわち、人工皮革用基材としたときの三次元絡合不織布へ付与されている高分子弾性体の量としては、水難溶性繊維化後、高分子弾性体不織布と三次元絡合不織布を形成する繊維の水難溶性高分子成分との合計100質量に対して、固形分換算で好ましくは5〜50質量%、より好ましくは10〜40質量%、さらに好ましくは15〜30質量%である。5質量%以上であれば水難溶性繊維を固定することができ、折れ曲げ皺が生じず、形態安定性及び表面平滑性が良好となる。50質量%以下であれば風合いの硬化が生じることなく、高分子弾性体の弾性的な性質及び天然皮革の持つ低反発な柔軟性のバランスのとれたものとなり、軽量性が良好となる。   In the base material for artificial leather of the present invention, the mass ratio of the polymer elastic body and the hardly water-soluble polymer component of the fiber forming the three-dimensional entangled nonwoven fabric (polymer elastic body / poor water-soluble polymer component) is a solid content. It is preferably 5/95 to 50/50 in terms of conversion, more preferably 10/90 to 40/60, and even more preferably 15/85 to 30/70. That is, as the amount of the polymer elastic body imparted to the three-dimensional entangled nonwoven fabric when used as a base material for artificial leather, the polymer elastic nonwoven fabric and the three-dimensional entangled nonwoven fabric are formed after the water-insoluble fiber is formed. Preferably it is 5-50 mass% in conversion of solid content, More preferably, it is 10-40 mass%, More preferably, it is 15-30 mass% with respect to a total of 100 mass with the poorly water-soluble polymer component of a fiber. If it is 5 mass% or more, a poorly water-soluble fiber can be fixed, no bending bends occur, and the shape stability and surface smoothness are improved. If it is 50% by mass or less, the texture will not be cured, and the elastic properties of the polymer elastic body and the low resilience flexibility of natural leather will be balanced, and the lightness will be good.

本発明の人工皮革用基材の厚さは、用途に応じて任意に選択でき、特に限定されるものではないが、好ましくは0.3〜3mm、より好ましくは0.7〜1.8mmの範囲である。0.3mm以上であれば実使用に耐え得る強度や均一性を得ることができ、3mm以下であれば目的とする軽量性が得られる。   The thickness of the base material for artificial leather of the present invention can be arbitrarily selected according to the use and is not particularly limited, but is preferably 0.3 to 3 mm, more preferably 0.7 to 1.8 mm. It is a range. If it is 0.3 mm or more, strength and uniformity that can withstand actual use can be obtained, and if it is 3 mm or less, the desired lightness can be obtained.

また、人工皮革用基材の見掛け密度は0.3g/cm未満であることが好ましい。軽重において重要なのは人工皮革様基材を用いた靴や鞄等の製品自体の重量であり、その評価は使用する人の経験に基づいた相対的かつ感覚的なものである。既存製品の構成素材としての人工皮革あるいは人工皮革用基材の重量は、一般的には見掛け密度が0.35〜0.5g/cm、すなわち厚さが0.8mmの素材だと280〜400g/m程度である。厚さ0.8mmの人工皮革用基材や人工皮革等の素材一般に対する重量のイメージより少なくとも1割は軽く250g/mに満たないような場合、すなわち見掛け密度でいうと0.3g/cm未満の人工皮革用基材であれば、一般消費者にも容易に軽く感じられる。既存技術では現実問題として軽量、高物性、風合いの兼備が困難であったが、本発明によれば、見掛け密度0.3g/cm未満の軽量性を有し、かつ用途において求められる機械物性、人工皮革に求められる風合いや品位をも兼ね備えた人工皮革用基材を安定して製造することができる。 Moreover, it is preferable that the apparent density of the base material for artificial leather is less than 0.3 g / cm 3 . What is important in light weight is the weight of the product itself such as shoes and bags using an artificial leather-like base material, and the evaluation is relative and sensory based on the experience of the user. The weight of the artificial leather or the base material for artificial leather as a constituent material of existing products is generally 280 to 800 for an apparent density of 0.35 to 0.5 g / cm 3 , that is, a thickness of 0.8 mm. It is about 400 g / m 2 . In the case of at least 10% lighter than 250 g / m 2 from the image of the weight of general materials such as artificial leather base materials and artificial leather with a thickness of 0.8 mm, that is, in terms of apparent density, 0.3 g / cm If it is a base material for artificial leather of less than 3 , it is easily felt lightly by general consumers. In existing technology, it was difficult to combine light weight, high physical properties, and texture as real problems, but according to the present invention, it has lightness with an apparent density of less than 0.3 g / cm 3 and mechanical properties required for use. The base material for artificial leather having the texture and quality required for artificial leather can be stably produced.

本発明の人工皮革用基材は、三次元絡合不織布と高分子弾性体とからなり、三次元絡合不織布を形成する繊維は、1種のポリマーからなる繊維、あるいは、化学的又は物理的性質の異なる少なくとも2種類の可紡性ポリマーからなる多成分系繊維(複合繊維)に、高分子弾性体を含浸させた後、適当な段階で少なくとも1種類のポリマーを抽出除去し、繊維形態を変えて形成することが可能な繊維である。
上記複合繊維は、海島型複合紡糸繊維、海島型混合紡糸繊維等で代表される海島型繊維や、花弁型や積層型繊維等の多成分系複合繊維のいずれも使用できるが、軽量の観点から中空繊維発生型繊維であることが好ましい。中空繊維発生型複合繊維は、チップブレンド(混合紡糸)方式や複合紡糸方式で代表される方法を用いて得られる。中空繊維発生型繊維の代表的な繊維の形態は、いわゆる海島型繊維と呼ばれるものである。
The base material for artificial leather of the present invention is composed of a three-dimensional entangled nonwoven fabric and a polymer elastic body, and the fibers forming the three-dimensional entangled nonwoven fabric are fibers composed of one kind of polymer, or chemically or physically. After impregnating a polymer elastic body into a multicomponent fiber (composite fiber) composed of at least two kinds of spinnable polymers having different properties, at least one kind of polymer is extracted and removed at an appropriate stage to obtain a fiber form. It is a fiber that can be formed by changing.
As the above-mentioned composite fiber, any of sea-island type fiber typified by sea-island type composite spun fiber, sea-island type mixed spun fiber, etc., and multi-component type composite fiber such as petal type and laminated type fiber can be used. A hollow fiber generating fiber is preferable. The hollow fiber generating composite fiber is obtained by a method represented by a chip blend (mixed spinning) method or a composite spinning method. A typical fiber form of the hollow fiber generating fiber is a so-called sea-island fiber.

中空繊維発生型繊維の場合、後述のする抽出工程の後に繊維を形成するポリマー(海島型でいう海成分に相当)としては、水難溶性高分子である公知のポリマー、例えば、ポリアミド系、ポリエステル系及びポリオレフィン系等であれば特に限定するものではない。中でもポリアミド系としてナイロンが好ましく、また、特にポリマーの比重が低く軽量性が発現しやすく、また高分子弾性重合体を水系エマルジョンの形態で含浸付与した際に、中空繊維との離型構造を発現しやすい点で、ポリオレフィン系の繊維形成能を有する重合体が好適であり、特に物性、紡糸安定性の点からポリプロピレン系樹脂が好適に使用される。   In the case of hollow fiber generating fiber, the polymer that forms the fiber after the extraction step described later (corresponding to the sea component in the sea-island type) is a known polymer that is a poorly water-soluble polymer, for example, polyamide-based, polyester-based And if it is polyolefin type etc., it will not specifically limit. Of these, nylon is preferred as the polyamide system. In particular, the specific gravity of the polymer is low and light weight is easily developed, and when the polymer elastic polymer is impregnated in the form of an aqueous emulsion, a release structure with the hollow fiber is exhibited. Polymers having polyolefin-based fiber-forming ability are preferred from the viewpoint of easy formation, and polypropylene resins are particularly preferred from the viewpoint of physical properties and spinning stability.

上記ポリプロピレン系樹脂は、プロピレン単独重合体、プロピレンとエチレン及び/又は炭素数4〜20のα−オレフィンとの結晶性ランダム共重合体もしくは結晶性ブロック共重合体等が挙げられる。コモノマーとして用いられる具体的なα−オレフィンとしては、エチレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、4−メチル−ペンテン−1、4−メチル−ヘキセン−1、4,4−ジメチルペンテン−1等を挙げられる。
これらのポリプロピレン系樹脂は、1種又は2種以上組み合わせて用いることもできる。また、ポリエチレン等の他のオレフィン樹脂を少量配合することもできる。
Examples of the polypropylene resin include a propylene homopolymer, a crystalline random copolymer or a crystalline block copolymer of propylene and ethylene and / or an α-olefin having 4 to 20 carbon atoms. Specific α-olefins used as comonomers include ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 4-methyl-pentene-1, 4-methyl-hexene-1. 4,4-dimethylpentene-1 and the like.
These polypropylene resins can be used alone or in combination of two or more. A small amount of other olefin resin such as polyethylene can also be blended.

本発明で用いるポリプロピレン系樹脂のメルトフローレート(以下、MFRと略すこともある。)は、紡糸性の観点から、好ましくは1〜200g/分、より好ましくは5〜100g/分、さらに好ましくは10〜50g/分である。ここで、MFRとは、JIS K6921−2付属書に準拠して230℃、荷重21.1Nで測定する値である。
また、ポリプロピレン系樹脂の融点は、紡糸性及び製品の耐熱性の観点から、140〜180℃が好ましく、160〜180℃がより好ましい。
From the viewpoint of spinnability, the melt flow rate of the polypropylene resin used in the present invention (hereinafter sometimes abbreviated as MFR) is preferably 1 to 200 g / min, more preferably 5 to 100 g / min, and still more preferably. 10-50 g / min. Here, MFR is a value measured at 230 ° C. and a load of 21.1 N in accordance with JIS K6921-2 appendix.
The melting point of the polypropylene resin is preferably 140 to 180 ° C, more preferably 160 to 180 ° C, from the viewpoint of spinnability and heat resistance of the product.

本発明で用いるポリプロピレン系樹脂は、高立体規則性重合触媒を用いてプロピレンを重合させることによって得ることができる。
高立体規則性重合触媒としては、塩化チタン、アルコキシチタン等を出発材料として調整されたチタン化合物を用いた、いわゆるチーグラー・ナッタ触媒、あるいはメタロセン化合物を用いたカミンスキー型触媒を使用することができる。
The polypropylene resin used in the present invention can be obtained by polymerizing propylene using a highly stereoregular polymerization catalyst.
As the highly stereoregular polymerization catalyst, a so-called Ziegler-Natta catalyst using a titanium compound prepared using titanium chloride, alkoxy titanium or the like as a starting material, or a Kaminsky catalyst using a metallocene compound can be used. .

上記のような触媒を用いたプロピレンの重合様式は、触媒成分とモノマーが効率よく接触するならば、あらゆる様式の方法を採用することができる。具体的には、不活性溶媒を用いるスラリー法、不活性溶媒を実質的に用いずプロピレンを溶媒として用いるバルク法、溶液重合法あるいは実質的に液体溶媒を用いず各モノマーを実質的にガス状に保つ気相法等を採用することができる。また、連続重合、回分式重合も適用される。スラリー重合の場合には、重合溶媒としてヘキサン、ヘプタン、ペンタン、シクロヘキサン、ベンゼン、トルエン等の飽和脂肪族又は芳香族炭化水素の単独あるいは混合物を用いることができる。   As the polymerization mode of propylene using the catalyst as described above, any method can be adopted as long as the catalyst component and the monomer come into efficient contact. Specifically, the slurry method using an inert solvent, the bulk method using propylene as a solvent substantially without using an inert solvent, the solution polymerization method, or the monomers are substantially gaseous without using a liquid solvent substantially. It is possible to employ a vapor phase method or the like that keeps the temperature constant. Further, continuous polymerization and batch polymerization are also applied. In the case of slurry polymerization, a saturated aliphatic or aromatic hydrocarbon such as hexane, heptane, pentane, cyclohexane, benzene and toluene can be used alone or as a polymerization solvent.

これらの重合法においてポリプロピレンのMFRの調整は、水素の導入によって行われるが、その場合、水素の導入量は重合開始から終了まで一定としてもよく、連続的にあるいは段階的に変化させてもよい。
なお、上記のようなポリプロピレン系樹脂には、市販品の中から選択入手することができる。また、中空繊維を構成する樹脂には、染料、顔料等の着色剤、紫外線吸収剤、熱安定剤、消臭剤、防かび剤、各種安定剤等を添加してもよい。
In these polymerization methods, the MFR of polypropylene is adjusted by introducing hydrogen. In this case, the amount of hydrogen introduced may be constant from the start to the end of the polymerization or may be changed continuously or stepwise. .
In addition, the above polypropylene resins can be selected from commercially available products. In addition, colorants such as dyes and pigments, ultraviolet absorbers, heat stabilizers, deodorants, fungicides, various stabilizers and the like may be added to the resin constituting the hollow fiber.

