JP2017006823A - Deaeration method and deaerator - Google Patents

Deaeration method and deaerator Download PDF

Info

Publication number
JP2017006823A
JP2017006823A JP2015122804A JP2015122804A JP2017006823A JP 2017006823 A JP2017006823 A JP 2017006823A JP 2015122804 A JP2015122804 A JP 2015122804A JP 2015122804 A JP2015122804 A JP 2015122804A JP 2017006823 A JP2017006823 A JP 2017006823A
Authority
JP
Japan
Prior art keywords
deaeration
cleaning liquid
tank
degassing
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015122804A
Other languages
Japanese (ja)
Other versions
JP5999857B1 (en
Inventor
佳英 柴野
Yoshihide Shibano
佳英 柴野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BLUE STAR R&D CO Ltd
Original Assignee
BLUE STAR R&D CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BLUE STAR R&D CO Ltd filed Critical BLUE STAR R&D CO Ltd
Priority to JP2015122804A priority Critical patent/JP5999857B1/en
Application granted granted Critical
Publication of JP5999857B1 publication Critical patent/JP5999857B1/en
Publication of JP2017006823A publication Critical patent/JP2017006823A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently deaerate, eliminate such labor hour as exchange of a hollow fiber or the like, and to downsize a device in the deaeration of a cleaning water for enhancing the impact effect of cavitation at ultrasonic oscillation.SOLUTION: A deaeration method includes: controlling a vacuum in a deaeration tank 4A to a prescribed pressure or lower by emptying of the deaeration tank 4A and vacuum drawing using a vacuum pump 2; making a cleaning liquid flow in the deaeration tank 4A to keep a liquid level constant by a liquid level gauge 12; continuing vacuum drawing from the upper part of the deaeration tank 4A while oscillating the ultrasonic wave of the oscillation frequency of 25 KHz to 2 MHz by an ultrasonic transducer 3; and after elapse of a prescribed time, stopping the ultrasonic wave oscillation and vacuum drawing to make the cleaning liquid in the tank 4A flow out. Those processes are intermittently repeated. Those deaeration processes may be continuously carried out.SELECTED DRAWING: Figure 1

Description

本発明は、洗浄液中に超音波を発振してキャビテーションの効果でバリ取り・洗浄を行うような際、キャビテーションの衝撃効果を高めるため洗浄液から脱気する際の技術に関する。   The present invention relates to a technique for degassing a cleaning liquid in order to enhance the impact effect of cavitation when deburring and cleaning is performed by the effect of cavitation by oscillating ultrasonic waves in the cleaning liquid.

従来、超音波によって洗浄水に浸漬した被処理物のバリ取りを行うような場合、本発明者の提案に係る超音波バリ取り、洗浄装置における脱気装置(例えば、特許文献1、特許文献2参照。)などの技術が一般的であり、この技術では、洗浄槽から引き出した洗浄水を脱気筒内の複数本の中空糸に導くことにより液体と気体の接触面積を増やし、中空糸の外側から真空ポンプによって真空引きすることで、洗浄水中に溶解する酸素等の気体を脱気し、脱気した洗浄水を再び洗浄槽内に導入し、これを循環させながら洗浄水中で被処理物のバリ取りを行うようにしている。ここで、洗浄水を循環させながら脱気するのは、洗浄槽内における超音波発振に伴うキャビテーションの衝撃力を向上させるためであり、洗浄水を脱気することにより、キャビテーションの衝撃力が極めて高まり、微小なバリでも除去できるようになる。
因みに、この脱気度としては、10分程度以内に脱気後の溶存酸素(DO値)が2.5mg/l程度以下であれば、バリ取り、洗浄が効率的に行われて実用に供することが本発明者等の経験によって確かめられている。
Conventionally, when deburring a workpiece immersed in cleaning water using ultrasonic waves, the ultrasonic deburring and degassing device in the cleaning device according to the proposal of the present inventors (for example, Patent Document 1 and Patent Document 2). In this technology, the contact area between the liquid and gas is increased by introducing the wash water drawn from the wash tank to the multiple hollow fibers in the decylinder, and the outside of the hollow fiber. The vacuum pump is used to evacuate the gas such as oxygen dissolved in the wash water, and the degassed wash water is reintroduced into the wash tank. Deburring is performed. Here, degassing while circulating cleaning water is to improve the impact force of cavitation accompanying ultrasonic oscillation in the cleaning tank. By degassing the cleaning water, the impact force of cavitation is extremely high. It will be able to remove even a small burr.
Incidentally, as the degree of deaeration, if the dissolved oxygen (DO value) after deaeration is about 2.5 mg / l or less within about 10 minutes, deburring and cleaning are efficiently performed for practical use. This has been confirmed by the inventors' experience.

実開平6−34783号公報Japanese Utility Model Publication No. 6-34783 特開2001−129306号公報JP 2001-129306 A

ところが、上記のような技術は、洗浄水を中空糸内を流通させて脱気するようにしているため、脱気に時間がかかり作業時間に制約を受けるという問題があった。また、中空糸等を使用する技術では、ある程度の期間が経過すると、中空糸の目が詰まったりして脱気性能が低下するおそれがあり、定期的に交換する等の保守整備が必要であった。さらに、中空糸を使用した脱気装置の場合、脱気装置が大型化するという問題もあり、しかも、中空糸の場合は、洗浄液として水、特に純水しか使用することができず、洗浄剤や炭化水素系溶剤などを使用した洗浄液には適用できないという問題があった。   However, the technique as described above has a problem that it takes time for degassing and the working time is restricted because the washing water is circulated through the hollow fiber to degas. In addition, in the technology using hollow fibers or the like, after a certain period of time, the hollow fibers may become clogged and the deaeration performance may deteriorate, and maintenance such as periodic replacement is necessary. It was. Furthermore, in the case of a deaeration device using a hollow fiber, there is also a problem that the deaeration device is increased in size, and in the case of a hollow fiber, only water, particularly pure water can be used as a cleaning liquid. There is a problem that it cannot be applied to cleaning liquids using hydrocarbon solvents or the like.

そこで本発明は、特に、バリ取り・洗浄装置において洗浄水から脱気する際、初期値の溶存酸素(DO値)7mg/lの洗浄水が、10分以内にDO値2.5mg/l以下になるようにするとともに、交換等の保守整備の必要性をなくし、また、装置の小型化を図り、また洗浄液の制約をなくすことを目的とする。   Therefore, in the present invention, in particular, when degassing from the cleaning water in the deburring / cleaning apparatus, the initial value of the dissolved oxygen (DO value) 7 mg / l is less than 2.5 mg / l within 10 minutes. The purpose is to eliminate the need for maintenance such as replacement, to reduce the size of the apparatus, and to eliminate restrictions on the cleaning liquid.

