WO2021111551A1 - Electrode member, all-solid-state battery, powder for electrode member, method for manufacturing electrode member, and method for manufacturing all-solid-state battery - Google Patents

Electrode member, all-solid-state battery, powder for electrode member, method for manufacturing electrode member, and method for manufacturing all-solid-state battery Download PDF

Info

Publication number
WO2021111551A1
WO2021111551A1 PCT/JP2019/047454 JP2019047454W WO2021111551A1 WO 2021111551 A1 WO2021111551 A1 WO 2021111551A1 JP 2019047454 W JP2019047454 W JP 2019047454W WO 2021111551 A1 WO2021111551 A1 WO 2021111551A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle size
solid electrolyte
positive electrode
active material
oxide
Prior art date
Application number
PCT/JP2019/047454
Other languages
French (fr)
Japanese (ja)
Inventor
秀文 本林
Original Assignee
株式会社豊島製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊島製作所 filed Critical 株式会社豊島製作所
Priority to PCT/JP2019/047454 priority Critical patent/WO2021111551A1/en
Publication of WO2021111551A1 publication Critical patent/WO2021111551A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode member, an all-solid-state battery, a powder for an electrode member, a method for manufacturing an electrode member, and a method for manufacturing an all-solid-state battery.
  • all-solid-state batteries as a power source for electric vehicles and small electronic devices is drawing attention.
  • the all-solid-state battery is safer by adopting a solid electrolyte material instead of the liquid electrolyte containing a flammable organic solvent like a conventional lithium-ion battery and making all the constituent parts of the battery solid.
  • Various developments are underway in that a large capacity, high output, and long life can be expected.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2013-149433 describes an example of an all-solid-state battery in which a specific element is solid-solved at the interface between an electrode active material and a solid electrolyte material.
  • Non-Patent Document 1 describes an example of an all-solid-state battery in which a gold layer is introduced at an interface between a solid electrolyte material and an electrode material.
  • Patent Document 1 and Non-Patent Document 1 have taken certain measures from the viewpoint of reducing the resistance of the interface between the solid electrolyte and the positive electrode active material, but the manufacturing method is complicated and the manufacturing method is complicated. The cost required for this is also high, and there is still room for consideration.
  • the present invention is an electrode capable of manufacturing an all-solid-state battery having a low internal resistance that can be driven at room temperature by an inexpensive and simple method without necessarily using a conventionally known high-temperature heat treatment process or vacuum process.
  • a member, an all-solid-state battery, a powder for an electrode member, and a method for manufacturing an electrode member and an all-solid-state battery are provided.
  • the electrode member according to the embodiment of the present invention is arranged on a solid electrolyte layer made of a sintered body of an oxide-based solid electrolyte and a solid electrolyte layer, and has a 10% particle size in a cumulative particle size distribution based on a volume basis.
  • (D 10 ) is 0.01 ⁇ m to 0.5 ⁇ m
  • 50% particle size (D 50 ) is 0.01 ⁇ m to 1.0 ⁇ m
  • the content of particles having a particle size of 0.12 ⁇ m or less is 0.5% by volume.
  • It is an electrode member including a thin-film positive electrode active material layer formed of fine powder made of the above oxide-based positive electrode active material.
  • the positive electrode active material layer not only the positive electrode active material layer is formed only by the fine powder made of the oxide-based positive electrode active material, but also the desired characteristics required for the positive electrode active material layer are exhibited. Therefore, it goes without saying that a material well known to those skilled in the art may be further contained in the fine powder. For example, a mode in which a carbon material powder and / or a metal powder that further promotes electron conductivity is mixed with a fine powder made of an oxide-based positive electrode active material, and a mode in which a solid electrolyte powder is mixed as a lithium ion conductivity aid.
  • the powder solidified body is not limited to the embodiment composed of a single positive electrode active material fine particles, and it is of course possible to form a single layer or a plurality of layers of a powder solidified body composed of different types of fine particles. Is.
  • the electrode member according to the embodiment of the present invention has a solid electrolyte layer of Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 , Li 0.33 La 0.55 TiO 3 , Li 7 La 3 Zr 2 O 12 (lithium site).
  • the positive electrode active material fine powder contains LiCoO 2 (substitution type of Mg etc. to cobalt site) containing either Al or Ga substitution type to Al or Ga and substitution type such as Nb or Ta to zirconium site.
  • LiNi 0.33 Co 0.33 Mn 0.33 O 2 LiNi 0.5 Co 0.3 Mn 0.2 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.5 Mn 1.5 O 4 , LiNiO 2 , LiFePO 4, etc.
