JP2017006025A - Method of purifying beverage, and metal-carrying ion exchange resin for beverage treatment - Google Patents

Method of purifying beverage, and metal-carrying ion exchange resin for beverage treatment Download PDF

Info

Publication number
JP2017006025A
JP2017006025A JP2015123198A JP2015123198A JP2017006025A JP 2017006025 A JP2017006025 A JP 2017006025A JP 2015123198 A JP2015123198 A JP 2015123198A JP 2015123198 A JP2015123198 A JP 2015123198A JP 2017006025 A JP2017006025 A JP 2017006025A
Authority
JP
Japan
Prior art keywords
beverage
exchange resin
ion exchange
metal
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015123198A
Other languages
Japanese (ja)
Other versions
JP6673563B2 (en
Inventor
義実 河島
Yoshimi Kawashima
義実 河島
各務 成存
Shigeari Kagami
成存 各務
充子 村田
Mitsuko Murata
充子 村田
峻 深澤
Shun Fukazawa
峻 深澤
健二 細井
Kenji Hosoi
健二 細井
利和 杉本
Toshikazu Sugimoto
利和 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikka Whisky Distilling Co Ltd
Idemitsu Kosan Co Ltd
Original Assignee
Nikka Whisky Distilling Co Ltd
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikka Whisky Distilling Co Ltd, Idemitsu Kosan Co Ltd filed Critical Nikka Whisky Distilling Co Ltd
Priority to JP2015123198A priority Critical patent/JP6673563B2/en
Publication of JP2017006025A publication Critical patent/JP2017006025A/en
Application granted granted Critical
Publication of JP6673563B2 publication Critical patent/JP6673563B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of purifying a beverage which can efficiently remove unnecessary components included in a beverage, and a metal-carrying ion exchange resin for beverage treatment used for the purification method.SOLUTION: A method of purifying a beverage includes the step for contact with a metal-carrying ion exchange resin for beverage treatment in which at least part of cations of a cation exchange resin is replaced by silver ions.SELECTED DRAWING: None

Description

本発明は、飲料に含まれる不要成分を除去する飲料の精製方法、及び該精製方法に用いられる飲料処理用金属担持イオン交換樹脂に関する。   The present invention relates to a beverage purification method for removing unnecessary components contained in beverages, and a beverage-supported metal-supported ion exchange resin used in the purification method.

飲料、特に酒類のなかには、ウイスキーのように、短くて4〜6年、通常7〜10年、長い場合には20年近く樽に貯蔵されて、熟成されるものがある。
貯蔵の間に、硫黄化合物等の未熟成成分の蒸散及び消滅、ニューポット由来成分の反応(酸化反応、アセタール化反応、エステル化反応等)、樽の原材料由来成分の分解反応、樽内に溶出した原材料由来成分と原酒との反応、原酒を構成するエタノールと水との状態変化等が起こることにより、ウイスキーに特有の風味が引き出される。
しかし、貯蔵の間に原酒が樽に吸収されたり、樽を透過して揮発したりするため、原酒量は自然に減少する。このため、貯蔵期間の長期化は、製造効率の面では、製品ロスの増加を招いていた。
そこで、硫黄化合物等の未熟成成分、寒冷時における析出成分、不快な香り成分等の酒類にとっての不要成分を、貯蔵により自然に起こる変化を待たずに、積極的に除去する方法が考えられている。
Some beverages, especially alcoholic beverages, such as whiskey, are stored in barrels for a short period of 4 to 6 years, usually 7 to 10 years, and in the case of long periods of 20 years, and are aged.
During storage, transpiration and extinction of immature components such as sulfur compounds, reaction of new pot-derived components (oxidation reaction, acetalization reaction, esterification reaction, etc.), decomposition reaction of raw material components of barrel, elution in barrel As a result of the reaction between the raw material-derived components and the raw sake, the state change between ethanol and water constituting the raw sake, a flavor unique to whiskey is extracted.
However, the amount of raw liquor naturally decreases because the raw liquor is absorbed into the barrel or volatilizes through the barrel during storage. For this reason, the prolonged storage period has led to an increase in product loss in terms of manufacturing efficiency.
Therefore, there is a method of positively removing unnecessary components for alcoholic beverages such as unripe components such as sulfur compounds, precipitation components during cold, unpleasant scent components, etc. without waiting for changes that occur naturally by storage. Yes.

酒類から不要成分を除去する方法としては、例えば、シリカを有機シラン化合物で処理してなる吸着剤に酒類を接触させる方法(特許文献1参照)、活性炭に酒類を接触させる方法(特許文献2参照)、金属粒と樹脂層とを用いる方法(特許文献3参照)、イオン交換樹脂を用いる方法(特許文献4参照)等が既に提案されている。
特許文献4には、内部に充填した強塩基性陰イオン交換樹脂を食塩で再生した後、更に亜硫酸水素ナトリウムで再生してなる単床式カラムと、内部に充填した強塩基性陰イオン交換樹脂を食塩のみで再生してなる亜硫酸トラップカラムとを使用して酒類の精製処理を行って、酒類に含まれる不快成分(ダイアセチル)を除去できることが記載されている。
しかし、酒類には、上述のように、硫黄化合物等の未熟成成分などのように、ダイアセチル以外の不要成分も含まれており、より高い品質の要求を満足する製品を提供するためには、更なる改良の余地が残されていた。
As a method for removing unnecessary components from alcoholic beverages, for example, a method of bringing alcoholic beverages into contact with an adsorbent obtained by treating silica with an organic silane compound (see Patent Literature 1), a method of bringing alcoholic beverages into contact with activated carbon (see Patent Literature 2). ), A method using metal particles and a resin layer (see Patent Document 3), a method using an ion exchange resin (see Patent Document 4), and the like have already been proposed.
Patent Document 4 discloses a single-bed column in which a strongly basic anion exchange resin packed inside is regenerated with sodium chloride and then regenerated with sodium bisulfite, and a strongly basic anion exchange resin packed inside. It is described that unpleasant components (diacetyl) contained in alcoholic beverages can be removed by purifying alcoholic beverages using a sulfite trap column that is regenerated with sodium chloride alone.
However, as described above, alcoholic beverages also contain unnecessary components other than diacetyl, such as immature components such as sulfur compounds, in order to provide products that satisfy higher quality requirements. There was room for further improvement.

特開昭63−137668号公報JP-A-63-137668 特開平03−187374号公報Japanese Patent Laid-Open No. 03-187374 特開2012−016321号公報JP2012-016321A 特開2004−222567号公報JP 2004-222567 A

本発明は、酒類のような飲料に含まれる不要成分を効率よく除去し得る飲料の精製方法、及び該精製方法に用いることのできる飲料処理用金属担持イオン交換樹脂を提供することを課題とする。   An object of the present invention is to provide a beverage purification method capable of efficiently removing unnecessary components contained in beverages such as alcoholic beverages, and a metal-supported ion exchange resin for beverage processing that can be used in the purification method. .