上記目的を達成するため本発明は、洗浄液中に溶解する気体を脱気するための脱気方法において、脱気槽内を空の状態にして真空引きすることで脱気槽内の真空度を所定圧以下にする工程と、脱気槽の所定領域内に所定量の洗浄液を流入させた後、流入を停止させる工程と、脱気槽内の洗浄液に向けて振動周波数25KHz〜2MHzの超音波を発振しながら脱気槽の洗浄液占有領域以外の部分から真空引きをする工程と、所定時間経過した時点で超音波発振と真空引きを停止して脱気槽内の洗浄液を流出させる工程を設け、これら工程を断続的に繰り返すか、または、真空引きした脱気槽内に、脱気槽のハイレベル領域まで洗浄液を流入させた後、流入を停止させる工程と、脱気槽内の洗浄液に向けて振動周波数25KHz〜2MHzの超音波を発振しながら脱気槽の洗浄液占有領域以外の部分から真空引きする工程と、所定時間経過した時点で超音波発振と真空引きを停止して脱気槽内の洗浄液をローレベル領域まで流出させる工程を設け、前記ハイレベル領域まで洗浄液を流入させる工程からローレベル領域まで洗浄液を流出させる工程を連続的に繰り返すか、または、真空引きした脱気槽内の所定領域内に洗浄液を流入させ、流入を継続しながら洗浄液に向けて振動周波数25KHz〜2MHzの超音波を発振しながら脱気槽の洗浄液占有領域以外の部分から真空引きする工程と、前記脱気槽内の脱気室に所定高さの仕切りを介して隣接する脱気室内のオーバーフロー室内に、仕切りをオーバーフローした洗浄液を流入させる工程と、オーバーフロー室の洗浄液が所定の量に達したらこれを脱気槽外に流出させる工程を設けるようにした。   In order to achieve the above object, the present invention relates to a degassing method for degassing a gas dissolved in a cleaning liquid, and the degree of vacuum in the degassing tank is increased by evacuating the degassing tank with an empty state. A step of lowering the pressure below a predetermined pressure, a step of flowing a predetermined amount of cleaning liquid into a predetermined region of the deaeration tank, and then stopping the inflow; and an ultrasonic wave having a vibration frequency of 25 KHz to 2 MHz toward the cleaning liquid in the deaeration tank There are provided a step of evacuating from a portion other than the cleaning liquid occupation area of the deaeration tank while oscillating, and a step of causing the cleaning liquid to flow out in the deaeration tank by stopping the ultrasonic oscillation and evacuation when a predetermined time has elapsed. These steps are intermittently repeated, or the cleaning liquid is allowed to flow into the deaeration tank that has been evacuated to the high level region of the deaeration tank, and then the inflow is stopped and the cleaning liquid in the deaeration tank Towards a vibration frequency of 25 KHz to 2 MHz The process of evacuating from the part other than the area occupied by the cleaning liquid in the deaeration tank while oscillating the wave, and the ultrasonic wave oscillation and evacuation are stopped when a predetermined time has elapsed, and the cleaning liquid in the deaeration tank flows out to the low level area A step of allowing the cleaning solution to flow into the high level region and a step of flowing the cleaning solution from the low level region to the low level region continuously repeated, or allowing the cleaning solution to flow into a predetermined region in the evacuated deaeration tank. Evacuating from a portion other than the region occupied by the cleaning liquid in the deaeration tank while oscillating ultrasonic waves having a vibration frequency of 25 KHz to 2 MHz toward the cleaning liquid while continuing the inflow, and a predetermined degassing chamber in the deaeration tank A step of flowing the cleaning liquid overflowing the partition into the overflow chamber of the adjacent deaeration chamber through the height partition, and a predetermined amount of the cleaning liquid in the overflow chamber Reached and to provide a step to flow out it out deaeration tank.

すなわち、最初の方法バッチ式の処理方法であり、二番目と三番目の方法は連続式の処理方法であるが、いずれも洗浄液に向けて振動周波数25KHz〜2MHzの超音波を発振することにより、洗浄液に溶解する気体が泡状になって液面上に分離浮遊するため、真空引きによって効率的に脱気することができる。この際、最初に、脱気槽内の真空度を所定圧以下にする工程の所定圧とは、−96Kpa程度であり、この程度の圧力以下に減圧することで、給水路を通して洗浄液を脱気槽に導入する際、給水路の開閉バルブを開くだけで、自動的に洗浄液が流れ込むようになる。
また、この際、洗浄液に向けて発振される超音波の振動周波数が25KHz未満であったり、2MHzを超えたりすると、洗浄液に溶解する気体が泡状になって分離される能力が低下する。また、特に、振動周波数が40KHzの場合、分離能力が極めて高いことが実験の結果、明らかになった。この実験結果から、特に振動周波数が35〜45KHzの範囲であれば分離能力が高くて好適なものと思われる。
That is, the first method is a batch processing method, and the second and third methods are continuous processing methods, both of which generate ultrasonic waves with a vibration frequency of 25 KHz to 2 MHz toward the cleaning liquid, Since the gas dissolved in the cleaning liquid becomes a foam and separates and floats on the liquid surface, it can be efficiently degassed by evacuation. At this time, first, the predetermined pressure in the step of reducing the degree of vacuum in the deaeration tank to a predetermined pressure or less is about −96 Kpa, and by depressurizing the pressure below this level, the cleaning liquid is deaerated through the water supply channel. When it is introduced into the tank, the cleaning liquid automatically flows by simply opening the open / close valve of the water supply channel.
At this time, if the vibration frequency of the ultrasonic wave oscillated toward the cleaning liquid is less than 25 KHz or exceeds 2 MHz, the ability of the gas dissolved in the cleaning liquid to be foamed and separated is lowered. In particular, when the vibration frequency is 40 KHz, it has been clarified as a result of experiments that the separation capability is extremely high. From this experimental result, it is considered that the separation capability is particularly high when the vibration frequency is in the range of 35 to 45 KHz.

また、洗浄液中に溶解する気体を脱気するための脱気装置において、真空引きラインを通して真空引きポンプが接続され且つ液面計を備えた脱気槽と、洗浄液を脱気槽に送り込むための給水路およびその途中の開閉バルブと、脱気槽の洗浄液を脱気槽外に送り出すための排水路およびその途中の開閉バルブを設け、前記脱気槽には、脱気槽内の洗浄液に向けて振動周波数25KHz〜2MHzの超音波を発振することのできる超音波振動子を設けるか、または、前記液面計として、脱気槽のハイレベル領域を検知するハイレベル液面計と、ローレベル領域を検知するローレベル液面計を設けるか、または、真空引きラインを通して真空引きポンプが接続される脱気槽と、洗浄液を脱気槽に送り込むための給水路と、脱気槽の洗浄液を脱気槽外に送り出すための排水路を設け、この排水路の途中には、排水ポンプを配設するとともに、前記脱気槽の内部を、所定の高さの仕切りを介して脱気室とオーバーフロー室に区画し、このオーバーフロー室に液面計を設け、また、前記給水路は脱気室に、前記排水路はオーバーフロー室にそれぞれ連通させ、且つ、脱気室側には、脱気室内の洗浄液に向けて振動周波数25KHz〜2MHzの超音波を発振することのできる超音波振動子を配設するようにした。   Further, in a degassing apparatus for degassing a gas dissolved in the cleaning liquid, a degassing tank having a liquid level gauge connected to a vacuum pump through a vacuuming line, and for feeding the cleaning liquid to the degassing tank A water supply channel, an opening / closing valve in the middle of the water supply channel, a drainage channel for sending the cleaning liquid of the deaeration tank out of the deaeration tank, and an opening / closing valve in the middle of the water supply path are provided. An ultrasonic transducer capable of oscillating an ultrasonic wave having a vibration frequency of 25 KHz to 2 MHz, or a high level liquid level gauge for detecting a high level region of a deaeration tank as the liquid level gauge, and a low level Provide a low level liquid level gauge to detect the area, or a deaeration tank to which a vacuum pump is connected through a vacuum line, a water supply channel for sending the cleaning liquid to the deaeration tank, and a cleaning liquid for the deaeration tank Outside the deaeration tank A drainage channel is provided for delivery, and a drainage pump is provided in the middle of the drainage channel, and the inside of the deaeration tank is divided into a deaeration chamber and an overflow chamber via a partition having a predetermined height. A liquid level gauge is provided in the overflow chamber, the water supply channel communicates with the deaeration chamber, the drainage channel communicates with the overflow chamber, and the deaeration chamber side faces the cleaning liquid in the deaeration chamber. An ultrasonic vibrator capable of oscillating ultrasonic waves having a vibration frequency of 25 KHz to 2 MHz is provided.

