JP2017004824A - Secondary battery and manufacturing method of the same - Google Patents

Secondary battery and manufacturing method of the same Download PDF

Info

Publication number
JP2017004824A
JP2017004824A JP2015118985A JP2015118985A JP2017004824A JP 2017004824 A JP2017004824 A JP 2017004824A JP 2015118985 A JP2015118985 A JP 2015118985A JP 2015118985 A JP2015118985 A JP 2015118985A JP 2017004824 A JP2017004824 A JP 2017004824A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode layer
secondary battery
active material
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015118985A
Other languages
Japanese (ja)
Inventor
佐藤 春悦
Haruyoshi Sato
春悦 佐藤
都弥 ▲福▼家
都弥 ▲福▼家
Satomi Fukuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2015118985A priority Critical patent/JP2017004824A/en
Publication of JP2017004824A publication Critical patent/JP2017004824A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique for enhancing charge/discharge characteristics of a secondary battery without short-circuiting between a positive electrode layer and a negative electrode layer.SOLUTION: The secondary battery includes on a substrate a collector, a positive electrode layer, an electrolyte layer and a negative electrode layer, sequentially laminated. The positive electrode layer contains positive electrode active materials. An average particle size of the positive electrode active materials included in the entire area of the positive electrode layer or in a partial area of the positive electrode layer positioned on a side of the electrolyte is less than or equal to 2 μm, preferably less than or equal to 0.2 μm.SELECTED DRAWING: Figure 1

Description

本発明は、二次電池および二次電池の製造方法に関する。   The present invention relates to a secondary battery and a method for manufacturing the secondary battery.

たとえば、特許文献1には、「固体電解質電池における放電特性を向上させ、また二次電池として使用する場合には、大電流での充放電が行なえると共に、充放電により電極材料が次第に劣化して充放電容量が低下するということもなく、充放電サイクル特性にも優れた固体電解質電池が得られるようにすること」(同文献の0005段落)を目的とする「固体電解質電池および固体電解質電池の製造方法」の発明が開示されている。   For example, Patent Document 1 states that “when the discharge characteristics of a solid electrolyte battery are improved and the battery is used as a secondary battery, charging / discharging with a large current can be performed and the electrode material gradually deteriorates due to charging / discharging. "Solid electrolyte battery and solid electrolyte battery" aiming to obtain a solid electrolyte battery excellent in charge / discharge cycle characteristics without reducing the charge / discharge capacity "(paragraph 0005 of the same document) An invention of “a manufacturing method of” is disclosed.

同文献記載の発明は、「正極や負極の電極材料に使用する粉体には様々な粒径のものが含まれており、このように様々な粒径の電極材料で正極や負極を作製した後、この正極や負極上に高分子電解質を構成する流動性のモノマー材料を塗布した場合、このモノマー材料がこれらの電極の内部まで十分に浸透せず、この状態でこのモノマー材料を硬化させて高分子固体電解質を作製すると、この高分子固体電解質と電極との接触性が悪く、これによって放電特性が悪くなり、また充放電による電極材料の劣化が生じる」(同文献の0006段落)との知見に基づき、「正極と負極の間に高分子固体電解質が設けられた固体電解質電池において、正極及び/又は負極における電極材料の粒径が高分子固体電解質との界面側で大きく、この界面と反対側で小さく」(同文献の請求項1)することで上記目的を達成することができるとされている。   The invention described in this document states that “the powders used for the positive electrode and negative electrode materials include those having various particle diameters. Thus, the positive electrode and the negative electrode were prepared using electrode materials having various particle diameters. Thereafter, when a fluid monomer material constituting a polymer electrolyte is applied on the positive electrode or the negative electrode, the monomer material does not sufficiently penetrate into the inside of the electrode, and the monomer material is cured in this state. When a polymer solid electrolyte is produced, the contact between the polymer solid electrolyte and the electrode is poor, which results in poor discharge characteristics, and deterioration of the electrode material due to charge and discharge "(paragraph 0006 of the same document) Based on the knowledge, "in a solid electrolyte battery in which a polymer solid electrolyte is provided between the positive electrode and the negative electrode, the particle size of the electrode material in the positive electrode and / or the negative electrode is large on the interface side with the polymer solid electrolyte. Anti It is to be able to achieve the above object by reducing "(claim 1 of the document) on the side.

なお、同文献において、「電極材料の粒径が高分子固体電解質との界面側において10μm以上である一方、界面と反対側の面における粒径が1μm以下になっている」(同文献の請求項2)との技術事項が開示されている。   In this document, “the particle diameter of the electrode material is 10 μm or more on the interface side with the polymer solid electrolyte, while the particle diameter on the surface opposite to the interface is 1 μm or less” (claim in the same document). The technical matter with item 2) is disclosed.

特許第3363676号公報Japanese Patent No. 3363676

特許文献1にも記載されている通り、二次電池において充放電特性を改善することは常に求められる課題である。また、電解質層を薄くすることで充放電特性の改善が期待されるものの、電解質層の薄化には正極層および負極層間を短絡するリスクが伴う。本発明の目的は、正極層および負極層間を短絡することなく、二次電池の充放電特性を高める技術を提供することにある。   As described in Patent Document 1, it is always a challenge to improve the charge / discharge characteristics of the secondary battery. Further, although the charge / discharge characteristics are expected to be improved by making the electrolyte layer thin, the thinning of the electrolyte layer involves a risk of short-circuiting the positive electrode layer and the negative electrode layer. The objective of this invention is providing the technique which improves the charging / discharging characteristic of a secondary battery, without short-circuiting a positive electrode layer and a negative electrode layer.

上記課題を解決するために、本発明の第1の態様においては、基板上に、集電体、正極層、電解質層および負極層が順次積層された二次電池であって、前記正極層が、正極活物質を含み、前記正極層の全領域、または、前記正極層の電解質層側に位置する一部領域に含まれる前記正極活物質の平均粒径が、2μm以下である二次電池を提供する。   In order to solve the above problems, in the first aspect of the present invention, a secondary battery in which a current collector, a positive electrode layer, an electrolyte layer, and a negative electrode layer are sequentially laminated on a substrate, A secondary battery including a positive electrode active material and having an average particle diameter of 2 μm or less of the positive electrode active material included in the entire region of the positive electrode layer or in a partial region located on the electrolyte layer side of the positive electrode layer. provide.