本発明者らは、特定の金属担持イオン交換樹脂に飲料を通液することにより、飲料に含まれる不要成分を除去することができ、前記課題が解決できることを見出した。
すなわち、本発明の要旨は下記のとおりである。
[1]陽イオン交換樹脂の陽イオンの少なくとも一部が銀イオンに交換されてなる飲料処理用金属担持イオン交換樹脂に接触させる工程を包含する、飲料に含まれる不要成分を除去する飲料の精製方法。
[2]前記銀イオンの担持量が、乾燥換算の前記飲料処理用金属担持イオン交換樹脂全量に対して、銀質量換算で、10質量%以上40質量%以下である[1]に記載の飲料の精製方法。
[3]飲料を前記飲料処理用金属担持イオン交換樹脂に接触させる工程の後、前記飲料処理用金属担持イオン交換樹脂に接触させた飲料を、金属捕捉材料により金属イオンを除去する工程を、さらに有する[1]又は[2]に記載の飲料の精製方法。
[4]前記飲料が蒸留酒であることを特徴とする[1]〜[3]のいずれかに記載の飲料の精製方法。
[5]前記飲料が醸造酒であることを特徴とする[1]〜[3]のいずれかに記載の飲料の精製方法。
[6]陽イオン交換樹脂の陽イオンの少なくとも一部が銀イオンに交換されてなり、飲料に含まれる不要成分を除去する飲料処理用金属担持イオン交換樹脂。
[7]前記銀イオンの担持量が、乾燥換算の飲料処理用金属担持イオン交換樹脂全量に対して、銀質量換算で、10質量%以上40質量%以下であることを特徴とする[6]に記載の飲料処理用金属担持イオン交換樹脂。
The present inventors have found that by passing a beverage through a specific metal-supported ion exchange resin, unnecessary components contained in the beverage can be removed, and the above problem can be solved.
That is, the gist of the present invention is as follows.
[1] Purification of a beverage for removing unnecessary components contained in a beverage, including a step of bringing the cation exchange resin into contact with a metal-supported ion exchange resin for beverage processing in which at least a part of the cations are exchanged with silver ions Method.
[2] The beverage according to [1], wherein the supported amount of the silver ions is 10% by mass or more and 40% by mass or less in terms of silver mass with respect to the total amount of the metal-supported ion-exchange resin for beverage processing in terms of dryness. Purification method.
[3] After the step of bringing the beverage into contact with the beverage-supporting metal-supported ion exchange resin, the step of removing the metal ions from the beverage that has been brought into contact with the beverage-processing metal-supported ion exchange resin with a metal-trapping material; The method for purifying a beverage according to [1] or [2].
[4] The method for purifying a beverage according to any one of [1] to [3], wherein the beverage is distilled liquor.
[5] The method for purifying a beverage according to any one of [1] to [3], wherein the beverage is brewed sake.
[6] A metal-supported ion exchange resin for beverage processing, in which at least part of the cation of the cation exchange resin is exchanged with silver ions to remove unnecessary components contained in the beverage.
[7] The amount of the silver ions supported is 10% by mass or more and 40% by mass or less in terms of silver mass with respect to the total amount of the metal-supported ion-exchange resin for beverage processing in terms of dryness [6] A metal-supported ion exchange resin for beverage processing as described in 1.

本発明によれば、酒類のような飲料に含まれる不要成分を効率よく除去し得る飲料の精製方法、及び該精製方法に用いることのできる飲料処理用金属担持イオン交換樹脂を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the metal carrying | support ion-exchange resin for drink processing which can be used for the refinement | purification method of the drink which can remove efficiently the unnecessary component contained in drinks, such as liquor, can be provided. .

[飲料の精製方法]
本発明の実施形態に係る飲料の精製方法について、詳細に説明する。本実施形態に係る飲料の精製方法は、陽イオン交換樹脂の陽イオンの少なくとも一部が銀イオンに交換されてなる飲料処理用金属担持イオン交換樹脂に接触させる工程を包含し、飲料に含まれる不要成分を除去するものである。
本発明において対象とする飲料は、特に限定されるものではなく全ての飲料が適用できるが、以下では、飲料のなかでも酒類について説明する。
酒類としては、具体的には、ウイスキー、ブランデー、ジン、ウオッカ、テキーラ、ラム、白酒、アラック等の全ての蒸留酒が適用できる。また、清酒、ビール、ワイン、酒精強化ワイン、中国酒等の全ての醸造酒及び混成酒が適用できる。醸造酒及び混成酒のなかでは、清酒が好適に用いられる。さらに、麦焼酎、米焼酎、芋焼酎、黒糖酒、そば焼酎、コーン焼酎、粕取り焼酎、泡盛等の全ての焼酎が適用できる。
[Beverage purification method]
The beverage purification method according to the embodiment of the present invention will be described in detail. The method for purifying a beverage according to the present embodiment includes a step of contacting a beverage-supporting metal-supported ion exchange resin in which at least a part of the cation of the cation exchange resin is exchanged with silver ions, and is included in the beverage. Unnecessary components are removed.
The beverages targeted in the present invention are not particularly limited, and all beverages can be applied. In the following, alcoholic beverages will be described among beverages.
Specific examples of the liquor include all distilled liquors such as whiskey, brandy, gin, vodka, tequila, rum, white liquor, and alak. In addition, all brewed liquors and mixed liquors such as sake, beer, wine, fortified wine, and Chinese liquor are applicable. Among the brewed liquor and the mixed liquor, sake is preferably used. Furthermore, all shochus such as barley shochu, rice shochu, koji shochu, brown sugar liquor, buckwheat shochu, corn shochu, kojiri shochu, and awamori can be applied.

除去される不要成分とは、飲料の風味を妨げる成分であり、主として、不味成分が挙げられる。不味成分としては、酒類においては、ジメチルサルファイド、ジメチルジサルファイド、ジメチルトリサルファイド等の硫黄化合物が挙げられる。また、ピリジン等の窒素化合物が挙げられる。
酒類の精製方法の場合は、酒類に含まれる上述した不要成分を除去する一方で、高級アルコール類、フーゼル類、エステル類等の旨味成分を酒類中に残すことができる。
飲料が酒類である場合には、処理前の酒類に含まれる硫黄化合物の濃度が100質量ppm以下であることが好ましい。この範囲であれば、上述した飲料処理用金属担持イオン交換樹脂にて脱硫処理することが可能である。硫黄化合物の濃度は、より好ましくは、10質量ppm以下である。
処理温度の範囲は、−50℃以上150℃以下であり、より好ましくは0℃以上100℃以下であり、さらに好ましくは10℃以上60℃以下である。
上述した飲料処理用金属担持イオン交換樹脂に、飲料を通液させる際の条件は、流速(LHSV)範囲が0.1h−1以上100h−1以下であり、より好ましくは0.5以上50h−1以下であり、さらに好ましくは1以上30h−1以下である。また、液の流れ方向はアップフロー又はダウンフローのどちらでも構わない。
The unnecessary component to be removed is a component that hinders the flavor of the beverage, and mainly includes a tasteless component. Examples of the tasteless component include sulfur compounds such as dimethyl sulfide, dimethyl disulfide, and dimethyl trisulfide in alcoholic beverages. Moreover, nitrogen compounds, such as a pyridine, are mentioned.
In the case of the method for purifying alcoholic beverages, the above-mentioned unnecessary components contained in alcoholic beverages can be removed, while umami components such as higher alcohols, fusels and esters can be left in the alcoholic beverages.
When the beverage is an alcoholic beverage, the concentration of the sulfur compound contained in the alcoholic beverage before the treatment is preferably 100 mass ppm or less. If it is this range, it is possible to desulfurize with the metal carrying | support ion exchange resin for drink processing mentioned above. The concentration of the sulfur compound is more preferably 10 mass ppm or less.
The range of the processing temperature is −50 ° C. or higher and 150 ° C. or lower, more preferably 0 ° C. or higher and 100 ° C. or lower, and further preferably 10 ° C. or higher and 60 ° C. or lower.
The above-described beverage processing metal supported ion exchange resins, conditions for which passed through the beverage, the flow rate (LHSV) range is at 0.1 h -1 or more 100h -1 or less, more preferably 0.5 or more 50h - 1 or less, more preferably 1 or more and 30 h −1 or less. Further, the flow direction of the liquid may be either up-flow or down-flow.

上記条件によれば、飲料が酒類であれば、酒類中に高級アルコール類、フーゼル類、エステル類等の旨味成分を保持しながら、不要成分を除去することができる。
本発明の実施形態に係る飲料の精製方法は、飲料を飲料処理用金属担持イオン交換樹脂に接触させる工程の後、飲料処理用金属担持イオン交換樹脂に接触させた飲料を、金属捕捉材料により金属イオンを除去する工程を、さらに有することが好ましい。
本実施形態に係る飲料の精製方法では、後述する、銀イオンが担持されたイオン交換樹脂を用いるため、該イオン交換樹脂に通液した後の飲料には、銀イオンが溶出していることがある。
そこで、金属捕捉材料により、通液後の飲料に許容量を超える銀イオンが流出することを防止することができる。
According to the said conditions, if a drink is liquor, an unnecessary component can be removed, hold | maintaining umami components, such as higher alcohol, fusel, ester, in liquor.
In the method for purifying a beverage according to an embodiment of the present invention, after the step of bringing a beverage into contact with a metal-supported ion exchange resin for beverage processing, the beverage brought into contact with the metal-supported ion exchange resin for beverage processing is metalized with a metal-capturing material. It is preferable to further include a step of removing ions.
In the beverage purification method according to the present embodiment, since an ion exchange resin carrying silver ions, which will be described later, is used, silver ions are eluted in the beverage after passing through the ion exchange resin. is there.
Therefore, it is possible to prevent the silver ions exceeding the allowable amount from flowing out into the beverage after passing through the metal capturing material.