そして、一番目の装置は、バッチ式処理方法に適用される装置であり、二番目と三番目の装置は、連続式処理方法に適用される装置である。この際、液面計は、脱気槽の外部に設けるようにすれば、超音波の影響を受けないため耐久性の面から好適である。また、中空糸を使用することに較べて装置の小型化が図れ、しかも洗浄液の制約を受けることがない。   The first device is a device applied to the batch processing method, and the second and third devices are devices applied to the continuous processing method. At this time, if the liquid level gauge is provided outside the deaeration tank, it is not affected by the ultrasonic wave, which is preferable from the viewpoint of durability. Further, the apparatus can be reduced in size as compared with the use of the hollow fiber and is not restricted by the cleaning liquid.

洗浄液中に発振した超音波のキャビテーションの衝撃効果を高めるため、洗浄液中に溶解する気体を脱気する脱気方法において、従来のように中空糸を利用せず、特定の超音波振動周波数範囲の超音波を利用することで、脱気効果が向上するとともに、脱気に要する時間の短縮を図ることができ、しかも、定期的に部品を交換する等の手間が省ける。また装置の小型化が図れ、洗浄液の制約を受けないため都合がよい。   In order to enhance the impact effect of cavitation of ultrasonic waves oscillated in the cleaning liquid, in the degassing method for degassing the gas dissolved in the cleaning liquid, a hollow fiber is not used as in the past, and a specific ultrasonic vibration frequency range is used. By using ultrasonic waves, the deaeration effect can be improved, the time required for deaeration can be shortened, and the trouble of periodically replacing parts can be saved. Further, the apparatus can be reduced in size and is not restricted by the cleaning liquid, which is convenient.

本発明に係るバッチ式脱気装置が使用されるバリ取り・洗浄装置の第1構成例の説明図である。It is explanatory drawing of the 1st structural example of the deburring and washing | cleaning apparatus in which the batch type deaeration apparatus which concerns on this invention is used. 本発明に係る連続式脱気装置が使用されるバリ取り・洗浄装置の第2構成例の説明図である。It is explanatory drawing of the 2nd structural example of the deburring and washing | cleaning apparatus in which the continuous deaeration apparatus which concerns on this invention is used. 本発明に係る連続式脱気装置が使用されるバリ取り・洗浄装置の第3構成例の説明図である。It is explanatory drawing of the 3rd structural example of the deburring and washing | cleaning apparatus in which the continuous deaeration apparatus which concerns on this invention is used.

本発明に係る脱気方法および脱気装置の一例について添付した図面に基づき説明する。
本発明に係る脱気方法および脱気装置は、特に、超音波を利用したバリ取り・洗浄において超音波発振時のキャビテーションの衝撃効果を高めるため、洗浄水から脱気する際の技術に関し、効率的に脱気するとともに、中空糸等を交換するような手間をなくすことができるようにされている。
An example of a degassing method and a degassing apparatus according to the present invention will be described with reference to the accompanying drawings.
The degassing method and degassing apparatus according to the present invention relates to a technique for degassing from cleaning water in order to enhance the impact effect of cavitation during ultrasonic oscillation particularly in deburring and cleaning using ultrasonic waves. Thus, it is possible to eliminate the trouble of deaeration and replacing the hollow fiber and the like.

そこで、まず、バッチ式処理方式の脱気装置から説明する。
バッチ式処理方式の脱気装置1Aは、図1に示すように、真空引きライン15を通して真空ポンプ2が接続され且つ振動周波数25KHz〜2MHzの超音波振動子3が取り付けられる脱気槽4Aを備えており、真空ポンプ2は、脱気槽4Aの上面側に接続されるとともに、超音波振動子3は、脱気槽4Aの底面側に取り付けられている。
First, a batch type degassing apparatus will be described.
As shown in FIG. 1, the batch type degassing apparatus 1 </ b> A includes a deaeration tank 4 </ b> A to which a vacuum pump 2 is connected through a vacuum line 15 and an ultrasonic vibrator 3 having a vibration frequency of 25 KHz to 2 MHz is attached. The vacuum pump 2 is connected to the upper surface side of the deaeration tank 4A, and the ultrasonic transducer 3 is attached to the bottom surface side of the deaeration tank 4A.

また、この脱気槽4Aの一方側側面には、脱気槽4A内に洗浄液を導入することのできる給水路5が接続され、この給水路5には、給水路を開閉するための開閉バルブとしてのサーボバルブ6が取り付けられている。また、脱気槽A4の他方側側面には、脱気槽4A内の洗浄液を脱気槽4A外に排水するための排水路7が接続され、この排水路7にも、排水路を開閉するための開閉バルブとしてのサーボバルブ8が取り付けられている。
そして、本実施例では、前記給水路5の延出端部には、超音波バリ取り・洗浄に使用する洗浄槽20内に貯留される洗浄液中に浸漬されて洗浄液を吸い込むことのできる吸水部材10が接続され、前記排水路7の延出端部には、洗浄槽20内に洗浄液を戻すことのできる送水部材11が接続されている。
Further, a water supply path 5 through which the cleaning liquid can be introduced into the deaeration tank 4A is connected to one side surface of the deaeration tank 4A, and an open / close valve for opening and closing the water supply path is connected to the water supply path 5. Servo valve 6 is attached. Further, a drainage path 7 for draining the cleaning liquid in the degassing tank 4A to the outside of the degassing tank 4A is connected to the other side surface of the degassing tank A4. The drainage path 7 is also opened and closed. A servo valve 8 is attached as an opening / closing valve.
In this embodiment, the water absorption member that can be immersed in the cleaning liquid stored in the cleaning tank 20 used for ultrasonic deburring and cleaning at the extended end of the water supply channel 5 and suck in the cleaning liquid. 10 is connected, and a water supply member 11 capable of returning the cleaning liquid into the cleaning tank 20 is connected to the extending end of the drainage channel 7.

また、脱気槽4Aには、脱気槽4A内に給水される洗浄液の液面のレベルを検出することのできる液面計12が設けられており、この液面計12は、本実施例では、脱気槽4Aの外側で液面を検知して液面を制御できる方式のものを採用し、脱気槽4A内部の洗浄液に超音波を発振しても超音波の影響を受けて故障等が起きにくくなるようにしている。
また、この液面計は、液面が所定の高さに達すると自動的に洗浄液の給水が停止するようにされている。
The deaeration tank 4A is provided with a liquid level gauge 12 capable of detecting the level of the cleaning liquid supplied into the deaeration tank 4A. Then, a system that can control the liquid level by detecting the liquid level outside the deaeration tank 4A is adopted, and even if an ultrasonic wave is oscillated in the cleaning liquid inside the deaeration tank 4A, it is affected by the ultrasonic wave and breaks down. Etc. are made difficult to occur.
In addition, the liquid level meter automatically stops supplying the cleaning liquid when the liquid level reaches a predetermined height.

また、脱気槽4Aの上面には、脱気槽4A内の空間部を大気に開放するための大気解放ライン13およびこのラインを開閉するための開閉バルブとしてのサーボバルブ14が設けられており、前記真空引きライン15にも、開閉バルブとしてのサーボバルブ16が取り付けられている。   On the upper surface of the deaeration tank 4A, an air release line 13 for opening a space in the deaeration tank 4A to the atmosphere and a servo valve 14 as an opening / closing valve for opening and closing the line are provided. A servo valve 16 as an open / close valve is also attached to the vacuum line 15.

