JP6673563B2 - Method for producing distilled liquor, and processing member including metal-supported ion exchange resin - Google Patents

Method for producing distilled liquor, and processing member including metal-supported ion exchange resin Download PDF

Info

Publication number
JP6673563B2
JP6673563B2 JP2015123198A JP2015123198A JP6673563B2 JP 6673563 B2 JP6673563 B2 JP 6673563B2 JP 2015123198 A JP2015123198 A JP 2015123198A JP 2015123198 A JP2015123198 A JP 2015123198A JP 6673563 B2 JP6673563 B2 JP 6673563B2
Authority
JP
Japan
Prior art keywords
exchange resin
ion exchange
liquor
metal
beverage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015123198A
Other languages
Japanese (ja)
Other versions
JP2017006025A (en
Inventor
義実 河島
義実 河島
各務 成存
成存 各務
充子 村田
充子 村田
峻 深澤
峻 深澤
健二 細井
健二 細井
利和 杉本
利和 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikka Whiskey Distilling Co Ltd
Idemitsu Kosan Co Ltd
Original Assignee
Nikka Whiskey Distilling Co Ltd
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikka Whiskey Distilling Co Ltd, Idemitsu Kosan Co Ltd filed Critical Nikka Whiskey Distilling Co Ltd
Priority to JP2015123198A priority Critical patent/JP6673563B2/en
Publication of JP2017006025A publication Critical patent/JP2017006025A/en
Application granted granted Critical
Publication of JP6673563B2 publication Critical patent/JP6673563B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)

Description

本発明は、飲料に含まれる不要成分を除去する飲料の精製方法、及び該精製方法に用いられる飲料処理用金属担持イオン交換樹脂に関する。   The present invention relates to a beverage purification method for removing unnecessary components contained in a beverage, and a metal-supported ion-exchange resin for beverage treatment used in the purification method.

飲料、特に酒類のなかには、ウイスキーのように、短くて4〜6年、通常7〜10年、長い場合には20年近く樽に貯蔵されて、熟成されるものがある。
貯蔵の間に、硫黄化合物等の未熟成成分の蒸散及び消滅、ニューポット由来成分の反応(酸化反応、アセタール化反応、エステル化反応等)、樽の原材料由来成分の分解反応、樽内に溶出した原材料由来成分と原酒との反応、原酒を構成するエタノールと水との状態変化等が起こることにより、ウイスキーに特有の風味が引き出される。
しかし、貯蔵の間に原酒が樽に吸収されたり、樽を透過して揮発したりするため、原酒量は自然に減少する。このため、貯蔵期間の長期化は、製造効率の面では、製品ロスの増加を招いていた。
そこで、硫黄化合物等の未熟成成分、寒冷時における析出成分、不快な香り成分等の酒類にとっての不要成分を、貯蔵により自然に起こる変化を待たずに、積極的に除去する方法が考えられている。
Some beverages, especially alcoholic beverages, such as whiskey, are stored in barrels for a short period of 4 to 6 years, usually 7 to 10 years, and in the longest case, close to 20 years, and aged.
During storage, evaporation and disappearance of immature components such as sulfur compounds, reactions of components derived from new pots (oxidation reaction, acetalization reaction, esterification reaction, etc.), decomposition reactions of components derived from barrel raw materials, elution into barrels A reaction peculiar to the whiskey is brought out by the reaction between the raw material-derived components and the liquor, a change in the state of ethanol and water constituting the liquor, and the like.
However, during storage, the amount of the original sake naturally decreases because the original sake is absorbed into the barrel or evaporates through the barrel. For this reason, a prolonged storage period has caused an increase in product loss in terms of manufacturing efficiency.
Therefore, a method has been considered in which unnecessary components for liquor, such as unripened components such as sulfur compounds, precipitated components in cold weather, and unpleasant aroma components, are actively removed without waiting for changes that occur naturally by storage. I have.

酒類から不要成分を除去する方法としては、例えば、シリカを有機シラン化合物で処理してなる吸着剤に酒類を接触させる方法(特許文献1参照)、活性炭に酒類を接触させる方法(特許文献2参照)、金属粒と樹脂層とを用いる方法(特許文献3参照)、イオン交換樹脂を用いる方法(特許文献4参照)等が既に提案されている。
特許文献4には、内部に充填した強塩基性陰イオン交換樹脂を食塩で再生した後、更に亜硫酸水素ナトリウムで再生してなる単床式カラムと、内部に充填した強塩基性陰イオン交換樹脂を食塩のみで再生してなる亜硫酸トラップカラムとを使用して酒類の精製処理を行って、酒類に含まれる不快成分(ダイアセチル)を除去できることが記載されている。
しかし、酒類には、上述のように、硫黄化合物等の未熟成成分などのように、ダイアセチル以外の不要成分も含まれており、より高い品質の要求を満足する製品を提供するためには、更なる改良の余地が残されていた。
As a method for removing unnecessary components from liquor, for example, a method of contacting liquor with an adsorbent obtained by treating silica with an organic silane compound (see Patent Document 1) and a method of bringing liquor into contact with activated carbon (see Patent Document 2) ), A method using metal particles and a resin layer (see Patent Document 3), a method using an ion exchange resin (see Patent Document 4), and the like have already been proposed.
Patent Document 4 discloses a single-bed column in which a strongly basic anion exchange resin filled inside is regenerated with salt and then further regenerated with sodium bisulfite, and a strongly basic anion exchange resin filled inside is used. It is described that liquor can be purified using a sulfurous acid trap column in which liquor is regenerated only with salt to remove unpleasant components (diacetyl) contained in liquor.
However, as described above, liquors also contain unnecessary components other than diacetyl, such as unripened components such as sulfur compounds, and in order to provide products that satisfy higher quality requirements. There was room for further improvement.

特開昭63−137668号公報JP-A-63-137668 特開平03−187374号公報JP-A-03-187374 特開2012−016321号公報JP 2012-016321 A 特開2004−222567号公報JP 2004-222567 A

本発明は、酒類のような飲料に含まれる不要成分を効率よく除去し得る飲料の精製方法、及び該精製方法に用いることのできる飲料処理用金属担持イオン交換樹脂を提供することを課題とする。   An object of the present invention is to provide a method for purifying a beverage that can efficiently remove unnecessary components contained in a beverage such as alcoholic beverages, and a metal-supported ion-exchange resin for beverage treatment that can be used in the purification method. .