[飲料処理用金属担持イオン交換樹脂]
本発明の実施形態に係る飲料処理用金属担持イオン交換樹脂は、陽イオン交換樹脂の陽イオンの少なくとも一部が銀イオンに交換されたものである。この飲料処理用金属担持イオン交換樹脂は、飲料に含まれる不要成分を除去することができる。
<陽イオン交換樹脂>
本実施形態に係る飲料処理用金属担持イオン交換樹脂に適用可能な陽イオン交換樹脂は、強酸性陽イオン交換樹脂、弱酸性陽イオン交換樹脂等の種類に限定されず、適用可能である。陽イオン交換樹脂のイオン型は、特に限定されず、水素型であってもよいし、カルシウム型、ナトリウム型等の塩型であってもよい。
陽イオン交換樹脂の構造として、スチレンやアクリルといった母体構造は、特に問わない。また、架橋密度などの樹脂物性によって特に限定されず、種々の陽イオン交換樹脂が使用できる。例えば、多孔質型又はゲルタイプの陽イオン交換樹脂が使用でき、特により表面積が高い多孔質型の陽イオン交換樹脂が好ましい。これらの陽イオン交換樹脂は、単独で用いてもよく、2種以上の陽イオン交換樹脂を組み合わせて用いてもよい。
[Metal-supported ion exchange resin for beverage processing]
The metal-supported ion exchange resin for beverage processing according to the embodiment of the present invention is one in which at least a part of the cation of the cation exchange resin is exchanged with silver ions. This beverage-supporting metal-supported ion exchange resin can remove unnecessary components contained in the beverage.
<Cation exchange resin>
The cation exchange resin applicable to the metal-supported ion exchange resin for beverage processing according to this embodiment is not limited to the types such as the strong acid cation exchange resin and the weak acid cation exchange resin, and is applicable. The ion type of the cation exchange resin is not particularly limited, and may be a hydrogen type or a salt type such as a calcium type or a sodium type.
As a structure of the cation exchange resin, a matrix structure such as styrene or acrylic is not particularly limited. Moreover, it does not specifically limit by resin physical properties, such as a crosslinking density, Various cation exchange resins can be used. For example, a porous or gel type cation exchange resin can be used, and a porous cation exchange resin having a higher surface area is particularly preferable. These cation exchange resins may be used alone or in combination of two or more cation exchange resins.

イオン交換樹脂の粒径は、0.3mm未満では通液時の差圧が高くなり、1.0mmを超えると拡散性が悪くなる、又は破砕しやすくなるといった弊害が起きやすい。この観点から、イオン交換樹脂の粒径は0.3〜1.0mmの粒径であることが好ましい。
本実施形態に係る飲料処理用金属担持イオン交換樹脂に適用可能な陽イオン交換樹脂の市販品としては、銀イオンの担持の容易性や、その後の飲料の精製効率を高める観点から、例えば、Rohm and Haas株式会社製のAmberliteを用いることができる。
また、上述した陽イオン交換樹脂は、本実施形態に係る飲料の精製方法において、飲料を飲料処理用金属担持イオン交換樹脂に接触させる工程の後、飲料処理用金属担持イオン交換樹脂に接触させた飲料を、陽イオン交換樹脂により金属イオンを除去する工程を有するものとした場合に、該金属イオンを除去する工程で使用される陽イオン交換樹脂としても適用可能である。
When the particle size of the ion exchange resin is less than 0.3 mm, the differential pressure during liquid passage is high, and when it exceeds 1.0 mm, the diffusibility is deteriorated or the particles are easily crushed. From this viewpoint, the particle size of the ion exchange resin is preferably 0.3 to 1.0 mm.
As a commercial product of a cation exchange resin that can be applied to a metal-supported ion exchange resin for beverage processing according to this embodiment, for example, Rohm from the viewpoint of enhancing the ease of silver ion support and subsequent beverage purification efficiency. and Amberlite manufactured by and Haas Co., Ltd. can be used.
The cation exchange resin described above was brought into contact with the beverage-supporting metal-supported ion exchange resin after the step of bringing the beverage into contact with the beverage-supporting metal-supported ion exchange resin in the beverage purification method according to this embodiment. When the beverage has a step of removing metal ions with a cation exchange resin, the beverage can also be applied as a cation exchange resin used in the step of removing the metal ions.

<飲料処理用金属担持イオン交換樹脂の製造方法>
本発明の実施形態に係る飲料処理用金属担持イオン交換樹脂の製造方法は、陽イオン交換樹脂の陽イオンの少なくとも一部に、銀イオンを含有する溶液を用いてイオン交換法により、銀イオンを担持させる工程を有する。
イオン交換法では、上述したイオン交換樹脂の内部に、銀イオンを含有する溶液を用いて、イオン交換樹脂の内部のイオン、例えば、Hイオン又はNaイオンを銀イオンで交換し、イオン交換樹脂の内部に銀イオンを担持させる。
本実施形態では、銀イオンを含有する溶液として、硝酸銀など水溶性の金属塩を用いることができる。
また、本実施形態では、銀イオンを含有する溶液を用いて銀イオンを担持させる工程の前に、硝酸アンモニウム溶液や塩化アンモニウム溶液、硫酸アンモニウム溶液、アンモニア水等のNH イオンを含む水溶液を用いて、陽イオン交換樹脂の陽イオンをNH イオンで置き換える工程を有することが好ましい。
<Method for producing metal-supported ion exchange resin for beverage processing>
In the method for producing a metal-supported ion exchange resin for beverage processing according to an embodiment of the present invention, silver ions are obtained by ion exchange using a solution containing silver ions as at least a part of the cations of the cation exchange resin. It has the process to carry.
In the ion exchange method, using a solution containing silver ions inside the above ion exchange resin, ions inside the ion exchange resin, for example, H + ions or Na + ions are exchanged with silver ions, and ion exchange is performed. Silver ions are supported inside the resin.
In the present embodiment, a water-soluble metal salt such as silver nitrate can be used as the solution containing silver ions.
In the present embodiment, before the step of supporting silver ions using a solution containing silver ions, an aqueous solution containing NH 4 + ions such as an ammonium nitrate solution, an ammonium chloride solution, an ammonium sulfate solution, or aqueous ammonia is used. It is preferable to have a step of replacing the cation of the cation exchange resin with NH 4 + ions.

本実施形態においては、NH イオンを含む水溶液を用いることにより、イオン交換樹脂のHイオン又はNaイオンの少なくとも一部がNH イオンに置き換えられる。この後、硝酸銀溶液で処理すると、飲料処理用金属担持イオン交換樹脂中における銀イオンの分散性を高めることができる。
これは、アンモニウムイオンが銀イオンを取り囲んだ銀アンミン錯体が形成されることにより、銀イオン同士の凝集が抑制されることによるものと推察される。
本実施形態に係る飲料処理用金属担持イオン交換樹脂において、イオン交換樹脂に担持された銀の総担持量は、乾燥換算の飲料処理用金属担持イオン交換樹脂全量に対して、10質量%以上40質量%以下であることが好ましく、より好ましくは、15質量%以上35質量%以下であり、さらに好ましくは、20質量%以上35質量%以下である。銀の担持量が10質量%未満であると飲料に含まれる不要成分を十分に除去できず、40質量%を超えると、銀がイオン交換され難くなるため、銀が凝集し、金属当たりの不要成分の除去効率が低下する。
In the present embodiment, by using an aqueous solution containing NH 4 + ions, at least a portion of the ion exchange resin H + ions or Na + ions are replaced by NH 4 + ions. Then, when it processes with a silver nitrate solution, the dispersibility of the silver ion in the metal carrying | support ion exchange resin for drink processing can be improved.
This is presumed to be due to the suppression of aggregation of silver ions by the formation of a silver ammine complex in which ammonium ions surround silver ions.
In the beverage-supporting metal-supported ion exchange resin according to the present embodiment, the total supported amount of silver supported on the ion-exchange resin is 10% by mass or more and 40% by mass or more based on the total amount of the beverage-supported metal-supporting ion exchange resin for beverage processing. It is preferable that it is mass% or less, More preferably, it is 15 to 35 mass%, More preferably, it is 20 to 35 mass%. If the supported amount of silver is less than 10% by mass, the unnecessary components contained in the beverage cannot be sufficiently removed. If the amount exceeds 40% by mass, it is difficult for the silver to be ion-exchanged. The component removal efficiency decreases.