一方、被処理物のバリ取り・洗浄を行う前記洗浄槽20側には、その底面側に、複数の超音波振動子21を備えた振動板22が配設されており、洗浄液は、洗浄槽20内の振動板22からの振動が伝達可能な状態に貯留されている。
そして、前記脱気装置1A側の吸水部材10と、送水部材11は、洗浄槽20内の洗浄液中に浸漬され、これを循環させて洗浄液中に溶解する気体を脱気するようにされている。
因みに、洗浄槽20側の超音波振動子21は、振動周波数50KHz未満、好ましくは20〜25KHzとし、強力なキャビテーションを発生してバリ取り効果が高まるようにしている。
On the other hand, a vibration plate 22 having a plurality of ultrasonic vibrators 21 is disposed on the bottom surface side of the cleaning tank 20 for deburring and cleaning the object to be processed. The vibration from the diaphragm 22 in 20 is stored in a state where it can be transmitted.
The water absorption member 10 and the water supply member 11 on the deaeration device 1A side are immersed in the cleaning liquid in the cleaning tank 20, and are circulated to degas the gas dissolved in the cleaning liquid. .
Incidentally, the ultrasonic vibrator 21 on the cleaning tank 20 side has a vibration frequency of less than 50 KHz, preferably 20 to 25 KHz, and generates strong cavitation so that the deburring effect is enhanced.

以上のような脱気装置1Aの作用等について説明する。
脱気槽4Aが空の状態で、給水路5のサーボバルブ6や、排水路7のサーボバルブ8や、大気解放ライン13のサーボバルブ14をいずれも閉じた状態で、真空ポンプ2を作動させ、真空引きライン15のサーボバルブ16を開にして脱気槽4A内を真空引きする。そして脱気槽4Aの減圧程度が−96Kpa程度になるまで真空引きすると、給水路5のサーボバルブ6が開かれる。すると、脱気槽4A内の負圧により洗浄槽20内の洗浄液が脱気槽4A内に流れ込み、液面計12により洗浄液の液面高さが所定量に達したことが検知されると、給水路5のサーボバルブ6は自動的に閉じられる。この洗浄液の吸引の際、必要に応じて真空ポンプ2の作動は継続される。
The operation of the deaeration device 1A as described above will be described.
While the deaeration tank 4A is empty, the servo pump 6 of the water supply channel 5, the servo valve 8 of the drainage channel 7, and the servo valve 14 of the air release line 13 are all closed, and the vacuum pump 2 is operated. Then, the servo valve 16 of the evacuation line 15 is opened to evacuate the deaeration tank 4A. When the vacuum is drawn until the depressurization degree of the deaeration tank 4A becomes about -96 Kpa, the servo valve 6 of the water supply passage 5 is opened. Then, the cleaning liquid in the cleaning tank 20 flows into the degassing tank 4A due to the negative pressure in the degassing tank 4A, and when the liquid level gauge 12 detects that the liquid level of the cleaning liquid has reached a predetermined amount, The servo valve 6 of the water supply path 5 is automatically closed. During the suction of the cleaning liquid, the operation of the vacuum pump 2 is continued as necessary.

脱気槽4A内に所定量の洗浄液が導入されると、給水路5のサーボバルブ6が閉じられて真空ポンプ2による真空引きを継続しながら超音波振動子3が駆動される。すると、超音波振動子3から発振される25KHz〜2MHzの振動周波数により、洗浄液に溶解する気体が気泡となって分離され、洗浄液内を浮遊して液面上に排出され、真空ポンプ2によって吸引される。そして、数分程度(10分以内)に超音波振動子3の作動によって、洗浄液に溶解する溶存気体量が2.5mg/l以下となる。
そして、タイマー等により数分程度で超音波振動子3の作動が停止すると、真空引きライン15のサーボバルブ16が閉じられ大気解放ライン13のサーボバルブ14が開かれるとともに、排水路7のサーボバルブ8が開かれて、脱気された洗浄液は洗浄槽20内に戻される。そして、このような脱気槽4Aによる脱気、すなわち、所定量の洗浄液の吸引、脱気、洗浄液の戻しが断続的に繰り返される。
When a predetermined amount of cleaning liquid is introduced into the deaeration tank 4A, the servo valve 6 of the water supply channel 5 is closed, and the ultrasonic vibrator 3 is driven while the vacuum pump 2 continues evacuation. Then, the gas dissolved in the cleaning liquid is separated into bubbles by the vibration frequency of 25 KHz to 2 MHz oscillated from the ultrasonic vibrator 3, floats in the cleaning liquid, is discharged onto the liquid surface, and is sucked by the vacuum pump 2. Is done. Then, the amount of dissolved gas dissolved in the cleaning liquid becomes 2.5 mg / l or less by the operation of the ultrasonic vibrator 3 within a few minutes (within 10 minutes).
When the operation of the ultrasonic transducer 3 is stopped in about a few minutes by a timer or the like, the servo valve 16 of the evacuation line 15 is closed, the servo valve 14 of the atmosphere release line 13 is opened, and the servo valve of the drainage channel 7 is opened. 8 is opened, and the degassed cleaning liquid is returned to the cleaning tank 20. And deaeration by such deaeration tank 4A, ie, suction of a predetermined amount of cleaning liquid, deaeration, and return of cleaning liquid are repeated intermittently.

因みに、従来の中空糸を使用した脱気装置の場合、定期的に中空糸を交換する必要があり、装置の大型化も伴っていたが、本願の場合は、定期的に中空糸を交換等する必要もなく、装置の小型化も図れる。また、洗浄液として、洗浄剤や炭化水素系溶剤を含む場合も適用できるため、洗浄効果を高めることができる。   Incidentally, in the case of a conventional deaeration device using a hollow fiber, it was necessary to periodically replace the hollow fiber, which was accompanied by an increase in the size of the device, but in the case of this application, periodically replace the hollow fiber, etc. It is not necessary to reduce the size of the apparatus. Moreover, since it is applicable also when a washing | cleaning agent and a hydrocarbon-type solvent are included as a washing | cleaning liquid, the washing | cleaning effect can be improved.

なお、本実施例では、脱気槽4Aの振動周波数を25KH〜2MHzとしているが、下表は、周波数を変化させて所定時間後に溶存酸素(DO値)を測定したときの実測値である。この結果、25KHz〜2MHzの範囲であれば、10分以内に脱気後の溶存酸素(DO値)が2.5mg/l以下となり、十分実用に供することが判明した。なお、この振動周波数のうち、特に振動周波数40KHzの場合は、格別脱気効果が良好であることが判明し、この結果から振動周波数35〜45KHzの範囲の振動周波数であれば特に有効であると思われる。   In this embodiment, the vibration frequency of the deaeration tank 4A is set to 25 KH to 2 MHz, but the table below shows actual measurement values when the dissolved oxygen (DO value) is measured after a predetermined time by changing the frequency. As a result, in the range of 25 KHz to 2 MHz, it was found that the dissolved oxygen (DO value) after degassing was 2.5 mg / l or less within 10 minutes, which was sufficiently practical. Of these vibration frequencies, especially when the vibration frequency is 40 KHz, it has been found that the special deaeration effect is good. From this result, it is particularly effective if the vibration frequency is in the range of 35 to 45 KHz. Seem.

Figure 2017006823
Figure 2017006823

次に、連続処理方式の脱気装置1Bについて、まず、図2に示す構成例の場合から説明する。
図2に示すように、この構成例では、脱気槽4Bの液面を検知する液面計として、ハイレベル領域まで洗浄液が充填されていることを検知するハイレベル液面計12aと、ローレベル領域まで洗浄液が充填されていることを検知するローレベル液面計12bを設けている。
Next, the degassing apparatus 1B of the continuous processing method will be described first from the case of the configuration example shown in FIG.
As shown in FIG. 2, in this configuration example, as a liquid level gauge for detecting the liquid level in the deaeration tank 4B, a high level liquid level gauge 12a for detecting that the cleaning liquid is filled up to the high level region, A low level liquid level gauge 12b for detecting that the cleaning liquid is filled up to the level region is provided.