本発明者らは、特定の金属担持イオン交換樹脂に飲料を通液することにより、飲料に含まれる不要成分を除去することができ、前記課題が解決できることを見出した。
すなわち、本発明の要旨は下記のとおりである。
[1]陽イオン交換樹脂の陽イオンの少なくとも一部が銀イオンに交換されてなる飲料処理用金属担持イオン交換樹脂に接触させる工程を包含する、飲料に含まれる不要成分を除去する飲料の精製方法。
[2]前記銀イオンの担持量が、乾燥換算の前記飲料処理用金属担持イオン交換樹脂全量に対して、銀質量換算で、10質量%以上40質量%以下である[1]に記載の飲料の精製方法。
[3]飲料を前記飲料処理用金属担持イオン交換樹脂に接触させる工程の後、前記飲料処理用金属担持イオン交換樹脂に接触させた飲料を、金属捕捉材料により金属イオンを除去する工程を、さらに有する[1]又は[2]に記載の飲料の精製方法。
[4]前記飲料が蒸留酒であることを特徴とする[1]〜[3]のいずれかに記載の飲料の精製方法。
[5]前記飲料が醸造酒であることを特徴とする[1]〜[3]のいずれかに記載の飲料の精製方法。
[6]陽イオン交換樹脂の陽イオンの少なくとも一部が銀イオンに交換されてなり、飲料に含まれる不要成分を除去する飲料処理用金属担持イオン交換樹脂。
[7]前記銀イオンの担持量が、乾燥換算の飲料処理用金属担持イオン交換樹脂全量に対して、銀質量換算で、10質量%以上40質量%以下であることを特徴とする[6]に記載の飲料処理用金属担持イオン交換樹脂。
The present inventors have found that by passing a beverage through a specific metal-supported ion exchange resin, unnecessary components contained in the beverage can be removed, and the above problem can be solved.
That is, the gist of the present invention is as follows.
[1] Purification of a beverage for removing unnecessary components contained in a beverage, the method including a step of contacting a metal-carrying ion-exchange resin for beverage treatment obtained by exchanging at least a part of cations of a cation exchange resin with silver ions. Method.
[2] The beverage according to [1], wherein the supported amount of the silver ion is 10% by mass or more and 40% by mass or less in terms of silver mass based on the total amount of the metal-supported ion-exchange resin for beverage treatment in terms of dryness. Purification method.
[3] After the step of bringing the beverage into contact with the beverage-treating metal-supported ion-exchange resin, the beverage contacted with the beverage-treating metal-supporting ion-exchange resin is further subjected to a step of removing metal ions with a metal capturing material. The method for purifying a beverage according to [1] or [2].
[4] The beverage purification method according to any one of [1] to [3], wherein the beverage is distilled liquor.
[5] The method for purifying a beverage according to any one of [1] to [3], wherein the beverage is brewed liquor.
[6] A metal-supported ion-exchange resin for beverage treatment, wherein at least a part of cations of the cation-exchange resin is exchanged with silver ions to remove unnecessary components contained in the beverage.
[7] The amount of the silver ion carried is 10% by mass or more and 40% by mass or less in terms of silver mass, based on the total amount of the metal ion-exchange resin for beverage processing in terms of dryness. 4. The metal-carrying ion exchange resin for beverage treatment according to 4.

本発明によれば、酒類のような飲料に含まれる不要成分を効率よく除去し得る飲料の精製方法、及び該精製方法に用いることのできる飲料処理用金属担持イオン交換樹脂を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the refinement | purification method of the drink which can remove the unnecessary component contained in drinks, such as alcoholic beverage efficiently, and the metal carrying | support ion exchange resin for drink processing which can be used for the said refinement method can be provided. .

[飲料の精製方法]
本発明の実施形態に係る飲料の精製方法について、詳細に説明する。本実施形態に係る飲料の精製方法は、陽イオン交換樹脂の陽イオンの少なくとも一部が銀イオンに交換されてなる飲料処理用金属担持イオン交換樹脂に接触させる工程を包含し、飲料に含まれる不要成分を除去するものである。
本発明において対象とする飲料は、特に限定されるものではなく全ての飲料が適用できるが、以下では、飲料のなかでも酒類について説明する。
酒類としては、具体的には、ウイスキー、ブランデー、ジン、ウオッカ、テキーラ、ラム、白酒、アラック等の全ての蒸留酒が適用できる。また、清酒、ビール、ワイン、酒精強化ワイン、中国酒等の全ての醸造酒及び混成酒が適用できる。醸造酒及び混成酒のなかでは、清酒が好適に用いられる。さらに、麦焼酎、米焼酎、芋焼酎、黒糖酒、そば焼酎、コーン焼酎、粕取り焼酎、泡盛等の全ての焼酎が適用できる。
[Beverage purification method]
The method for purifying a beverage according to the embodiment of the present invention will be described in detail. The method for purifying a beverage according to the present embodiment includes a step of bringing at least a part of the cations of the cation exchange resin into contact with a metal-supported ion exchange resin for beverage treatment obtained by exchanging the cations with silver ions, and is included in the beverage. It removes unnecessary components.
The beverage targeted in the present invention is not particularly limited, and all beverages can be applied. In the following, alcoholic beverages will be described among the beverages.
As the liquor, specifically, all distilled liquors such as whiskey, brandy, gin, vodka, tequila, rum, white liquor, and arak can be applied. In addition, all brewed liquors and mixed liquors such as sake, beer, wine, refined wine, Chinese liquor and the like can be applied. Among brewed sake and mixed sake, sake is preferably used. Furthermore, all shochu such as barley shochu, rice shochu, potato shochu, brown sugar liquor, buckwheat shochu, corn shochu, lees shochu and awamori can be applied.

除去される不要成分とは、飲料の風味を妨げる成分であり、主として、不味成分が挙げられる。不味成分としては、酒類においては、ジメチルサルファイド、ジメチルジサルファイド、ジメチルトリサルファイド等の硫黄化合物が挙げられる。また、ピリジン等の窒素化合物が挙げられる。
酒類の精製方法の場合は、酒類に含まれる上述した不要成分を除去する一方で、高級アルコール類、フーゼル類、エステル類等の旨味成分を酒類中に残すことができる。
飲料が酒類である場合には、処理前の酒類に含まれる硫黄化合物の濃度が100質量ppm以下であることが好ましい。この範囲であれば、上述した飲料処理用金属担持イオン交換樹脂にて脱硫処理することが可能である。硫黄化合物の濃度は、より好ましくは、10質量ppm以下である。
処理温度の範囲は、−50℃以上150℃以下であり、より好ましくは0℃以上100℃以下であり、さらに好ましくは10℃以上60℃以下である。
上述した飲料処理用金属担持イオン交換樹脂に、飲料を通液させる際の条件は、流速(LHSV)範囲が0.1h−1以上100h−1以下であり、より好ましくは0.5以上50h−1以下であり、さらに好ましくは1以上30h−1以下である。また、液の流れ方向はアップフロー又はダウンフローのどちらでも構わない。
The unnecessary components to be removed are components that hinder the flavor of the beverage, and mainly include unpleasant components. Examples of the unpleasant components include, in alcoholic beverages, sulfur compounds such as dimethyl sulfide, dimethyl disulfide, and dimethyl trisulfide. Further, a nitrogen compound such as pyridine may be used.
In the case of a method for purifying liquor, while removing the above-mentioned unnecessary components contained in liquor, umami components such as higher alcohols, fusels, and esters can be left in the liquor.
When the beverage is liquor, the concentration of the sulfur compound contained in the liquor before the treatment is preferably 100 ppm by mass or less. Within this range, desulfurization treatment can be performed using the above-described metal-supported ion-exchange resin for beverage treatment. The concentration of the sulfur compound is more preferably 10 ppm by mass or less.
The range of the treatment temperature is from −50 ° C. to 150 ° C., more preferably from 0 ° C. to 100 ° C., and even more preferably from 10 ° C. to 60 ° C.
The above-described beverage processing metal supported ion exchange resins, conditions for which passed through the beverage, the flow rate (LHSV) range is at 0.1 h -1 or more 100h -1 or less, more preferably 0.5 or more 50h - It is 1 or less, More preferably, it is 1 or more and 30h- 1 or less. Further, the flow direction of the liquid may be either upflow or downflow.

上記条件によれば、飲料が酒類であれば、酒類中に高級アルコール類、フーゼル類、エステル類等の旨味成分を保持しながら、不要成分を除去することができる。
本発明の実施形態に係る飲料の精製方法は、飲料を飲料処理用金属担持イオン交換樹脂に接触させる工程の後、飲料処理用金属担持イオン交換樹脂に接触させた飲料を、金属捕捉材料により金属イオンを除去する工程を、さらに有することが好ましい。
本実施形態に係る飲料の精製方法では、後述する、銀イオンが担持されたイオン交換樹脂を用いるため、該イオン交換樹脂に通液した後の飲料には、銀イオンが溶出していることがある。
そこで、金属捕捉材料により、通液後の飲料に許容量を超える銀イオンが流出することを防止することができる。
According to the above conditions, if the beverage is liquor, unnecessary components can be removed while retaining umami components such as higher alcohols, fusels, and esters in the liquor.
The method for purifying a beverage according to the embodiment of the present invention comprises, after the step of bringing the beverage into contact with the metal-supported ion-exchange resin for beverage treatment, the beverage that has been brought into contact with the metal-supported ion-exchange resin for beverage treatment, the metal capturing material It is preferable to further include a step of removing ions.
In the method for purifying a beverage according to the present embodiment, which will be described later, since an ion exchange resin carrying silver ions is used, silver ions are eluted in the beverage after passing through the ion exchange resin. is there.
Therefore, it is possible to prevent the silver ions exceeding the permissible amount from flowing out into the beverage after passing through the liquid by the metal capturing material.