前記平均粒径は、0.2μm以下であることが好ましい。前記一部領域に含まれる前記正極活物質の平均粒径が、前記一部領域以外の前記正極層の他の領域に含まれる前記正極活物質の平均粒径より小さいものであってもよい。前記正極層が、電解質層側に位置する第1正極層と、集電体側に位置する第2正極層とを有してもよく、この場合、前記第1正極層に含まれる前記正極活物質の平均粒径が、前記第2正極層に含まれる前記正極活物質の平均粒径より小さいものであってもよい。前記正極層が、印刷法により形成された後、熱プレスされたものであってもよい。   The average particle size is preferably 0.2 μm or less. The average particle diameter of the positive electrode active material included in the partial area may be smaller than the average particle diameter of the positive electrode active material included in another area of the positive electrode layer other than the partial area. The positive electrode layer may include a first positive electrode layer located on the electrolyte layer side and a second positive electrode layer located on the current collector side. In this case, the positive electrode active material contained in the first positive electrode layer May be smaller than the average particle diameter of the positive electrode active material contained in the second positive electrode layer. The positive electrode layer may be formed by a printing method and then hot pressed.

本発明の第2の態様においては、基板上に集電体を形成する工程と、前記集電体上に正極層を形成する工程と、前記正極層上に電解質層を形成する工程と、前記電解質層上に負極層を積層形成する工程と、を有する二次電池の製造方法であって、前記正極層が、正極活物質を含み、前記正極層の全領域、または、前記正極層の電解質層側に位置する一部領域に含まれる前記正極活物質の平均粒径が、2μm以下である二次電池の製造方法を提供する。   In the second aspect of the present invention, a step of forming a current collector on a substrate, a step of forming a positive electrode layer on the current collector, a step of forming an electrolyte layer on the positive electrode layer, And a step of laminating and forming a negative electrode layer on the electrolyte layer, wherein the positive electrode layer contains a positive electrode active material and the entire region of the positive electrode layer or the electrolyte of the positive electrode layer Provided is a secondary battery manufacturing method in which an average particle diameter of the positive electrode active material contained in a partial region located on the layer side is 2 μm or less.

前記平均粒径は、0.2μm以下であることが好ましい。前記一部領域に含まれる前記正極活物質の平均粒径が、前記一部領域以外の前記正極層の他の領域に含まれる前記正極活物質の平均粒径より小さいものであってもよい。前記正極層を形成する工程が、前記集電体上に第1正極層を形成する第1工程と、前記第1正極層上に第2正極層を形成する第2工程とを有してもよく、この場合、前記第1正極層に含まれる前記正極活物質の平均粒径が、前記第2正極層に含まれる前記正極活物質の平均粒径より小さいものであってもよい。前記正極層を形成する工程と、前記電解質層を形成する工程との間に、前記正極層を熱プレスする工程をさらに有してもよい。   The average particle size is preferably 0.2 μm or less. The average particle diameter of the positive electrode active material included in the partial area may be smaller than the average particle diameter of the positive electrode active material included in another area of the positive electrode layer other than the partial area. The step of forming the positive electrode layer may include a first step of forming a first positive electrode layer on the current collector and a second step of forming a second positive electrode layer on the first positive electrode layer. In this case, the average particle diameter of the positive electrode active material included in the first positive electrode layer may be smaller than the average particle diameter of the positive electrode active material included in the second positive electrode layer. You may further have the process of hot-pressing the said positive electrode layer between the process of forming the said positive electrode layer, and the process of forming the said electrolyte layer.

なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。   It should be noted that the above summary of the invention does not enumerate all the necessary features of the present invention. In addition, a sub-combination of these feature groups can also be an invention.

実施形態の二次電池100を示す断面図である。It is sectional drawing which shows the secondary battery 100 of embodiment. 二次電池100の変更例である二次電池101を示す断面図である。2 is a cross-sectional view showing a secondary battery 101 which is a modification of the secondary battery 100. FIG. 二次電池100の製造方法を工程順に示した断面図である。FIG. 6 is a cross-sectional view showing a method for manufacturing secondary battery 100 in the order of steps. 二次電池100の製造方法を工程順に示した断面図である。FIG. 6 is a cross-sectional view showing a method for manufacturing secondary battery 100 in the order of steps. マンガン酸リチウムの粉砕時間に対する平均粒径の変化を示すグラフである。It is a graph which shows the change of the average particle diameter with respect to the grinding time of lithium manganate. マンガン酸リチウムの粉砕時間に対する粒径ばらつきの変化を示すグラフである。It is a graph which shows the change of the particle size variation with respect to the grinding time of lithium manganate. 二次電池100の製造方法を工程順に示した断面図である。FIG. 6 is a cross-sectional view showing a method for manufacturing secondary battery 100 in the order of steps. 実験例1における正極層表面の粗さを示すグラフである。4 is a graph showing the roughness of the surface of the positive electrode layer in Experimental Example 1. 実験例2における正極層表面の粗さを示すグラフである。7 is a graph showing the roughness of the surface of the positive electrode layer in Experimental Example 2. 実験例4における正極層表面の粗さを示すグラフである。10 is a graph showing the roughness of the surface of the positive electrode layer in Experimental Example 4. 比較例における正極層表面の粗さを示すグラフである。It is a graph which shows the roughness of the surface of the positive electrode layer in a comparative example. 実験例1の正極層表面を熱プレスした場合の表面粗さを示すグラフである。4 is a graph showing the surface roughness when the surface of the positive electrode layer of Experimental Example 1 is hot pressed.

以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。   Hereinafter, the present invention will be described through embodiments of the invention, but the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.

図1は、実施形態の二次電池100を示す断面図である。二次電池100は、基板102上に、集電体104、正極層106、電解質層108および負極層110が順次積層されている。   FIG. 1 is a cross-sectional view illustrating a secondary battery 100 according to an embodiment. In the secondary battery 100, a current collector 104, a positive electrode layer 106, an electrolyte layer 108, and a negative electrode layer 110 are sequentially stacked on a substrate 102.