そして、その他の構成は、前記バッチ式処理方式の脱気装置1Aと同様であるが、ハイレベル液面計12aは、その検知により給水路5のサーボバルブ6が制御されて自動的に洗浄液の給水が停止するようにされ、また、ローレベル液面計12bは、その検知により、排水路7のサーボバルブ8が制御されて、脱気槽4B内の洗浄液の排水が停止するようにされている。   The other configuration is the same as that of the batch type degassing apparatus 1A. However, the high level liquid level gauge 12a automatically controls the cleaning of the cleaning liquid by controlling the servo valve 6 of the water supply channel 5 based on the detection. The water supply is stopped, and the low level liquid level gauge 12b is controlled so that the servo valve 8 of the drainage channel 7 is controlled and the drainage of the cleaning liquid in the deaeration tank 4B is stopped. Yes.

以上のような脱気装置1Bにおいて、脱気槽4A内を真空引きして、脱気槽4B内に洗浄液を流入させる工程は、前記したバッチ式処理方式の脱気装置1Aの場合と同様である。そして、ハイレベル液面計12aが検知すると、給水路5のサーボバルブ6は自動的に閉じられるとともに、超音波振動子3が駆動される。この間、真空ポンプ2による真空引きは継続されている。そして、所定時間の脱気が完了すると、排水路7のサーボルブ8が制御されて排水路7からの排水が開始され、ローレベル液面計12bの検知によって、サーボバルブ8が閉じられる。次いで、給水路5のサーボバルブ6が開放されて脱気槽4B内に洗浄液が給水され、ハイレベル液面計12aの検知によって給水が停止し、超音波振動子3が所定時間駆動され、これが繰り返される。   In the degassing apparatus 1B as described above, the process of evacuating the degassing tank 4A and flowing the cleaning liquid into the degassing tank 4B is the same as in the case of the degassing apparatus 1A of the batch type processing method described above. is there. Then, when the high level liquid level gauge 12a detects, the servo valve 6 of the water supply channel 5 is automatically closed and the ultrasonic vibrator 3 is driven. During this time, evacuation by the vacuum pump 2 is continued. When the deaeration for a predetermined time is completed, the servo valve 8 of the drainage channel 7 is controlled to start drainage from the drainage channel 7, and the servo valve 8 is closed by the detection of the low level liquid level gauge 12b. Next, the servo valve 6 of the water supply channel 5 is opened, the cleaning liquid is supplied into the deaeration tank 4B, the water supply is stopped by the detection of the high level liquid level gauge 12a, and the ultrasonic vibrator 3 is driven for a predetermined time. Repeated.

以上のような要領によって、連続的に脱気処理することができる。   The deaeration process can be continuously performed in the manner described above.

次に、他の連続処理方式の脱気装置1Cの構成例について図3に基づき説明する。
この脱気装置1Cの脱気槽4Cは、内部が所定高さの仕切り17によって脱気室18aとオーバーフロー室18bの各領域に区画され、給水路5は脱気室18a内に接続されるとともに、排水路7はオーバーフロー室18bに接続されている。また、超音波振動子3は、脱気室18a側の底面に配置されている。また、排水路7の途中には、排水ポンプ19が配設され、また、オーバーフロー室18bには、オーバーフロー室18bに流れ込む洗浄液の液面を検知するための液面計12が設けられおり、この液面計12が検知する信号によって前記排水ポンプ19の作動を制御するようにされている。
Next, a configuration example of another continuous processing type deaeration device 1C will be described with reference to FIG.
The deaeration tank 4C of the deaeration device 1C is partitioned into a deaeration chamber 18a and an overflow chamber 18b by a partition 17 having a predetermined height, and the water supply channel 5 is connected to the deaeration chamber 18a. The drainage channel 7 is connected to the overflow chamber 18b. Moreover, the ultrasonic transducer | vibrator 3 is arrange | positioned at the bottom face by the side of the deaeration chamber 18a. A drainage pump 19 is disposed in the middle of the drainage channel 7, and a liquid level gauge 12 is provided in the overflow chamber 18b for detecting the level of the cleaning liquid flowing into the overflow chamber 18b. The operation of the drain pump 19 is controlled by a signal detected by the liquid level gauge 12.

また、その他の構成は、前記各例の場合と同様の構成であり、超音波振動子3の性能等も同様である。   Other configurations are the same as those in the above examples, and the performance of the ultrasonic transducer 3 is the same.

以上のような連続処理方式の脱気装置1Cの作用等について説明する。
当初、脱気槽4C内に洗浄液が導入されるまでの工程は、前記例の場合と同様である。そして、脱気槽4C内の真空引きが終えると、給水路5のサーボバルブ6や、排水路7のサーボバルブ8が開かれ、脱気槽4C内への洗浄液の導入が開始される。そして、脱気槽4Cの脱気室18a内の液面が所定のレベル(例えば、液面が仕切り17の高さより若干低い位置等)に達した時点で真空ポンプ2による真空引きが継続されながら超音波振動子3が駆動される。
The operation and the like of the above-described continuous processing type deaeration device 1C will be described.
Initially, the steps until the cleaning liquid is introduced into the deaeration tank 4C are the same as those in the above example. When the evacuation of the deaeration tank 4C is completed, the servo valve 6 of the water supply channel 5 and the servo valve 8 of the drainage channel 7 are opened, and the introduction of the cleaning liquid into the deaeration tank 4C is started. Then, when the liquid level in the deaeration chamber 18a of the deaeration tank 4C reaches a predetermined level (for example, a position where the liquid level is slightly lower than the height of the partition 17), the vacuum pump 2 continues evacuation. The ultrasonic transducer 3 is driven.

そして、脱気室18a内の液面が上昇し、液面が仕切り17の高さを超えるようになると、脱気された洗浄液は仕切り17をオーバーフローし、オーバーフロー室18b内に貯留される。そして、オーバーフロー室18b内の洗浄液の液面が所定の高さに達すると、液面計12がそれを検知して排水ポンプ19が作動して排水路7を通して排水され、洗浄槽20内に戻される。この際、超音波振動子3を駆動してから、液面計12が液面を検知して排水が始まるまで、所定の時間が経過するよう設定しておく。
そして、この場合でも、洗浄液に溶解する溶存気体量を効率的に2.5mg/l程度以下にすることができ、脱気効率は極めて良好である。
When the liquid level in the deaeration chamber 18a rises and the liquid level exceeds the height of the partition 17, the degassed cleaning liquid overflows the partition 17 and is stored in the overflow chamber 18b. Then, when the liquid level of the cleaning liquid in the overflow chamber 18b reaches a predetermined height, the liquid level gauge 12 detects it and the drain pump 19 is actuated to drain the water through the drain channel 7 and return to the cleaning tank 20. It is. At this time, it is set so that a predetermined time elapses after the ultrasonic transducer 3 is driven until the liquid level meter 12 detects the liquid level and starts draining.
Even in this case, the amount of dissolved gas dissolved in the cleaning liquid can be efficiently reduced to about 2.5 mg / l or less, and the deaeration efficiency is extremely good.

なお、本発明は以上のような実施形態に限定されるものではない。本発明の特許請求の範囲に記載した事項と実質的に同一の構成を有し、同一の作用効果を奏するものは本発明の技術的範囲に属する。
例えば、脱気した洗浄液の用途は、バリ取り・洗浄に限られるものではなく、単なる洗浄等でもよい。また、脱気槽1A、1B、1Cに使用する超音波振動子3の数などは任意である。
In addition, this invention is not limited to the above embodiments. What has substantially the same configuration as the matters described in the claims of the present invention and exhibits the same operational effects belongs to the technical scope of the present invention.
For example, the use of the degassed cleaning liquid is not limited to deburring / cleaning but may be simple cleaning. Moreover, the number of the ultrasonic transducer | vibrators 3 used for deaeration tank 1A, 1B, 1C is arbitrary.

超音波バリ取り・洗浄処理を行うような際、洗浄液から効率的に脱気することができ、キャビテーションの衝撃力を高めることができるため、製品の研磨やバリ取りや洗浄等の処理を行う業界での広い範囲の普及が期待される。   When performing ultrasonic deburring and cleaning treatment, it is possible to efficiently degas from the cleaning liquid and increase the impact force of cavitation, so the industry that performs processing such as product polishing, deburring and cleaning Widespread use is expected.