  • Any known positive electrode active material such as a metal pyrophosphate composite oxide such as Li 2 CoP 2 O 7 may be used.
  • the electrode member according to the embodiment of the present invention is arranged on a solid electrolyte layer made of a sintered body of an oxide-based solid electrolyte and a solid electrolyte layer, and is 10% in the cumulative particle size distribution based on the volume.
  • the particle size (D 10 ) is 0.01 ⁇ m to 0.5 ⁇ m
  • the 50% particle size (D 50 ) is 0.01 ⁇ m to 1.0 ⁇ m
  • the content of particles with a particle size of 0.20 ⁇ m or less is 5% by mass or more.
  • It is an electrode member including a thin-film (bulk-like) positive electrode active material layer formed of a fine powder made of LiNi 0.5 Mn 1.5 O 4 of the above.
  • the all-solid-state battery according to the embodiment of the present invention is an all-solid-state battery using the electrode member on one side.
  • the electrode member powder according to the embodiment of the present invention has a 10% particle size (D 10 ) of 0.01 ⁇ m to 0.5 ⁇ m and a 50% particle size (D 50 ) in the cumulative particle size distribution based on the volume.
  • the method for manufacturing an electrode member according to an embodiment of the present invention has a 10% particle size (D 10 ) in a cumulative particle size distribution on a volume basis on a solid electrolyte layer made of a sintered body of an oxide-based solid electrolyte. Is 0.01 ⁇ m to 0.5 ⁇ m, the 50% particle size (D 50 ) is 0.01 ⁇ m to 1.0 ⁇ m, and the content of particles with a particle size of 0.12 ⁇ m or less is 0.5% by volume or more.
  • the thin positive electrode active material layer is formed into a solid electrolyte layer. It is a method of manufacturing an electrode member including forming on the surface.
  • applying a mechanical external force along the surface of the fine powder causes friction between the fine powders or at the interface between the fine powders and the solid electrolyte layer. Including to cause.
  • the method for manufacturing an electrode member according to an embodiment of the present invention includes applying a mechanical external force along the surface of the fine powder to rubbing the surface of the fine powder with a friction member.
  • the method for producing an all-solid-state battery according to the embodiment of the present invention comprises, on one aspect, forming a first metal layer on the positive electrode active material layer formed on the first main surface of the solid electrolyte layer.
  • the electrode member according to the embodiment of the present invention is arranged on a solid electrolyte layer made of a sintered body of an oxide-based solid electrolyte and a solid electrolyte layer, and is 10% in the cumulative particle size distribution based on the volume.
  • the particle size (D 10 ) is 0.01 ⁇ m to 0.5 ⁇ m
  • the 50% particle size (D 50 ) is 0.01 ⁇ m to 1.0 ⁇ m
  • the content of particles having a particle size of 0.12 ⁇ m or less is 0.5.
  • the powder made of an oxide-based solid electrolyte is transferred to Li 7 La 3 Zr 2 O 12 (a substitution type of Al or Ga to lithium site, and zirconium site). (Including Nb or Ta substitution type), Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 , Li 3 BO 3 (Li 3 BO 3 to Li 2 SO 4 , Li 2 CO 3 , Li 4 SiO 4 of the material group (Including amorphous or crystallized glass in which one or more of them are mixed), Li 1.3 Al 0.3 Ti 1.7 P 3 O 12 , Li 0.33 La 0.55 TIO 3 is selected from one or more of the group. To.
  • the powder made of an oxide-based solid electrolyte has a 50% particle size (D 50 ) of 10 ⁇ m or less in the cumulative particle size distribution based on the volume.
  • the electrode member according to the embodiment of the present invention contains 25 to 99% by mass of a powder made of an oxide-based solid electrolyte in the mixture.
  • the battery can be driven at room temperature by an inexpensive and simple method without necessarily using a wet process using a conventionally known binder or an organic solvent, a high-temperature heat treatment process, or a vacuum process.
  • a method for manufacturing an electrode member, an all-solid-state battery, a powder for an electrode member, an electrode member, and an all-solid-state battery that can be manufactured not only in an inert atmosphere but also in an air atmosphere. Can be provided.
  • the electrode member according to the embodiment of the present invention includes a solid electrolyte layer 1 made of a sintered body of an oxide-based solid electrolyte and a positive electrode arranged on the surface of the solid electrolyte layer 1. It includes an active material layer 2.
  • a solid electrolyte layer 1 made of an oxidizing solid electrolyte material can be used.