また、中空繊維発生型繊維の抽出成分を構成するポリマー(海島型でいう島成分に相当)は、水溶性高分子であり、抽出後の繊維を形成するポリマーとは溶剤又は分解剤に対する溶解性又は分解性を異にし、海成分との親和性の小さいポリマーであって、かつ紡糸条件下で海成分の溶融粘度より大きい溶融粘度であるか、あるいは表面張力の大きいポリマーであることが好ましい。このようなポリマーであれば、化学薬品等を用いることなく、さらに後述する高分子弾性体へ添加した水溶性高分子成分と同時に除去できる人工皮革用基材の製造が可能となる。   The polymer constituting the extraction component of the hollow fiber generating fiber (corresponding to the island component in the sea-island type) is a water-soluble polymer, and the polymer forming the fiber after extraction is soluble in a solvent or a decomposing agent. Alternatively, a polymer having a different decomposability and a low affinity with the sea component and having a melt viscosity higher than the melt viscosity of the sea component under the spinning conditions or a polymer having a large surface tension is preferable. With such a polymer, it becomes possible to produce a base material for artificial leather that can be removed simultaneously with a water-soluble polymer component added to a polymer elastic body described later without using chemicals.

中空繊維発生型繊維の抽出成分を構成する上記ポリマーとしては、紡糸可能であり、かつ水溶液で抽出可能な水溶性高分子であれば公知のポリマーを使用できるが、熱水で溶解除去が容易であり、抽出の際の水難溶性高分子成分や高分子弾性体の分解反応が実質的に起こらず、水難溶性高分子成分や高分子弾性体が限定されない点、さらには環境に配慮した点等から水溶性熱可塑性ポリビニルアルコール(以下、PVAと略すこともある。)が好ましい。   As the polymer constituting the extraction component of the hollow fiber generating fiber, a known polymer can be used as long as it is a water-soluble polymer that can be spun and can be extracted with an aqueous solution, but it can be easily dissolved and removed with hot water. Yes, from the point that decomposition reaction of poorly water-soluble polymer components and polymer elastic bodies during extraction does not occur substantially, and poorly water-soluble polymer components and polymer elastic bodies are not limited. Water-soluble thermoplastic polyvinyl alcohol (hereinafter sometimes abbreviated as PVA) is preferred.

PVAの粘度平均重合度(以下、単に重合度と略記する。)としては、好ましくは200〜500、より好ましくは230〜470、さらに好ましくは250〜450である。重合度が200以上であれば溶融粘度が低すぎることなく、安定な複合化が得られる。重合度が500以下であれば溶融粘度が高すぎることなく、紡糸ノズルからの樹脂を良好に吐出できると共に、熱水で溶解するときに溶解速度が速くなるという利点も有る。重合度が上記範囲にある時、本発明の目的がより好適に達せられる。
ここでいうPVAの重合度(P)は、JIS−K6726に準じて測定される。すなわち、PVAを再ケン化し、精製した後、30℃の水中で測定した極限粘度[η]から次式により求められるものである。
P=([η]10/8.29)(1/0.62)
The viscosity average polymerization degree of PVA (hereinafter simply referred to as polymerization degree) is preferably 200 to 500, more preferably 230 to 470, and further preferably 250 to 450. If the degree of polymerization is 200 or more, a stable composite can be obtained without the melt viscosity being too low. If the degree of polymerization is 500 or less, the melt viscosity is not too high, the resin from the spinning nozzle can be discharged well, and there is also an advantage that the dissolution rate is increased when dissolving with hot water. When the degree of polymerization is in the above range, the object of the present invention can be achieved more suitably.
The polymerization degree (P) of PVA here is measured according to JIS-K6726. That is, after re-saponifying and purifying PVA, it is obtained by the following equation from the intrinsic viscosity [η] measured in water at 30 ° C.
P = ([η] 10 3 /8.29) (1 / 0.62)

本発明で用いられるPVAのケン化度は、好ましくは90〜99.99モル%、より好ましくは93〜99.98モル%、さらに好ましくは94〜99.97モル%、特に好ましくは96〜99.96モル%である。ケン化度が90モル%以上であれば、熱安定性が良好であり、熱分解やゲル化をしにくくなり溶融紡糸を良好に行うことができ、後述する生分解性が低下することがなく、さらには後述する共重合モノマーの種類によってPVAの水溶性が低下することもない。また、ケン化度が99.99モル%以下であれば、PVAを安定して製造することが可能である。   The saponification degree of PVA used in the present invention is preferably 90 to 99.99 mol%, more preferably 93 to 99.98 mol%, still more preferably 94 to 99.97 mol%, and particularly preferably 96 to 99. 96 mol%. If the degree of saponification is 90 mol% or more, the thermal stability is good, the thermal decomposition and the gelation are difficult to perform, and the melt spinning can be performed satisfactorily, and the biodegradability described later is not lowered. Furthermore, the water solubility of PVA does not decrease depending on the type of copolymerization monomer described later. Further, when the degree of saponification is 99.99 mol% or less, PVA can be stably produced.

本発明で用いられるPVAは生分解性を有しており、活性汚泥処理あるいは土壌に埋めておくと分解されて水と二酸化炭素になる。PVAを溶解した後のPVA含有廃液の処理には活性汚泥法が好ましい。該PVA水溶液を活性汚泥で連続処理すると2日間から1ヶ月の間で分解される。また、本発明に用いるPVAは燃焼熱が低く、焼却炉に対する負荷が小さいので、PVAを溶解した排水を乾燥させてPVAを焼却処理してもよい。   The PVA used in the present invention has biodegradability and is decomposed into water and carbon dioxide when activated sludge treatment or soil is buried. The activated sludge method is preferable for the treatment of the PVA-containing waste liquid after dissolving the PVA. When the PVA aqueous solution is continuously treated with activated sludge, it is decomposed in 2 days to 1 month. Moreover, since PVA used for this invention has low combustion heat and the load with respect to an incinerator is small, you may incinerate PVA by drying the waste_water | drain which melt | dissolved PVA.

本発明に用いられるPVAの融点(Tm)は、160〜230℃が好ましく、170〜227℃がより好ましく、175〜224℃がさらに好ましく、180〜220℃が特に好ましい。融点が160℃以上であれば、PVAの結晶性が低下することがなく、繊維強度及びPVAの熱安定性を維持でき、良好に繊維化することができる。また、融点が230℃以下であれば、溶融紡糸温度が高くなりすぎることがなく、紡糸温度とPVAの分解温度とが近づくことによるPVA繊維の製造不安定化を引き起こさない。
なお、PVAの融点は、示差走査熱量計を用いて、窒素中、昇温速度10℃/分で300℃まで昇温後、室温まで冷却し、再度昇温速度10℃/分で300℃まで昇温した場合のPVAの融点を示す吸熱ピークのピークトップの温度を意味する。
160-230 degreeC is preferable, as for melting | fusing point (Tm) of PVA used for this invention, 170-227 degreeC is more preferable, 175-224 degreeC is further more preferable, 180-220 degreeC is especially preferable. If melting | fusing point is 160 degreeC or more, the crystallinity of PVA will not fall, fiber strength and the thermal stability of PVA can be maintained, and it can fiberize favorably. Also, if the melting point is 230 ° C. or lower, the melt spinning temperature will not be too high, and the PVA fiber production will not be unstable due to the spinning temperature approaching the PVA decomposition temperature.
The melting point of PVA was raised to 300 ° C. in nitrogen using a differential scanning calorimeter at a heating rate of 10 ° C./min, cooled to room temperature, and again up to 300 ° C. at a heating rate of 10 ° C./min. It means the temperature at the top of the endothermic peak indicating the melting point of PVA when the temperature is raised.

本発明に用いられるPVAは、ビニルエステル単位を主体として有する樹脂をケン化することにより得られる。ビニルエステル単位を形成するためのビニル化合物単量体としては、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ピバリン酸ビニル及びバーサティック酸ビニル等が挙げられ、これらの中でもPVAを容易に得る点からは酢酸ビニルが好ましい。   The PVA used in the present invention can be obtained by saponifying a resin mainly composed of vinyl ester units. Vinyl compound monomers for forming vinyl ester units include vinyl formate, vinyl acetate, vinyl propionate, vinyl valelate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate and Examples include vinyl versatate, and among these, vinyl acetate is preferable from the viewpoint of easily obtaining PVA.

また、本発明で用いられるPVAは、ホモポリマーであっても共重合単位を導入した変性PVAであってもよいが、溶融紡糸性、水溶性、繊維物性の観点からは、共重合単位を導入した変性PVAを用いることが好ましい。
共重合単量体の種類としては、共重合性、溶融紡糸性及び繊維の水溶性の観点から、エチレン、プロピレン、1−ブテン、イソブテン等の炭素数4以下のα−オレフィン類、メチルビニルエーテル、エチルビニルエーテル、n−プロピルビニルエーテル、i−プロピルビニルエーテル、n−ブチルビニルエーテル等のビニルエーテル類が好ましい。炭素数4以下のα−オレフィン類及び/又はビニルエーテル類に由来する単位は、PVA中にPVA構成単位が1〜20モル%存在していることが好ましく、4〜15モル%がより好ましく、6〜13モル%がさらに好ましい。さらに、α−オレフィン類がエチレンである場合には、繊維物性が高くなることから、エチレン変性PVAを用いることが好ましく、特にエチレン変性PVA中のエチレン単位含有量が、4〜15モル%であることが好ましく、より好ましくは6〜13モル%導入されたエチレン変性PVAである。
In addition, the PVA used in the present invention may be a homopolymer or a modified PVA into which a copolymer unit is introduced. However, from the viewpoint of melt spinnability, water solubility, and fiber properties, the copolymer unit is introduced. It is preferable to use modified PVA.
As the kind of the comonomer, α-olefins having 4 or less carbon atoms such as ethylene, propylene, 1-butene and isobutene, methyl vinyl ether, Vinyl ethers such as ethyl vinyl ether, n-propyl vinyl ether, i-propyl vinyl ether and n-butyl vinyl ether are preferred. The unit derived from α-olefins having 4 or less carbon atoms and / or vinyl ethers preferably has 1 to 20 mol% of PVA constituent units in PVA, more preferably 4 to 15 mol%, and 6 More preferred is ˜13 mol%. Further, when the α-olefin is ethylene, it is preferable to use ethylene-modified PVA because the fiber properties are high, and the ethylene unit content in ethylene-modified PVA is particularly 4 to 15 mol%. It is preferable that ethylene modified PVA is introduced, more preferably 6 to 13 mol%.

上記PVAは、塊状重合法、溶液重合法、懸濁重合法、乳化重合法等の公知の方法で製造することができる。その中でも、無溶媒あるいはアルコール等の溶媒中で重合する塊状重合法や溶液重合法が通常採用される。
溶液重合時に溶媒として使用されるアルコールとしては、メチルアルコール、エチルアルコール、プロピルアルコール等の低級アルコールが挙げられる。また、共重合に使用される開始剤としては、a、a’−アゾビスイソブチロニトリル、2,2’−アゾビス(2,4−ジメチル−バレロニトリル)、過酸化ベンゾイル、n−プロピルパーオキシカーボネート等のアゾ系開始剤又は過酸化物系開始剤等の公知の開始剤が挙げられる。重合温度については特に制限はないが、0℃〜150℃の範囲が適当である。
The PVA can be produced by a known method such as a bulk polymerization method, a solution polymerization method, a suspension polymerization method, or an emulsion polymerization method. Among them, a bulk polymerization method or a solution polymerization method in which polymerization is performed without solvent or in a solvent such as alcohol is usually employed.
Examples of alcohol used as a solvent during solution polymerization include lower alcohols such as methyl alcohol, ethyl alcohol, and propyl alcohol. Examples of the initiator used for copolymerization include a, a′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethyl-valeronitrile), benzoyl peroxide, n-propyl Known initiators such as azo initiators such as oxycarbonate or peroxide initiators may be mentioned. Although there is no restriction | limiting in particular about superposition | polymerization temperature, The range of 0 to 150 degreeC is suitable.

また、海成分/島成分の質量比は、断面形成性の観点から、10/90〜60/40が好ましく、20/80〜60/40がより好ましい。
本発明の人工皮革用記載を製造するには、含浸する水系エマルジョン樹脂へPVAを添加して水難溶性高分子で形成される繊維との適度な離型効果を発現させるが、この効果を補足するため、不織布に水系エマルジョン樹脂を含浸する前に、不織布へ事前にPVAを添加していてもよい。この際のPVA水溶液の固形分濃度は、粘度が高すぎることによる浸透性不良、あるいは付与量調整の絞りにおいて絞りきれない等の生産性低下を回避する観点から、好ましくは0.5〜10質量%、より好ましくは1.0〜9.0質量%であり、不織布へのPVA固形分付着率は、離型効果を効果的に発現させる観点から、好ましくは0.5〜20質量%、より好ましくは1.0〜15質量%である。
In addition, the mass ratio of the sea component / island component is preferably 10/90 to 60/40, more preferably 20/80 to 60/40, from the viewpoint of cross-sectional formability.
In order to produce the description for artificial leather of the present invention, PVA is added to the water-based emulsion resin to be impregnated to develop an appropriate mold release effect with the fiber formed of the poorly water-soluble polymer, but this effect is supplemented. Therefore, PVA may be added to the nonwoven fabric in advance before the nonwoven fabric is impregnated with the aqueous emulsion resin. In this case, the solid content concentration of the PVA aqueous solution is preferably 0.5 to 10 masses from the viewpoint of avoiding the poor permeability due to the viscosity being too high, or the productivity reduction such as being unable to be fully squeezed in the adjustment of the applied amount. %, More preferably 1.0 to 9.0% by mass, and the PVA solid content adhesion rate to the nonwoven fabric is preferably 0.5 to 20% by mass from the viewpoint of effectively expressing the mold release effect. Preferably it is 1.0-15 mass%.