1A、1B、1C…脱気装置、2…真空ポンプ、3…超音波振動子、4A、4B、4C…脱気槽、5…給水路、6…サーボバルブ、7…排水路、8…サーボバルブ、12、12a、12b…液面計、15…真空引きライン、16…サーボバルブ、17…仕切り、18a…脱気室、18b…オーバーフロー室、19…排水ポンプ。 DESCRIPTION OF SYMBOLS 1A, 1B, 1C ... Deaeration device, 2 ... Vacuum pump, 3 ... Ultrasonic vibrator, 4A, 4B, 4C ... Deaeration tank, 5 ... Water supply path, 6 ... Servo valve, 7 ... Drainage path, 8 ... Servo Valves 12, 12, 12a, 12b ... Level gauge, 15 ... Vacuum drawing line, 16 ... Servo valve, 17 ... Partition, 18a ... Deaeration chamber, 18b ... Overflow chamber, 19 ... Drain pump.

上記目的を達成するため本発明は、洗浄液中に溶解する気体を脱気する際、溶存酸素量(DO値)を10分以内に2.5mg/l以下にするための脱気方法において、脱気槽内を空の状態にして真空引きすることで脱気槽内の真空度を所定圧以下にする工程と、脱気槽の所定領域内に所定量の洗浄液を流入させた後、流入を停止させる工程と、脱気槽内の洗浄液に向けて振動周波数35KHz〜45KHzの超音波を発振しながら脱気槽の洗浄液占有領域以外の部分から真空引きをする工程と、所定時間経過した時点で超音波発振と真空引きを停止して脱気槽内の洗浄液を流出させる工程を設け、これら工程を断続的に繰り返すか、または、真空引きした脱気槽内に、脱気槽の給水停止レベルまで洗浄液を流入させた後、流入を停止させる工程と、脱気槽内の洗浄液に向けて振動周波数35KHz〜45KHzの超音波を発振しながら脱気槽の洗浄液占有領域以外の部分から真空引きする工程と、所定時間経過した時点で超音波発振と真空引きを停止して脱気槽内の洗浄液を排水停止レベルまで流出させる工程を設け、前記給水停止レベルまで洗浄液を流入させる工程から排水停止レベルまで洗浄液を流出させる工程を連続的に繰り返すか、または、真空引きした脱気槽内の所定領域内に洗浄液を流入させ、流入を継続しながら洗浄液に向けて振動周波数35KHz〜45KHzの超音波を発振しながら脱気槽の洗浄液占有領域以外の部分から真空引きする工程と、前記脱気槽内の脱気室に所定高さの仕切りを介して隣接する脱気室内のオーバーフロー室内に、仕切りをオーバーフローした洗浄液を流入させる工程と、オーバーフロー室の洗浄液が所定の量に達したらこれを脱気槽外に流出させる工程を設けるようにした。
In order to achieve the above object, the present invention provides a degassing method for reducing the dissolved oxygen amount (DO value) to 2.5 mg / l or less within 10 minutes when the gas dissolved in the cleaning liquid is degassed. The process of lowering the degree of vacuum in the deaeration tank to a predetermined pressure or less by evacuating the air tank in an empty state, and flowing a predetermined amount of cleaning liquid into a predetermined area of the deaeration tank, A step of stopping, a step of evacuating from a portion other than the region occupied by the cleaning liquid in the deaeration tank while oscillating an ultrasonic wave having a vibration frequency of 35 KHz to 45 KHz toward the cleaning liquid in the deaeration tank, and when a predetermined time has elapsed. There is a process to stop the ultrasonic oscillation and vacuuming and to let the cleaning solution in the degassing tank flow out, and repeat these processes intermittently, or the degassing tank water supply stop level in the vacuumed degassing tank After the cleaning liquid has flowed into the When the steps of evacuating the portion other than the washing liquid occupying area of deaeration tank while oscillating the ultrasonic vibration frequency 35KHz~45KHz toward the cleaning liquid degassing vessel, an ultrasonic oscillator at a predetermined time has elapsed stop vacuuming the step of flowing out provided a cleaning liquid for degassing vessel until effluent stop level, the water supply or the stop level step of discharging the cleaning liquid from the step of flowing the cleaning solution to a drainage stop level to continuously repeat, Alternatively , the cleaning liquid is allowed to flow into a predetermined area in the evacuated deaeration tank, and while continuing the inflow, an ultrasonic wave having a vibration frequency of 35 KHz to 45 KHz is oscillated toward the cleaning liquid, and the part other than the cleaning liquid occupation area of the deaeration tank Evacuating from the vacuum chamber, and overflowing the partition into the overflow chamber in the deaeration chamber adjacent to the deaeration chamber in the deaeration tank through a partition having a predetermined height. A step of flowing the over washing solution, washing solution overflow chamber was set to provide a step to flow out this out deaeration tank reaches the predetermined amount.

すなわち、最初の方法バッチ式の処理方法であり、二番目と三番目の方法は連続式の処理方法であるが、いずれも洗浄液に向けて振動周波数25KHz〜2MHzの超音波を発振することにより、洗浄液に溶解する気体が泡状になって液面上に分離浮遊するため、真空引きによって効率的に脱気することができる。この際、最初に、脱気槽内の真空度を所定圧以下にする工程の所定圧とは、−96Kpa程度であり、この程度の圧力以下に減圧することで、給水路を通して洗浄液を脱気槽に導入する際、給水路の開閉バルブを開くだけで、自動的に洗浄液が流れ込むようになる。
また、この際、洗浄液に向けて発振される超音波の振動周波数が25KHz未満であったり、2MHzを超えたりすると、洗浄液に溶解する気体が泡状になって分離される能力が低下する。また、特に、振動周波数が40KHzの場合、分離能力が極めて高いことが実験の結果、明らかになった。この実験結果から、特に振動周波数が35〜45KHzの範囲であれば分離能力が高くて好適なものと思われる。
That is, the first method is a batch type processing method, and the second and third methods are continuous type processing methods, both of which generate ultrasonic waves with a vibration frequency of 25 KHz to 2 MHz toward the cleaning liquid. Since the gas dissolved in the cleaning liquid becomes a foam and separates and floats on the liquid surface, it can be efficiently degassed by evacuation. At this time, first, the predetermined pressure in the step of reducing the degree of vacuum in the deaeration tank to a predetermined pressure or less is about −96 Kpa, and by depressurizing the pressure below this level, the cleaning liquid is deaerated through the water supply channel. When it is introduced into the tank, the cleaning liquid automatically flows by simply opening the open / close valve of the water supply channel.
At this time, if the vibration frequency of the ultrasonic wave oscillated toward the cleaning liquid is less than 25 KHz or exceeds 2 MHz, the ability of the gas dissolved in the cleaning liquid to be foamed and separated is lowered. In particular, when the vibration frequency is 40 KHz, it has been clarified as a result of experiments that the separation capability is extremely high. From this experimental result, it is considered that the separation capability is particularly high when the vibration frequency is in the range of 35 to 45 KHz.