  • the oxidation-based solid electrolyte material include Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 having a NASICON type crystal structure, Li 0.33 La 0.55 TiO 3 having a perovskite type crystal structure, and Li 7 La 3 Zr 2 O having a garnet type crystal structure. 12 mag is used. Specifically, Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 , Li 0.33 La 0.55 TiO 3 , Li 7 La 3 Zr 2 O 12 (replacement type such as Al or Ga to lithium site, and Nb to zirconium site). Alternatively, any of (including a substitution type such as Ta) is preferably used.
  • LLZ cubic lithium lanthanum zirconium oxide
  • Li 7 La 3 Zr 2 O 12 having a garnet-type crystal structure (substitution type such as Al or Ga to lithium site, and zirconium site
  • substitution type such as Al or Ga to lithium site
  • zirconium site In addition to the high conductivity of lithium ions, the reactivity with metallic lithium is extremely low compared to other oxide-based solid electrolytes, and dendrite formation by lithium ions is avoided.
  • It is particularly preferably used as an oxidation-based solid electrolyte material for the solid electrolyte layer 1 in that it can form a lithium metal layer directly on the surface of a sintered substrate made of an oxide-based solid electrolyte.
  • FIG. 2 A photograph of the fracture surface of the solid electrolyte layer 1 is shown in FIG.
  • the solid electrolyte layer 1 is a sintered body composed of crystal grains having a particle size of approximately 2 to 10 ⁇ m based on electron microscopic observation, and grows into larger crystal grains by binding the crystal grains to each other.
  • the grain boundary interface is unclear.
  • the sintered body of the solid electrolyte layer 1 according to the present embodiment is a dense sintered body and has few pores.
  • the porosity of the solid electrolyte layer 1 is, for example, about 0.1 to 5.0%.
  • the porosity of the solid electrolyte layer 1 can be measured based on, for example, JIS R1634 (1998).
  • the solid electrolyte layer 1 has an ion conductivity of about 5.0E-4 to 2.0E-03 (S / cm). Is shown.
  • the grain boundary resistance of the solid electrolyte layer 1 can be lowered, and the ion conductivity can be improved.
  • an all-solid-state battery that can be driven by a cheaper room temperature process without using a conventional high-temperature process or the like can be obtained.
  • the fine powder used for the positive electrode active material layer 2 include lithium cobalt oxide (LiCoO 2 ), lithium nickel cobalt manganate (LiNi 0.33 Co 0.33 Mn 0.33 O 2 , LiNi 0.5 Co 0.3 Mn 0.2 O 2) .
  • LiNi 0.8 Co 0.1 Mn 0.1 O 2 Lithium nickel manganate (LiNi 0.5 Mn 1.5 O 4 ), Lithium nickel oxide (LiNiO 2 ), Lithium iron phosphate (LiFePO 4 ), Lithium cobalt oxide (Li 2 CoP 2 O) 7 ) etc.
  • the positive electrode active material layer 2 is a fine powder made of an oxide-based positive electrode active material or a powder made of a mixture of an oxide-based positive electrode active material and an oxide-based solid electrolyte powder (hereinafter, also referred to as “positive electrode mixture”).
  • the contained powders are in close contact with each other and solidified, and are composed of a powder solidified body having a thin film shape or a bulk shape.
  • This powder solidified body adheres and solidifies on the surface of a powder containing a fine powder composed of an oxide-based positive electrode active material or a positive electrode mixture by an external mechanical force applied to the powder, and is powdered as if it were a sintered body. It means a layer that is solidified by the binding of grain boundaries and becomes bulky.
  • the production does not necessarily require high temperature conditions (at least 500 ° C. or higher) at the interface with the solid electrolyte layer 1, for example, about room temperature (specifically, about 1 to 30 ° C., more specifically, 15 to 15 to It can be easily produced even under low temperature conditions of 25 ° C.).
  • high temperature conditions at least 500 ° C. or higher
  • room temperature specifically, about 1 to 30 ° C., more specifically, 15 to 15 to It can be easily produced even under low temperature conditions of 25 ° C.
  • the method for forming the positive electrode active material layer (positive electrode mixture layer) 2 made of the solidified powder will be described later.
  • the positive electrode active material layer (positive electrode mixture layer) 2 made of a solidified powder on the solid electrolyte layer 1 it is particularly important to appropriately select the properties of the fine powder as a raw material.
  • the plasticity of the fine powder fine crystal grain superplasticity
  • the mechanical adhesive force including the anchor effect
  • the chemical adhesive force or the diffusion adhesive force. Need to be obtained more appropriately.
  • the higher the ratio of ultrafine powders of less than 100 nm called nanoparticles the more desirable it is, and in particular, the 10% particle size (D 10 ) in the cumulative particle size distribution based on the volume. It is more preferable to use an oxide-based positive electrode active material having a particle size of 0.01 ⁇ m to 0.5 ⁇ m and a 50% particle size (D 50) of 0.01 ⁇ m to 1.0 ⁇ m as a raw material.