基板102は、集電体104等二次電池100の構成部材を支持する。構造部材が支持できる機械的強度を有する限り、基板102に材料、寸法、形状等の制限は無い。ただし、後に説明する二次電池100の製造工程において、焼成等熱処理が施されるので、熱処理に耐え得る程度の耐熱性を有することが好ましい。また、二次電池100の製造工程において使用される有機溶媒やリチウム塩等に対し化学的安定性を有することが好ましい。基板102として、たとえばガラス基板、金属箔、PET(ポリエチレンテレフタレート)等のフィルムを例示することができる。   The substrate 102 supports the constituent members of the secondary battery 100 such as the current collector 104. As long as the structural member has a mechanical strength that can be supported, the substrate 102 is not limited in material, size, shape, and the like. However, since heat treatment such as firing is performed in the manufacturing process of the secondary battery 100 described later, it is preferable that the battery has heat resistance enough to withstand the heat treatment. Moreover, it is preferable to have chemical stability with respect to the organic solvent, lithium salt, etc. which are used in the manufacturing process of the secondary battery 100. Examples of the substrate 102 include a glass substrate, a metal foil, and a film such as PET (polyethylene terephthalate).

集電体104は、正極層106および負極層110に接続され、正極層106および負極層110から電荷を集め、供給する。集電体104は、電解質層108に含まれるポリマー電解質に対し化学的に安定な金属等の導電体からなることが好ましい。集電体104として、アルミニウム、銅、ステンレス鋼を例示することができる。なお、正極層106に接続される集電体104にはアルミニウム、ステンレス鋼が好ましく、負極層110に接続される集電体104には銅、ステンレス鋼が好ましい。   The current collector 104 is connected to the positive electrode layer 106 and the negative electrode layer 110, and collects and supplies charges from the positive electrode layer 106 and the negative electrode layer 110. The current collector 104 is preferably made of a conductor such as a metal that is chemically stable with respect to the polymer electrolyte contained in the electrolyte layer 108. Examples of the current collector 104 include aluminum, copper, and stainless steel. Note that aluminum and stainless steel are preferable for the current collector 104 connected to the positive electrode layer 106, and copper and stainless steel are preferable for the current collector 104 connected to the negative electrode layer 110.

正極層106は、二次電池100の正極として機能する。正極層106は、正極活物質および導電材を含み、バインダーで固着される。正極活物質は粒子状物質であり、リチウム含有複合酸化物、たとえばマンガン酸リチウム(LiMn)を例示することができる。導電材としてたとえばアセチレンブラックが例示できる。バインダーとしてポリエチレンオキサイド(PEO)樹脂、エチレン/プロピレンオキサイド共重合体、ポリフッ化ビニリデン(PVdF)樹脂が例示できる。バインダーにポリエチレンオキサイド(PEO)樹脂、エチレン/プロピレンオキサイド共重合体を用いる場合は、正極層106には、リチウム塩たとえばリチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)が添加されても良い。 The positive electrode layer 106 functions as the positive electrode of the secondary battery 100. The positive electrode layer 106 includes a positive electrode active material and a conductive material, and is fixed with a binder. The positive electrode active material is a particulate material, and can be exemplified by lithium-containing composite oxides such as lithium manganate (LiMn 2 O 4 ). An example of the conductive material is acetylene black. Examples of the binder include polyethylene oxide (PEO) resin, ethylene / propylene oxide copolymer, and polyvinylidene fluoride (PVdF) resin. When a polyethylene oxide (PEO) resin or ethylene / propylene oxide copolymer is used for the binder, a lithium salt such as lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) may be added to the positive electrode layer 106.

正極活物質は、正極層106の全領域に渡って同一粒径で含まれても良い。この場合、正極層106の全領域に渡る正極活物質の平均粒径は2μm以下、好ましくは0.2μm以下である。あるいは、正極活物質は、正極層106の厚さ方向において粒径が変化してもよい。この場合、正極層106の電解質層108側に位置する一部領域に含まれる正極活物質の平均粒径は2μm以下、好ましくは0.2μm以下である。   The positive electrode active material may be included with the same particle diameter over the entire region of the positive electrode layer 106. In this case, the average particle diameter of the positive electrode active material over the entire region of the positive electrode layer 106 is 2 μm or less, preferably 0.2 μm or less. Alternatively, the particle diameter of the positive electrode active material may change in the thickness direction of the positive electrode layer 106. In this case, the average particle diameter of the positive electrode active material included in a partial region located on the electrolyte layer 108 side of the positive electrode layer 106 is 2 μm or less, preferably 0.2 μm or less.

正極層106に含まれる正極活物質の平均粒径を、正極層106の全領域に渡って、または、正極層106の電解質層108側に位置する一部領域において、2μm以下、好ましくは0.2μm以下とすることにより、二次電池100の充放電特性を向上することができる。また、正極層106の表面粗さを小さくし、電解質層108が薄い場合であっても正極層106および負極層110間の短絡の発生を抑制することができる。   The average particle diameter of the positive electrode active material contained in the positive electrode layer 106 is set to 2 μm or less, preferably 0.2 μm or less over the entire region of the positive electrode layer 106 or in a partial region located on the electrolyte layer 108 side of the positive electrode layer 106. By setting it to 2 μm or less, the charge / discharge characteristics of the secondary battery 100 can be improved. Moreover, even when the surface roughness of the positive electrode layer 106 is reduced and the electrolyte layer 108 is thin, occurrence of a short circuit between the positive electrode layer 106 and the negative electrode layer 110 can be suppressed.

正極活物質の平均粒径を、正極層106の電解質層108側に位置する一部領域において2μm以下、好ましくは0.2μm以下とする場合、当該一部領域に含まれる正極活物質の平均粒径は、一部領域以外の正極層106の他の領域における正極活物質の平均粒径より小さくすることができる。すなわち、正極層106の厚さ方向において、電解質層108から遠い側(集電体104に近い側)から電解質層108に近づくに従い、正極活物質の平均粒径を小さくすることができる。   When the average particle size of the positive electrode active material is 2 μm or less, preferably 0.2 μm or less in a partial region located on the electrolyte layer 108 side of the positive electrode layer 106, the average particle size of the positive electrode active material contained in the partial region The diameter can be made smaller than the average particle diameter of the positive electrode active material in other regions of the positive electrode layer 106 other than the partial region. That is, in the thickness direction of the positive electrode layer 106, the average particle diameter of the positive electrode active material can be reduced as the distance from the electrolyte layer 108 (side closer to the current collector 104) approaches the electrolyte layer 108.