上述したとおり、本発明において好適な中空繊維発生型繊維は、機械的物性に優れることから長繊維であることが好ましい。長繊維とは、短繊維(繊維長10〜50mm)のように意図的に切断されていない繊維をいう。
長繊維の場合、短繊維と異なり繊維断面の露出が非常に少なく、後述する抽出工程において繊維の壁面から水溶性高分子の抽出を行うことが好ましい。このため抽出効率を上げるためには、水膨潤した際に繊維壁面へクラックを発生させることが好ましく、中空繊維発生型繊維の島成分である水溶性高分子の島成分間の距離、あるいは島成分と中空繊維発生型繊維外周との最短距離の平均が、7μm以下であることが好ましく、3μm以下がより好ましい。
ここで、各隔壁の最薄部の平均厚みとは、海島型繊維の横断面を走査型電子顕微鏡(SEM)で2000倍で観察した画像において、各島成分、及び、島成分と海島型繊維の輪郭とを隔離する海成分が形成する複数の隔壁において、最薄部の厚みtを測定し、その値を数平均して得られる厚みである。
As described above, the hollow fiber generating fiber suitable in the present invention is preferably a long fiber because of excellent mechanical properties. The long fiber refers to a fiber that is not intentionally cut, such as a short fiber (fiber length: 10 to 50 mm).
In the case of long fibers, unlike the short fibers, the exposure of the fiber cross section is very small, and it is preferable to extract the water-soluble polymer from the fiber wall surface in the extraction step described later. Therefore, in order to increase the extraction efficiency, it is preferable to generate cracks in the fiber wall surface when swollen with water, the distance between the island components of the water-soluble polymer that is the island component of the hollow fiber generating fiber, or the island component The average of the shortest distance between the outer periphery of the hollow fiber generating fiber and the outer periphery of the hollow fiber generating fiber is preferably 7 μm or less, and more preferably 3 μm or less.
Here, the average thickness of the thinnest part of each partition refers to each island component, and each island component and island component and sea-island fiber in an image obtained by observing a cross section of the sea-island fiber at a magnification of 2000 with a scanning electron microscope (SEM). It is the thickness obtained by measuring the thickness t of the thinnest part and averaging the values in the plurality of partition walls formed by the sea component that separates the outline of the sea wall.

上述したような中空繊維発生型繊維を形成することにより、後述する抽出工程の中空繊維発生型繊維からPVAを熱水により抽出除去する工程において、切断面、あるいは損傷部からPVAが水膨潤した時、海成分のポリオレフィン系樹脂(水難溶性高分子)で形成された隔壁にクラックが生じやすくなる。そして、クラックから海島型繊維の内部に水が浸入することにより、PVAがさらに膨潤溶解し、PVAの抽出効率が高くなる。従って、たとえ繊維断面の少ない海島型繊維からなるフィラメントを用いて形成された三次元絡合体であっても、PVAを効率的に抽出することができる。   When the PVA is swollen from the cut surface or the damaged part in the process of extracting and removing PVA from the hollow fiber generating fiber in the extraction process described later by hot water by forming the hollow fiber generating fiber as described above. , Cracks are likely to occur in the partition walls made of a sea component polyolefin-based resin (poorly water-soluble polymer). And when water permeates into the sea-island fiber from the crack, PVA further swells and dissolves, and the extraction efficiency of PVA increases. Therefore, PVA can be efficiently extracted even if it is a three-dimensional entangled body formed using filaments made of sea-island fibers with a small fiber cross section.

本発明において好適である中空繊維発生型繊維の繊度は、5デシテックス以下が好ましく、3デシテックス以下がより好ましい。人工皮革等の繊維質シートでは、一般的に繊度が小さいほど目付斑が少なく柔軟な風合いが得られる。本発明においても繊度が5デシテックスを超える場合には基材の風合いが硬くゴワゴワとした触感が強調され適当でない。しかしながら、あまりに繊度が小さすぎると基材中の繊維が過密充填になるので、繊度は本発明の軽量性を達成する上で0.5デシテックス以上が好ましく、1デシックス以上がより好ましい。   The fineness of the hollow fiber generating fiber suitable in the present invention is preferably 5 dtex or less, and more preferably 3 dtex or less. In a fiber sheet such as artificial leather, generally, the smaller the fineness, the less the texture and the softer the texture. Also in the present invention, when the fineness exceeds 5 dtex, the texture of the base material is hard and the texture that is stiff is emphasized, which is not appropriate. However, if the fineness is too small, the fibers in the base material will be densely packed, so that the fineness is preferably 0.5 dtex or more, more preferably 1 dtex or more, in order to achieve the lightness of the present invention.

また、繊度5デシテックス以下の繊維の横断面において存在する島成分は、好ましくは1個以上、より好ましくは5〜50個、さらに好ましくは10〜30個である。かつ繊維が中空繊維発生型繊維である場合、該中空部が下記式(1)及び(2)を同時に満足することにより、製品として使用時の屈曲により、中空部が潰れて扁平化、又は壁が破壊されたりすることなく、中空形状の回復性にも優れた性能を持ち、軽量性効果を安定して発揮することができる。   Further, the number of island components present in the cross section of the fiber having a fineness of 5 dtex or less is preferably 1 or more, more preferably 5 to 50, and even more preferably 10 to 30. When the fiber is a hollow fiber-generating fiber, the hollow part satisfies the following formulas (1) and (2) simultaneously, and the hollow part is crushed and flattened by bending during use as a product, or wall Without being destroyed, it has excellent performance in the recovery of the hollow shape and can stably exhibit the light weight effect.

25≦100×sm/S≦50 (1)
100×s/S≦5 (2)
s:繊維断面中の中空部1個の面積
sm:繊維断面中の総中空部の面積
S:繊維外周に囲まれた部分の面積
25 ≦ 100 × sm / S ≦ 50 (1)
100 × s / S ≦ 5 (2)
s: Area of one hollow part in the fiber cross section sm: Area of the total hollow part in the fiber cross section S: Area of the part surrounded by the fiber outer periphery

上記式(1)で表される面積中空率、すなわち、繊維の横断面における該中空部の総面積の割合は25〜50%が好ましく、30〜40%がより好ましい。面積中空率が25%以上であれば軽量性効果を得ることができ、50%以下であれば島部除去工程以降にかかるテンションやプレスによる繊維断面の中空部分の潰れを最小限に抑えることができ、基材の密度を上げることなく軽量な基材を得ることができる。   The area hollow ratio represented by the above formula (1), that is, the ratio of the total area of the hollow portion in the cross section of the fiber is preferably 25 to 50%, more preferably 30 to 40%. If the area hollowness is 25% or more, a light weight effect can be obtained, and if it is 50% or less, the collapse of the hollow portion of the fiber cross section due to the tension and press applied after the island removal step can be minimized. It is possible to obtain a lightweight substrate without increasing the density of the substrate.

さらに、中空繊維発生型繊維の断面における中空発生部1個の占める面積が5%以下であることが好ましい。5%以下であれば島部除去工程以降にかかるテンションやプレスによる繊維断面の中空部分の潰れを最小限に抑えることができ、また製品になってからの屈曲、圧縮による中空部の潰れ、変形が発生しにくくなる。また中空繊維中の1個の島部分(中空部分)の面積が少なすぎると、中空部を発生させる島部除去工程以降にかかるテンションやプレスによって、島成分を除去したにもかかわらず、中空部のないものとなるため、1〜4%がより好ましく、2〜4%がさらに好ましい範囲である。   Furthermore, it is preferable that the area occupied by one hollow generating portion in the cross section of the hollow fiber generating fiber is 5% or less. If it is 5% or less, it is possible to minimize the collapse of the hollow part of the fiber cross section due to the tension and press applied after the island removal process, and the hollow part is crushed and deformed by bending and compression after becoming a product. Is less likely to occur. In addition, when the area of one island part (hollow part) in the hollow fiber is too small, the hollow part is removed even though the island component is removed by the tension or press applied after the island part removing step for generating the hollow part. Therefore, 1 to 4% is more preferable, and 2 to 4% is a more preferable range.

また、中空繊維発生型繊維の島成分の繊度は、0.05〜0.5デシテックスが好ましく、さらには0.1〜0.5デシテックスの範囲をとることが島成分除去後の中空繊維の中空形状安定性の点でより好ましい。また、面積中空率は、中空繊維を形成する部分と、抽出除去後に中空部となる島成分部分との面積比率、及び島成分を除去した時の中空繊維成分からなる外壁や隔壁の形態維持性に依存するので、適宜島成分の繊度と海島中空比率とを組み合わせて中空形状を安定化することが好ましい。   The fineness of the island component of the hollow fiber generating fiber is preferably 0.05 to 0.5 dtex, and more preferably 0.1 to 0.5 dtex, after the island component is removed. More preferable in terms of shape stability. In addition, the area hollowness ratio is the area ratio between the portion forming the hollow fiber and the island component portion that becomes the hollow portion after extraction and removal, and the form maintaining property of the outer wall and partition wall made of the hollow fiber component when the island component is removed Therefore, it is preferable to stabilize the hollow shape by appropriately combining the fineness of the island component and the sea-island hollow ratio.

本発明において好適な中空繊維発生型繊維は、従来の人工皮革用基材において最も一般的に実施されてきたように、目的の繊度に紡糸、延伸し、捲縮を付与した後で任意の繊維長にカットして、ステープルとし、カード、クロスラッパー、ランダムウェバー等を用いて複合繊維ウェブを製造してもよい。
あるいは、紡糸ノズル孔から吐出した中空繊維発生型繊維を冷却装置により冷却せしめた後、エアジェット・ノズルのような吸引装置を用いて、目的の繊度となるように、1000〜6000m/min程度の引取り速度に該当する速度で高速気流により牽引細化させた後、開繊させながら移動式ネット等の捕集面上に堆積させて繊維ウェブを形成させ、さらに次工程に搬送するためにウェブの形態を安定化する必要がある場合は、引き続きこの繊維ウェブをプレス等により部分的に圧着して形態を安定化させる方法により製造してもよい。この方法は、従来の短繊維を経由する繊維ウェブ製造方法では必須の原綿供給装置、開繊装置及びカード機等の一連の大型設備を必要としないという生産上の利点がある。また、得られる長繊維不織布、あるいはそれを用いた人工皮革用基材は、構造において連続性の高い長繊維からなるので、強度等の物性面においても従来一般的であった短繊維不織布、あるいはそれを用いた人工皮革用基材に比べて高いものを得ることができるという利点がある。
The hollow fiber generating fiber suitable for the present invention is any fiber after spinning, drawing and crimping to the desired fineness, as most commonly practiced in conventional artificial leather substrates. The composite fiber web may be produced by cutting into long pieces to form staples, and using a card, a cross wrapper, a random weber or the like.
Alternatively, after the hollow fiber generating fiber discharged from the spinning nozzle hole is cooled by a cooling device, a suction device such as an air jet nozzle is used to achieve a desired fineness of about 1000 to 6000 m / min. After pulling and thinning with a high-speed air stream at a speed corresponding to the take-off speed, the fiber web is formed by depositing on a collection surface such as a mobile net while opening the fiber, and then the web to be transported to the next process In the case where it is necessary to stabilize the form, the fiber web may be subsequently produced by a method in which the form is stabilized by partially pressing with a press or the like. This method has a production advantage that a series of large equipment such as a raw cotton supply device, a fiber opening device, and a card machine, which are essential in a conventional method for producing a fiber web via short fibers, is not required. In addition, the obtained long fiber nonwoven fabric, or the base material for artificial leather using the same, is composed of long fibers having high continuity in the structure. Therefore, the short fiber nonwoven fabric that has been generally used in terms of physical properties such as strength, or There is an advantage that a high product can be obtained as compared with a base material for artificial leather using the same.

上記のようにして得られた繊維ウェブを、目的とする目付の不織布を得るために複数枚重ね合わせ、下記のニードルパンチング工程を含む絡合処理によって、繊維を実質的に切断することなく、厚み方向に繊維を配向させつつ繊維同士を絡合させた三次元絡合不織布とすることができる。   The fiber web obtained as described above is overlapped in order to obtain a target non-woven fabric, and the thickness is substantially cut by entanglement processing including the following needle punching step, without substantially cutting the fiber. It can be set as the three-dimensional entangled nonwoven fabric which entangled the fibers while orienting the fibers in the direction.

ニードルパンチング工程で用いるフェルト針は、公知の物が用いられるが、繊維ウェブの厚さ方向への繊維同士の交絡を確実に行うためには、針をウェブへ突き刺す際に針1本当たりの抵抗がより低く、繊維を切断させにくい方が好ましいので、より細い針、あるいはバーブが少ない1バーブ針が好適に用いられる。また、三次元絡合不織布の表層領域の見掛け密度を中層付近より高くすることで、少ない中空繊維でも効率的に平滑でより緻密な表面状態を得るためには、バーブが多めの3バーブ、6バーブ、9バーブ等の針が効果的である。従って、これらの針を組み合わせて用いることで、例えば繊維同士が融着している等の交絡させにくい状態にある繊維ウェブを用いた場合でも、効果的に交絡させた上で表面層は平滑で緻密な状態にある三次元絡合不織布を得ることも可能である。   The felt needle used in the needle punching process is a known one. However, in order to reliably entangle the fibers in the thickness direction of the fiber web, the resistance per needle when the needle is pierced into the web. Therefore, a thinner needle or a 1 barb needle with less barb is preferably used. In addition, by increasing the apparent density of the surface layer region of the three-dimensional entangled nonwoven fabric from the vicinity of the middle layer, in order to efficiently obtain a smooth and dense surface state even with a small number of hollow fibers, 3 barbs with a large amount of barbs, 6 Barbs, 9 barbs and other needles are effective. Therefore, by using these needles in combination, even when using a fiber web that is difficult to be entangled, such as when the fibers are fused together, the surface layer is smooth after effectively entangled. It is also possible to obtain a three-dimensional entangled nonwoven fabric in a dense state.