<金属捕捉材料>
飲料のなかの不要成分の除去効率を高めるためには、上述した飲料処理用金属担持イオン交換樹脂中の金属の担持量を増大させる必要がある。しかし、飲料を飲料処理用金属担持イオン交換樹脂に接触させる場合、飲料処理用金属担持イオン交換樹脂に担持されている金属が飲料に溶出することがあり、金属の溶出量は、飲料処理用金属担持イオン交換樹脂に担持されている金属の担持量に比例して増大する。
そこで、本実施形態においては、飲料を飲料処理用金属担持イオン交換樹脂に接触させる工程の後、飲料処理用金属担持イオン交換樹脂に接触させた飲料を、金属捕捉材料により金属イオンを除去する工程を、さらに有していることが好ましい。飲料処理用金属担持イオン交換樹脂に接触させた飲料を金属捕捉材料に接触させることにより、飲料処理用金属担持イオン交換樹脂から溶出した金属が除去される。
<Metal capture material>
In order to increase the removal efficiency of unnecessary components in the beverage, it is necessary to increase the amount of metal supported in the above-described metal-supported ion-exchange resin for beverage processing. However, when a beverage is brought into contact with a beverage-supporting metal-supported ion exchange resin, the metal supported on the beverage-processing metal-supported ion exchange resin may be eluted in the beverage, It increases in proportion to the amount of metal supported on the supported ion exchange resin.
Therefore, in the present embodiment, after the step of bringing the beverage into contact with the beverage-supporting metal-supported ion exchange resin, the step of removing metal ions from the beverage that has been brought into contact with the beverage-processing metal-supported ion exchange resin with the metal-trapping material. It is preferable to further have. By bringing the beverage in contact with the beverage-supporting metal-supported ion exchange resin into contact with the metal-capturing material, the metal eluted from the beverage-processing metal-supported ion exchange resin is removed.

金属捕捉材料としては、公知の陽イオン交換樹脂、ゼオライトなどのイオン交換能を示す材料が使用できる。金属捕捉材料のイオン交換可能な陽イオンとしては、特に限定されず、Hイオンであってもよいし、Ca2+イオン、Naイオン等であってもよい。 As the metal trapping material, a known cation exchange resin, a material showing ion exchange ability such as zeolite can be used. The ion-exchangeable cation of the metal trapping material is not particularly limited, and may be H + ions, Ca 2+ ions, Na + ions, or the like.

金属捕捉材料用陽イオン交換樹脂としては、強酸性陽イオン交換樹脂、弱酸性陽イオン交換樹脂等の種類に限定されず、適用可能である。
陽イオン交換樹脂の構造として、スチレンやアクリルといった母体構造は、特に問わない。また、架橋密度などの樹脂物性によって特に限定されず、種々の陽イオン交換樹脂が使用できる。例えば、多孔質型又はゲルタイプの陽イオン交換樹脂が使用でき、特により表面積が高い多孔質型の陽イオン交換樹脂が好ましい。これらの陽イオン交換樹脂は、単独で用いてもよく、2種以上の陽イオン交換樹脂を組み合わせて用いてもよい。
The cation exchange resin for the metal trapping material is not limited to a kind such as a strong acid cation exchange resin and a weak acid cation exchange resin, and is applicable.
As a structure of the cation exchange resin, a matrix structure such as styrene or acrylic is not particularly limited. Moreover, it does not specifically limit by resin physical properties, such as a crosslinking density, Various cation exchange resins can be used. For example, a porous or gel type cation exchange resin can be used, and a porous cation exchange resin having a higher surface area is particularly preferable. These cation exchange resins may be used alone or in combination of two or more cation exchange resins.

金属捕捉材料用ゼオライトとしては、イオン交換可能な陽イオンを有するゼオライトであって、特に、フォージャサイト、X型ゼオライト、Y型ゼオライト、A型ゼオライト、ZSM−5ゼオライト、モルデンフッ石、ベータ型ゼオライトの中のいずれか1構造を有するゼオライトである。中でも好ましいゼオライトはX型ゼオライト、Y型ゼオライトである。   The zeolite for the metal capture material is a zeolite having an ion-exchangeable cation, in particular, faujasite, X-type zeolite, Y-type zeolite, A-type zeolite, ZSM-5 zeolite, mordenite, beta-type zeolite. Zeolite having any one of the structures. Among these, preferred zeolites are X-type zeolite and Y-type zeolite.

以下、本発明を実施例によりさらに詳細に説明する。本発明は、以下の実施例に限定されるものではない。
[評価方法]
<飲料処理用金属担持イオン交換樹脂の銀担持量の定量>
後述する供試イオン交換樹脂における銀担持量は、ICP発光分光分析装置(アジレントテクノロジー株式会社製 720−ES)を用いて定量した。ここで、銀担持量とは、乾燥換算の供試イオン交換樹脂全質量に対する金属換算の質量%である。
希硝酸を用いて、供試イオン交換樹脂から銀を溶出させる処理を2回行って、抽出された液の分析結果から、供試イオン交換樹脂の銀担持量を算出した。
Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the following examples.
[Evaluation method]
<Quantification of the amount of silver supported by a metal-supported ion exchange resin for beverage processing>
The amount of silver supported in the test ion exchange resin described later was quantified using an ICP emission spectroscopic analyzer (720-ES manufactured by Agilent Technologies). Here, the amount of silver supported is mass% in terms of metal with respect to the total mass of the test ion exchange resin in terms of dryness.
The process of eluting silver from the sample ion exchange resin was performed twice using dilute nitric acid, and the silver loading of the sample ion exchange resin was calculated from the analysis result of the extracted liquid.

<酒類の硫黄成分分析>
後述する供試イオン交換樹脂を封入したカラムの通液前の供試酒と、通液後の供試酒中の硫黄化合物(硫化水素(HS)、メチルメルカプタン(CHSH)、ジメチルスルフィド(DMS)、及びジメチルジスルフィド(DMDS))の濃度を、GC−SCD装置(化学発光硫黄検出器付ガスクロマトグラフィー、アレジレントテクノロジー株式会社製、GC:6890N/SCD:355)を用いて分析した。なお、ここでの硫黄化合物の濃度は、化合物濃度ではなく、硫黄原子濃度である。
また、供試酒中に含まれている全硫黄濃度を、紫外蛍光法硫黄分析計(三菱化学アナルテック株式会社製、型番TS−100)を使用して、燃焼−紫外蛍光法により測定した。なお、全硫黄濃度とは、化合物濃度ではなく、硫黄原子濃度である。
<Sulfur component analysis of alcoholic beverages>
Sample liquor before passing through a column enclosing a test ion exchange resin, which will be described later, and sulfur compounds (hydrogen sulfide (H 2 S), methyl mercaptan (CH 3 SH), dimethyl in the sample liquor after passing through The concentration of sulfide (DMS) and dimethyl disulfide (DMDS) was analyzed using a GC-SCD apparatus (gas chromatography with a chemiluminescence sulfur detector, manufactured by Allilen Technology, GC: 6890N / SCD: 355). did. In addition, the density | concentration of a sulfur compound here is not a compound density | concentration but a sulfur atom density | concentration.
Further, the total sulfur concentration contained in the sample liquor was measured by a combustion-ultraviolet fluorescence method using an ultraviolet fluorescence sulfur analyzer (manufactured by Mitsubishi Chemical Analtech Co., Ltd., model number TS-100). The total sulfur concentration is not a compound concentration but a sulfur atom concentration.