[飲料処理用金属担持イオン交換樹脂]
本発明の実施形態に係る飲料処理用金属担持イオン交換樹脂は、陽イオン交換樹脂の陽イオンの少なくとも一部が銀イオンに交換されたものである。この飲料処理用金属担持イオン交換樹脂は、飲料に含まれる不要成分を除去することができる。
<陽イオン交換樹脂>
本実施形態に係る飲料処理用金属担持イオン交換樹脂に適用可能な陽イオン交換樹脂は、強酸性陽イオン交換樹脂、弱酸性陽イオン交換樹脂等の種類に限定されず、適用可能である。陽イオン交換樹脂のイオン型は、特に限定されず、水素型であってもよいし、カルシウム型、ナトリウム型等の塩型であってもよい。
陽イオン交換樹脂の構造として、スチレンやアクリルといった母体構造は、特に問わない。また、架橋密度などの樹脂物性によって特に限定されず、種々の陽イオン交換樹脂が使用できる。例えば、多孔質型又はゲルタイプの陽イオン交換樹脂が使用でき、特により表面積が高い多孔質型の陽イオン交換樹脂が好ましい。これらの陽イオン交換樹脂は、単独で用いてもよく、2種以上の陽イオン交換樹脂を組み合わせて用いてもよい。
[Metal-supported ion exchange resin for beverage processing]
The metal-supported ion-exchange resin for beverage processing according to the embodiment of the present invention is obtained by exchanging at least a part of the cations of the cation-exchange resin with silver ions. This metal-supporting ion-exchange resin for beverage treatment can remove unnecessary components contained in the beverage.
<Cation exchange resin>
The cation exchange resin applicable to the metal-carrying ion exchange resin for beverage processing according to the present embodiment is not limited to a strongly acidic cation exchange resin, a weakly acidic cation exchange resin, and the like, and can be applied. The ion type of the cation exchange resin is not particularly limited, and may be a hydrogen type or a salt type such as a calcium type and a sodium type.
The structure of the cation exchange resin is not particularly limited to a parent structure such as styrene or acrylic. Further, there is no particular limitation on the resin properties such as the crosslink density, and various cation exchange resins can be used. For example, a porous or gel type cation exchange resin can be used, and a porous cation exchange resin having a higher surface area is particularly preferable. These cation exchange resins may be used alone, or two or more cation exchange resins may be used in combination.

イオン交換樹脂の粒径は、0.3mm未満では通液時の差圧が高くなり、1.0mmを超えると拡散性が悪くなる、又は破砕しやすくなるといった弊害が起きやすい。この観点から、イオン交換樹脂の粒径は0.3〜1.0mmの粒径であることが好ましい。
本実施形態に係る飲料処理用金属担持イオン交換樹脂に適用可能な陽イオン交換樹脂の市販品としては、銀イオンの担持の容易性や、その後の飲料の精製効率を高める観点から、例えば、Rohm and Haas株式会社製のAmberliteを用いることができる。
また、上述した陽イオン交換樹脂は、本実施形態に係る飲料の精製方法において、飲料を飲料処理用金属担持イオン交換樹脂に接触させる工程の後、飲料処理用金属担持イオン交換樹脂に接触させた飲料を、陽イオン交換樹脂により金属イオンを除去する工程を有するものとした場合に、該金属イオンを除去する工程で使用される陽イオン交換樹脂としても適用可能である。
When the particle size of the ion-exchange resin is less than 0.3 mm, the differential pressure at the time of passing the liquid increases, and when it exceeds 1.0 mm, adverse effects such as poor diffusibility or easy crushing are likely to occur. From this viewpoint, the particle size of the ion exchange resin is preferably 0.3 to 1.0 mm.
Commercially available cation exchange resins applicable to the metal-supported ion exchange resin for beverage processing according to the present embodiment include, for example, Rohm from the viewpoint of easiness of silver ion loading and enhancement of subsequent beverage purification efficiency. and Amberlite manufactured by Haas Co., Ltd. can be used.
Further, the above-described cation exchange resin was brought into contact with the metal ion-exchange resin for beverage treatment after the step of bringing the beverage into contact with the metal-ion exchange resin for beverage treatment in the method for purifying a beverage according to the present embodiment. When the beverage has a step of removing metal ions with a cation exchange resin, the beverage can also be applied as a cation exchange resin used in the step of removing the metal ions.

<飲料処理用金属担持イオン交換樹脂の製造方法>
本発明の実施形態に係る飲料処理用金属担持イオン交換樹脂の製造方法は、陽イオン交換樹脂の陽イオンの少なくとも一部に、銀イオンを含有する溶液を用いてイオン交換法により、銀イオンを担持させる工程を有する。
イオン交換法では、上述したイオン交換樹脂の内部に、銀イオンを含有する溶液を用いて、イオン交換樹脂の内部のイオン、例えば、Hイオン又はNaイオンを銀イオンで交換し、イオン交換樹脂の内部に銀イオンを担持させる。
本実施形態では、銀イオンを含有する溶液として、硝酸銀など水溶性の金属塩を用いることができる。
また、本実施形態では、銀イオンを含有する溶液を用いて銀イオンを担持させる工程の前に、硝酸アンモニウム溶液や塩化アンモニウム溶液、硫酸アンモニウム溶液、アンモニア水等のNH イオンを含む水溶液を用いて、陽イオン交換樹脂の陽イオンをNH イオンで置き換える工程を有することが好ましい。
<Method for producing metal-supported ion exchange resin for beverage treatment>
The method for producing a metal-carrying ion-exchange resin for beverage treatment according to the embodiment of the present invention comprises, in at least a part of the cations of the cation-exchange resin, silver ions by an ion exchange method using a solution containing silver ions. It has a step of carrying.
In the ion exchange method, ions inside the ion exchange resin, for example, H + ions or Na + ions are exchanged with silver ions by using a solution containing silver ions inside the above ion exchange resin, and ion exchange is performed. Silver ions are supported inside the resin.
In this embodiment, a water-soluble metal salt such as silver nitrate can be used as the solution containing silver ions.
In the present embodiment, an aqueous solution containing NH 4 + ions, such as an ammonium nitrate solution, an ammonium chloride solution, an ammonium sulfate solution, or ammonia water, is used before the step of supporting silver ions using a solution containing silver ions. It is preferable to have a step of replacing cations of the cation exchange resin with NH 4 + ions.

本実施形態においては、NH イオンを含む水溶液を用いることにより、イオン交換樹脂のHイオン又はNaイオンの少なくとも一部がNH イオンに置き換えられる。この後、硝酸銀溶液で処理すると、飲料処理用金属担持イオン交換樹脂中における銀イオンの分散性を高めることができる。
これは、アンモニウムイオンが銀イオンを取り囲んだ銀アンミン錯体が形成されることにより、銀イオン同士の凝集が抑制されることによるものと推察される。
本実施形態に係る飲料処理用金属担持イオン交換樹脂において、イオン交換樹脂に担持された銀の総担持量は、乾燥換算の飲料処理用金属担持イオン交換樹脂全量に対して、10質量%以上40質量%以下であることが好ましく、より好ましくは、15質量%以上35質量%以下であり、さらに好ましくは、20質量%以上35質量%以下である。銀の担持量が10質量%未満であると飲料に含まれる不要成分を十分に除去できず、40質量%を超えると、銀がイオン交換され難くなるため、銀が凝集し、金属当たりの不要成分の除去効率が低下する。
In the present embodiment, by using an aqueous solution containing NH 4 + ions, at least a portion of the ion exchange resin H + ions or Na + ions are replaced by NH 4 + ions. After that, when treated with a silver nitrate solution, the dispersibility of silver ions in the metal-supported ion exchange resin for beverage processing can be increased.
This is presumed to be due to formation of a silver ammine complex in which ammonium ions surround silver ions, thereby suppressing aggregation of silver ions.
In the metal ion-exchange resin for beverage processing according to the present embodiment, the total amount of silver supported on the ion-exchange resin is 10% by mass or more and 40% or more of the total amount of the metal ion-exchange resin for beverage processing on a dry basis. It is preferably at most 15 mass%, more preferably at least 15 mass% and at most 35 mass%, even more preferably at least 20 mass% and at most 35 mass%. If the supported amount of silver is less than 10% by mass, unnecessary components contained in the beverage cannot be sufficiently removed, and if the amount exceeds 40% by mass, silver is hardly ion-exchanged, so that silver is aggregated and unnecessary per metal. The efficiency of removing components is reduced.