ニードルパンチング工程において、繊維ウェブに突き刺すフェルト針の単位面積辺りの本数は、使用する針の形状やウェブの目付により異なり、使用する針のスロートデプスが深く、ウェブを貫通するバーブ数が多く、ウェブの目付が高い場合は少ない本数で効果的に繊維同士を交絡させ易く、逆にスロートデプスが浅く、繊維ウェブを貫通するバーブ数が少なく、ウェブの目付が低い場合は必要な本数が多くなるが、一般に200〜2500本/cm、好ましくは500〜2000本/cmの範囲で設定される。一般的に海島型繊維のニードルパンチング工程において、ニードルパンチング条件が強すぎる場合には海島型繊維の切断や繊維の損傷がおこり交絡させにくく、またニードルパンチング条件が弱すぎる場合には厚さ方向への繊維の配列数が不足し易い傾向にある。ニードルパンチング工程により得られた三次元絡合不織布の目付けとしては好ましくは100〜3000g/m、より好ましくは150〜1500g/m、さらに好ましくは200〜1000g/mである。 In the needle punching process, the number of felt needles per unit area that pierce the fiber web varies depending on the shape of the needle used and the basis weight of the web, and the throat depth of the needle used is deep and the number of barbs penetrating the web is large. If the fabric weight is high, it is easy to effectively entangle the fibers with a small number, but conversely the throat depth is shallow, the number of barbs penetrating the fiber web is small, and if the web weight is low, the required number is increased. Generally, it is set in the range of 200 to 2500 / cm 2 , preferably 500 to 2000 / cm 2 . Generally, in the needle punching process of sea-island type fibers, if the needle punching conditions are too strong, the sea-island type fibers will be cut or damaged, making it difficult to entangle, and if the needle punching conditions are too weak, in the thickness direction The number of fibers arranged tends to be insufficient. The preferred basis weight of the three-dimensional entangled nonwoven fabric obtained by the needle punching step 100 to 3000 g / m 2, more preferably 150~1500g / m 2, more preferably from 200 to 1000 g / m 2.

ニードルパンチされた不織布は本発明の平滑化のためには例えばプレスすることが好ましく、プレスによる平滑化時に同時に厚さ調節も行うことが好ましい。
プレスの方法としては、複数の加熱ロール間を通す方法、予熱した不織布を冷却ロール間に通す方法等、従来公知の方法が利用できる。なおこの工程の際に、繊維の溶融・圧着状態の調整や、テンションやプレス等による工程の形態変化を抑制する目的で、PVAやデンプン、樹脂エマルジョン等の接着剤を添加することは差し支えない。プレスすることにより不織布の厚さが好ましくは5〜30%、さらに好ましくは10〜25%減少する程度の条件をとる。
The needle-punched non-woven fabric is preferably pressed, for example, for smoothing according to the present invention, and it is also preferable to adjust the thickness at the same time as smoothing by pressing.
As a pressing method, conventionally known methods such as a method of passing between a plurality of heating rolls and a method of passing a preheated nonwoven fabric between cooling rolls can be used. In this step, it is possible to add an adhesive such as PVA, starch, or resin emulsion for the purpose of adjusting the melt / compression condition of the fibers and suppressing the change in the shape of the step due to tension, press, or the like. The condition is such that the thickness of the nonwoven fabric is preferably reduced by 5 to 30%, more preferably 10 to 25% by pressing.

三次元絡合不織布を形成する繊維の表面に高分子弾性体を不連続に存在させるためには、三次元絡合不織布の内部に、水溶性高分子成分を添加した高分子弾性体からなる水系エマルジョン樹脂を含浸、凝固させることが好ましい。
高分子弾性体へ添加する水溶性高分子成分としては、水溶液で抽出可能な成分であれば公知のポリマーが使用できるが、熱水で溶解除去が容易であり、抽出の際に水難溶性高分子成分や高分子弾性体成分の分解反応が実質的に起こらず、水難溶性高分子成分や高分子弾性体が限定されない点、さらには環境に配慮した点等からPVAが好ましい。なお、ここでいう水溶性高分子成分は、中空繊維発生型繊維の抽出成分を構成する水溶性高分子と同一であるものを用いてもよく、異なるものを用いてもよい。
In order to make a polymer elastic body discontinuously exist on the surface of the fiber forming the three-dimensional entangled nonwoven fabric, an aqueous system comprising a polymer elastic body with a water-soluble polymer component added to the inside of the three-dimensional entangled nonwoven fabric. It is preferable to impregnate and solidify the emulsion resin.
As the water-soluble polymer component to be added to the polymer elastic body, a known polymer can be used as long as it is a component that can be extracted with an aqueous solution. However, it is easy to dissolve and remove with hot water. PVA is preferred from the viewpoint that the decomposition reaction of the component and the elastic polymer component does not substantially occur, the poorly water-soluble polymeric component and the elastic polymer are not limited, and the environment is considered. The water-soluble polymer component used here may be the same as or different from the water-soluble polymer constituting the extraction component of the hollow fiber generating fiber.

PVA添加量は、水系エマルジョンの粘度が高くなり過ぎず、かつ離型効果を効果的に発現させるため、高分子弾性体の固形分に対して好ましくは7.0〜35質量%、より好ましくは8.0〜30質量%、さらに好ましくは9.0〜25質量%である。PVAの添加量が7.0質量%以上であれば、離型効果及び水系エマルジョン樹脂を繊維表面へ不連続にかつ均一分散状態を効果的に発現させることができ、さらには、水難溶性高分子成分と高分子弾性体の間に適度な滑りが生じて引裂強力や剥離強力等の物性も向上する効果があり、本発明における好適な組み合わせである中空繊維発生型繊維を長繊維とした場合に上記の効果が得られやすい。また、35質量%以下であれば、PVA添加により、水系エマルジョン樹脂の粘度が高くなり過ぎず、かつ風合いが柔らかくなり過ぎてコシが無くなることを防ぐことができる。
ここで公知の撥水処理剤を用いて後処理して撥水性を付与した場合は、水系の撥水処理剤は水性化する目的で撥水処理剤自体に親水基を有していたり、界面活性剤を含有していたりするため、水系エマルジョンバインダー樹脂を含浸、凝固、乾燥する工程中において、撥水性が低下してしまい、目的とする離型構造を安定して得ることが困難となる。
The amount of PVA added is preferably 7.0 to 35% by mass, more preferably based on the solid content of the polymer elastic body, in order that the viscosity of the water-based emulsion does not become too high and the release effect is effectively expressed. It is 8.0-30 mass%, More preferably, it is 9.0-25 mass%. If the amount of PVA added is 7.0% by mass or more, the release effect and the water-based emulsion resin can be effectively discontinuously and uniformly dispersed on the fiber surface. There is an effect of improving the physical properties such as tear strength and peel strength by causing moderate slip between the component and the polymer elastic body, and when the hollow fiber generating fiber which is a suitable combination in the present invention is a long fiber The above effects are easily obtained. Moreover, if it is 35 mass% or less, by adding PVA, it can prevent that the viscosity of water-based emulsion resin does not become high too much, and a texture becomes soft too much and a firmness is lose | eliminated.
Here, when water repellency is imparted by post-treatment using a known water repellency treatment agent, the water-based water repellency treatment agent itself has a hydrophilic group or an interface for the purpose of making it water-soluble. Since it contains an activator, the water repellency decreases during the step of impregnating, coagulating and drying the aqueous emulsion binder resin, making it difficult to stably obtain the desired release structure.

高分子弾性体を構成する樹脂としては、例えば、ポリ塩化ビニル、ポリアミド、ポリエステル、ポリエステルエーテルコポリマー、ポリアクリル酸エステルコポリマー、ポリウレタン、ネオプレン、スチレンブタジエンコポリマー、シリコーン樹脂、ポリアミノ酸、ポリアミノ酸ポリウレタンコポリマー等の合成樹脂、天然高分子樹脂、及びこれらの混合物等を挙げることができる。
なかでも、ポリウレタンあるいはこれに他の樹脂を加えたものは、柔軟な風合いが得られるので、高分子弾性体として好ましく用いられる。なお、必要によっては水系エマルジョン液中に、顔料、染料、架橋剤、充填剤、可塑剤、各種安定剤、界面活性剤等を添加してもよいが、自己乳化タイプのエマルジョンが好ましく用いられる。
Examples of the resin constituting the polymer elastic body include polyvinyl chloride, polyamide, polyester, polyester ether copolymer, polyacrylate copolymer, polyurethane, neoprene, styrene butadiene copolymer, silicone resin, polyamino acid, polyamino acid polyurethane copolymer, and the like. Synthetic resins, natural polymer resins, and mixtures thereof.
Among them, polyurethane or a material obtained by adding other resin to the polyurethane is preferably used as a polymer elastic body because a soft texture can be obtained. If necessary, pigments, dyes, crosslinking agents, fillers, plasticizers, various stabilizers, surfactants and the like may be added to the aqueous emulsion liquid, but self-emulsifying emulsions are preferably used.

水系エマルジョン中の樹脂濃度としては、前述したように高分子弾性体と繊維絡合体を形成する繊維の水難溶性高分子成分の比率が好ましい範囲を満たせば任意に設定することが可能だが、分散性、液の安定性、その他添加剤を混合する場合の添加剤安定性等の観点から、好ましくは1〜60質量%、より好ましくは2〜40質量%である。この範囲内であれば上記中空繊維発生型繊維化後の不織布に対する高分子弾性体の質量を固形分換算で5〜50質量%に調整することが容易であり、繊維と弾性重合体とのバランスがよく、製品としての充実感や柔軟性が得られ、軽量性及び物性が良好となる。   The resin concentration in the water-based emulsion can be arbitrarily set as long as the ratio of the poorly water-soluble polymer component of the fiber forming the polymer elastic body and the fiber entanglement satisfies the preferable range as described above, but the dispersibility From the viewpoint of the stability of the liquid and the additive stability when other additives are mixed, it is preferably 1 to 60% by mass, more preferably 2 to 40% by mass. If it is in this range, it is easy to adjust the mass of the polymer elastic body with respect to the non-woven fabric after forming the hollow fiber generating fiber to 5 to 50% by mass in terms of solid content, and the balance between the fiber and the elastic polymer. Therefore, a sense of fulfillment and flexibility as a product are obtained, and lightness and physical properties are improved.

水溶性高分子成分を添加した高分子弾性体からなる水系エマルジョン樹脂を、三次元絡合不織布の内部に含浸させる方法は特に制限されないが、例えば、浸漬等により不織布内部に均一に含浸する方法、表面と裏面に塗布する方法等が挙げられる。感熱ゲル化剤等を使用して、含浸した水系エマルジョンが不織布の表面と裏面に移行(マイグレーション)するのを防止し、水系エマルジョン樹脂を不織布中で均一に凝固させてもよい。
また、含浸した水系エマルジョン樹脂を不織布の表面と裏面に移行(マイグレーション)させ、その後凝固させて、高分子弾性体の存在量を厚み方向に略連続的に勾配させてもよい。すなわち、高分子弾性体の存在量を、厚み方向中央部よりも、両表層部近傍で多くしてもよい。このような分布勾配を得るためには、水系エマルジョン樹脂を含浸させた後、マイグレーション防止手段を講じることなく、不織布の表面と裏面を好ましくは100〜150℃で、好ましくは0.5〜30分間加熱する。このような加熱により水分が表面と裏面から蒸散し、それに伴って水系エマルジョン樹脂の水分が両表層部に移行し、水系エマルジョン樹脂が表面と裏面近傍で凝固する。マイグレーションのための加熱は、乾燥装置中等において熱風を表面及び裏面に吹き付けることにより行うことが好ましい。
The method of impregnating the aqueous emulsion resin composed of a polymer elastic body to which a water-soluble polymer component has been added into the interior of the three-dimensional entangled nonwoven fabric is not particularly limited, for example, a method of uniformly impregnating the nonwoven fabric by immersion or the like, The method etc. which apply | coat to the surface and a back surface are mentioned. A heat-sensitive gelling agent or the like may be used to prevent the impregnated aqueous emulsion from migrating to the front and back surfaces of the nonwoven fabric, and the aqueous emulsion resin may be uniformly solidified in the nonwoven fabric.
Alternatively, the impregnated water-based emulsion resin may migrate (migrate) to the front and back surfaces of the nonwoven fabric, and then coagulate, so that the abundance of the polymer elastic body may be inclined substantially continuously in the thickness direction. That is, the abundance of the polymer elastic body may be increased in the vicinity of both surface layer portions, rather than in the thickness direction center portion. In order to obtain such a distribution gradient, the surface and the back surface of the nonwoven fabric are preferably at 100 to 150 ° C., preferably 0.5 to 30 minutes, without impregnating migration after impregnating the aqueous emulsion resin. Heat. By such heating, moisture evaporates from the front surface and the back surface, and the water content of the water-based emulsion resin moves to both surface layers, and the water-based emulsion resin solidifies near the front surface and the back surface. Heating for migration is preferably performed by blowing hot air on the front and back surfaces in a drying apparatus or the like.