<酒類の香気成分等の分析>
後述する供試イオン交換樹脂を封入したカラムの通液前の供試酒と、通液後の供試酒中の香気成分等の分析は、ヘッドスペースガスクロマトグラフ質量分析計(ヘッドスペースインジェクター「MultiPurpose Sampler MPS2」 Gerstel株式会社製)を用いて行った。ここでの濃度は、化合物濃度である。
<Analysis of aroma components of alcoholic beverages>
Analysis of a sample liquor before passing through a column enclosing a test ion exchange resin, which will be described later, and an aroma component in the sample liquor after passing through, were conducted using a headspace gas chromatograph mass spectrometer (headspace injector “MultiPurpose”). Sampler MPS2 "manufactured by Gerstel Co., Ltd.). The concentration here is the compound concentration.

<銀の溶出量の定量>
後述する供試イオン交換樹脂を封入したカラムの通液後の供試酒に、硫酸処理と、灰化処理とを施した後、アルカリ溶解法を実施することにより均一な水溶液を得た。この水溶液に含まれる銀の量を、ICP発光分光分析装置 アジレントテクノロジー株式会社製 720−ESを用いて定量し、これを溶出量とした。
<Quantification of elution amount of silver>
A test liquor after passing through a column enclosing a test ion exchange resin, which will be described later, was subjected to sulfuric acid treatment and ashing treatment, and then subjected to an alkali dissolution method to obtain a uniform aqueous solution. The amount of silver contained in this aqueous solution was quantified using an ICP emission spectrophotometer 720-ES manufactured by Agilent Technology Co., Ltd., and this was used as the elution amount.

<官能評価試験>
実施例1及び比較例1,2の方法にて通液処理したウイスキー、および未処理のウイスキー(未処理)に対し、12名のパネラーにより、最低1点〜最高7点による7段階で行った。その結果を第4表に示す。
<Sensory evaluation test>
With respect to whiskey subjected to liquid treatment by the method of Example 1 and Comparative Examples 1 and 2 and untreated whiskey (untreated), it was performed in 7 stages by 12 panelists from a minimum of 1 point to a maximum of 7 points. . The results are shown in Table 4.

[供試イオン交換樹脂の製造例]
<製造例1>
硝酸アンモニウム264gを水3.3Lに溶解し、市販のNa型イオン交換樹脂(Rohm and Haas株式会社製、商品名:Amberlite 200)を、乾燥重量で1kg投入し、液を3時間撹拌し、イオン交換処理を行ってNH型イオン交換樹脂を得た。水洗の後、水3Lに硝酸銀788gを溶解して得られた硝酸銀溶液に、NH型イオン交換樹脂1kgを投入し、液を3時間撹拌し、Agイオン交換を行い、さらに、濾過及び水洗を行った。この後、60℃で12時間の乾燥を行い、Ag型イオン交換樹脂1を得た。
[Production example of sample ion exchange resin]
<Production Example 1>
264 g of ammonium nitrate is dissolved in 3.3 L of water, and 1 kg of a commercially available Na-type ion exchange resin (Rohm and Haas Co., Ltd., trade name: Amberlite 200) is added in a dry weight, and the liquid is stirred for 3 hours, followed by ion exchange. Treatment was performed to obtain an NH 4 type ion exchange resin. After washing with water, 1 kg of NH 4 type ion exchange resin is added to a silver nitrate solution obtained by dissolving 788 g of silver nitrate in 3 L of water, the solution is stirred for 3 hours, Ag ion exchange is performed, and further, filtration and washing are performed. went. Thereafter, drying was performed at 60 ° C. for 12 hours to obtain an Ag-type ion exchange resin 1.

<製造例2>
硝酸銀788gを水3Lに溶解し、市販のNa型イオン交換樹脂(Rohm and Haas株式会社製、商品名:Amberlite 200)を乾燥重量で1kg投入し、液を3時間撹拌し、Agイオン交換を行い、さらに、濾過及び水洗を行った。この後、60℃で12時間の乾燥を行い、Ag型イオン交換樹脂2を得た。
<Production Example 2>
788 g of silver nitrate is dissolved in 3 L of water, 1 kg of a commercially available Na-type ion exchange resin (Rohm and Haas Co., Ltd., trade name: Amberlite 200) is added in dry weight, the solution is stirred for 3 hours, and Ag ion exchange is performed. Furthermore, filtration and water washing were performed. Thereafter, drying was performed at 60 ° C. for 12 hours to obtain an Ag-type ion exchange resin 2.

<製造例3>
硝酸銀394gを水3Lに溶解し、市販のNa型イオン交換樹脂(Rohm and Haas株式会社製、商品名:Amberlite 200)を乾燥重量で1kg投入し、液を3時間撹拌し、Agイオン交換を行い、さらに、濾過及び水洗を行った。この後、60℃で12時間の乾燥を行い、Ag型イオン交換樹脂3を得た。
<Production Example 3>
394 g of silver nitrate is dissolved in 3 L of water, 1 kg of a commercially available Na-type ion exchange resin (Rohm and Haas Co., Ltd., trade name: Amberlite 200) is added in dry weight, the solution is stirred for 3 hours, and Ag ion exchange is performed. Furthermore, filtration and water washing were performed. Thereafter, drying was performed at 60 ° C. for 12 hours to obtain an Ag-type ion exchange resin 3.

<製造例4>
硝酸銀394gを水3Lに溶解し、市販のH型イオン交換樹脂(Rohm and Haas株式会社製、商品名:Amberlyst 15)を乾燥重量で1kg投入し、液を3時間撹拌し、Agイオン交換を行い、さらに、濾過及び水洗を行った。この後、60℃で12時間の乾燥を行い、Ag型イオン交換樹脂4を得た。
<Production Example 4>
394 g of silver nitrate is dissolved in 3 L of water, and 1 kg of a commercially available H-type ion exchange resin (Rohm and Haas, trade name: Amberlyst 15) is added by dry weight, and the solution is stirred for 3 hours to perform Ag ion exchange. Furthermore, filtration and water washing were performed. Thereafter, drying was performed at 60 ° C. for 12 hours to obtain an Ag-type ion exchange resin 4.

<製造例5>
硝酸アンモニウム264gを水3.3Lに溶解し、市販のH型イオン交換樹脂(Rohm and Haas株式会社製、商品名:Amberlyst 15)を乾燥重量で1kg投入し、液を3時間撹拌し、イオン交換処理を行ってNH型イオン交換樹脂を得た。水洗の後、水3Lに硝酸銀394gを溶解して得られた硝酸銀溶液に、NH型イオン交換樹脂1kgを投入し、液を3時間撹拌し、Agイオン交換を行い、さらに、濾過及び水洗を行った。この後、60℃で12時間の乾燥を行い、Ag型イオン交換樹脂5を得た。
<Production Example 5>
264 g of ammonium nitrate is dissolved in 3.3 L of water, and 1 kg of a commercially available H-type ion exchange resin (Rohm and Haas Co., Ltd., trade name: Amberlyst 15) is added by dry weight, and the liquid is stirred for 3 hours to perform ion exchange treatment. To obtain an NH 4 type ion exchange resin. After washing with water, 1 kg of NH 4 type ion exchange resin is added to a silver nitrate solution obtained by dissolving 394 g of silver nitrate in 3 L of water, the solution is stirred for 3 hours, Ag ion exchange is performed, and filtration and washing are performed. went. Thereafter, drying was performed at 60 ° C. for 12 hours to obtain an Ag-type ion exchange resin 5.