<金属捕捉材料>
飲料のなかの不要成分の除去効率を高めるためには、上述した飲料処理用金属担持イオン交換樹脂中の金属の担持量を増大させる必要がある。しかし、飲料を飲料処理用金属担持イオン交換樹脂に接触させる場合、飲料処理用金属担持イオン交換樹脂に担持されている金属が飲料に溶出することがあり、金属の溶出量は、飲料処理用金属担持イオン交換樹脂に担持されている金属の担持量に比例して増大する。
そこで、本実施形態においては、飲料を飲料処理用金属担持イオン交換樹脂に接触させる工程の後、飲料処理用金属担持イオン交換樹脂に接触させた飲料を、金属捕捉材料により金属イオンを除去する工程を、さらに有していることが好ましい。飲料処理用金属担持イオン交換樹脂に接触させた飲料を金属捕捉材料に接触させることにより、飲料処理用金属担持イオン交換樹脂から溶出した金属が除去される。
<Metal capture material>
In order to increase the efficiency of removing unnecessary components in the beverage, it is necessary to increase the amount of the metal carried in the above-described metal-supported ion-exchange resin for beverage treatment. However, when a beverage is brought into contact with a metal-supported ion-exchange resin for beverage processing, the metal supported on the metal-supported ion-exchange resin for beverage processing may be eluted into the beverage, and the amount of metal eluted may vary from the metal for beverage processing. It increases in proportion to the amount of metal supported on the supported ion exchange resin.
Therefore, in the present embodiment, after the step of bringing the beverage into contact with the metal-supported ion-exchange resin for beverage processing, the step of removing the metal ions from the beverage that has been brought into contact with the metal-supported ion-exchange resin for beverage processing with a metal capturing material. It is preferable to further have The metal eluted from the metal-supported ion-exchange resin for beverage treatment is removed by bringing the beverage in contact with the metal-exchange resin for beverage treatment into contact with the metal capture material.

金属捕捉材料としては、公知の陽イオン交換樹脂、ゼオライトなどのイオン交換能を示す材料が使用できる。金属捕捉材料のイオン交換可能な陽イオンとしては、特に限定されず、Hイオンであってもよいし、Ca2+イオン、Naイオン等であってもよい。 As the metal capturing material, a material having an ion exchange ability such as a known cation exchange resin or zeolite can be used. The ion exchangeable cation of the metal capturing material is not particularly limited, and may be H + ion, Ca 2+ ion, Na + ion, or the like.

金属捕捉材料用陽イオン交換樹脂としては、強酸性陽イオン交換樹脂、弱酸性陽イオン交換樹脂等の種類に限定されず、適用可能である。
陽イオン交換樹脂の構造として、スチレンやアクリルといった母体構造は、特に問わない。また、架橋密度などの樹脂物性によって特に限定されず、種々の陽イオン交換樹脂が使用できる。例えば、多孔質型又はゲルタイプの陽イオン交換樹脂が使用でき、特により表面積が高い多孔質型の陽イオン交換樹脂が好ましい。これらの陽イオン交換樹脂は、単独で用いてもよく、2種以上の陽イオン交換樹脂を組み合わせて用いてもよい。
The cation exchange resin for the metal capture material is not limited to a strong acid cation exchange resin, a weakly acidic cation exchange resin, and the like, and is applicable.
The structure of the cation exchange resin is not particularly limited to a parent structure such as styrene or acrylic. Further, there is no particular limitation on the resin properties such as the crosslink density, and various cation exchange resins can be used. For example, a porous or gel type cation exchange resin can be used, and a porous cation exchange resin having a higher surface area is particularly preferable. These cation exchange resins may be used alone, or two or more cation exchange resins may be used in combination.

金属捕捉材料用ゼオライトとしては、イオン交換可能な陽イオンを有するゼオライトであって、特に、フォージャサイト、X型ゼオライト、Y型ゼオライト、A型ゼオライト、ZSM−5ゼオライト、モルデンフッ石、ベータ型ゼオライトの中のいずれか1構造を有するゼオライトである。中でも好ましいゼオライトはX型ゼオライト、Y型ゼオライトである。   The zeolite for a metal capturing material is a zeolite having an ion-exchangeable cation. Is a zeolite having any one of the following structures: Among them, preferred zeolites are X-type zeolites and Y-type zeolites.

以下、本発明を実施例によりさらに詳細に説明する。本発明は、以下の実施例に限定されるものではない。
[評価方法]
<飲料処理用金属担持イオン交換樹脂の銀担持量の定量>
後述する供試イオン交換樹脂における銀担持量は、ICP発光分光分析装置(アジレントテクノロジー株式会社製 720−ES)を用いて定量した。ここで、銀担持量とは、乾燥換算の供試イオン交換樹脂全質量に対する金属換算の質量%である。
希硝酸を用いて、供試イオン交換樹脂から銀を溶出させる処理を2回行って、抽出された液の分析結果から、供試イオン交換樹脂の銀担持量を算出した。
Hereinafter, the present invention will be described in more detail with reference to Examples. The present invention is not limited to the following examples.
[Evaluation methods]
<Quantification of the amount of silver supported on the metal-supported ion exchange resin for beverage processing>
The amount of silver supported on the test ion exchange resin described below was quantified using an ICP emission spectrometer (720-ES, manufactured by Agilent Technologies). Here, the amount of silver carried is the mass% in terms of metal relative to the total mass of the test ion exchange resin in terms of dryness.
The treatment for eluting silver from the test ion exchange resin was performed twice using dilute nitric acid, and the amount of silver carried on the test ion exchange resin was calculated from the analysis result of the extracted liquid.

<酒類の硫黄成分分析>
後述する供試イオン交換樹脂を封入したカラムの通液前の供試酒と、通液後の供試酒中の硫黄化合物(硫化水素(HS)、メチルメルカプタン(CHSH)、ジメチルスルフィド(DMS)、及びジメチルジスルフィド(DMDS))の濃度を、GC−SCD装置(化学発光硫黄検出器付ガスクロマトグラフィー、アレジレントテクノロジー株式会社製、GC:6890N/SCD:355)を用いて分析した。なお、ここでの硫黄化合物の濃度は、化合物濃度ではなく、硫黄原子濃度である。
また、供試酒中に含まれている全硫黄濃度を、紫外蛍光法硫黄分析計(三菱化学アナルテック株式会社製、型番TS−100)を使用して、燃焼−紫外蛍光法により測定した。なお、全硫黄濃度とは、化合物濃度ではなく、硫黄原子濃度である。
<Sulfur component analysis of alcoholic beverages>
A sample liquor before passing through a column in which a test ion exchange resin described below is sealed and a sulfur compound (hydrogen sulfide (H 2 S), methyl mercaptan (CH 3 SH), dimethyl) in the sample liquor after passing through the column The concentration of sulfide (DMS) and dimethyl disulfide (DMDS) is analyzed using a GC-SCD device (gas chromatography with a chemiluminescent sulfur detector, manufactured by Resilient Technology, GC: 6890N / SCD: 355). did. Here, the concentration of the sulfur compound is not a compound concentration but a sulfur atom concentration.
The concentration of total sulfur contained in the test liquor was measured by a combustion-ultraviolet fluorescence method using an ultraviolet fluorescence sulfur analyzer (manufactured by Mitsubishi Chemical Analtech Co., Ltd., model number TS-100). In addition, the total sulfur concentration is not a compound concentration but a sulfur atom concentration.