あるいは、図2に示す、二次電池100の変更例である二次電池101のように、正極層106を、電解質層108側に位置する第1正極層106aと、集電体104側に位置する第2正極層106bに分け、第1正極層106aに含まれる正極活物質の平均粒径を、第2正極層106bに含まれる正極活物質の平均粒径より小さくすることができる。この場合、第1正極層106aが前記した一部領域に相当し、そこに含まれる正極活物質の平均粒径は2μm以下、好ましくは0.2μm以下である。   Alternatively, as in a secondary battery 101 that is a modification of the secondary battery 100 illustrated in FIG. 2, the positive electrode layer 106 is positioned on the first positive electrode layer 106 a located on the electrolyte layer 108 side and on the current collector 104 side. The average particle diameter of the positive electrode active material contained in the first positive electrode layer 106a can be made smaller than the average particle diameter of the positive electrode active material contained in the second positive electrode layer 106b. In this case, the first positive electrode layer 106a corresponds to the partial region described above, and the average particle diameter of the positive electrode active material contained therein is 2 μm or less, preferably 0.2 μm or less.

集電体104に近い側の領域または集電体104側に位置する第2正極層106bに粒径の大きな正極活物質を用いることで、大きな粒径の市販の正極活物質をそのまま用いて製造コストを抑制できる。または、大きな粒径の正極活物質の利用を可能とし、正極層106の設計自由度を高めることができる。   By using a positive electrode active material having a large particle size for the region near the current collector 104 or the second positive electrode layer 106b located on the current collector 104 side, a commercially available positive electrode active material having a large particle size is used as it is. Cost can be reduced. Alternatively, a positive electrode active material having a large particle size can be used, and the degree of freedom in designing the positive electrode layer 106 can be increased.

なお、正極層106は、印刷法により形成された後、熱プレスされたものであってもよい。正極層106を印刷法により形成し、熱プレスすることで、正極層106の平坦性が向上し、正極層106および負極層110間の短絡の可能性をより低くすることができる。   The positive electrode layer 106 may be formed by a printing method and then hot pressed. By forming the positive electrode layer 106 by a printing method and hot pressing, the flatness of the positive electrode layer 106 is improved, and the possibility of a short circuit between the positive electrode layer 106 and the negative electrode layer 110 can be further reduced.

電解質層108は、二次電池100の電解質として機能する。電解質層108は、Liイオン伝導性を有するガラスセラミックスおよびバインダーを含む。Liイオン伝導性を有するガラスセラミックスとして、Li4−2xZnGeO(LISICON)系固体電解質、Li−Al−Ti−PO(LATP)系固体電解質、Li1+XGe2−yAl12(LAGP)系固体電解質を例示することができる。バインダーとして、エチレンオキサイドおよびプロピレンオキサイドの共重合体を例示することができる。バインダーには、Liイオン伝導率を向上する支持電解質が添加されてもよく、支持電解質として、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)を挙げることができる。 The electrolyte layer 108 functions as an electrolyte for the secondary battery 100. The electrolyte layer 108 includes a glass ceramic having a Li ion conductivity and a binder. As a glass ceramics having a Li ion conductivity, Li 4-2x Zn x GeO 4 ( LISICON) based solid electrolyte, Li-Al-Ti-PO 4 (LATP) based solid electrolyte, Li 1 + X Ge 2- y Al y P 3 An O 12 (LAGP) -based solid electrolyte can be exemplified. As the binder, a copolymer of ethylene oxide and propylene oxide can be exemplified. A support electrolyte that improves Li ion conductivity may be added to the binder, and examples of the support electrolyte include lithium bis (trifluoromethanesulfonyl) imide (LiTFSI).

負極層110は、二次電池100の負極として機能する。負極層110は、負極活物質がバインダーで固着された層であり、炭素系材料を含んでもよい。負極活物質としてハードカーボンが例示できる。バインダーとしてポリエチレンオキサイド(PEO)樹脂、エチレン/プロピレンオキサイド共重合体、ポリフッ化ビニリデン(PVdF)樹脂が例示できる。バインダーにポリエチレンオキサイド(PEO)樹脂、エチレン/プロピレンオキサイド共重合体を用いる場合は、負極層110には、リチウム塩たとえばリチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)が添加されても良い。   The negative electrode layer 110 functions as the negative electrode of the secondary battery 100. The negative electrode layer 110 is a layer in which a negative electrode active material is fixed with a binder, and may include a carbon-based material. An example of the negative electrode active material is hard carbon. Examples of the binder include polyethylene oxide (PEO) resin, ethylene / propylene oxide copolymer, and polyvinylidene fluoride (PVdF) resin. When a polyethylene oxide (PEO) resin or an ethylene / propylene oxide copolymer is used for the binder, a lithium salt such as lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) may be added to the negative electrode layer 110.

以下、二次電池100の製造方法を説明する。図3、図4および図7は、二次電池100の製造方法を工程順に示した断面図である。   Hereinafter, a method for manufacturing the secondary battery 100 will be described. 3, 4, and 7 are cross-sectional views illustrating a method for manufacturing the secondary battery 100 in the order of steps.

まず、図3に示すように、基板102の上に集電体104を形成する。集電体104の形成には、メッキ法、スパッタ法等を用いることができる。集電体104となる被膜のパターニングには、たとえばフォトマスクを用いた金属層等のエッチング法またはリフトオフ法を用いることができる。   First, as shown in FIG. 3, the current collector 104 is formed on the substrate 102. For forming the current collector 104, a plating method, a sputtering method, or the like can be used. For the patterning of the film to be the current collector 104, for example, an etching method such as a metal layer using a photomask or a lift-off method can be used.