<製造例6>
市販のナトリウムY型ゼオライト成型体(東ソー株式会社製 HSZ−320NAD1A)を砕いて平均粒径を1.0〜1.5mmに揃えた。硝酸アンモニウム264gを水3.3Lに溶解し、上記ゼオライト1kgを投入し、液を3時間撹拌し、イオン交換処理を行ってNHY型ゼオライトを得た。水洗及び乾燥の後、NHY型ゼオライト1kgを硝酸銀394g及びアンモニア(30%)330gを水2.5Lに溶解した銀アンミン錯イオン溶液に投入し、液を3時間撹拌し、Agイオン交換を行い、さらに、水洗及び乾燥を行った。この後、400℃で3時間の焼成を行い、AgY型ゼオライト1を得た。
<Production Example 6>
A commercially available sodium Y-type zeolite molding (HSZ-320NAD1A manufactured by Tosoh Corporation) was crushed to have an average particle size of 1.0 to 1.5 mm. 264 g of ammonium nitrate was dissolved in 3.3 L of water, 1 kg of the zeolite was added, the liquid was stirred for 3 hours, and ion exchange treatment was performed to obtain NH 4 Y-type zeolite. After washing with water and drying, 1 kg of NH 4 Y-type zeolite is put into a silver ammine complex ion solution in which 394 g of silver nitrate and 330 g of ammonia (30%) are dissolved in 2.5 L of water, and the solution is stirred for 3 hours to perform Ag ion exchange. Further, washing with water and drying were performed. Thereafter, firing was performed at 400 ° C. for 3 hours to obtain AgY-type zeolite 1.

<比較製造例1>
直径1cmのカラムに、市販のNa型イオン交換樹脂(Rohm and Haas株式会社製、商品名:Amberlite 200)を18cm封入し、濃硫酸(純正化学株式会社製)を用いて調製した3質量%硫酸水溶液1.8Lを1時間通液し、H型イオン交換樹脂を作製した。
<Comparative Production Example 1>
Commercially available Na-type ion exchange resin (Rohm and Haas Co., Ltd., trade name: Amberlite 200) was sealed in 18 cm 3 in a 1 cm diameter column, and 3% by mass prepared using concentrated sulfuric acid (manufactured by Junsei Chemical Co., Ltd.). An aqueous sulfuric acid solution (1.8 L) was passed through for 1 hour to prepare an H-type ion exchange resin.

[実施例及び比較例]
(1)供試酒として、モルトウイスキー(アルコール分62%)を用いたときの評価
<実施例1>
直径1cmの第1カラムに、製造例1により得られたAg型イオン交換樹脂1を18cm封入した。また、直径1cmの第2カラムに、市販のNa型イオン交換樹脂(Rohm and Haas株式会社製、商品名:Amberlite 200)を18cm封入した。第1カラムと第2カラムとを直列に接続し、供試酒として、モルトウイスキー(アルコール分62%)2.5Lを、通液温度30℃,通液条件LHSV=20h−1で通液させた。
通液前の供試酒と、通液後の供試酒とを、上述の方法により分析した。なお、通液後の供試酒とは、通液開始から7時間後に流出した供試酒である。
供試酒のモルトウイスキーには、DMSが1.047ppm、DMDSが0.248ppm含まれていた。第1カラム及び第2カラムからのAg溶出量を第1表に、硫黄化合物の分析結果を第2表に、香気成分の分析結果を第3表に、官能評価試験の結果を第4表に示す。なお、Ag溶出量は、第1カラム通液後と第2カラム通液後の双方について確認した。
[Examples and Comparative Examples]
(1) Evaluation when malt whiskey (alcohol content: 62%) is used as a sample sake <Example 1>
18 cm 3 of the Ag-type ion exchange resin 1 obtained in Production Example 1 was sealed in a first column having a diameter of 1 cm. In addition, 18 cm 3 of a commercially available Na-type ion exchange resin (manufactured by Rohm and Haas, trade name: Amberlite 200) was sealed in a second column having a diameter of 1 cm. The first column and the second column are connected in series, and 2.5 L of malt whiskey (alcohol content: 62%) is passed as a test liquor at a liquid passing temperature of 30 ° C. and a liquid passing condition of LHSV = 20 h −1. It was.
The test liquor before passing through and the test liquor after passing through were analyzed by the method described above. In addition, the sample sake after passing is the sample sake that flowed out 7 hours after the start of passing.
The malt whiskey of the sample liquor contained 1.047 ppm DMS and 0.248 ppm DMDS. The amount of Ag elution from the first column and the second column is shown in Table 1, the analysis result of the sulfur compound is shown in Table 2, the analysis result of the aroma component is shown in Table 3, and the result of the sensory evaluation test is shown in Table 4. Show. In addition, Ag elution amount was confirmed for both after passage through the first column and after passage through the second column.

<実施例2>
直径1cmのカラムに、製造例2により得られたAg型イオン交換樹脂2を18cm封入した。このカラムに、供試酒としてモルトウイスキー(アルコール分62%)2.5Lを、通液温度30℃,通液条件LHSV=20h−1で通液させた。Ag溶出量を第1表に、硫黄化合物の分析結果を第2表に示す。
<Example 2>
18 cm 3 of the Ag-type ion exchange resin 2 obtained in Production Example 2 was sealed in a 1 cm diameter column. 2.5 L of malt whiskey (alcohol content: 62%) was passed through this column at a liquid passing temperature of 30 ° C. and a liquid passing condition of LHSV = 20 h −1 . The Ag elution amount is shown in Table 1, and the analysis result of the sulfur compound is shown in Table 2.

<実施例3>
直径1cmのカラムに、製造例3により得られたAg型イオン交換樹脂3を18cm封入した。このカラムに、供試酒としてモルトウイスキー(アルコール分62%)2.5Lを、通液温度30℃,通液条件LHSV=20h−1で通液させた。Ag溶出量を第1表に、硫黄化合物の分析結果を第2表に示す。
<Example 3>
18 cm 3 of the Ag-type ion exchange resin 3 obtained in Production Example 3 was sealed in a 1 cm diameter column. 2.5 L of malt whiskey (alcohol content: 62%) was passed through this column at a liquid passing temperature of 30 ° C. and a liquid passing condition of LHSV = 20 h −1 . The Ag elution amount is shown in Table 1, and the analysis result of the sulfur compound is shown in Table 2.

<実施例4>
直径1cmの第1カラムに、製造例4により得られたAg型イオン交換樹脂4を18cm封入した。このカラムに、供試酒として、モルトウイスキー(アルコール分62%)2.5Lを、通液温度30℃,通液条件LHSV=20h−1で通液させた。Ag溶出量を第1表に、硫黄化合物の分析結果を第2表に示す。
<Example 4>
18 cm 3 of the Ag-type ion exchange resin 4 obtained in Production Example 4 was sealed in a first column having a diameter of 1 cm. As a test liquor, 2.5 L of malt whiskey (alcohol content: 62%) was passed through this column at a liquid passing temperature of 30 ° C. and a liquid passing condition of LHSV = 20 h −1 . The Ag elution amount is shown in Table 1, and the analysis result of the sulfur compound is shown in Table 2.

<実施例5>
直径1cmの第1カラムに、製造例5により得られたAg型イオン交換樹脂5を18cm封入した。このカラムに、供試酒として、モルトウイスキー(アルコール分62%)2.5Lを、通液温度30℃,通液条件LHSV=20h−1で通液させた。Ag溶出量を第1表に、硫黄化合物の分析結果を第2表に示す。
<Example 5>
18 cm 3 of the Ag-type ion exchange resin 5 obtained in Production Example 5 was sealed in a first column having a diameter of 1 cm. As a test liquor, 2.5 L of malt whiskey (alcohol content: 62%) was passed through this column at a liquid passing temperature of 30 ° C. and a liquid passing condition of LHSV = 20 h −1 . The Ag elution amount is shown in Table 1, and the analysis result of the sulfur compound is shown in Table 2.