また、洗浄液中に溶解する気体を脱気する際、溶存酸素量(DO値)を10分以内に2.5mg/l以下にするための脱気装置において、真空引きラインを通して真空引きポンプが接続され且つ液面計を備えた脱気槽と、洗浄液を脱気槽に送り込むための給水路およびその途中の開閉バルブと、脱気槽の洗浄液を脱気槽外に送り出すための排水路およびその途中の開閉バルブを設け、前記脱気槽には、脱気槽内の洗浄液に向けて振動周波数35KHz〜45KHzの超音波を発振することのできる超音波振動子を設けるか、または、前記液面計として、脱気槽の給水停止レベルを検知する給水停止レベル液面計と、排水停止レベルを検知する排水停止レベル液面計を設けるか、または、真空引きラインを通して真空引きポンプが接続される脱気槽と、洗浄液を脱気槽に送り込むための給水路と、脱気槽の洗浄液を脱気槽外に送り出すための排水路を設け、この排水路の途中には、排水ポンプを配設するとともに、前記脱気槽の内部を、所定の高さの仕切りを介して脱気室とオーバーフロー室に区画し、このオーバーフロー室に液面計を設け、また、前記給水路は脱気室に、前記排水路はオーバーフロー室にそれぞれ連通させ、且つ、脱気室側には、脱気室内の洗浄液に向けて振動周波数35KHz〜45KHzの超音波を発振することのできる超音波振動子を配設するようにした。
In addition, when degassing the gas dissolved in the cleaning liquid, a vacuum pump is connected through a vacuum pumping line in a degassing device for reducing the dissolved oxygen amount (DO value) to 2.5 mg / l or less within 10 minutes. And a deaeration tank equipped with a liquid level gauge, a water supply path for feeding the cleaning liquid into the deaeration tank, an open / close valve in the middle thereof, a drainage path for sending the cleaning liquid of the deaeration tank out of the deaeration tank, and its An opening / closing valve is provided on the way, and the deaeration tank is provided with an ultrasonic vibrator capable of oscillating ultrasonic waves having a vibration frequency of 35 KHz to 45 KHz toward the cleaning liquid in the deaeration tank, or the liquid level as a total, either providing a water supply stop level level gauge for detecting the water supply stop level of deaeration tank, a drainage stop level level gauge for detecting the draining stop level, or vacuum pump is connected through a vacuum line Prolapse A tank, a water supply path for sending the cleaning liquid into the deaeration tank, and a drainage path for sending out the cleaning liquid from the deaeration tank to the outside of the deaeration tank, and a drainage pump disposed in the middle of this drainage path The inside of the deaeration tank is partitioned into a deaeration chamber and an overflow chamber through a partition having a predetermined height, a liquid level gauge is provided in the overflow chamber, and the water supply channel is provided in the deaeration chamber. The drainage channel communicates with the overflow chamber, and an ultrasonic transducer capable of oscillating ultrasonic waves with a vibration frequency of 35 KHz to 45 KHz toward the cleaning liquid in the deaeration chamber is disposed on the deaeration chamber side. I made it.

次に、連続処理方式の脱気装置1Bについて、まず、図2に示す構成例の場合から説明する。
図2に示すように、この構成例では、脱気槽4Bの液面を検知する液面計として、給水停止レベルまで洗浄液が充填されていることを検知する給水停止レベル液面計12a(以下、ハイレベル液面計12aという。)と、排水停止レベルまで洗浄液が充填されていることを検知する排水停止レベル液面計12b(以下、ローレベル液面計12bという。)を設けている。
Next, the degassing apparatus 1B of the continuous processing method will be described first from the case of the configuration example shown in FIG.
As shown in FIG. 2, in this configuration example, as the liquid level gauge for detecting the liquid surface of the deaeration tank 4B, the water supply stop level level gauge 12a for detecting that the cleaning liquid to the water supply stop level is filled (hereinafter , and that.) high level gauge 12a, drainage stop level level gauge 12b which cleaning liquid to drainage stop level is detected that is filled (hereinafter, is referred to as low level gauge 12b.) the provided.

Claims (6)

洗浄液中に溶解する気体を脱気するための脱気方法であって、脱気槽内を空の状態にして真空引きすることで脱気槽内の真空度を所定圧以下にする工程と、脱気槽の所定領域内に所定量の洗浄液を流入させた後、流入を停止させる工程と、脱気槽内の洗浄液に向けて振動周波数25KHz〜2MHzの超音波を発振しながら脱気槽の洗浄液占有領域以外の部分から真空引きをする工程と、所定時間経過した時点で超音波発振と真空引きを停止して脱気槽内の洗浄液を流出させる工程を備え、これら工程を断続的に繰り返すことを特徴とする脱気方法。 A degassing method for degassing the gas dissolved in the cleaning liquid, the step of reducing the vacuum in the degassing tank to a predetermined pressure or less by evacuating the degassing tank in an empty state; A step of stopping the inflow after flowing a predetermined amount of cleaning liquid into a predetermined region of the deaeration tank, and oscillating an ultrasonic wave having a vibration frequency of 25 KHz to 2 MHz toward the cleaning liquid in the deaeration tank A step of evacuating from a portion other than the region occupied by the cleaning liquid, and a step of stopping the ultrasonic oscillation and evacuation when a predetermined time elapses and causing the cleaning liquid to flow out of the deaeration tank are repeated repeatedly. A degassing method characterized by that. 洗浄液中に溶解する気体を脱気するための脱気方法であって、脱気槽内を空の状態にして真空引きすることで脱気槽内の真空度を所定圧以下にする工程と、脱気槽のハイレベル領域まで洗浄液を流入させた後、流入を停止させる工程と、脱気槽内の洗浄液に向けて振動周波数25KHz〜2MHzの超音波を発振しながら脱気槽の洗浄液占有領域以外の部分から真空引きをする工程と、所定時間経過した時点で超音波発振と真空引きを停止して脱気槽内の洗浄液をローレベル領域まで流出させる工程を備え、前記ハイレベル領域まで洗浄液を流入させる工程からローレベル領域まで洗浄液を流出させる工程を連続的に繰り返すことを特徴とする脱気方法 A degassing method for degassing the gas dissolved in the cleaning liquid, the step of reducing the vacuum in the degassing tank to a predetermined pressure or less by evacuating the degassing tank in an empty state; The step of stopping the inflow after flowing the cleaning liquid into the high level region of the deaeration tank, and the cleaning liquid occupation region of the deaeration tank while oscillating ultrasonic waves with a vibration frequency of 25 KHz to 2 MHz toward the cleaning liquid in the deaeration tank A step of evacuating from a portion other than the above, and a step of stopping ultrasonic oscillation and evacuation when a predetermined time has elapsed and causing the cleaning liquid in the deaeration tank to flow out to the low level region, The deaeration method is characterized by continuously repeating the step of flowing the cleaning liquid from the step of flowing in the low level region. 洗浄液中に溶解する気体を脱気するための脱気方法であって、脱気槽内を空の状態にして真空引きすることで脱気槽内の真空度を所定圧以下にする工程と、脱気槽内の脱気室の所定領域内に洗浄液を流入させ、流入を継続させながら洗浄液に向けて振動周波数25KHz〜2MHzの超音波を発振すると同時に脱気槽の洗浄液占有領域以外の部分から真空引きする工程と、前記脱気槽内の脱気室に所定高さの仕切りを介して隣接する脱気室内のオーバーフロー室内に、仕切りをオーバーフローした洗浄液を流入させる工程と、オーバーフロー室の洗浄液が所定の量に達したらこれを脱気槽外に流出させる工程を備えたことを特徴とする脱気方法。 A degassing method for degassing the gas dissolved in the cleaning liquid, the step of reducing the vacuum in the degassing tank to a predetermined pressure or less by evacuating the degassing tank in an empty state; The cleaning liquid is caused to flow into a predetermined area of the deaeration chamber in the deaeration tank, and while continuing the inflow, an ultrasonic wave having a vibration frequency of 25 KHz to 2 MHz is oscillated toward the cleaning liquid, and at the same time from a portion other than the cleaning liquid occupation area A step of evacuating, a step of flowing the cleaning liquid overflowing the partition into the overflow chamber in the deaeration chamber adjacent to the deaeration chamber in the deaeration tank through a predetermined height partition, and the cleaning liquid in the overflow chamber A deaeration method comprising a step of causing a predetermined amount to flow out of the deaeration tank. 洗浄液中に溶解する気体を脱気するための脱気装置であって、真空引きラインを通して真空引きポンプが接続され且つ液面計を備えた脱気槽と、洗浄液を脱気槽に送り込むための給水路およびその途中の開閉バルブと、脱気槽の洗浄液を脱気槽外に送り出すための排水路およびその途中の開閉バルブを備え、前記脱気槽には、脱気槽内の洗浄液に向けて振動周波数25KHz〜2MHzの超音波を発振することのできる超音波振動子が設けられることを特徴とする脱気装置。 A degassing device for degassing a gas dissolved in a cleaning liquid, a degassing tank having a liquid level gauge connected to a vacuum pump through a vacuuming line, and for feeding the cleaning liquid to the degassing tank Provided with a water supply channel and an open / close valve in the middle thereof, a drainage channel for sending out the cleaning liquid of the deaeration tank to the outside of the degassing tank, and an open / close valve in the middle thereof, the deaeration tank is directed to the cleaning liquid in the deaeration tank And a deaeration device comprising an ultrasonic transducer capable of oscillating ultrasonic waves having a vibration frequency of 25 KHz to 2 MHz. 前記液面計は、脱気槽のハイレベル領域を検知するハイレベル液面計と、ローレベル領域を検知するローレベル液面計を備えたことを特徴とする請求項4に記載の脱気装置。 5. The deaeration according to claim 4, wherein the liquid level gauge includes a high level liquid level gauge that detects a high level region of a degassing tank and a low level liquid level meter that detects a low level region. apparatus. 洗浄液中に溶解する気体を脱気するための脱気装置であって、真空引きラインを通して真空引きポンプが接続される脱気槽と、洗浄液を脱気槽に送り込むための給水路と、脱気槽の洗浄液を脱気槽外に送り出すための排水路を備え、この排水路の途中には、排水ポンプが配設されるとともに、前記脱気槽の内部は、所定の高さの仕切りを介して脱気室とオーバーフロー室に区画され、このオーバーフロー室には液面計が設けられ、また、前記給水路は脱気室に、前記排水路はオーバーフロー室にそれぞれ連通し、且つ、脱気室側には、脱気室内の洗浄液に向けて振動周波数25KHz〜2MHzの超音波を発振することのできる超音波振動子が配設されることを特徴とする脱気装置。 A degassing device for degassing a gas dissolved in the cleaning liquid, a degassing tank to which a vacuum pump is connected through a vacuuming line, a water supply channel for sending the cleaning liquid to the degassing tank, and a degassing A drainage channel is provided for sending the tank cleaning liquid out of the deaeration tank. A drainage pump is disposed in the middle of the drainage channel, and the inside of the deaeration tank is separated by a partition having a predetermined height. The overflow chamber is divided into a deaeration chamber and an overflow chamber. A liquid level gauge is provided in the overflow chamber. The water supply channel communicates with the deaeration chamber. The drainage channel communicates with the overflow chamber. The deaeration apparatus is characterized in that an ultrasonic transducer capable of oscillating ultrasonic waves having a vibration frequency of 25 KHz to 2 MHz toward the cleaning liquid in the deaeration chamber is disposed on the side.
JP2015122804A 2015-06-18 2015-06-18 Degassing method and degassing device Active JP5999857B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015122804A JP5999857B1 (en) 2015-06-18 2015-06-18 Degassing method and degassing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015122804A JP5999857B1 (en) 2015-06-18 2015-06-18 Degassing method and degassing device