上述した水溶性高分子成分を添加した高分子弾性体からなる水系エマルジョン樹脂を含浸し、凝固、乾燥処理を行った(好ましくはこの後に公知の方法で中空繊維化処理を行った)三次元絡合不織布から、該不織布を形成している好適な中空繊維発生型繊維の水溶性高分子成分、及び水系エマルジョン樹脂へ添加された水溶性高分子成分、さらには水系エマルジョン樹脂に最初から含まれている添加剤を、化学薬品を用いることなく同時に熱水抽出除去する。
例えば、中空繊維発生型繊維の水溶性高分子成分を先に抽出除去した後に水系エマルジョン樹脂を含浸すると、水系エマルジョン樹脂に含まれる水溶性高分子成分や添加剤の除去ために再び熱水抽出除去操作を行うことが必要となってしまうため、熱水抽出除去は水系エマルジョン樹脂を含浸した後に行い、一度で全ての水溶性高分子成分や添加剤を除去することが生産効率を高める上で好ましい。また、水溶性高分子成分を添加した高分子弾性体からなる水系エマルジョン樹脂を含浸する前に、先に中空繊維発生型繊維の水溶性高分子成分を抽出除去した場合、前記高分子弾性体による不織布補強効果が不足し、全体的に厚みくたりが大きく、不織布を構成する繊維同士が集毛しやすくなり、それらに伴い350〜3000μmの空隙間内接円で特定された空間が減少してしまうことで、風合いがペーパーライクになりやすくなってしまう。
Three-dimensional entanglement impregnated with a water-based emulsion resin composed of a polymer elastic body to which the above-mentioned water-soluble polymer component is added, solidified and dried (preferably followed by hollow fiberization by a known method) A water-soluble polymer component of a suitable hollow fiber-generating fiber forming the nonwoven fabric, a water-soluble polymer component added to the water-based emulsion resin, and a water-based emulsion resin from the beginning. At the same time, hot water extraction and removal of the additive is performed without using chemicals.
For example, when the water-soluble polymer component of the hollow fiber generating fiber is first extracted and removed, and then impregnated with the aqueous emulsion resin, the hot water extraction and removal is performed again to remove the water-soluble polymer component and additives contained in the aqueous emulsion resin. Since it becomes necessary to perform the operation, hot water extraction removal is performed after impregnating the aqueous emulsion resin, and it is preferable to remove all the water-soluble polymer components and additives at once in order to increase production efficiency. . In addition, when the water-soluble polymer component of the hollow fiber generating fiber is first extracted and removed before impregnating the water-based emulsion resin composed of the polymer elastomer added with the water-soluble polymer component, The effect of reinforcing the nonwoven fabric is insufficient, the overall thickness is large, the fibers constituting the nonwoven fabric are easily collected, and the space specified by the inscribed circle of air gaps of 350 to 3000 μm 2 is reduced accordingly. As a result, the texture is more likely to be paper-like.

本発明における三次元絡合不織布を形成する好適な中空繊維発生型繊維が、好適な長繊維である場合は、短繊維と異なり繊維断面の露出が実質的に無いあるいは少ないため、繊維の壁面からPVAで代表される水溶性高分子成分の抽出を行う必要がある。このためには海成分により形成される複数の隔壁における、各隔壁の最薄部の平均厚みが7μm以下であることが好ましく、この範囲であれば、熱水が島成分のPVAを膨潤させることで繊維側面に物性を低下させず微小なクラックを発生させPVAの抽出除去を行うことが容易となる。   When the suitable hollow fiber generating fiber forming the three-dimensional entangled nonwoven fabric in the present invention is a suitable long fiber, unlike the short fiber, there is substantially no or little exposure of the fiber cross section, and therefore, from the fiber wall surface. It is necessary to extract a water-soluble polymer component typified by PVA. For this purpose, it is preferable that the average thickness of the thinnest part of each partition in the plurality of partitions formed by the sea component is 7 μm or less, and in this range, the hot water swells the PVA which is the island component. Thus, it is easy to extract and remove PVA by generating minute cracks on the fiber side surface without reducing the physical properties.

抽出除去する方法としては、80〜95℃の水温が好ましく、液流染色機、ジッガー等の染色機や、オープンソーパー等の精練加工機を用いることができるが、抽出効率の向上のためには中空繊維に物理的な変形を与えることができる抽出方法が好ましく、液流染色機や、バイブロ洗浄機と搾液装置を多段に組み合わせた装置を用いることが好ましい。上記の抽出方法により、水溶性高分子成分の大半ないし全部を抽出除去する。   As a method for extracting and removing, a water temperature of 80 to 95 ° C. is preferable, and a liquid dyeing machine, a dyeing machine such as a jigger, and a scouring machine such as an open soaper can be used. An extraction method capable of giving physical deformation to the hollow fiber is preferable, and it is preferable to use a liquid dyeing machine, or a device in which a vibro washing machine and a squeezing device are combined in multiple stages. By the above extraction method, most or all of the water-soluble polymer component is extracted and removed.

上述した本発明の人工皮革用基材は、種々の用途における、例えば種々の外観の銀付人工皮革の基材として用いることができる。
人工皮革用基材の表面に、離形紙上に形成した皮革様外観の樹脂フィルムを接着剤を介して転写したり、樹脂エマルジョン、樹脂溶液、溶融樹脂等の液化樹脂塗料をグラビアやコンマコーター等を用いて連続的にコートしたり、それらの前後でエンボスロールや鏡面ベルト等を用いて型押し加工や平滑化加工を行ったり、これらの加工を組み合わせたりする表面仕上げ加工を、本来目的とする軽量性を損なわない範囲で行った人工皮革を主要素材の全部又は一部として用いることで、本発明の効果を有する靴、鞄等の人工皮革製の製品を得ることが可能である。
The base material for artificial leather of the present invention described above can be used as a base material for artificial leather with silver having various appearances in various applications.
Transfer the leather-like resin film formed on the release paper to the surface of the artificial leather substrate via an adhesive, or apply liquefied resin paint such as resin emulsion, resin solution, molten resin, gravure, comma coater, etc. Originally intended for surface finish processing, such as continuous coating using, embossing rolls and mirror belts on the front and back, embossing and smoothing processing, or a combination of these processing By using artificial leather made within a range that does not impair the lightness as all or part of the main material, it is possible to obtain artificial leather products such as shoes and bags having the effects of the present invention.

上記表面仕上げ加工を行った表面の仕上げ加工部分、すなわち銀面層を構成する樹脂としては、ポリウレタン樹脂、アクリル樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリオレフィン樹脂等の従来公知の樹脂を使用可能であるが、人工皮革用基材の風合いや充実感とのバランスをとると共に、表面耐磨耗性、耐屈曲性、表面タッチ、耐久性等の性能バランスのためにポリウレタン樹脂又はアクリル樹脂を使用することが好ましい。   Conventionally known resins such as a polyurethane resin, an acrylic resin, a polyamide resin, a polyester resin, and a polyolefin resin can be used as the resin that constitutes the finished surface portion of the surface that has been subjected to the surface finishing process, that is, the silver surface layer. It is possible to use polyurethane resin or acrylic resin to balance the texture and fullness of the base material for artificial leather and to balance the performance of surface wear resistance, flex resistance, surface touch, durability, etc. preferable.

また、銀面層の構造は、前記した離形紙上に樹脂フィルムを形成する際や、基材表面にコートした液化樹脂塗料を凝固する際に、湿式法又は乾式法によって多孔質構造や非多孔質構造とすることで、所望の機能や風合い等を得ることができる。銀面層の厚さは、見掛け密度0.3未満レベルの軽量性を損なわず、用途において必要とされる表面強度等の機械物性を有し、かつ基材との風合いバランスや基材とトータルでの厚さが所望の範囲に入れば、特に限定されるものではないが、目安は20〜500μmの範囲であり、例えば平滑でありかつ柔軟で一体感のある風合いを特徴としつつ、機能性として通気性、透湿性をも向上させたような人工皮革を得たい場合等は、50〜300μmが好ましい。   In addition, the structure of the silver surface layer is a porous structure or non-porous structure formed by a wet method or a dry method when a resin film is formed on the above-mentioned release paper or when a liquefied resin paint coated on the substrate surface is solidified. By adopting a quality structure, desired functions and textures can be obtained. The thickness of the silver surface layer does not impair the lightness of an apparent density of less than 0.3, has mechanical properties such as surface strength required for the application, and has a balance of texture with the substrate and the total amount of the substrate. As long as the thickness falls within the desired range, there is no particular limitation, but the standard is in the range of 20 to 500 μm. For example, it is smooth, flexible, and features a texture with a sense of unity. When it is desired to obtain artificial leather with improved air permeability and moisture permeability, 50 to 300 μm is preferable.

実施例により本発明を説明するが、本発明はこれら実施例に限定されるものではない。また、実施例中で記載される部及び%は、特にことわりのない限り質量に関するものである。以下の実施例及び比較例において融点の測定、機械的物性その他の評価は以下の方法に従った。   EXAMPLES The present invention will be described with reference to examples, but the present invention is not limited to these examples. Moreover, the part and% which are described in an Example are related with mass unless there is particular notice. In the following examples and comparative examples, the melting point measurement, mechanical properties and other evaluations were performed according to the following methods.

[樹脂の融点の測定方法]
示差走査熱量計(TA3000、メトラー社製)を用いて、窒素中、昇温速度10℃/分で室温から300℃まで昇温後、直ちに室温まで冷却し、再度直ちに昇温速度10℃/分で300℃まで昇温したとき、樹脂の融点を示す吸熱ピークのピークトップの温度を採用した。
[Measurement method of melting point of resin]
Using a differential scanning calorimeter (TA3000, manufactured by Mettler), the temperature was raised from room temperature to 300 ° C. in nitrogen at a heating rate of 10 ° C./min. When the temperature was raised to 300 ° C., the peak top temperature of the endothermic peak indicating the melting point of the resin was adopted.

[抽出率測定]
抽出率は以下の式にて算出を行った。
高分子弾性体付与後不織布抽出率(%)=(A−B)/(A×C/100×D)×100
A:抽出前高分子弾性体付与後不織布質量
B:抽出後高分子弾性体付与後不織布質量
C:高分子弾性体付与後不織布の中空繊維発生型繊維成分質量比率
D:中空繊維発生型繊維の水溶性高分子成分質量比率
[Extraction rate measurement]
The extraction rate was calculated by the following formula.
Extraction rate of nonwoven fabric after application of polymer elastic body (%) = (A−B) / (A × C / 100 × D) × 100
A: Weight of nonwoven fabric after application of polymer elastic body before extraction B: Mass of nonwoven fabric after application of polymer elastic body after extraction C: Mass ratio of hollow fiber generating fiber component of nonwoven fabric after application of polymer elastic body D: of hollow fiber generating fiber Water-soluble polymer component mass ratio

[人工皮革用基材の見掛け密度の測定]
人工皮革用基材の単位面積あたりの質量(g/cm)を厚さ(cm)で除した値を見掛け密度(g/cm)とし、人工皮革用基材の任意の10箇所について測定した見掛け密度を算術平均した値を、その人工皮革用基材の見掛け密度とした。なお、厚さは、JISL1096に準じて荷重240gf/cmで測定した。
[Measurement of apparent density of base material for artificial leather]
The value obtained by dividing the mass per unit area (g / cm 2 ) of the artificial leather base material by the thickness (cm) was used as the apparent density (g / cm 3 ), and measurements were made at any 10 locations on the artificial leather base material. The value obtained by arithmetically averaging the apparent density was used as the apparent density of the base material for artificial leather. The thickness was measured at a load of 240 gf / cm 2 according to JISL1096.

[人工皮革用基材の剥離強力測定方法]
長さ15cm、巾2.5cm、厚さ5mmのポリウレタン製ゴム板の表面をサンドペーパーにて軽く削り取って二液架橋タイプのポリウレタン接着剤をいずれかの端部から長さ10cm程度の範囲に均一に塗布し、一方、人工皮革用基材を長さ25cm、巾2.5cmに切り出した試験片にも同様にいずれかの端部から長さ10cm程度の範囲に接着剤を均一塗布したものを、接着剤を塗布した端部同士が重なるように貼り合わせた。
貼り合わせた試験片とゴム板を2〜4kg/cm程度の圧力でプレスした後、25℃にて1昼夜放置した。試験片及びゴム板それぞれの接着剤を塗布していない端部を、初期間隔5cmにセットした引張試験機の上下それぞれのチャックに挟んで、引張速度10cm/分での引張時間に対応した、ゴム板と試験片との接着部分の剥離強力を測定し、チャートに記録した。チャート上に得られた引張時間−剥離強力曲線の剥離強力がほぼ一定している箇所についての平均値を読み取り、その試験片の剥離強力値とした。1種類の人工皮革用基材について、任意の3箇所から切り出した試験片3個の剥離強力測定値を算術平均した値を、その人工皮革用基材の剥離強力値とした。
[Method of measuring peel strength of base material for artificial leather]
The surface of a polyurethane rubber plate 15cm long, 2.5cm wide and 5mm thick is lightly scraped with sandpaper, and a two-component cross-linking type polyurethane adhesive is evenly distributed within a range of about 10cm from either end. On the other hand, a test piece obtained by cutting a base material for artificial leather to a length of 25 cm and a width of 2.5 cm is similarly applied with a uniform application of an adhesive within a range of about 10 cm from either end. Then, they were bonded so that the ends to which the adhesive was applied overlapped.
The bonded specimen and rubber plate were pressed at a pressure of about 2 to 4 kg / cm 2 and then left at 25 ° C. for one day. Rubber that corresponds to the tensile time at a tensile speed of 10 cm / min by sandwiching the ends of the test piece and the rubber plate that are not coated with adhesive between the upper and lower chucks of a tensile tester set at an initial interval of 5 cm. The peel strength of the bonded portion between the plate and the test piece was measured and recorded on a chart. The average value of the portions where the peel strength in the tensile time-peel strength curve obtained on the chart was almost constant was read and taken as the peel strength value of the test piece. For one type of artificial leather substrate, the value obtained by arithmetically averaging the peel strength measurement values of three test pieces cut out from three arbitrary locations was taken as the peel strength value of the artificial leather substrate.