<参考例1>
直径1cmの第1カラムに、製造例6により得られたAgY型ゼオライト1を18cm封入した。また、市販のナトリウムY型ゼオライト成型体(東ソー株式会社製 HSZ−320NAD1A)を砕いて平均粒径を1.0〜1.5mmに揃えて、これを直径1cmの第2カラムに18cm封入した。第1カラムと第2カラムとを直列に接続し、供試酒として、モルトウイスキー(アルコール分62%)2.5Lに酢酸カルシウム(和光純薬社製)0.10gを加え、これを通液温度30℃,通液条件LHSV=20h−1で通液させた。Ag溶出量を第1表に示す。
<Reference Example 1>
18 cm 3 of AgY-type zeolite 1 obtained in Production Example 6 was sealed in a first column having a diameter of 1 cm. In addition, a commercially available sodium Y-type zeolite molded product (HSZ-320NAD1A manufactured by Tosoh Corporation) was crushed to have an average particle size of 1.0 to 1.5 mm, and 18 cm 3 was sealed in a second column having a diameter of 1 cm. . The first column and the second column are connected in series, and 0.10 g of calcium acetate (manufactured by Wako Pure Chemical Industries, Ltd.) is added to 2.5 L of malt whiskey (alcohol content 62%) as a test liquor. The liquid was passed at a temperature of 30 ° C. and a liquid passing condition LHSV = 20 h −1 . The amount of Ag elution is shown in Table 1.

<比較例1>
直径1cmのカラムに、市販のNa型イオン交換樹脂(Rohm and Haas株式会社製、商品名:Amberlite 200)を18cm封入した。このカラムに、供試酒として、モルトウイスキー(アルコール分62%)2.5Lを、通液温度30℃,通液条件LHSV=20h−1で通液させた。硫黄化合物の分析結果を第2表に、香気成分の分析結果を第3表に、官能評価試験の結果を第4表に示す。
<Comparative Example 1>
18 cm 3 of a commercially available Na-type ion exchange resin (Rohm and Haas, trade name: Amberlite 200) was sealed in a column having a diameter of 1 cm. As a test liquor, 2.5 L of malt whiskey (alcohol content: 62%) was passed through this column at a liquid passing temperature of 30 ° C. and a liquid passing condition of LHSV = 20 h −1 . The analysis result of the sulfur compound is shown in Table 2, the analysis result of the aroma component is shown in Table 3, and the result of the sensory evaluation test is shown in Table 4.

<比較例2>
比較製造例1によって得られたH型イオン交換樹脂に、供試酒として、モルトウイスキー(アルコール分62%)2.5Lを、通液温度30℃,通液条件LHSV=20h−1で通液させた。硫黄化合物の分析結果を第2表に、香気成分の分析結果を第3表に、官能評価試験の結果を第4表に示す。
<Comparative example 2>
As a test liquor, 2.5 L of malt whiskey (alcohol content: 62%) 2.5 L was passed through the H-type ion exchange resin obtained in Comparative Production Example 1 at a liquid passing temperature of 30 ° C. and a liquid passing condition LHSV = 20 h −1. I let you. The analysis result of the sulfur compound is shown in Table 2, the analysis result of the aroma component is shown in Table 3, and the result of the sensory evaluation test is shown in Table 4.

<モルトウイスキーの評価結果>
第4表に示すように、未処理品の評点の平均が4.00点であるのに対して、比較例1は4.00点、比較例2は4.08点であり、比較例のものは、未処理品と同等の未熟感を有していた。
一方、実施例1は4.50点であり、未処理品に比べて未熟感の少ない良好な香味を有していた。
上記結果から、モルトウイスキー(アルコール分62%)を、本実施例に係る金属担持イオン交換樹脂に通液すると、旨味成分を残しながら、不要成分を除去できることがわかった。
また、実施例1のように、Ag型イオン交換樹脂のカラムと、Na型イオン交換樹脂のカラムとを直列に接続したシステムでは、上記不要成分の除去とともに、溶出した銀イオン量も十分に低減できることがわかった。
<Evaluation results of malt whiskey>
As shown in Table 4, the average score of untreated products was 4.00 points, whereas Comparative Example 1 was 4.00 points and Comparative Example 2 was 4.08 points. The thing had the same immaturity as the untreated product.
On the other hand, Example 1 was 4.50 points and had a good flavor with less immaturity compared to untreated products.
From the above results, it was found that when malt whiskey (alcohol content: 62%) was passed through the metal-supported ion exchange resin according to this example, unnecessary components could be removed while leaving the umami components.
Further, as in Example 1, in a system in which an Ag-type ion exchange resin column and an Na-type ion exchange resin column are connected in series, the amount of silver ions eluted is sufficiently reduced along with the removal of the unnecessary components. I knew it was possible.

(2)供試酒として、麦焼酎を用いたときの評価
<実施例6>
直径1cmの第1カラムに、製造例1により得られたAg型イオン交換樹脂1を18cm封入した。このカラムに、供試酒として、麦焼酎(常圧蒸溜(アルコール分25%))2.5Lを、通液温度30℃,通液条件LHSV=20h−1で通液させた。Ag溶出量を第5表に、硫黄化合物の分析結果を第6表に、香気成分の分析結果を第7表に示す。
<参考例2>
直径1cmの第1カラムに、製造例6により得られたAgY型ゼオライト1を18cm封入した。また、市販のナトリウムY型ゼオライト成型体(東ソー株式会社製 HSZ−320NAD1A)を砕いて平均粒径を1.0〜1.5mmに揃えて、これを直径1cmの第2カラムに18cm封入した。第1カラムと第2カラムとを直列に接続し、供試酒として、麦焼酎(常圧蒸溜(アルコール分25%))2.5Lを、通液温度30℃,通液条件LHSV=20h−1で通液させた。Ag溶出量を第5表に示す。
(2) Evaluation when wheat shochu is used as a sample sake <Example 6>
18 cm 3 of the Ag-type ion exchange resin 1 obtained in Production Example 1 was sealed in a first column having a diameter of 1 cm. As a test liquor, 2.5 L of barley shochu (normal pressure distillation (alcohol content: 25%)) was passed through this column at a liquid passing temperature of 30 ° C. and a liquid passing condition of LHSV = 20 h −1 . The Ag elution amount is shown in Table 5, the analysis result of the sulfur compound is shown in Table 6, and the analysis result of the aroma component is shown in Table 7.
<Reference Example 2>
18 cm 3 of AgY-type zeolite 1 obtained in Production Example 6 was sealed in a first column having a diameter of 1 cm. In addition, a commercially available sodium Y-type zeolite molded product (HSZ-320NAD1A manufactured by Tosoh Corporation) was crushed to have an average particle size of 1.0 to 1.5 mm, and 18 cm 3 was sealed in a second column having a diameter of 1 cm. . The first column and the second column are connected in series, and 2.5 L of barley shochu (normal pressure distillation (alcohol content: 25%)) is used as a test liquor at a liquid passing temperature of 30 ° C. and a liquid passing condition LHSV = 20 h − 1 was passed through. The amount of Ag elution is shown in Table 5.

<麦焼酎の評価結果>
上記結果から、麦焼酎を、製造例1の金属担持イオン交換樹脂に通液すると、旨味成分を残しながら、不要成分を除去できることがわかった。
<Evaluation results of wheat shochu>
From the above results, it was found that when barley shochu was passed through the metal-supported ion exchange resin of Production Example 1, unnecessary components could be removed while leaving the umami components.

(2)供試酒として、芋焼酎を用いたときの評価
<実施例7>
直径1cmの第1カラムに、製造例1により得られたAg型イオン交換樹脂1を18cm封入した。このカラムに、供試酒として、芋焼酎(常圧蒸溜(アルコール分39%))2.5Lを、通液温度30℃,通液条件LHSV=20h−1で通液させた。Ag溶出量を第8表に、硫黄化合物の分析結果を第9表に、香気成分の分析結果を第10表に示す。
(2) Evaluation when using sake shochu as a sample sake <Example 7>
18 cm 3 of the Ag-type ion exchange resin 1 obtained in Production Example 1 was sealed in a first column having a diameter of 1 cm. As a test liquor, 2.5 L of shochu shochu (normal pressure distillation (alcohol content: 39%)) 2.5 L was passed through this column at a liquid passing temperature of 30 ° C. and a liquid passing condition LHSV = 20 h −1 . The Ag elution amount is shown in Table 8, the analysis result of the sulfur compound is shown in Table 9, and the analysis result of the aroma component is shown in Table 10.