次に、図4に示すように、集電体104の上に正極層106を形成する。正極層106は、印刷および焼成により形成できる。すなわち、正極層106の印刷用のペーストとして、適切な溶媒で粘度調整されたバインダーに正極活物質および導電材を混錬したものを調製し、例えばスクリーン印刷により正極層106のパターンに印刷する。当該印刷パターンを、たとえば120℃、60分の条件で焼成し、正極層106を形成する。印刷および焼成は、大気雰囲気中で実施することができる。なお、正極層106を形成した後、たとえば150℃、1分の条件で、正極層106に熱プレスを施すことができる。   Next, as illustrated in FIG. 4, the positive electrode layer 106 is formed on the current collector 104. The positive electrode layer 106 can be formed by printing and baking. That is, as a paste for printing the positive electrode layer 106, a binder in which a viscosity is adjusted with an appropriate solvent and a positive electrode active material and a conductive material are kneaded is prepared and printed on the pattern of the positive electrode layer 106 by screen printing, for example. The printed pattern is baked, for example, at 120 ° C. for 60 minutes to form the positive electrode layer 106. Printing and baking can be performed in an air atmosphere. In addition, after forming the positive electrode layer 106, the positive electrode layer 106 can be hot-pressed, for example on the conditions of 150 degreeC and 1 minute.

正極活物質は、前記した通り、平均粒径が2μm以下、好ましくは0.2μm以下(以下単に「2μm以下等」とする。)であるものを用いる。平均粒径が2μm以下等とするには、市販の正極活物質として平均粒径が2μm以下等のものを入手するほか、平均粒径がたとえば10μm程度の大きなものを入手し、これを粉砕することで平均粒径を2μm以下等としてもよい。   As described above, a positive electrode active material having an average particle diameter of 2 μm or less, preferably 0.2 μm or less (hereinafter simply referred to as “2 μm or less”) is used. To obtain an average particle size of 2 μm or less, etc., a commercially available positive electrode active material having an average particle size of 2 μm or less is obtained, and a large average particle size of, for example, about 10 μm is obtained and pulverized. Thus, the average particle size may be 2 μm or less.

図5は、正極活物質として用いることができるマンガン酸リチウム(LiMn)の粉砕時間に対する平均粒径の変化を示すグラフであり、図6は、粉砕時間に対する粒径ばらつきの変化を示すグラフである。図5および図6における粉砕はボールミル粉砕であり、平均粒径10μmのマンガン酸リチウムとイットリア安定ジルコニアボールおよびヘプタンをアルミナポッドに投入し、アルミナポッドを180rpmで回転させることでマンガン酸リチウムを粉砕したものである。図5および図6が示すように、12時間以上のボールミル粉砕により、平均粒径10μmであったマンガン酸リチウムは、±0.01μm程度のばらつきで、平均粒径を0.2μm以下に粉砕することができる。このようにして粉砕したマンガン酸リチウムを正極活物質に用いて正極層106が形成できる。 FIG. 5 is a graph showing the change in average particle size with respect to the pulverization time of lithium manganate (LiMn 2 O 4 ) that can be used as the positive electrode active material, and FIG. 6 shows the change in particle size variation with respect to the pulverization time. It is a graph. The pulverization in FIGS. 5 and 6 is ball mill pulverization, and lithium manganate having an average particle diameter of 10 μm, yttria-stable zirconia balls and heptane were charged into an alumina pod, and the alumina pod was rotated at 180 rpm to pulverize the lithium manganate. Is. As shown in FIGS. 5 and 6, lithium manganate having an average particle diameter of 10 μm by ball milling for 12 hours or more is pulverized to an average particle diameter of 0.2 μm or less with a variation of about ± 0.01 μm. be able to. Using the pulverized lithium manganate as the positive electrode active material, the positive electrode layer 106 can be formed.

次に、図7に示すように、正極層106の上に電解質層108を形成する。電解質層108は、印刷および焼成により形成できる。すなわち、電解質層108の印刷用のペーストとして、適切な溶媒で粘度調整されたバインダーに電解質であるガラスセラミックスを混錬したものを調製し、例えばスクリーン印刷により電解質層108のパターンに印刷する。バインダーには、エチレンオキサイドおよびプロピレンオキサイドの共重合体を例示することができ、Liイオン伝導率を向上する支持電解質が添加されてもよく、支持電解質として、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)を挙げることができる。当該印刷パターンを、たとえば100℃、10分の条件で焼成し、電解質層108を形成する。   Next, as shown in FIG. 7, an electrolyte layer 108 is formed on the positive electrode layer 106. The electrolyte layer 108 can be formed by printing and baking. That is, as a paste for printing the electrolyte layer 108, a binder prepared by kneading glass ceramics as an electrolyte with a binder whose viscosity is adjusted with an appropriate solvent is prepared, and printed on the pattern of the electrolyte layer 108 by, for example, screen printing. Examples of the binder include a copolymer of ethylene oxide and propylene oxide, and a supporting electrolyte that improves Li ion conductivity may be added. As the supporting electrolyte, lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) ). The printed pattern is baked, for example, at 100 ° C. for 10 minutes to form the electrolyte layer 108.

最後に、電解質層108の上に負極層110を積層形成して図1に示す二次電池100が製造できる。負極層110は、印刷および焼成により形成できる。すなわち、負極層110の印刷用のペーストとして、適切な溶媒(たとえば、N−メチル−2−ピロリジノン)で粘度調整されたバインダー(たとえば、ポリフッ化ビニリデン(PVdF)樹脂)に負極活物質を混錬したもの調製し、例えばスクリーン印刷により負極層110のパターンに印刷する。当該印刷パターンを、たとえば120℃、60分の条件で焼成し、負極層110を形成する。以上のようにして、図1に示す二次電池100が作製される。作製された二次電池100は、さらに、100℃、24時間程度の真空加熱乾燥処理を施しても良い。   Finally, the secondary battery 100 shown in FIG. 1 can be manufactured by stacking the negative electrode layer 110 on the electrolyte layer 108. The negative electrode layer 110 can be formed by printing and baking. That is, as a paste for printing the negative electrode layer 110, a negative electrode active material is kneaded into a binder (for example, polyvinylidene fluoride (PVdF) resin) whose viscosity is adjusted with an appropriate solvent (for example, N-methyl-2-pyrrolidinone). This is prepared and printed on the pattern of the negative electrode layer 110 by, for example, screen printing. The printed pattern is baked, for example, at 120 ° C. for 60 minutes to form the negative electrode layer 110. As described above, the secondary battery 100 shown in FIG. 1 is manufactured. The manufactured secondary battery 100 may be further subjected to vacuum heat drying treatment at 100 ° C. for about 24 hours.