[人工皮革用基材の引裂強力測定方法]
長さ10cm×巾4cmに切り出した試験片の短辺の中央(巾方向両端から2cmの箇所)に短辺と直角(長さ方向に平行)に5cmの切れ込みを入れ、各舌片を剥離強力測定方法と同様にセットした引張試験機の上下チャックにそれぞれ挟んで、引張速度10cm/minで引裂いたときの引裂応力を測定し、チャートに記録した。チャートから引裂応力の最大値を読み取り、その試験片の引裂強力値とした。1種類の人工皮革用基材について、任意の3箇所から切り出した試験片3個の引裂強力測定値を算術平均した値を、その人工皮革用基材の引裂強力値とした。
[Method of measuring tear strength of base materials for artificial leather]
A test piece cut to a length of 10 cm x a width of 4 cm is cut into the center of the short side (2 cm from both ends in the width direction) at a right angle to the short side (parallel to the length direction), and the tongue is peeled off strongly. The tear stress when tearing at a tensile speed of 10 cm / min was sandwiched between upper and lower chucks of a tensile tester set in the same manner as the measurement method, and recorded on a chart. The maximum value of the tear stress was read from the chart and used as the tear strength value of the test piece. For one type of artificial leather substrate, the value obtained by arithmetically averaging the measured tear strength values of three test pieces cut out from any three locations was taken as the tear strength value of the artificial leather substrate.

[風合い]
(1)屈曲時
20cm×20cmの正方形に切断した試料を上端と下端を合わせるように谷折りしたときに発生する折り曲げ形状を目視により観察した。
そして、以下の基準により判定した。
良好:牛皮革を折りこんだときと同様の、表面に緻密且つ均質な折れシワが発生した。
不良:折りこんだ表面にダンボールを折り込んだような荒い折れシワが発生した。
[Texture]
(1) At the time of bending The bent shape generated when the sample cut into a square of 20 cm × 20 cm was valley-folded so that the upper end and the lower end were matched was visually observed.
And it determined with the following references | standards.
Good: A fine and uniform fold wrinkle was generated on the surface, similar to the case where cowhide was folded.
Defect: Rough wrinkles such as corrugated cardboard were generated on the folded surface.

(2)触感(柔軟性)
得られた人工皮革用基材から20cm×20cmの試験片を切り出した。そして試験片を手のひらに入れてつかんだときの触感により判定した。
(2) Touch (flexibility)
A test piece of 20 cm × 20 cm was cut out from the obtained base material for artificial leather. And it judged by the tactile sensation when putting the test piece in the palm.

[繊維間空隙面積測定]
人工皮革用基材全層断面を30倍の倍率により走査型電子顕微鏡で観察した。得られた写真を画像解析ソフトPopImaging(Digital being kids.Co製)を用い、動的閾値法で画像を二値化し、空隙部に内接円を描き、その内接円面積を空隙間内接円面積として計測した。描いた内接円面積の中で350μm未満のものを除去し、残りの描いた全ての内接円面積を数平均したものを空隙間内接円面積の平均とした。また、描いた内接円面積350〜3000μmの空隙間内接円数の、全空隙間内接円数に対する割合を算出した。
[Measurement of inter-fiber void area]
The cross section of all layers of the artificial leather substrate was observed with a scanning electron microscope at a magnification of 30 times. Using the image analysis software PopImaging (manufactured by Digital being kids. Co), the resulting image is binarized by a dynamic threshold method, and an inscribed circle is drawn in the void, and the inscribed circle area is inscribed in the gap It was measured as a circular area. Of the drawn inscribed circle areas, those less than 350 μm 2 were removed, and the number of all the drawn inscribed circle areas was averaged to be the average of the void inscribed circle areas. Further, the ratio of the number of inscribed circles with an inscribed circle area of 350 to 3000 μm 2 to the number of inscribed circles with all the gaps was calculated.

[実施例1]
ポリプロピレン(プライムポリマー社製プライムポリプロY−2005GP、融点162℃、JIS K7210のM法で測定したMFR:20g/分)を海成分に用い、水溶性熱可塑性PVA(クラレ社製エクセバールCP−4104MI、融点209℃、JIS K7210のM法で測定したMFR:80g/分、粘度平均重合度330、ケン化度98.4モル%)を島成分とし、海島型多成分系繊維1本あたりの島数が12個(島)となるような溶融複合紡糸用口金を用い、海成分/島成分の質量比50/50となるように240℃で口金より吐出した。単位時間辺りの吐出量と得られる長繊維の繊度の比率から間接的に求められる紡糸速度が2500m/minとなるように口金直下に設置したエアジェット吸引装置のエアーを調整して、口金から吐出させたポリマーを索引細化させつつ冷却することで平均繊度2.81デシテックスのポリプロピレン中空繊維発生型複合繊維を紡糸した。得られたポリプロピレン中空繊維発生型複合繊維のPVAを隔てる壁の厚みは1.24μmであった。その複合繊維を吸引装置直下に設置した移動式ネット上に連続的に捕集したのち、表面温度常温の金属ロールを用いて線圧17kg/cmでプレスすることにより目付け45g/mの複合繊維ウェブを得た。
[Example 1]
Polypropylene (Prime Polymer Pro-Prime Y-2005GP, melting point 162 ° C., MFR measured by M method of JIS K7210: 20 g / min) was used as a sea component, and water-soluble thermoplastic PVA (Kuraray Exval CP-4104MI, Melting point 209 ° C, MFR measured by JIS K7210 M method: 80 g / min, viscosity average polymerization degree 330, saponification degree 98.4 mol%) as island components, and the number of islands per sea-island type multicomponent fiber Using a melt compound spinning die having 12 (islands), the mixture was discharged from the die at 240 ° C. so that the mass ratio of sea component / island component was 50/50. Discharge from the base by adjusting the air in the air jet suction device installed directly below the base so that the spinning speed obtained indirectly from the ratio of the discharge amount per unit time and the fineness of the obtained long fibers is 2500 m / min. The resulting polymer was cooled while being indexed to spin a polypropylene hollow fiber generating composite fiber having an average fineness of 2.81 dtex. The thickness of the wall separating the PVA of the obtained polypropylene hollow fiber generating composite fiber was 1.24 μm. The composite fiber is continuously collected on a mobile net installed just below the suction device, and then pressed with a metal roll having a surface temperature of room temperature at a linear pressure of 17 kg / cm to provide a composite fiber having a basis weight of 45 g / m 2 . Got the web.

得られた複合繊維ウェブを、クロスラッパーを用いてウェブ8枚分に相当する目付けになるように重ね合わせながら針折れ防止油剤をスプレーを用いてウェブ表面に均一に付与した。次いで、針先端からバーブまでの距離が5mmの9バーブおよび6バーブのフェルト針を用い、複合繊維ウェブに突き刺した針の先端が反対側から最大で10mm突き出すような設定にてウェブ両面へ交互にニードルパンチング処理を行った。突き刺した針本数が合計で1450本/cmとなるようにニードルパンチング処理をおこなって複合繊維同士を絡合させることで、目付298g/mの三次元絡合不織布を得た。この不織布へ固形分濃度1.8質量%のPVA水溶液をPVA固形分付着率2.8質量%となるよう含浸付与した後、145℃で表面が平滑な金属ロール同士でプレスして、厚さ1.62mm、密度0.194g/cm3で表面が平滑な三次元絡合不織布を得た。 The resulting composite fiber web was uniformly applied to the web surface using a spray while overlapping the resulting composite fiber web so as to have a basis weight equivalent to 8 webs using a cross wrapper. Next, using a 9-barb and 6-barb felt needle with a distance of 5 mm from the tip of the needle to the barb, alternately on both sides of the web with the setting so that the tip of the needle pierced the composite fiber web protrudes up to 10 mm from the opposite side Needle punching was performed. A needle punching process was performed so that the total number of pierced needles was 1450 / cm 2, and the composite fibers were entangled with each other, thereby obtaining a three-dimensional entangled nonwoven fabric having a basis weight of 298 g / m 2 . After impregnating the nonwoven fabric with a PVA aqueous solution having a solid content concentration of 1.8% by mass so as to have a PVA solid content adhesion rate of 2.8% by mass, the thickness was pressed between metal rolls having a smooth surface at 145 ° C. A three-dimensional entangled nonwoven fabric having a smooth surface at 1.62 mm and density of 0.194 g / cm 3 was obtained.

表面が平滑な三次元絡合不織布に、自己乳化型水系ポリウレタンエマルジョン(100%モジュラス:27MPa)へエマルジョン固形分の9.3質量%のPVA(クラレ社製、PVA−117)を添加し、界面活性剤BK90NM(日華化学社製)を3.5g/L添加し、エマルジョン固形分濃度10.8質量%として含浸付与した後、乾燥機中で100℃の熱風にて30分間乾燥処理を施し高分子弾性体を含浸させた。   To a self-emulsifying water-based polyurethane emulsion (100% modulus: 27 MPa), 9.3 mass% of PVA (Kuraray Co., PVA-117) is added to a three-dimensional entangled nonwoven fabric with a smooth surface, and the interface After adding 3.5 g / L of activator BK90NM (manufactured by Nikka Chemical Co., Ltd.) and impregnating it with an emulsion solid content concentration of 10.8% by mass, it was dried in a dryer with hot air at 100 ° C. for 30 minutes. The polymer elastic body was impregnated.

次いで、HLB9、曇点57℃のノニオン系界面活性剤(日華化学社製、サンモールBK−90NM)を0.5g/L含有させた95℃の熱水中で、熱水浸漬時間20分となるようdip×nip方式で三次元絡合不織布中の複合繊維から島成分PVAを溶解除去した。抽出率は96.8質量%であり、得られたものは厚さ1.06mm、目付218g/mで、横断面に12個の中空部を有するポリプロピレン中空繊維の三次元絡合不織布とポリウレタンからなる人工皮革用基材を得た。 Then, hot water immersion time of 20 minutes in hot water at 95 ° C. containing 0.5 g / L of HLB9, a nonionic surfactant having a cloud point of 57 ° C. (manufactured by Nikka Chemical Co., Ltd., Sunmol BK-90NM) The island component PVA was dissolved and removed from the composite fiber in the three-dimensional entangled nonwoven fabric by the dip × nip method. The extraction rate is 96.8% by mass, and the obtained is 1.06 mm in thickness, 218 g / m 2 in weight, and three-dimensional entangled nonwoven fabric of polyurethane hollow fibers having 12 hollow portions in the cross section and polyurethane A base material for artificial leather consisting of

得られた人工皮革用基材中のポリウレタンとポリプロピレン中空繊維との質量比は、ポリウレタン/ポリプロピレン中空繊維=24.3/75.7であり、ポリウレタンは繊維上に不連続に存在していた。また、上記の繊維間空隙面積測定に従い、得られた人工皮革用基材の断面を30倍の倍率で電顕観察し、得られた写真(図1)を画像解析ソフトPopImaging(Digital being kids.Co製)を用い、動的閾値法で画像を二値化し(図2)、空隙部に内接円を描き(図3)、その内接円面積を空隙間内接円面積として計測した。描いた内接円面積の中で350μm未満のものを除去し、残りを描いた全ての内接円面積を数平均した空隙間内接円面積は平均1222μm、また、描いた内接円面積が350〜3000μmの空隙間内接円の数の全空隙間内接円数に対する割合が87.9%であった。 The mass ratio of polyurethane and polypropylene hollow fiber in the obtained base material for artificial leather was polyurethane / polypropylene hollow fiber = 24.3 / 75.7, and the polyurethane was discontinuously present on the fiber. In addition, according to the measurement of the inter-fiber void area, the cross section of the obtained artificial leather substrate was observed with an electron microscope at a magnification of 30 times, and the obtained photograph (FIG. 1) was image analysis software PopImaging (Digital being kids. Using Co), the image was binarized by the dynamic threshold method (FIG. 2), an inscribed circle was drawn in the gap (FIG. 3), and the inscribed circle area was measured as the inscribed circle area of the air gap. The inscribed circle area of less than 350 μm 2 was removed from the drawn inscribed circle area, and the inscribed circle area of the air gap that averaged the number of all the inscribed circle areas that were drawn was 1222 μm 2 on average. The ratio of the number of air gap inscribed circles with an area of 350 to 3000 μm 2 to the number of air gap inscribed circles was 87.9%.