<芋焼酎の評価結果>
上記結果から、芋焼酎を、製造例1の金属担持イオン交換樹脂に通液すると、旨味成分を残しながら、不要成分を除去できることがわかった。
<Evaluation results of shochu shochu>
From the above results, it was found that when the shochu shochu was passed through the metal-supported ion exchange resin of Production Example 1, unnecessary components could be removed while leaving the umami components.

(3)供試酒として、ラム酒を用いたときの評価
<実施例8>
直径1cmの第1カラムに、製造例2により得られたAg型イオン交換樹脂2を18cm封入した。このカラムに、供試酒として、ラム酒(アルコール分62%)2.5Lを、通液温度30℃,通液条件LHSV=20h−1で通液させた。Ag溶出量を第11表に、硫黄化合物の分析結果を第12表に、香気成分の分析結果を第13表に示す。
(3) Evaluation when rum is used as a sample sake <Example 8>
18 cm 3 of the Ag-type ion exchange resin 2 obtained in Production Example 2 was sealed in a first column having a diameter of 1 cm. As a test liquor, 2.5 L of rum (alcohol content: 62%) was passed through this column at a flow rate of 30 ° C. and a flow rate of LHSV = 20 h −1 . The Ag elution amount is shown in Table 11, the analysis result of the sulfur compound is shown in Table 12, and the analysis result of the aroma component is shown in Table 13.

<ラム酒の評価結果>
上記結果から、ラム酒を、製造例2の金属担持イオン交換樹脂に通液すると、旨味成分を残しながら、不要成分を除去できることがわかった。
<Rum alcohol evaluation results>
From the above results, it was found that when rum was passed through the metal-supported ion exchange resin of Production Example 2, unnecessary components could be removed while leaving the umami components.

Claims (7)

陽イオン交換樹脂の陽イオンの少なくとも一部が銀イオンに交換されてなる飲料処理用金属担持イオン交換樹脂に接触させる工程を包含する、飲料に含まれる不要成分を除去する飲料の精製方法。   A method for purifying a beverage for removing unnecessary components contained in a beverage, comprising a step of bringing the cation exchange resin into contact with a metal-supported ion-exchange resin for beverage processing in which at least a part of cations of the cation exchange resin is exchanged with silver ions. 前記銀イオンの担持量が、乾燥換算の前記飲料処理用金属担持イオン交換樹脂全量に対して、銀質量換算で、10質量%以上40質量%以下である請求項1に記載の飲料の精製方法。   2. The method for purifying a beverage according to claim 1, wherein the supported amount of silver ions is 10% by mass or more and 40% by mass or less in terms of silver mass with respect to the total amount of the metal-supported ion-exchange resin for beverage processing in terms of dryness. . 飲料を前記飲料処理用金属担持イオン交換樹脂に接触させる工程の後、前記飲料処理用金属担持イオン交換樹脂に接触させた飲料を、金属捕捉材料により金属イオンを除去する工程を、さらに有する請求項1又は2に記載の飲料の精製方法。   The method further comprising the step of removing metal ions with a metal-trapping material from the beverage brought into contact with the beverage-supporting metal-supported ion exchange resin after the step of bringing the beverage into contact with the beverage-supporting metal-supported ion exchange resin. The method for purifying a beverage according to 1 or 2. 前記飲料が蒸留酒であることを特徴とする請求項1〜3のいずれか1項に記載の飲料の精製方法。   The method for purifying a beverage according to any one of claims 1 to 3, wherein the beverage is distilled liquor. 前記飲料が醸造酒であることを特徴とする請求項1〜3のいずれか1項に記載の飲料の精製方法。   The method for purifying a beverage according to any one of claims 1 to 3, wherein the beverage is brewed sake. 陽イオン交換樹脂の陽イオンの少なくとも一部が銀イオンに交換されてなり、飲料に含まれる不要成分を除去する飲料処理用金属担持イオン交換樹脂。   A metal-supported ion-exchange resin for beverage processing, in which at least part of the cation of the cation-exchange resin is exchanged with silver ions to remove unnecessary components contained in the beverage. 前記銀イオンの担持量が、乾燥換算の飲料処理用金属担持イオン交換樹脂全量に対して、銀質量換算で、10質量%以上40質量%以下であることを特徴とする請求項6に記載の飲料処理用金属担持イオン交換樹脂。   The amount of silver ions supported is 10% by mass or more and 40% by mass or less in terms of silver mass with respect to the total amount of metal-supported ion exchange resin for beverage processing in terms of dryness. Metal-supported ion exchange resin for beverage processing.
JP2015123198A 2015-06-18 2015-06-18 Method for producing distilled liquor, and processing member including metal-supported ion exchange resin Active JP6673563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015123198A JP6673563B2 (en) 2015-06-18 2015-06-18 Method for producing distilled liquor, and processing member including metal-supported ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015123198A JP6673563B2 (en) 2015-06-18 2015-06-18 Method for producing distilled liquor, and processing member including metal-supported ion exchange resin

Publications (2)

Publication Number Publication Date
JP2017006025A true JP2017006025A (en) 2017-01-12
JP6673563B2 JP6673563B2 (en) 2020-03-25

Family

ID=57760353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015123198A Active JP6673563B2 (en) 2015-06-18 2015-06-18 Method for producing distilled liquor, and processing member including metal-supported ion exchange resin

Country Status (1)

Country Link
JP (1) JP6673563B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86107014A (en) * 1986-11-06 1988-05-18 南开大学 Make the method for liquor catalytic aging
JPH0380907A (en) * 1989-08-22 1991-04-05 Fuji Cafe Kk Filter medium for refreshment liquid
US5505120A (en) * 1994-12-12 1996-04-09 Albertson; David V. Water filter
JP2007515448A (en) * 2003-12-23 2007-06-14 ビーエーエスエフ アクチェンゲゼルシャフト Method for diluting sulfur and / or sulfur-containing compounds from biochemically produced organic compounds
JP2010051309A (en) * 2008-07-29 2010-03-11 Mercian Corp Fermented alcoholic beverage suppressed in metal ion oxidation action
JP2012016321A (en) * 2010-07-09 2012-01-26 J Science Nishinihon:Kk Device and method for removing malodor of beverage, and method for producing distilled liquor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86107014A (en) * 1986-11-06 1988-05-18 南开大学 Make the method for liquor catalytic aging
JPH0380907A (en) * 1989-08-22 1991-04-05 Fuji Cafe Kk Filter medium for refreshment liquid
US5505120A (en) * 1994-12-12 1996-04-09 Albertson; David V. Water filter
JP2007515448A (en) * 2003-12-23 2007-06-14 ビーエーエスエフ アクチェンゲゼルシャフト Method for diluting sulfur and / or sulfur-containing compounds from biochemically produced organic compounds
JP2010051309A (en) * 2008-07-29 2010-03-11 Mercian Corp Fermented alcoholic beverage suppressed in metal ion oxidation action
JP2012016321A (en) * 2010-07-09 2012-01-26 J Science Nishinihon:Kk Device and method for removing malodor of beverage, and method for producing distilled liquor

Also Published As

Publication number Publication date
JP6673563B2 (en) 2020-03-25

Similar Documents

Publication Publication Date Title
JP6346621B2 (en) Metal-supported zeolite for liquor and method for producing liquor
JP6994074B2 (en) Methods and equipment for removing unnecessary ingredients contained in beverages
EP3260525B1 (en) Method for producing metal-supported zeolite for alcoholic beverages, and method for producing alcoholic beverages
US2520189A (en) Processing alcholic beverage distillates
JP4440591B2 (en) Method and apparatus for purifying distilled liquor
JP6673563B2 (en) Method for producing distilled liquor, and processing member including metal-supported ion exchange resin
JP6404574B2 (en) Method and apparatus for purifying distilled liquor
JP6566333B2 (en) Method for producing metal-supported zeolite for liquor, metal-supported zeolite for liquor, and method for producing liquor
JP2004222567A (en) Method for refining alcoholic beverage
JPH0329386B2 (en)
JPH0462714B2 (en)
JP6718309B2 (en) Method for purifying alcohol-containing liquid and apparatus for purifying alcohol-containing liquid

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150820

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191106

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200221

R150 Certificate of patent or registration of utility model

Ref document number: 6673563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250