なお、二次電池101は、二次電池100と同様に作製することができ、二次電池101における第1正極層106aおよび第2正極層106bは、上記した正極層106と同様に作製することができる。   Note that the secondary battery 101 can be manufactured in the same manner as the secondary battery 100, and the first positive electrode layer 106a and the second positive electrode layer 106b in the secondary battery 101 are manufactured in the same manner as the positive electrode layer 106 described above. Can do.

本実施形態の二次電池100、二次電池101およびそれらの製造方法によれば、正極層106に含まれる正極活物質の平均粒径を、正極層106の全領域に渡って、または、正極層106の電解質層108側に位置する一部領域において、2μm以下、好ましくは0.2μm以下とすることにより、二次電池100の充放電特性を向上することができる。また、正極層106の表面粗さを小さくし、電解質層108が薄い場合であっても正極層106および負極層110間の短絡の発生を抑制することができる。また、集電体104に近い側の領域または集電体104側に位置する第2正極層106bに粒径の大きな正極活物質を用いることで、大きな粒径の市販の正極活物質をそのまま用いて製造コストを抑制できる。または、大きな粒径の正極活物質の利用を可能とし、正極層106の設計自由度を高めることができる。さらに、正極層106を印刷法により形成し、熱プレスすることで、正極層106の平坦性が向上し、正極層106および負極層110間の短絡の可能性をより低くすることができる。   According to the secondary battery 100, the secondary battery 101, and the manufacturing method thereof of the present embodiment, the average particle diameter of the positive electrode active material contained in the positive electrode layer 106 is set over the entire region of the positive electrode layer 106 or the positive electrode. In a partial region of the layer 106 located on the electrolyte layer 108 side, the charge / discharge characteristics of the secondary battery 100 can be improved by setting it to 2 μm or less, preferably 0.2 μm or less. Moreover, even when the surface roughness of the positive electrode layer 106 is reduced and the electrolyte layer 108 is thin, occurrence of a short circuit between the positive electrode layer 106 and the negative electrode layer 110 can be suppressed. Further, by using a positive electrode active material having a large particle size for the region near the current collector 104 or the second positive electrode layer 106b located on the current collector 104 side, a commercially available positive electrode active material having a large particle size is used as it is. Manufacturing costs can be reduced. Alternatively, a positive electrode active material having a large particle size can be used, and the degree of freedom in designing the positive electrode layer 106 can be increased. Furthermore, by forming the positive electrode layer 106 by a printing method and hot pressing, the flatness of the positive electrode layer 106 is improved, and the possibility of a short circuit between the positive electrode layer 106 and the negative electrode layer 110 can be further reduced.

(実施例)
平均粒径が10μmの市販のマンガン酸リチウム(A)、および平均粒径が0.1μmの市販のマンガン酸リチウム(B)を入手し、市販マンガン酸リチウム(A)に0.5時間のボールミル粉砕を施して平均粒径を1μmとした粉砕品(A)と、マンガン酸リチウム(A)に12時間のボールミル粉砕を施して平均粒径を0.2μmとした粉砕品(B)とを得た。
(Example)
A commercially available lithium manganate (A) having an average particle diameter of 10 μm and a commercially available lithium manganate (B) having an average particle diameter of 0.1 μm were obtained, and a ball mill for 0.5 hours was added to the commercially available lithium manganate (A). A pulverized product (A) having an average particle diameter of 1 μm by pulverization and a pulverized product (B) having an average particle diameter of 0.2 μm by subjecting lithium manganate (A) to ball milling for 12 hours. It was.

上記した二次電池100の製造方法における正極層106印刷用ペーストの調製において、正極活物質として、平均粒径0.2μmの粉砕品(B)を用いたものを実験例1、平均粒径0.1μmの市販マンガン酸リチウム(B)を用いたものを実験例2、平均粒径1μmの粉砕品(A)を用いたものを実験例3として二次電池100を作製した。また、二次電池101における第1正極層106aの正極活物質として平均粒径0.2μmの粉砕品(B)を用い、第2正極層106bの正極活物質として平均粒径10μmの市販マンガン酸リチウム(A)を用いた二次電池101を作製し、実験例4とした。なお、平均粒径10μmの市販マンガン酸リチウム(A)を正極活物質に用いた二次電池を作製し、比較例とした。   In the preparation of the paste for printing the positive electrode layer 106 in the method for manufacturing the secondary battery 100 described above, a pulverized product (B) having an average particle size of 0.2 μm was used as the positive electrode active material. A secondary battery 100 was fabricated using Experimental Example 2 using 1 μm of commercially available lithium manganate (B) and Experimental Example 3 using a pulverized product (A) having an average particle diameter of 1 μm. In addition, a pulverized product (B) having an average particle size of 0.2 μm is used as the positive electrode active material of the first positive electrode layer 106a in the secondary battery 101, and a commercially available manganic acid having an average particle size of 10 μm is used as the positive electrode active material of the second positive electrode layer 106b. A secondary battery 101 using lithium (A) was produced and was experimental example 4. A secondary battery using a commercially available lithium manganate (A) having an average particle size of 10 μm as a positive electrode active material was prepared as a comparative example.