この人工皮革用基材は、剥離強力測定時に基布切断するほど剥離強力が高く、タテ引裂強力4.5kg、ヨコ引裂強力4.8kg、見掛け密度が0.206g/cm3であり、機械的物性に優れていながら、軽いだけでなく、風合いは腰がある上に柔軟な触感であって、かつ屈曲時は細かな皺が均一に発現して良好であり、紳士靴、スポーツシューズ用の人工皮革に仕上げるための基材として極めて優れた素材であった。 This base material for artificial leather has higher peel strength as the base fabric is cut at the time of peel strength measurement. The vertical tear strength is 4.5 kg, the horizontal tear strength is 4.8 kg, and the apparent density is 0.206 g / cm 3. It is excellent in physical properties but not only light, but also has a soft texture with a soft texture, and fine wings are evenly expressed when bent, and is an artificial material for men's shoes and sports shoes. It was an extremely excellent material as a base material for finishing leather.

[実施例2]
PVA/Em量変更
三次元絡合不織布へ事前にPVAを添加せず、水系ポリウレタンエマルジョンへエマルジョン固形分の12.4質量%のPVAを添加した以外は実施例1と同様の操作を行い、人工皮革用基材を得た。
得られた人工皮革用基材中のポリウレタンは繊維上に不連続に存在しており、空隙間内接円面積は平均1044μm、350〜3000μmの空隙間内接円の割合が92.4%であった。また、タテ引裂強力4.0kg、ヨコ引裂強力3.1kg、見掛け密度0.218g/cm3であり、機械的物性に優れていながら、軽いだけでなく、風合いは腰がある上に柔軟な触感であって、かつ屈曲時は細かな皺が均一に発現して良好であり、紳士靴、スポーツシューズ用の人工皮革に仕上げるための基材として極めて優れた素材であった。
[Example 2]
Change in PVA / Em amount The same procedure as in Example 1 was performed except that PVA was not added to the three-dimensional entangled nonwoven fabric in advance, and 12.4 mass% of PVA was added to the aqueous polyurethane emulsion. A leather substrate was obtained.
The polyurethane in the obtained base material for artificial leather is discontinuously present on the fiber, and the air gap inscribed circle area is an average of 1044 μm 2 and the ratio of air gap inscribed circles of 350 to 3000 μm 2 is 92.4. %Met. In addition, it has a vertical tear strength of 4.0 kg, a horizontal tear strength of 3.1 kg, and an apparent density of 0.218 g / cm 3, which is excellent in mechanical properties but not only light, but also has a soft texture and a soft feel. In addition, when bent, fine wrinkles uniformly appear and are good, and it is an excellent material as a base material for finishing artificial leather for men's shoes and sports shoes.

[実施例3]
PVA/Em量変更
三次元絡合不織布へ事前にPVAを添加せず、水系ポリウレタンエマルジョンへエマルジョン固形分の18.6質量%のPVAを添加した以外は実施例1と同様の操作を行い、人工皮革用基材を得た。
得られた人工皮革用基材中のポリウレタンは繊維上に不連続に存在しており、空隙間内接円面積は平均1089μm、350〜3000μmの空隙間内接円の割合が91.7%であった。また、タテ引裂強力3.0kg、ヨコ引裂強力3.7kg、見掛け密度0.229g/cm3であり、機械的物性に優れていながら、軽いだけでなく、風合いは腰がある上に柔軟な触感であって、かつ屈曲時は細かな皺が均一に発現して良好であり、紳士靴、スポーツシューズ用の人工皮革に仕上げるための基材として極めて優れた素材であった。
[Example 3]
Change in PVA / Em amount The same procedure as in Example 1 was performed except that PVA was not added to the three-dimensional entangled nonwoven fabric in advance, and 18.6% by mass of PVA having an emulsion solid content was added to the aqueous polyurethane emulsion. A leather substrate was obtained.
The polyurethane in the obtained base material for artificial leather is discontinuously present on the fiber, and the air gap inscribed circle area has an average of 1089 μm 2 and the ratio of air gap inscribed circles of 350 to 3000 μm 2 is 91.7. %Met. In addition, it has a vertical tear strength of 3.0 kg, a horizontal tear strength of 3.7 kg, and an apparent density of 0.229 g / cm 3. In addition, when bent, fine wrinkles uniformly appear and are good, and it is an excellent material as a base material for finishing artificial leather for men's shoes and sports shoes.

[実施例4]
PP繊維→NY繊維変更
海成分としてナイロン1015BK(宇部興産社製)に変更し、水系エマルジョンへ界面活性剤を無添加とした以外は実施例1と同様の操作を行い、人工皮革用基材を得た。
得られた人工皮革用基材中のポリウレタンは繊維上に不連続に存在しており、空隙間内接円面積は平均1175.5μm、350〜3000μmの空隙間内接円の割合が88.8%であった。また、剥離強力測定時に基布切断するほど剥離強力が高く、タテ引裂強力4.9kg、ヨコ引裂強力4.6kg、見掛け密度0.223g/cm3であり、機械的物性に優れていながら、軽いだけでなく、風合いは腰がある上に柔軟な触感であって、かつ屈曲時は細かな皺が均一に発現して良好であり、紳士靴、スポーツシューズ用の人工皮革に仕上げるための基材として極めて優れた素材であった。
[Example 4]
PP fiber → NY fiber change Nylon 1015BK (manufactured by Ube Industries) was changed as a sea component, and the same operation as in Example 1 was carried out except that the surfactant was not added to the aqueous emulsion. Obtained.
Polyurethane in the obtained base material for artificial leather is discontinuously present on the fiber, and the air gap inscribed circle area is an average of 1175.5 μm 2 and the ratio of air gap inscribed circles of 350 to 3000 μm 2 is 88. 8%. In addition, the peel strength is higher as the base fabric is cut at the time of peel strength measurement. The vertical tear strength is 4.9 kg, the horizontal tear strength is 4.6 kg, and the apparent density is 0.223 g / cm 3. In addition, the texture is soft and soft to the touch, and when bent, fine wrinkles are evenly expressed and are good, and it is a base material for finishing artificial leather for men's shoes and sports shoes It was an extremely excellent material.

[実施例5]
スエード繊維
海成分として水溶性熱可塑性PVA(クラレ社製、エクセバールCP−4104MI、融点209℃、JIS K7210のM法で測定したMFR:80)、島成分として変性度6モル%のイソフタル酸変性ポリエチレンテレフタレート樹脂(融点240℃)を用い、海島型多成分系繊維1本あたりの島数が25個(島)となるような溶融複合紡糸用口金を用い、海成分/島成分の質量比25/75として紡糸し、基材中のポリウレタンとポリエチレンテレフタレート繊維との質量比がポリウレタン/ポリエチレンテレフタレート=25.1/74.9とした以外は実施例1と同様の操作を行い、人工皮革用基材を得た。
[Example 5]
Suede fiber Water-soluble thermoplastic PVA as sea component (manufactured by Kuraray Co., Ltd., EXVAL CP-4104MI, melting point 209 ° C., MFR measured by M method of JIS K7210: 80), isophthalic acid-modified polyethylene having 6 mol% modification as island component Using a terephthalate resin (melting point: 240 ° C.) and using a fusion compound spinning die having 25 islands (islands) per sea-island type multi-component fiber, a sea component / island component mass ratio of 25 / No. 75, and the same procedure as in Example 1 was carried out except that the mass ratio of polyurethane to polyethylene terephthalate fiber in the substrate was polyurethane / polyethylene terephthalate = 25.1 / 74.9. Got.

得られた人工皮革用基材中のポリウレタンは繊維上に不連続に存在しており、空隙間内接円面積は平均959.6μm、350〜3000μmの空隙間内接円の割合が92.5%であった。また、タテ引裂強力4.2kg、ヨコ引裂強力4.3kg、見掛け密度0.454g/cm3であり、機械的物性に優れていながら、風合いは腰がある上に柔軟な触感であって、かつ屈曲時は細かな皺が均一に発現して良好であり、紳士靴、スポーツシューズ用の人工皮革に仕上げるための基材として極めて優れた素材であった。 The polyurethane in the obtained base material for artificial leather is discontinuously present on the fiber, and the air gap inscribed circle area has an average of 959.6 μm 2 and a ratio of air gap inscribed circles of 350 to 3000 μm 2 is 92. .5%. In addition, the vertical tear strength is 4.2 kg, the horizontal tear strength is 4.3 kg, the apparent density is 0.454 g / cm 3 , and the mechanical properties are excellent, but the texture is not only soft, but also has a soft touch. At the time of bending, fine wrinkles were evenly expressed and good, and it was an excellent material as a base material for finishing artificial leather for men's shoes and sports shoes.

[比較例1]
PVA無添加
水系ポリウレタンエマルジョンへPVAを無添加とした以外は実施例1と同様の操作を行い、人工皮革用基材を得た。
得られた人工皮革用基材中のポリウレタンは繊維上に不連続に存在しているものの、空隙間内接円面積は平均1255μm、350〜3000μmの空隙間内接円の割合が84.6%であった。また、剥離強力測定時に基布切断するほど剥離強力が高いものの、タテ引裂強力3.0kg、ヨコ引裂強力2.1kg、見掛け密度0.215g/cm3であり、機械的物性が低く、軽いものの、風合いはボキ折れが目立ち、屈曲時は皺が目立ち不良であり、紳士靴、スポーツシューズ用の人工皮革に仕上げるための基材として劣ったものであった。
[Comparative Example 1]
No PVA Addition A base material for artificial leather was obtained in the same manner as in Example 1 except that PVA was not added to the aqueous polyurethane emulsion.
Although the polyurethane in the obtained artificial leather base material is discontinuously present on the fiber, the air gap inscribed circle area has an average of 1255 μm 2 and the ratio of air gap inscribed circles of 350 to 3000 μm 2 is 84. It was 6%. Although the peel strength increases as the base fabric is cut at the time of peel strength measurement, the vertical tear strength is 3.0 kg, the horizontal tear strength is 2.1 kg, the apparent density is 0.215 g / cm 3 , and the mechanical properties are low and light. The texture was notable as a base material for finishing artificial leather for men's shoes and sports shoes.

[比較例2]
PVA多量添加
水系ポリウレタンエマルジョンへエマルジョン固形分の30.0質量%のPVAを添加した以外は実施例1と同様の操作を行い、人工皮革用基材を得た。
PVA添加した水系エマルジョンを不織布へ含浸する際、粘度が高すぎて扱いにくく、不織布が伸びる等の弊害があった。得られた人工皮革用基材中のポリウレタンは繊維上に不連続に存在して軽いものの、空隙間内接円面積は平均1263μm、350〜3000μmの空隙間内接円の割合が90.7%であった。また、剥離強力測定時に基布切断するほど剥離強力が高いものの、タテ引裂強力3.9kg、ヨコ引裂強力3.7kg、見掛け密度0.218g/cm3であり、機械的物性が高く軽いものの、風合いは柔らか過ぎでコシが無く、紳士靴、スポーツシューズ用の人工皮革に仕上げるための基材として劣ったものであった。
[Comparative Example 2]
Addition of a large amount of PVA A base material for artificial leather was obtained in the same manner as in Example 1 except that 30.0% by mass of PVA having an emulsion solid content was added to the aqueous polyurethane emulsion.
When the nonwoven fabric impregnated with PVA-added water-based emulsion, the viscosity was too high to be handled, and the nonwoven fabric was elongated. The polyurethane in the obtained base material for artificial leather is discontinuously present on the fibers and is light, but the air gap inscribed circle area has an average of 1263 μm 2 and the ratio of air gap inscribed circles of 350 to 3000 μm 2 is 90. 7%. Although the peel strength is higher as the base fabric is cut at the time of peel strength measurement, the vertical tear strength is 3.9 kg, the horizontal tear strength is 3.7 kg, the apparent density is 0.218 g / cm 3 , and the mechanical properties are high and light. The texture was too soft and firm, and was inferior as a base material for finishing artificial leather for men's shoes and sports shoes.

[比較例3]
PVA少量添加
水系ポリウレタンエマルジョンへエマルジョン固形分の3.1質量%のPVAを添加した以外は実施例1と同様の操作を行い、人工皮革用基材を得た。
得られた人工皮革用基材中のポリウレタンは繊維上に不連続に存在しているものの、空隙間内接円面積は平均1300μm、350〜3000μmの空隙間内接円の割合が84.3%であった。また、剥離強力測定時に基布切断するほど剥離強力が高いものの、タテ引裂強力2.9kg、ヨコ引裂強力2.1kg、見掛け密度0.207g/cm3であり、機械的物性が低く、軽いものの、風合いはボキ折れが目立ち、屈曲時は皺が目立って不良であり、紳士靴、スポーツシューズ用の人工皮革に仕上げるための基材として劣ったものであった。
[Comparative Example 3]
Addition of a small amount of PVA A base material for artificial leather was obtained in the same manner as in Example 1, except that PVA having an emulsion solid content of 3.1% by mass was added to the aqueous polyurethane emulsion.
The polyurethane in the obtained base material for artificial leather is discontinuously present on the fiber, but the air gap inscribed circle area averages 1300 μm 2 and the ratio of air gap inscribed circles of 350 to 3000 μm 2 is 84. 3%. Moreover, although the peel strength is higher as the base fabric is cut at the time of peel strength measurement, the tear tear strength is 2.9 kg, the horizontal tear strength is 2.1 kg, the apparent density is 0.207 g / cm 3 , and the mechanical properties are low and light. The texture was notable as a base material for finishing artificial leather for men's shoes and sports shoes.