<酒類の香気成分等の分析>
後述する供試イオン交換樹脂を封入したカラムの通液前の供試酒と、通液後の供試酒中の香気成分等の分析は、ヘッドスペースガスクロマトグラフ質量分析計(ヘッドスペースインジェクター「MultiPurpose Sampler MPS2」 Gerstel株式会社製)を用いて行った。ここでの濃度は、化合物濃度である。
<Analysis of flavor components of alcoholic beverages>
The analysis of the sample liquor before passing through the column in which the test ion exchange resin is sealed and the fragrance component in the test liquor after passing through the column were performed using a headspace gas chromatograph mass spectrometer (headspace injector “MultiPurpose”). Sampler MPS2 "manufactured by Gerstel, Inc.). The concentration here is the compound concentration.

<銀の溶出量の定量>
後述する供試イオン交換樹脂を封入したカラムの通液後の供試酒に、硫酸処理と、灰化処理とを施した後、アルカリ溶解法を実施することにより均一な水溶液を得た。この水溶液に含まれる銀の量を、ICP発光分光分析装置 アジレントテクノロジー株式会社製 720−ESを用いて定量し、これを溶出量とした。
<Quantification of silver elution amount>
After a sample liquor passed through a column in which a sample ion exchange resin described below was sealed, the sample liquor was subjected to a sulfuric acid treatment and an ashing treatment, and then an alkaline dissolution method was performed to obtain a uniform aqueous solution. The amount of silver contained in this aqueous solution was quantified using an ICP emission spectrometer 720-ES manufactured by Agilent Technologies, Inc., and this was used as the elution amount.

<官能評価試験>
実施例1及び比較例1,2の方法にて通液処理したウイスキー、および未処理のウイスキー(未処理)に対し、12名のパネラーにより、最低1点〜最高7点による7段階で行った。その結果を第4表に示す。
<Sensory evaluation test>
The whiskey passed through the method of Example 1 and Comparative Examples 1 and 2, and the untreated whiskey (untreated) were evaluated by 12 panelists in 7 steps from a minimum of 1 point to a maximum of 7 points. . Table 4 shows the results.

[供試イオン交換樹脂の製造例]
<製造例1>
硝酸アンモニウム264gを水3.3Lに溶解し、市販のNa型イオン交換樹脂(Rohm and Haas株式会社製、商品名:Amberlite 200)を、乾燥重量で1kg投入し、液を3時間撹拌し、イオン交換処理を行ってNH型イオン交換樹脂を得た。水洗の後、水3Lに硝酸銀788gを溶解して得られた硝酸銀溶液に、NH型イオン交換樹脂1kgを投入し、液を3時間撹拌し、Agイオン交換を行い、さらに、濾過及び水洗を行った。この後、60℃で12時間の乾燥を行い、Ag型イオン交換樹脂1を得た。
[Production example of test ion exchange resin]
<Production Example 1>
264 g of ammonium nitrate was dissolved in 3.3 L of water, 1 kg of a commercially available Na-type ion exchange resin (manufactured by Rohm and Haas Co., Ltd., trade name: Amberlite 200) was added by dry weight, and the solution was stirred for 3 hours and ion-exchanged. By performing the treatment, an NH 4 type ion exchange resin was obtained. After washing with water, 1 kg of an NH 4 type ion exchange resin was added to a silver nitrate solution obtained by dissolving 788 g of silver nitrate in 3 L of water, and the solution was stirred for 3 hours to perform Ag ion exchange, followed by filtration and washing with water. went. Thereafter, drying was performed at 60 ° C. for 12 hours to obtain an Ag-type ion exchange resin 1.

<製造例2>
硝酸銀788gを水3Lに溶解し、市販のNa型イオン交換樹脂(Rohm and Haas株式会社製、商品名:Amberlite 200)を乾燥重量で1kg投入し、液を3時間撹拌し、Agイオン交換を行い、さらに、濾過及び水洗を行った。この後、60℃で12時間の乾燥を行い、Ag型イオン交換樹脂2を得た。
<Production Example 2>
788 g of silver nitrate is dissolved in 3 L of water, and 1 kg of a commercially available Na-type ion exchange resin (manufactured by Rohm and Haas Co., Ltd., trade name: Amberlite 200) is added by dry weight, and the solution is stirred for 3 hours to carry out Ag ion exchange. Further, filtration and washing with water were performed. Thereafter, drying was performed at 60 ° C. for 12 hours to obtain an Ag-type ion exchange resin 2.

<製造例3>
硝酸銀394gを水3Lに溶解し、市販のNa型イオン交換樹脂(Rohm and Haas株式会社製、商品名:Amberlite 200)を乾燥重量で1kg投入し、液を3時間撹拌し、Agイオン交換を行い、さらに、濾過及び水洗を行った。この後、60℃で12時間の乾燥を行い、Ag型イオン交換樹脂3を得た。
<Production Example 3>
394 g of silver nitrate was dissolved in 3 L of water, and 1 kg of a commercially available Na-type ion exchange resin (manufactured by Rohm and Haas Co., Ltd., trade name: Amberlite 200) was added by dry weight, and the solution was stirred for 3 hours to perform Ag ion exchange. Further, filtration and washing with water were performed. Thereafter, drying was performed at 60 ° C. for 12 hours to obtain an Ag-type ion exchange resin 3.

<製造例4>
硝酸銀394gを水3Lに溶解し、市販のH型イオン交換樹脂(Rohm and Haas株式会社製、商品名:Amberlyst 15)を乾燥重量で1kg投入し、液を3時間撹拌し、Agイオン交換を行い、さらに、濾過及び水洗を行った。この後、60℃で12時間の乾燥を行い、Ag型イオン交換樹脂4を得た。
<Production Example 4>
394 g of silver nitrate was dissolved in 3 L of water, 1 kg of a commercially available H-type ion exchange resin (manufactured by Rohm and Haas Co., trade name: Amberlyst 15) was added by dry weight, and the solution was stirred for 3 hours to carry out Ag ion exchange. Further, filtration and washing with water were performed. Thereafter, drying was performed at 60 ° C. for 12 hours to obtain an Ag-type ion exchange resin 4.

<製造例5>
硝酸アンモニウム264gを水3.3Lに溶解し、市販のH型イオン交換樹脂(Rohm and Haas株式会社製、商品名:Amberlyst 15)を乾燥重量で1kg投入し、液を3時間撹拌し、イオン交換処理を行ってNH型イオン交換樹脂を得た。水洗の後、水3Lに硝酸銀394gを溶解して得られた硝酸銀溶液に、NH型イオン交換樹脂1kgを投入し、液を3時間撹拌し、Agイオン交換を行い、さらに、濾過及び水洗を行った。この後、60℃で12時間の乾燥を行い、Ag型イオン交換樹脂5を得た。
<Production Example 5>
264 g of ammonium nitrate was dissolved in 3.3 L of water, and 1 kg of a commercially available H-type ion exchange resin (manufactured by Rohm and Haas Co., Ltd., trade name: Amberlyst 15) was added thereto by dry weight, and the solution was stirred for 3 hours to perform ion exchange treatment. Was performed to obtain an NH 4 type ion exchange resin. After washing with water, 394 g of silver nitrate was dissolved in 3 L of water, 1 kg of an NH 4 type ion exchange resin was added to the silver nitrate solution, and the solution was stirred for 3 hours to perform Ag ion exchange, followed by filtration and washing with water. went. Thereafter, drying was performed at 60 ° C. for 12 hours to obtain an Ag-type ion exchange resin 5.