実施例1〜4および比較例として作製した二次電池の充放電特性を評価するため、初期状態(充放電回数2回目)における充電終了時間および放電終了時間を測定した。充電終了時間は、放電完了後に充電電流を0.1mAの定電流とし、電圧が4.1Vに達するまでの時間とした。放電終了時間は、充電完了後に放電電流を0.1mAの定電流とし、電圧が1.0Vに達するまでの時間とした。また、実施例1〜4および比較例の二次電池を複数作製し、初期動作したものを良品、初期動作しなかったものを不良品とし、良品率=良品数/作製数、を求めた。   In order to evaluate the charge / discharge characteristics of the secondary batteries produced as Examples 1 to 4 and the comparative example, the charge end time and the discharge end time in the initial state (second charge / discharge number) were measured. The charging end time was a time required for the charging current to reach a constant current of 0.1 mA after the discharge was completed and the voltage reached 4.1V. The discharge end time was defined as the time required for the discharge current to reach a constant current of 0.1 mA after the completion of charging and the voltage reached 1.0V. Further, a plurality of secondary batteries of Examples 1 to 4 and Comparative Example were manufactured, and those that initially operated were regarded as non-defective products, those that did not initially operate were regarded as defective products, and the non-defective product ratio = number of non-defective products / number of products manufactured was determined.

表1は、実施例1〜4および比較例における充電終了時間、放電終了時間および良品率を示す。
Table 1 shows the charge end time, the discharge end time, and the non-defective rate in Examples 1 to 4 and the comparative example.

比較例では良品率が低く、充電終了時間および放電終了時間が正常に計測できないのに対し、実験例1〜4においては、良品率が100%であり、初期動作に問題がないことがわかる。また、実験例1〜3の結果から、正極活物質の平均粒径が小さいほど充電終了時間および放電終了時間が長く、充放電特性に優れていることがわかる。実験例1および3と実験例2との比較から、製品として購入した正極活物質をそのまま用いるより、粉砕処理を施したものの方が充放電特性に優れていると言える。実験例4と比較例の結果から、平均粒径が10μmと大きな正極活物質のみでは正常に動作しないものの、平均粒径が小さい正極活物質の正極層を重ねると初期動作はもとより、充放電特性も改善されることがわかる。   In the comparative example, the non-defective product rate is low, and the charging end time and the discharging end time cannot be measured normally, whereas in the experimental examples 1 to 4, the non-defective product rate is 100%, which indicates that there is no problem in the initial operation. From the results of Experimental Examples 1 to 3, it can be seen that the smaller the average particle diameter of the positive electrode active material, the longer the charge end time and the discharge end time, and the better the charge / discharge characteristics. From comparison between Experimental Examples 1 and 3 and Experimental Example 2, it can be said that the pulverized material is superior in charge / discharge characteristics than the positive electrode active material purchased as a product as it is. From the results of Experimental Example 4 and Comparative Example, the positive electrode active material having a large average particle size of 10 μm does not operate normally. It can also be seen that it is improved.

図8、図9、図10および図11は、それぞれ、実験例1、実験例2、実験例4および比較例における正極層表面の粗さを示すグラフである。比較例の表面粗さが±10μmであるのに対し、実験例1、実験例2および実験例4における表面粗さは、それぞれ±3μm、±2μmおよび±3μmである。表面粗さの低さが、正極層106および負極層110間の短絡抑制に寄与し、不良率の向上に繋がっていると考えられる。なお、図12は、実験例1の正極層表面を熱プレスした場合の表面粗さを示すグラフである。熱プレスにより、表面粗さは±2μmに低減しており、正極層106および負極層110間の短絡の可能性はより低くなると考えられる。   8, FIG. 9, FIG. 10, and FIG. 11 are graphs showing the roughness of the surface of the positive electrode layer in Experimental Example 1, Experimental Example 2, Experimental Example 4, and Comparative Example, respectively. The surface roughness of Comparative Example is ± 10 μm, whereas the surface roughness in Experimental Example 1, Experimental Example 2 and Experimental Example 4 is ± 3 μm, ± 2 μm and ± 3 μm, respectively. It is considered that the low surface roughness contributes to the suppression of short circuit between the positive electrode layer 106 and the negative electrode layer 110, leading to an improvement in the defect rate. FIG. 12 is a graph showing the surface roughness when the positive electrode layer surface of Experimental Example 1 is hot-pressed. By hot pressing, the surface roughness is reduced to ± 2 μm, and the possibility of a short circuit between the positive electrode layer 106 and the negative electrode layer 110 is considered to be lower.

以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。   As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.

100,101…二次電池
102…基板
104…集電体
106…正極層
106a…第1正極層
106b…第2正極層
108…電解質層
110…負極層
DESCRIPTION OF SYMBOLS 100,101 ... Secondary battery 102 ... Board | substrate 104 ... Current collector 106 ... Positive electrode layer 106a ... 1st positive electrode layer 106b ... 2nd positive electrode layer 108 ... Electrolyte layer 110 ... Negative electrode layer

Claims (10)