Publications (2)

Publication Number Publication Date
JP5999857B1 JP5999857B1 (en) 2016-09-28
JP2017006823A true JP2017006823A (en) 2017-01-12

Family

ID=56997699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015122804A Active JP5999857B1 (en) 2015-06-18 2015-06-18 Degassing method and degassing device

Country Status (1)

Country Link
JP (1) JP5999857B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019093346A (en) * 2017-11-24 2019-06-20 株式会社Tosei Cleaning equipment and method for control thereof
CN110367428A (en) * 2019-08-26 2019-10-25 西南大学 The synchronous degassing nitrogen charging device of sonic vacuum and its orange juice processing method and canning line
CN111054697A (en) * 2020-01-17 2020-04-24 常州密镭超声波设备有限公司 Cleaning equipment
JP7542149B2 (en) 2020-11-16 2024-08-29 フラマトム・ゲーエムベーハー Nuclear power plant including a system for degassing gas-containing liquids

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110812895A (en) * 2019-11-15 2020-02-21 贵州大学 Continuous low-pressure gas-liquid separation device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04122685U (en) * 1991-04-19 1992-11-04 エスアンドシー株式会社 Ultrasonic cleaning and deburring equipment
US5322082A (en) * 1992-10-16 1994-06-21 Yoshihide Shibano Ultrasonic cleaning apparatus
JP2741344B2 (en) * 1994-07-22 1998-04-15 大同メタル工業株式会社 Ultrasonic processing equipment
JPH09187603A (en) * 1996-01-09 1997-07-22 Sato Tatsuhiko Deaerator and deaerator for ultrasonic washer
JP3644557B2 (en) * 1996-05-16 2005-04-27 秀幸 田淵 Deaerator
JP3825149B2 (en) * 1997-04-18 2006-09-20 秀幸 田淵 Water treatment equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019093346A (en) * 2017-11-24 2019-06-20 株式会社Tosei Cleaning equipment and method for control thereof
CN110367428A (en) * 2019-08-26 2019-10-25 西南大学 The synchronous degassing nitrogen charging device of sonic vacuum and its orange juice processing method and canning line
CN110367428B (en) * 2019-08-26 2024-01-26 西南大学 Ultrasonic vacuum synchronous degassing and nitrogen charging device, orange juice processing method and filling line
CN111054697A (en) * 2020-01-17 2020-04-24 常州密镭超声波设备有限公司 Cleaning equipment
JP7542149B2 (en) 2020-11-16 2024-08-29 フラマトム・ゲーエムベーハー Nuclear power plant including a system for degassing gas-containing liquids

Also Published As

Publication number Publication date
JP5999857B1 (en) 2016-09-28

Similar Documents

Publication Publication Date Title
JP5999857B1 (en) Degassing method and degassing device
KR101049842B1 (en) Substrate cleaning method, substrate cleaning apparatus and program recording medium
WO2004071635B1 (en) Method, device, and system for controlling dissolved amount of gas
JPH0833877A (en) Ultrasonic treating device
JP2003275548A (en) Film separator
JP2018176031A (en) Defoaming device and defoaming method
JP4893426B2 (en) Ultrasonic cleaner and dishwasher using the same
KR101175508B1 (en) Method for cleaning coating die and coating apparatus
JP2013058655A5 (en)
JP6987649B2 (en) Treatment liquid supply device and its degassing method
KR20120047954A (en) Method for immersion-type washing of separation membrane device and system for immersion-type washing of separation membrane device
JP2016043434A (en) Ultrasonic deburring and surface polishing method
JP2013058655A (en) Liquid processing device and liquid processing method
JP2019107597A (en) Vacuum electrolytic ultrasonic cleaning method and vacuum electrolytic ultrasonic cleaner
JPH08108005A (en) Deaeration device
EP1057546A1 (en) Megasonic cleaner
CN211938170U (en) Pulse vacuum ultrasonic cleaning tank
JP4369887B2 (en) Ultrasonic cleaning method and ultrasonic cleaning apparatus
JP2011088109A (en) Degassing vessel and coating apparatus
CN217700406U (en) Cleaning device for be used for precision machine part
KR100234630B1 (en) Ultrasonic cleaning apparatus
JP2004358286A (en) Ultrasonic cleaning method of filter
JP2017177149A (en) System for removing sand of casting product
JP4215339B2 (en) Cleaning device
JP2532328B2 (en) Deaerator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160829

R150 Certificate of patent or registration of utility model

Ref document number: 5999857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250