<製造例6>
市販のナトリウムY型ゼオライト成型体(東ソー株式会社製 HSZ−320NAD1A)を砕いて平均粒径を1.0〜1.5mmに揃えた。硝酸アンモニウム264gを水3.3Lに溶解し、上記ゼオライト1kgを投入し、液を3時間撹拌し、イオン交換処理を行ってNHY型ゼオライトを得た。水洗及び乾燥の後、NHY型ゼオライト1kgを硝酸銀394g及びアンモニア(30%)330gを水2.5Lに溶解した銀アンミン錯イオン溶液に投入し、液を3時間撹拌し、Agイオン交換を行い、さらに、水洗及び乾燥を行った。この後、400℃で3時間の焼成を行い、AgY型ゼオライト1を得た。
<Production Example 6>
A commercially available sodium Y-type zeolite molded product (HSZ-320NAD1A manufactured by Tosoh Corporation) was crushed to adjust the average particle size to 1.0 to 1.5 mm. 264 g of ammonium nitrate was dissolved in 3.3 L of water, 1 kg of the above zeolite was added, the solution was stirred for 3 hours, and an ion exchange treatment was performed to obtain an NH 4 Y-type zeolite. After washing and drying, 1 kg of NH 4 Y zeolite was put into a silver ammine complex ion solution in which 394 g of silver nitrate and 330 g of ammonia (30%) were dissolved in 2.5 L of water, and the solution was stirred for 3 hours to carry out Ag ion exchange. Then, washing and drying were performed. Thereafter, calcination was carried out at 400 ° C. for 3 hours to obtain AgY-type zeolite 1.

<比較製造例1>
直径1cmのカラムに、市販のNa型イオン交換樹脂(Rohm and Haas株式会社製、商品名:Amberlite 200)を18cm封入し、濃硫酸(純正化学株式会社製)を用いて調製した3質量%硫酸水溶液1.8Lを1時間通液し、H型イオン交換樹脂を作製した。
<Comparative Production Example 1>
18 cm 3 of a commercially available Na-type ion exchange resin (manufactured by Rohm and Haas Co., Ltd., trade name: Amberlite 200) was sealed in a column having a diameter of 1 cm, and 3 mass% prepared using concentrated sulfuric acid (manufactured by Junsei Chemical Co., Ltd.). 1.8 L of an aqueous sulfuric acid solution was passed for 1 hour to prepare an H-type ion exchange resin.

[実施例及び比較例]
(1)供試酒として、モルトウイスキー(アルコール分62%)を用いたときの評価
<実施例1>
直径1cmの第1カラムに、製造例1により得られたAg型イオン交換樹脂1を18cm封入した。また、直径1cmの第2カラムに、市販のNa型イオン交換樹脂(Rohm and Haas株式会社製、商品名:Amberlite 200)を18cm封入した。第1カラムと第2カラムとを直列に接続し、供試酒として、モルトウイスキー(アルコール分62%)2.5Lを、通液温度30℃,通液条件LHSV=20h−1で通液させた。
通液前の供試酒と、通液後の供試酒とを、上述の方法により分析した。なお、通液後の供試酒とは、通液開始から7時間後に流出した供試酒である。
供試酒のモルトウイスキーには、DMSが1.047ppm、DMDSが0.248ppm含まれていた。第1カラム及び第2カラムからのAg溶出量を第1表に、硫黄化合物の分析結果を第2表に、香気成分の分析結果を第3表に、官能評価試験の結果を第4表に示す。なお、Ag溶出量は、第1カラム通液後と第2カラム通液後の双方について確認した。
[Examples and Comparative Examples]
(1) Evaluation when malt whiskey (alcohol content: 62%) was used as the sample sake <Example 1>
18 cm 3 of the Ag-type ion exchange resin 1 obtained in Production Example 1 was sealed in a first column having a diameter of 1 cm. Further, 18 cm 3 of a commercially available Na-type ion exchange resin (manufactured by Rohm and Haas Co., trade name: Amberlite 200) was sealed in the second column having a diameter of 1 cm. The first column and the second column are connected in series, and 2.5 L of malt whiskey (alcohol content: 62%) is passed as a sample liquor at a flowing temperature of 30 ° C. under flowing conditions of LHSV = 20 h −1. Was.
The test liquor before passing the liquid and the test liquor after passing the liquid were analyzed by the above-described method. In addition, the sample liquor after the passage is the sample liquor that has flowed out 7 hours after the start of the passage.
The test sake malt whiskey contained 1.047 ppm of DMS and 0.248 ppm of DMDS. Table 1 shows the amounts of Ag eluted from the first and second columns, Table 2 shows the analysis results of sulfur compounds, Table 3 shows the analysis results of odor components, and Table 4 shows the results of sensory evaluation tests. Show. The Ag elution amount was confirmed both after the passage through the first column and after the passage through the second column.

<実施例2>
直径1cmのカラムに、製造例2により得られたAg型イオン交換樹脂2を18cm封入した。このカラムに、供試酒としてモルトウイスキー(アルコール分62%)2.5Lを、通液温度30℃,通液条件LHSV=20h−1で通液させた。Ag溶出量を第1表に、硫黄化合物の分析結果を第2表に示す。
<Example 2>
18 cm 3 of the Ag type ion exchange resin 2 obtained in Production Example 2 was sealed in a column having a diameter of 1 cm. 2.5 L of malt whiskey (alcohol content: 62%) as a sample liquor was passed through this column at a flowing temperature of 30 ° C. under flowing conditions of LHSV = 20 h −1 . The elution amount of Ag is shown in Table 1, and the analysis results of sulfur compounds are shown in Table 2.

<実施例3>
直径1cmのカラムに、製造例3により得られたAg型イオン交換樹脂3を18cm封入した。このカラムに、供試酒としてモルトウイスキー(アルコール分62%)2.5Lを、通液温度30℃,通液条件LHSV=20h−1で通液させた。Ag溶出量を第1表に、硫黄化合物の分析結果を第2表に示す。
<Example 3>
18 cm 3 of the Ag type ion exchange resin 3 obtained in Production Example 3 was sealed in a column having a diameter of 1 cm. 2.5 L of malt whiskey (alcohol content: 62%) as a sample liquor was passed through this column at a flowing temperature of 30 ° C. under flowing conditions of LHSV = 20 h −1 . The elution amount of Ag is shown in Table 1, and the analysis results of sulfur compounds are shown in Table 2.

<実施例4>
直径1cmの第1カラムに、製造例4により得られたAg型イオン交換樹脂4を18cm封入した。このカラムに、供試酒として、モルトウイスキー(アルコール分62%)2.5Lを、通液温度30℃,通液条件LHSV=20h−1で通液させた。Ag溶出量を第1表に、硫黄化合物の分析結果を第2表に示す。
<Example 4>
18 cm 3 of the Ag type ion exchange resin 4 obtained in Production Example 4 was sealed in a first column having a diameter of 1 cm. 2.5 L of malt whiskey (alcohol content: 62%) as a sample liquor was passed through this column at a flowing temperature of 30 ° C. under flowing conditions of LHSV = 20 h −1 . The elution amount of Ag is shown in Table 1, and the analysis results of sulfur compounds are shown in Table 2.

<実施例5>
直径1cmの第1カラムに、製造例5により得られたAg型イオン交換樹脂5を18cm封入した。このカラムに、供試酒として、モルトウイスキー(アルコール分62%)2.5Lを、通液温度30℃,通液条件LHSV=20h−1で通液させた。Ag溶出量を第1表に、硫黄化合物の分析結果を第2表に示す。
<Example 5>
18 cm 3 of the Ag type ion exchange resin 5 obtained in Production Example 5 was sealed in a first column having a diameter of 1 cm. 2.5 L of malt whiskey (alcohol content: 62%) as a sample liquor was passed through this column at a flowing temperature of 30 ° C. under flowing conditions of LHSV = 20 h −1 . The elution amount of Ag is shown in Table 1, and the analysis results of sulfur compounds are shown in Table 2.