[比較例4]
先抽出含浸
実施例1の繊維として海成分/島成分の質量比60/40を使用した不織布の抽出成分を先に抽出した後、PVA添加水系エマルジョンを含浸し、その後PVA及びエマルジョン添加剤を除去するため再度抽出除去した以外は実施例1と同様の操作を行い、人工皮革用基材を得た。
得られた人工皮革用基材中のポリウレタンは繊維上に不連続に存在しているものの、空隙間内接円面積は平均1359μm、350〜3000μmの空隙間内接円の割合が83.9%であった。また、剥離強力測定時に基布切断するほど剥離強力は高く、タテ引裂強力6.0kg、ヨコ引裂強力6.7kg、見掛け密度0.288g/cm3であり、機械的物性が高く軽いものの、得られた人工皮革用基材は、先に抽出しなかったものに比較し若干重くなる傾向で、また先に不織布の抽出成分を抽出したため、抽出工程による不織布のタテ伸びや厚みもくたるといった歪が残ったままであり、シワがあり、風合いがペーパーライクで劣ったものであった。
[Comparative Example 4]
Pre-extraction impregnation After extracting the extraction component of the non-woven fabric using the sea component / island component mass ratio 60/40 as the fiber of Example 1 before impregnation with the PVA-added aqueous emulsion, the PVA and the emulsion additive are then removed. Therefore, the same operation as in Example 1 was performed except that the material was extracted and removed again to obtain a base material for artificial leather.
Although the polyurethane in the obtained artificial leather base material is discontinuously present on the fiber, the air gap inscribed circle area averages 1359 μm 2 , and the ratio of air gap inscribed circles of 350 to 3000 μm 2 is 83. It was 9%. In addition, the peel strength is higher as the base fabric is cut at the time of peel strength measurement. The vertical tear strength is 6.0 kg, the horizontal tear strength is 6.7 kg, the apparent density is 0.288 g / cm 3 , and the mechanical properties are high and light. The resulting artificial leather base material tends to be slightly heavier than those not previously extracted, and because the extracted components of the nonwoven fabric are extracted first, the warp elongation and thickness of the nonwoven fabric due to the extraction process are increased. Remained, wrinkled, and paper-like inferior in texture.

本発明の人工皮革用基材は、機械的物性に優れ、柔軟かつ軽量で風合いに優れた素材感を有することから、鞄、紳士靴、スポーツシューズ用の人工皮革に仕上げるための基材として極めて有用である。   The base material for artificial leather of the present invention has excellent mechanical properties, is flexible, lightweight, and has a texture that is excellent in texture, so it is extremely useful as a base material for finishing artificial leather for bags, men's shoes, and sports shoes. Useful.

Claims (3)

三次元絡合不織布と高分子弾性体とからなる人工皮革用基材であって、下記要件(1)〜(3)をみたし、
見掛け密度が0.3g/cm未満であり、
人工皮革用基材において、前記高分子弾性体と前記三次元絡合不織布を形成する繊維の水難溶性高分子成分との質量比(高分子弾性体/三次元絡合不織布を形成する繊維の水難溶性高分子成分)が、固形分換算で15/85〜30/70の範囲である
人工皮革用基材。
要件(1):三次元絡合不織布を形成する繊維の表面に高分子弾性体が不連続で存在する。
要件(2):人工皮革用基材の厚さ方向に平行な断面における350μm未満の空隙間内接円面積を除いた空隙間内接円面積の平均が1250μm以下である。
要件(3):人工皮革用基材の厚さ方向に平行な断面における空隙間内接円面積400〜3000μmの空隙間内接円数が、全空隙間内接円数に対し85%以上である。
A base material for artificial leather consisting of a three-dimensional entangled nonwoven fabric and a polymer elastic body, which satisfies the following requirements (1) to (3),
The apparent density is less than 0.3 g / cm 3 ,
In the base material for artificial leather, the mass ratio of the polymer elastic body and the poorly water-soluble polymer component of the fiber forming the three-dimensional entangled nonwoven fabric (polymer elastic body / water fragility of the fiber forming the three-dimensional entangled nonwoven fabric) The base material for artificial leather whose soluble polymer component is in the range of 15/85 to 30/70 in terms of solid content.
Requirement (1): The polymer elastic body exists discontinuously on the surface of the fiber forming the three-dimensional entangled nonwoven fabric.
Requirement (2): The average gap inscribed circle area excluding the gap inscribed circle area of less than 350 μm 2 in the cross section parallel to the thickness direction of the base material for artificial leather is 1250 μm 2 or less.
Requirement (3): The number of void inscribed circles with a space inscribed circle area of 400 to 3000 μm 2 in a cross section parallel to the thickness direction of the base material for artificial leather is 85% or more with respect to the number of inscribed circles of all voids It is.
三次元絡合不織布に水系エマルジョン樹脂を含浸、凝固させて高分子弾性体を形成する工程を有する、請求項1に記載の人工皮革用基材の製造方法。   The method for producing a base material for artificial leather according to claim 1, further comprising a step of impregnating and solidifying a three-dimensional entangled nonwoven fabric with an aqueous emulsion resin to form a polymer elastic body. 三次元絡合不織布にポリビニルアルコールを添加した水系エマルジョン樹脂を含浸、凝固させて高分子弾性体を形成する工程を有する人工皮革用基材の製造方法であり、
前記人工皮革用基材が、下記要件(1)〜(3)を満たす人工皮革用基材の製造方法。
要件(1):三次元絡合不織布を形成する繊維の表面に高分子弾性体が不連続で存在する。
要件(2):人工皮革用基材の厚さ方向に平行な断面における350μm未満の空隙間内接円面積を除いた空隙間内接円面積の平均が1250μm以下である。
要件(3):人工皮革用基材の厚さ方向に平行な断面における空隙間内接円面積350〜3000μmの空隙間内接円数が、全空隙間内接円数に対し85%以上である。
It is a method for producing a base material for artificial leather having a step of impregnating and solidifying an aqueous emulsion resin in which polyvinyl alcohol is added to a three-dimensional entangled nonwoven fabric to form a polymer elastic body,
The manufacturing method of the base material for artificial leather with which the said base material for artificial leather satisfy | fills the following requirements (1)-(3).
Requirement (1): The polymer elastic body exists discontinuously on the surface of the fiber forming the three-dimensional entangled nonwoven fabric.
Requirement (2): The average gap inscribed circle area excluding the gap inscribed circle area of less than 350 μm 2 in the cross section parallel to the thickness direction of the base material for artificial leather is 1250 μm 2 or less.
Requirement (3): The number of void inscribed circles with a gap inscribed circle area of 350 to 3000 μm 2 in a cross section parallel to the thickness direction of the base material for artificial leather is 85% or more with respect to the number of all indented circle inscribed circles It is.
JP2016196461A 2011-03-23 2016-10-04 Artificial leather substrate Active JP6446012B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011064760 2011-03-23
JP2011064760 2011-03-23
JP2011163548 2011-07-26
JP2011163548 2011-07-26

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012008179A Division JP6022161B2 (en) 2011-03-23 2012-01-18 Artificial leather substrate

Publications (2)

Publication Number Publication Date
JP2017008478A true JP2017008478A (en) 2017-01-12
JP6446012B2 JP6446012B2 (en) 2018-12-26

Family

ID=48010532

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012008179A Active JP6022161B2 (en) 2011-03-23 2012-01-18 Artificial leather substrate
JP2016196461A Active JP6446012B2 (en) 2011-03-23 2016-10-04 Artificial leather substrate

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012008179A Active JP6022161B2 (en) 2011-03-23 2012-01-18 Artificial leather substrate

Country Status (1)

Country Link
JP (2) JP6022161B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021085427A1 (en) 2019-10-30 2021-05-06 旭化成株式会社 Artificial leather and production method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6022161B2 (en) * 2011-03-23 2016-11-09 株式会社クラレ Artificial leather substrate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0655999B2 (en) * 1985-09-10 1994-07-27 旭化成工業株式会社 Method for producing suede-like artificial leather
WO1999023289A1 (en) * 1997-10-31 1999-05-14 Teijin Limited Nonwoven fabric, and sheetlike materials and synthetic leathers made by using the same
JP2000273769A (en) * 1999-03-25 2000-10-03 Teijin Ltd Filament nonwoven fabric and artificial leather using the same
JP2001131877A (en) * 1999-11-02 2001-05-15 Kuraray Co Ltd Base substance for artificial leather
JP2005171426A (en) * 2003-12-12 2005-06-30 Kuraray Co Ltd Base material for artificial leather, various artificial leathers with the same as base, and method for manufacturing the base material for artificial leather
JP2007056417A (en) * 2005-08-26 2007-03-08 Kuraray Co Ltd Artificial leather base and method for producing the same
JP2008308784A (en) * 2007-06-14 2008-12-25 Kuraray Co Ltd Base material for artificial leather and method for producing the same
JP2013047404A (en) * 2011-03-23 2013-03-07 Kuraray Co Ltd Substrate for artificial leather

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169877A (en) * 1980-06-03 1981-12-26 Mitsubishi Rayon Co Production of flexible raised suede like artificial leather
JP4514977B2 (en) * 2000-03-16 2010-07-28 株式会社クラレ Composite fiber, hollow fiber, and method for producing hollow fiber using the composite fiber
JP2003073924A (en) * 2001-08-31 2003-03-12 Kuraray Co Ltd Conjugate fiber, hollow fiber and method for producing hollow fiber using the conjugate fiber
JP4086892B2 (en) * 2005-02-08 2008-05-14 トラディック株式会社 Artificial leather, substrate used therefor, and method for producing the same
KR101317055B1 (en) * 2005-12-14 2013-10-18 가부시키가이샤 구라레 Base for synthetic leather and synthetic leathers made by using the same
CN102971146B (en) * 2010-07-12 2016-01-20 可乐丽股份有限公司 Tunicle formation method and tunicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0655999B2 (en) * 1985-09-10 1994-07-27 旭化成工業株式会社 Method for producing suede-like artificial leather
WO1999023289A1 (en) * 1997-10-31 1999-05-14 Teijin Limited Nonwoven fabric, and sheetlike materials and synthetic leathers made by using the same
JP2000273769A (en) * 1999-03-25 2000-10-03 Teijin Ltd Filament nonwoven fabric and artificial leather using the same
JP2001131877A (en) * 1999-11-02 2001-05-15 Kuraray Co Ltd Base substance for artificial leather
JP2005171426A (en) * 2003-12-12 2005-06-30 Kuraray Co Ltd Base material for artificial leather, various artificial leathers with the same as base, and method for manufacturing the base material for artificial leather
JP2007056417A (en) * 2005-08-26 2007-03-08 Kuraray Co Ltd Artificial leather base and method for producing the same
JP2008308784A (en) * 2007-06-14 2008-12-25 Kuraray Co Ltd Base material for artificial leather and method for producing the same
JP2013047404A (en) * 2011-03-23 2013-03-07 Kuraray Co Ltd Substrate for artificial leather

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
2008/2009合成皮革見本集, vol. Vol.42, JPN6016016591, 1 November 2008 (2008-11-01), pages p.23 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021085427A1 (en) 2019-10-30 2021-05-06 旭化成株式会社 Artificial leather and production method therefor

Also Published As

Publication number Publication date
JP2013047404A (en) 2013-03-07
JP6446012B2 (en) 2018-12-26
JP6022161B2 (en) 2016-11-09

Similar Documents

Publication Publication Date Title
JP4869242B2 (en) Leather-like sheet and method for producing the same
JPWO2007081003A1 (en) Substrate for artificial leather and method for producing the same
TWI415996B (en) A base material for the artificial leather sheet and method of making the same, and a grain tone artificial leather sheet
WO2009157063A1 (en) Base material for artificial leather and process for producing the same
JP4913678B2 (en) Substrate for artificial leather and method for producing the same
TWI422728B (en) Substrate for artificial leather and producing method thereof
JP2014065980A (en) Leather-like sheet and method of producing leather-like sheet
KR101190402B1 (en) Process for producing intertwined ultrafine filament sheet
JP6446012B2 (en) Artificial leather substrate
JP5865086B2 (en) Manufacturing method of base material for artificial leather
JP2013047405A (en) Substrate for artificial leather and method for producing the same
JP5601886B2 (en) Substrate for artificial leather, method for producing the same, and artificial leather
JP5443296B2 (en) Non-woven fabric and method for producing base material for artificial leather
JP4549886B2 (en) Method for producing dense entangled nonwoven fabric
JP2012211414A (en) Method for manufacturing suede touch leather-like sheet
TWI467074B (en) Leather-like sheet and method for producing the same
JP2014001463A (en) Grained artificial leather and method for producing the same
JP2011058107A (en) Base material of artificial leather, and method of producing the same
JP2011058109A (en) Base material of artificial leather, and method of producing the same
JP2011058108A (en) Base material of artificial leather, and method of producing the same
JP6087073B2 (en) Silver-like artificial leather and method for producing the same
JP2012046849A (en) Method for producing suede tone leather like sheet
JP2014065979A (en) Leather-like sheet and method of producing leather-like sheet
JP2013081928A (en) Method of coating polymeric elastomer aqueous dispersion, and method of manufacturing grain artificial leather
JP3961296B2 (en) Leather-like sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181130

R150 Certificate of patent or registration of utility model

Ref document number: 6446012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150