  • the 10% particle size (D 10 ) of the fine powder is larger than 0.5 ⁇ m, the fine powders may not adhere well to each other on the solid electrolyte layer 1 and a solidified powder may not be formed.
  • the smaller the average particle size (D 50 ) of the fine powder is, the more preferable it is, and it is 0.15 ⁇ m or less. Is more preferable, and even more preferably 0.12 ⁇ m or less, and even more preferably 0.1 ⁇ m or less.
  • the 10% particle size (D 10 ) of the fine powder is not limited to the following, but is preferably 0.01 ⁇ m or more, more preferably 0.02 ⁇ m or more, for example, from the viewpoint of handleability and the like.
  • the 10% particle size (D 10 ) is 0.01 to 0.3 ⁇ m, further 0.01 to 0.2 ⁇ m, and further 0.01 to 0.17 ⁇ m. It is preferable to use the fine powder of.
  • the 10% particle size (D 10 ) is 0.01 to 0.4 ⁇ m, further 0.01 to 0.35 ⁇ m, and further 0.01 to 0. It is preferable to use a fine powder of 3 ⁇ m.
  • a fine powder having a 10% particle size (D 10 ) of 0.01 to 0.5 ⁇ m, more preferably 0.01 to 0.3 ⁇ m can be used. ..
  • the 50% particle size (D 50 ) of the fine powder is larger than 1.0 ⁇ m, the fine powders do not adhere well to each other, and the positive electrode active material layer (positive electrode mixture layer) 2 made of the solidified powder has a required thickness. It may not be possible to form.
  • the lower limit of the particle size of the 50% particle size (D 50 ) of the fine powder is not limited to the following, but can be, for example, 0.01 ⁇ m or more, further 0.05 ⁇ m or more, and the work is easy. From the viewpoint of sex, it is more preferably 0.1 ⁇ m or more.
  • FIG. 3 shows an example of the cumulative particle size distribution of the fine powder suitable as the fine powder used for the positive electrode active material layer (positive electrode mixture layer) 2.
  • the 50% particle size (D 50 ) of the cumulative particle size distribution is in the range of 0.01 to 1.0 ⁇ m, and further in the range of 0.1 ⁇ m to 1.0 ⁇ m. It is particularly preferable to use a certain fine powder from the viewpoint of workability.
  • a fine powder having a ratio (D 50 / D 10 ) of 50% particle size (D 50 ) to 10% particle size (D 10 ) in the cumulative particle size distribution based on the volume is 3 or less, more preferably 2 or less is used. It is preferred, the ratio of 10% particle size and 90% particle diameter (D 90) (D 10) (D 90 / D 10) of 10 or less, more preferably to use a fine powder is 6 or less.
  • the fine powder having such characteristics contains a fine powder having a particle size of about 0.12 ⁇ m or 0.08 ⁇ m or less, which is considered to greatly contribute to the formation of the solidified powder according to the present embodiment, in a predetermined ratio. It is particularly suitable because the solidified powder according to the embodiment can be easily deposited to an appropriate thickness.
  • particles having a particle size of 0.12 ⁇ m or less are contained in the raw material, for example, by 0.5% by volume or more, preferably 0.5% by volume or more. 2% by volume or more, more preferably 5% by volume or more, and particles having a particle size of 0.08 ⁇ m or less are contained in the raw material, for example, 0.1% by volume or more, preferably 0.5% by volume or more, still more preferably 2% by volume. It is preferable to use the fine powder containing the above because the solidified powder can be formed appropriately and easily.
  • the upper limit of the composition ratio of particles having a particle size of 0.12 ⁇ m or less in the raw material is not particularly limited, and the larger the particle size, the more preferable.
  • the particles having a particle size of 0.12 ⁇ m or less are, for example, less than 0.5% by volume.
  • a small amount of the positive electrode active material layer 2 can be formed, it may not be possible to deposit the positive electrode active material layer 2 to a thickness sufficient to function as the positive electrode active material layer of the all-solid-state battery.
  • the content of particles having a particle size of 0.12 ⁇ m or less in the raw material can be preferably 0.5 to 15% by volume, and more preferably 2 to 4% by volume. Is preferable.
  • lithium nickel-cobalt manganate When lithium nickel-cobalt manganate is used as a fine powder, even a material containing 5% by volume or more, preferably 10% by volume or more, and more preferably 15% by volume or more of particles having a particle size of 0.20 ⁇ m or less. Good.