<参考例1>
直径1cmの第1カラムに、製造例6により得られたAgY型ゼオライト1を18cm封入した。また、市販のナトリウムY型ゼオライト成型体(東ソー株式会社製 HSZ−320NAD1A)を砕いて平均粒径を1.0〜1.5mmに揃えて、これを直径1cmの第2カラムに18cm封入した。第1カラムと第2カラムとを直列に接続し、供試酒として、モルトウイスキー(アルコール分62%)2.5Lに酢酸カルシウム(和光純薬社製)0.10gを加え、これを通液温度30℃,通液条件LHSV=20h−1で通液させた。Ag溶出量を第1表に示す。
<Reference Example 1>
18 cm 3 of the AgY-type zeolite 1 obtained in Production Example 6 was sealed in a first column having a diameter of 1 cm. Also, a commercially available sodium Y-type zeolite molded product (HSZ-320NAD1A manufactured by Tosoh Corporation) was crushed to adjust the average particle size to 1.0 to 1.5 mm, and this was sealed in a second column having a diameter of 1 cm in an amount of 18 cm 3 . . The first column and the second column were connected in series, and 0.10 g of calcium acetate (manufactured by Wako Pure Chemical Industries, Ltd.) was added to 2.5 L of malt whiskey (alcohol content: 62%) as a sample liquor. The solution was passed at a temperature of 30 ° C. and under a flowing condition of LHSV = 20 h −1 . Table 1 shows the elution amount of Ag.

<比較例1>
直径1cmのカラムに、市販のNa型イオン交換樹脂(Rohm and Haas株式会社製、商品名:Amberlite 200)を18cm封入した。このカラムに、供試酒として、モルトウイスキー(アルコール分62%)2.5Lを、通液温度30℃,通液条件LHSV=20h−1で通液させた。硫黄化合物の分析結果を第2表に、香気成分の分析結果を第3表に、官能評価試験の結果を第4表に示す。
<Comparative Example 1>
18 cm 3 of a commercially available Na-type ion exchange resin (manufactured by Rohm and Haas Co., trade name: Amberlite 200) was sealed in a column having a diameter of 1 cm. 2.5 L of malt whiskey (alcohol content: 62%) as a sample liquor was passed through this column at a flowing temperature of 30 ° C. under flowing conditions of LHSV = 20 h −1 . Table 2 shows the analysis results of the sulfur compounds, Table 3 shows the analysis results of the aroma components, and Table 4 shows the results of the sensory evaluation test.

<比較例2>
比較製造例1によって得られたH型イオン交換樹脂に、供試酒として、モルトウイスキー(アルコール分62%)2.5Lを、通液温度30℃,通液条件LHSV=20h−1で通液させた。硫黄化合物の分析結果を第2表に、香気成分の分析結果を第3表に、官能評価試験の結果を第4表に示す。
<Comparative Example 2>
2.5 L of malt whiskey (alcohol content: 62%) was passed through the H-type ion-exchange resin obtained in Comparative Production Example 1 as a sample liquor at a flowing temperature of 30 ° C. under flowing conditions of LHSV = 20 h −1. I let it. Table 2 shows the analysis results of the sulfur compounds, Table 3 shows the analysis results of the aroma components, and Table 4 shows the results of the sensory evaluation test.

<モルトウイスキーの評価結果>
第4表に示すように、未処理品の評点の平均が4.00点であるのに対して、比較例1は4.00点、比較例2は4.08点であり、比較例のものは、未処理品と同等の未熟感を有していた。
一方、実施例1は4.50点であり、未処理品に比べて未熟感の少ない良好な香味を有していた。
上記結果から、モルトウイスキー(アルコール分62%)を、本実施例に係る金属担持イオン交換樹脂に通液すると、旨味成分を残しながら、不要成分を除去できることがわかった。
また、実施例1のように、Ag型イオン交換樹脂のカラムと、Na型イオン交換樹脂のカラムとを直列に接続したシステムでは、上記不要成分の除去とともに、溶出した銀イオン量も十分に低減できることがわかった。
<Evaluation results of malt whiskey>
As shown in Table 4, the average of the scores of the untreated products was 4.00, whereas Comparative Example 1 had 4.00 points and Comparative Example 2 had 4.08 points. The product had the same immaturity as the untreated product.
On the other hand, Example 1 had 4.50 points, and had a good flavor with less immaturity compared to the untreated product.
From the above results, it was found that when malt whiskey (alcohol content: 62%) was passed through the metal-supported ion exchange resin according to the present example, unnecessary components could be removed while leaving umami components.
Further, in the system in which the Ag-type ion exchange resin column and the Na-type ion exchange resin column are connected in series as in Example 1, the amount of eluted silver ions is sufficiently reduced along with the removal of the unnecessary components. I knew I could do it.

(2)供試酒として、麦焼酎を用いたときの評価
<実施例6>
直径1cmの第1カラムに、製造例1により得られたAg型イオン交換樹脂1を18cm封入した。このカラムに、供試酒として、麦焼酎(常圧蒸溜(アルコール分25%))2.5Lを、通液温度30℃,通液条件LHSV=20h−1で通液させた。Ag溶出量を第5表に、硫黄化合物の分析結果を第6表に、香気成分の分析結果を第7表に示す。
<参考例2>
直径1cmの第1カラムに、製造例6により得られたAgY型ゼオライト1を18cm封入した。また、市販のナトリウムY型ゼオライト成型体(東ソー株式会社製 HSZ−320NAD1A)を砕いて平均粒径を1.0〜1.5mmに揃えて、これを直径1cmの第2カラムに18cm封入した。第1カラムと第2カラムとを直列に接続し、供試酒として、麦焼酎(常圧蒸溜(アルコール分25%))2.5Lを、通液温度30℃,通液条件LHSV=20h−1で通液させた。Ag溶出量を第5表に示す。
(2) Evaluation when barley shochu was used as sample sake <Example 6>
18 cm 3 of the Ag-type ion exchange resin 1 obtained in Production Example 1 was sealed in a first column having a diameter of 1 cm. As a sample liquor, 2.5 L of barley shochu (distilled at normal pressure (alcohol content: 25%)) was passed through this column at a flow-through temperature of 30 ° C. under flow-through conditions of LHSV = 20 h −1 . The Ag elution amount is shown in Table 5, the analysis results of sulfur compounds are shown in Table 6, and the analysis results of aroma components are shown in Table 7.
<Reference Example 2>
18 cm 3 of the AgY-type zeolite 1 obtained in Production Example 6 was sealed in a first column having a diameter of 1 cm. Also, a commercially available sodium Y-type zeolite molded product (HSZ-320NAD1A manufactured by Tosoh Corporation) was crushed to adjust the average particle size to 1.0 to 1.5 mm, and this was sealed in a second column having a diameter of 1 cm in an amount of 18 cm 3 . . The first column and the second column are connected in series, and as a sample liquor, 2.5 L of barley shochu (distilled at normal pressure (alcohol content: 25%)) is passed at a passing temperature of 30 ° C. and passing conditions LHSV = 20 h − 1 was passed. Table 5 shows the Ag elution amount.

<麦焼酎の評価結果>
上記結果から、麦焼酎を、製造例1の金属担持イオン交換樹脂に通液すると、旨味成分を残しながら、不要成分を除去できることがわかった。
<Evaluation results of wheat shochu>
From the above results, it was found that when barley shochu was passed through the metal-supported ion exchange resin of Production Example 1, unnecessary components could be removed while leaving umami components.