基板上に、集電体、正極層、電解質層および負極層が順次積層された二次電池であって、
前記正極層が、正極活物質を含み、
前記正極層の全領域、または、前記正極層の電解質層側に位置する一部領域に含まれる前記正極活物質の平均粒径が、2μm以下である
二次電池。
A secondary battery in which a current collector, a positive electrode layer, an electrolyte layer, and a negative electrode layer are sequentially laminated on a substrate,
The positive electrode layer includes a positive electrode active material,
The secondary battery in which an average particle diameter of the positive electrode active material contained in the entire region of the positive electrode layer or in a partial region located on the electrolyte layer side of the positive electrode layer is 2 μm or less.
前記平均粒径が、0.2μm以下である
請求項1に記載の二次電池。
The secondary battery according to claim 1, wherein the average particle size is 0.2 μm or less.
前記一部領域に含まれる前記正極活物質の平均粒径が、前記一部領域以外の前記正極層の他の領域に含まれる前記正極活物質の平均粒径より小さい
請求項1または請求項2に記載の二次電池。
The average particle size of the positive electrode active material included in the partial region is smaller than the average particle size of the positive electrode active material included in another region of the positive electrode layer other than the partial region. Secondary battery described in 1.
前記正極層が、電解質層側に位置する第1正極層と、集電体側に位置する第2正極層とを有し、
前記第1正極層に含まれる前記正極活物質の平均粒径が、前記第2正極層に含まれる前記正極活物質の平均粒径より小さい
請求項1または請求項2に記載の二次電池。
The positive electrode layer has a first positive electrode layer located on the electrolyte layer side and a second positive electrode layer located on the current collector side;
The secondary battery according to claim 1, wherein an average particle diameter of the positive electrode active material included in the first positive electrode layer is smaller than an average particle diameter of the positive electrode active material included in the second positive electrode layer.
前記正極層が、印刷法により形成された後、熱プレスされたものである
請求項1から請求項4の何れか一項に記載の二次電池。
The secondary battery according to any one of claims 1 to 4, wherein the positive electrode layer is formed by a printing method and then hot-pressed.
基板上に集電体を形成する工程と、前記集電体上に正極層を形成する工程と、前記正極層上に電解質層を形成する工程と、前記電解質層上に負極層を積層形成する工程と、を有する二次電池の製造方法であって、
前記正極層が、正極活物質を含み、
前記正極層の全領域、または、前記正極層の電解質層側に位置する一部領域に含まれる前記正極活物質の平均粒径が、2μm以下である
二次電池の製造方法。
Forming a current collector on the substrate; forming a positive electrode layer on the current collector; forming an electrolyte layer on the positive electrode layer; and laminating a negative electrode layer on the electrolyte layer. A process for producing a secondary battery comprising:
The positive electrode layer includes a positive electrode active material,
The method for producing a secondary battery, wherein an average particle diameter of the positive electrode active material contained in the entire region of the positive electrode layer or a partial region located on the electrolyte layer side of the positive electrode layer is 2 μm or less.
前記平均粒径が、0.2μm以下である
請求項6に記載の二次電池の製造方法。
The method for manufacturing a secondary battery according to claim 6, wherein the average particle size is 0.2 μm or less.
前記一部領域に含まれる前記正極活物質の平均粒径が、前記一部領域以外の前記正極層の他の領域に含まれる前記正極活物質の平均粒径より小さい
請求項6または請求項7に記載の二次電池の製造方法。
The average particle diameter of the positive electrode active material included in the partial area is smaller than the average particle diameter of the positive electrode active material included in another area of the positive electrode layer other than the partial area. The manufacturing method of the secondary battery as described in any one of.
前記正極層を形成する工程が、前記集電体上に第1正極層を形成する第1工程と、前記第1正極層上に第2正極層を形成する第2工程と、を有し、
前記第1正極層に含まれる前記正極活物質の平均粒径が、前記第2正極層に含まれる前記正極活物質の平均粒径より小さい
請求項6または請求項7に記載の二次電池の製造方法。
The step of forming the positive electrode layer includes a first step of forming a first positive electrode layer on the current collector, and a second step of forming a second positive electrode layer on the first positive electrode layer;
The secondary battery according to claim 6 or 7, wherein an average particle diameter of the positive electrode active material included in the first positive electrode layer is smaller than an average particle diameter of the positive electrode active material included in the second positive electrode layer. Production method.
前記正極層を形成する工程と、前記電解質層を形成する工程との間に、前記正極層を熱プレスする工程をさらに有する
請求項6から請求項9の何れか一項に記載の二次電池の製造方法。
The secondary battery according to claim 6, further comprising a step of hot pressing the positive electrode layer between the step of forming the positive electrode layer and the step of forming the electrolyte layer. Manufacturing method.
JP2015118985A 2015-06-12 2015-06-12 Secondary battery and manufacturing method of the same Pending JP2017004824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015118985A JP2017004824A (en) 2015-06-12 2015-06-12 Secondary battery and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015118985A JP2017004824A (en) 2015-06-12 2015-06-12 Secondary battery and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2017004824A true JP2017004824A (en) 2017-01-05

Family

ID=57752847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015118985A Pending JP2017004824A (en) 2015-06-12 2015-06-12 Secondary battery and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2017004824A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019220468A (en) * 2018-06-15 2019-12-26 株式会社豊島製作所 Electrode member, all-solid battery, powder for electrode member, manufacturing method of the electrode member, and manufacturing method of the all-solid battery
WO2021111551A1 (en) * 2019-12-04 2021-06-10 株式会社豊島製作所 Electrode member, all-solid-state battery, powder for electrode member, method for manufacturing electrode member, and method for manufacturing all-solid-state battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019220468A (en) * 2018-06-15 2019-12-26 株式会社豊島製作所 Electrode member, all-solid battery, powder for electrode member, manufacturing method of the electrode member, and manufacturing method of the all-solid battery
WO2021111551A1 (en) * 2019-12-04 2021-06-10 株式会社豊島製作所 Electrode member, all-solid-state battery, powder for electrode member, method for manufacturing electrode member, and method for manufacturing all-solid-state battery

Similar Documents

Publication Publication Date Title
JP6651708B2 (en) Lithium ion secondary battery
JP5742940B2 (en) All-solid battery and method for manufacturing the same
CN109792079B (en) All-solid lithium ion secondary battery
US20160344032A1 (en) Electrode, method of producing the same, battery, and electronic device
JP6623542B2 (en) Lithium ion secondary battery
JP5804208B2 (en) All-solid battery, unfired laminate for all-solid battery, and method for producing all-solid battery
US10879560B2 (en) Active material and all-solid-state lithium-ion secondary battery
CN109792080B (en) All-solid lithium ion secondary battery
JP2016001600A (en) Solid battery and battery pack using the same
JP2017117672A (en) All-solid power storage device and method for manufacturing the same
JP2016051539A (en) Solid electrolytic material, and all-solid battery
JP7107389B2 (en) solid state battery
JP5556969B2 (en) Laminated molded body for all solid state battery, all solid state battery and method for producing the same
JP2017004824A (en) Secondary battery and manufacturing method of the same
WO2018181662A1 (en) All-solid-state lithium ion secondary battery
JP5738150B2 (en) Secondary battery
JP6529857B2 (en) Secondary battery and method of manufacturing secondary battery
JP2014002855A (en) Method of producing electrode mixture
JP2016219291A (en) Secondary battery and method for manufacturing secondary battery
JP7201085B2 (en) solid state battery
JP2015005739A (en) Solid ion capacitor
JP2018063808A (en) Laminate green sheet, all-solid type secondary battery, and fabricating methods thereof
WO2013035526A1 (en) Laminated molded body for all-solid-state battery, all-solid-state battery, and production method therefor
JP2015103432A (en) Method for manufacturing all solid state battery
WO2023188466A1 (en) All-solid-state secondary battery