(2)供試酒として、芋焼酎を用いたときの評価
<実施例7>
直径1cmの第1カラムに、製造例1により得られたAg型イオン交換樹脂1を18cm封入した。このカラムに、供試酒として、芋焼酎(常圧蒸溜(アルコール分39%))2.5Lを、通液温度30℃,通液条件LHSV=20h−1で通液させた。Ag溶出量を第8表に、硫黄化合物の分析結果を第9表に、香気成分の分析結果を第10表に示す。
(2) Evaluation when potato shochu was used as sample sake <Example 7>
18 cm 3 of the Ag-type ion exchange resin 1 obtained in Production Example 1 was sealed in a first column having a diameter of 1 cm. As a sample liquor, 2.5 L of potato shochu (distilled at normal pressure (alcohol content: 39%)) was passed through this column at a flow-through temperature of 30 ° C. under flow-through conditions of LHSV = 20 h −1 . Table 8 shows the amount of Ag eluted, Table 9 shows the analysis results of sulfur compounds, and Table 10 shows the analysis results of aroma components.

<芋焼酎の評価結果>
上記結果から、芋焼酎を、製造例1の金属担持イオン交換樹脂に通液すると、旨味成分を残しながら、不要成分を除去できることがわかった。
<Evaluation results of potato shochu>
From the above results, it was found that when the sweet potato shochu was passed through the metal-supported ion exchange resin of Production Example 1, unnecessary components could be removed while leaving umami components.

(3)供試酒として、ラム酒を用いたときの評価
<実施例8>
直径1cmの第1カラムに、製造例2により得られたAg型イオン交換樹脂2を18cm封入した。このカラムに、供試酒として、ラム酒(アルコール分62%)2.5Lを、通液温度30℃,通液条件LHSV=20h−1で通液させた。Ag溶出量を第11表に、硫黄化合物の分析結果を第12表に、香気成分の分析結果を第13表に示す。
(3) Evaluation when rum was used as the sample sake <Example 8>
18 cm 3 of the Ag-type ion exchange resin 2 obtained in Production Example 2 was sealed in a first column having a diameter of 1 cm. As a sample liquor, 2.5 L of rum (alcohol content: 62%) was passed through the column at a flow-through temperature of 30 ° C. under a flow-through condition of LHSV = 20 h −1 . The elution amount of Ag is shown in Table 11, the analysis results of sulfur compounds are shown in Table 12, and the analysis results of aroma components are shown in Table 13.

<ラム酒の評価結果>
上記結果から、ラム酒を、製造例2の金属担持イオン交換樹脂に通液すると、旨味成分を残しながら、不要成分を除去できることがわかった。
<Rum evaluation results>
From the above results, it was found that when rum was passed through the metal-supported ion exchange resin of Production Example 2, unnecessary components could be removed while leaving umami components.

Claims (6)

陽イオン交換樹脂の陽イオンの少なくとも一部が銀イオンに交換されてなる金属担持イオン交換樹脂と、蒸留酒とを接触させる工程を包含し、当該工程により、蒸留酒に含まれる不要成分である硫黄化合物を除去することにより行う、熟成期間を短縮した蒸留酒の製造方法。 Unnecessary components at least part of the cation exchange resin of cations include the Rukin genus carrying ion exchange resin such been replaced with silver ions, the step of contacting a distilled liquor, by the process, contained in the liquor A method for producing a distilled liquor , wherein the aging period is reduced by removing a sulfur compound . 前記銀イオンの担持量が、乾燥換算の前記金属担持イオン交換樹脂全量に対して、銀質量換算で、10質量%以上40質量%以下である請求項1に記載の蒸留酒の製造方法。 Supported amount of the silver ions, to the front Kikin genus carrying ion exchange resin the total amount of drying terms of silver mass conversion, the method of producing liquor according to claim 1 is at least 10 wt% 40 wt% or less . 前記金属担持イオン交換樹脂と、蒸留酒とを接触させる工程の後、前記金属担持イオン交換樹脂に接触させた蒸留酒から、金属捕捉材料により金属イオンを除去する工程を、さらに有する請求項1又は2に記載の蒸留酒の製造方法。 Said metals supported ion exchange resin, after the step of contacting the liquor from the previous Kikin genus liquor in contact with the carrying ion exchange resin, the step of removing the metal ions by metal capture material, wherein further comprising Item 3. The method for producing a distilled liquor according to Item 1 or 2. 前記蒸留酒がウイスキーである、請求項1〜3のいずれか1項に記載の蒸留酒の製造方法。 The method for producing a distilled liquor according to any one of claims 1 to 3 , wherein the distilled liquor is whiskey . 陽イオン交換樹脂の陽イオンの少なくとも一部が銀イオンに交換されてなり、蒸留酒に含まれる不要成分である硫黄化合物を除去することができる金属担持イオン交換樹脂を含む処理部材 Ri least a portion of the cation exchange resin cations Na been replaced with silver ions, is unnecessary component included in the liquor sulfur compound treatment member comprising a metal-supported ion exchange resin capable of removing. 前記銀イオンの担持量が、乾燥換算の酒類処理用金属担持イオン交換樹脂全量に対して、銀質量換算で、10質量%以上40質量%以下である請求項に記載の金属担持イオン交換樹脂を含む処理部材

Supported amount of the silver ions, to the alcoholic liquor processing metal supported ion exchange resin the total amount of drying terms of silver mass conversion, at least 10 wt% 40 wt% or less, metallic carrying ions of claim 5 Processing member containing exchange resin.

JP2015123198A 2015-06-18 2015-06-18 Method for producing distilled liquor, and processing member including metal-supported ion exchange resin Active JP6673563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015123198A JP6673563B2 (en) 2015-06-18 2015-06-18 Method for producing distilled liquor, and processing member including metal-supported ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015123198A JP6673563B2 (en) 2015-06-18 2015-06-18 Method for producing distilled liquor, and processing member including metal-supported ion exchange resin

Publications (2)

Publication Number Publication Date
JP2017006025A JP2017006025A (en) 2017-01-12
JP6673563B2 true JP6673563B2 (en) 2020-03-25

Family

ID=57760353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015123198A Active JP6673563B2 (en) 2015-06-18 2015-06-18 Method for producing distilled liquor, and processing member including metal-supported ion exchange resin

Country Status (1)

Country Link
JP (1) JP6673563B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1008115B (en) * 1986-11-06 1990-05-23 南开大学 Catalytic aging method for white spirits
JPH0380907A (en) * 1989-08-22 1991-04-05 Fuji Cafe Kk Filter medium for refreshment liquid
US5505120A (en) * 1994-12-12 1996-04-09 Albertson; David V. Water filter
DE10361508A1 (en) * 2003-12-23 2005-07-28 Basf Ag Process for depleting sulfur and / or sulfur-containing compounds from a biochemically produced organic compound
JP2010051309A (en) * 2008-07-29 2010-03-11 Mercian Corp Fermented alcoholic beverage suppressed in metal ion oxidation action
JP2012016321A (en) * 2010-07-09 2012-01-26 J Science Nishinihon:Kk Device and method for removing malodor of beverage, and method for producing distilled liquor

Also Published As

Publication number Publication date
JP2017006025A (en) 2017-01-12

Similar Documents

Publication Publication Date Title
JP6994074B2 (en) Methods and equipment for removing unnecessary ingredients contained in beverages
JP6346621B2 (en) Metal-supported zeolite for liquor and method for producing liquor
JP6673563B2 (en) Method for producing distilled liquor, and processing member including metal-supported ion exchange resin
EP3260525B1 (en) Method for producing metal-supported zeolite for alcoholic beverages, and method for producing alcoholic beverages
JP6404574B2 (en) Method and apparatus for purifying distilled liquor
JP5068630B2 (en) Method for removing aldehyde compound from alcohol-containing solution and brewed sake purified by the method
JP6566333B2 (en) Method for producing metal-supported zeolite for liquor, metal-supported zeolite for liquor, and method for producing liquor
JP6718309B2 (en) Method for purifying alcohol-containing liquid and apparatus for purifying alcohol-containing liquid

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150820

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191106

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200221

R150 Certificate of patent or registration of utility model

Ref document number: 6673563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250