  • the particle size range suitable for forming the solidified powder varies depending on the type of material used for the fine powder, but in the oxide-based positive electrode active material shown above as the material of the positive electrode active material layer (positive electrode mixture layer) 2. Can be said to be suitably usable as long as it is a fine powder containing 0.5% by volume or more of particles having a particle size of 0.12 ⁇ m or less.
  • the content of particles having a predetermined particle size or less is not limited to the above, and the larger the content, the more efficiently the positive electrode active material layer (positive electrode mixture layer) 2 can be formed.
  • the “particle size” refers to a particle size based on a cumulative particle size curve based on the volume of the particle size distribution measured using a laser diffraction / scattering type particle size distribution measuring device.
  • “D 10 ”, “D 50 ” and “D 90 ” indicate 10% particle size, 50% particle size, and 90% particle size, respectively, based on the volume in the cumulative particle size distribution, and are laser diffraction / scattering particle size.
  • the cumulative particle size curve of the particle size distribution measured using the distribution measuring device the particle size when the integrated amount occupies 10%, 50%, and 90%, respectively, on a volume basis is shown.
  • the particle size of the fine powder can be measured using, for example, the laser diffraction / scattering type particle size distribution measuring device "Microtrac MT-3000" manufactured by Microtrac Bell Co., Ltd., and the attached software is used from the measurement results. Then, the cumulative particle size distribution based on the volume can be evaluated.
  • the positive electrode active material fine powders or the positive electrode described later will be used.
  • the active material fine powder and the oxide solid electrolyte powder can be adhered and fixed.
  • the electrode member thus obtained has good adhesiveness between the solid electrolyte layer 1 and the positive electrode active material layer (positive electrode mixture layer) 2 and can form a low resistance interface. Therefore, the electrode member is an all-solid state using the electrode member.
  • the battery can be sufficiently driven at room temperature. A measuring method known to those skilled in the art can be used for the particle size distribution measurement.
  • the electrode member thus obtained is further heat-treated at 100 to 500 ° C. for 10 seconds to 1 hour in an air atmosphere, an inert atmosphere or an oxygen atmosphere to further solidify the electrolyte layer 1 and the positive electrode active material. It may be possible to reduce the resistance of the interface with the layer (positive electrode mixture layer) 2.
  • the above-mentioned fine powder is deposited on the surface of the sintered body of the solid electrolyte layer 1 having minute irregularities, and the solid electrolyte layer is formed.
  • a thin-film positive electrode active material layer 2 is formed by applying a mechanical external force from above 1 toward the inside of the solid electrolyte layer 1. This was sintered by simply applying pressure to the surface of the nanoparticles (particle size 0.1 ⁇ m or less) and the plasticity of the fine powder having a particle size close to the nanoparticles and having a particle size of about 0.1 ⁇ m. This utilizes the phenomenon that fine powders are integrated and bulked as described above.
  • the solid electrolyte layer is released with respect to the release of the enormous surface energy of the fine powder and the solid electrolyte layer 1 having a hardness higher than that of the fine powder.
  • a fine powder having a hardness lower than 1 densification progresses due to the bonding of the positive electrode active material powder to form a solidified powder, and the powder is uniformly and strongly bonded to the solid electrolyte layer due to an adhesive force such as an anchor effect. It is presumed that a thin interface (powder solidified body) having a certain gloss in appearance is formed by forming an interface.
  • a method called a vacuum process such as a conventional sputtering method or PLD (pulse laser deposition method) or an aerosol deposition method is used to inject powder at high speed and use the kinetic energy to form a thin film made of powder material on a substrate.
  • PLD pulse laser deposition method
  • aerosol deposition method is used to inject powder at high speed and use the kinetic energy to form a thin film made of powder material on a substrate.
  • a sintered body of an oxide-based solid electrolyte is used as the solid electrolyte layer 1, and the cumulative amount is accumulated on a volume basis.
  • Particles having a 10% particle size (D 10 ) of 0.01 ⁇ m to 0.5 ⁇ m, a 50% particle size (D 50 ) of 0.01 ⁇ m to 1.0 ⁇ m, and a particle size of 0.12 ⁇ m or less in the particle size distribution are defined as 0.
  • the positive electrode active material layer 2 is arranged with a thin film-like powder solidified body in which fine powders made of an oxide-based positive electrode active material containing 5% by volume or more and further 5% by volume or more are adhered to each other and solidified.
  • the solid electrolyte layer 1 and the positive electrode active material layer 2 can be joined inexpensively and easily at room temperature without using a vacuum process or the like.
  • a metal layer such as gold (Au) is used as the first electrode collecting layer. Is formed.
  • a second negative electrode layer such as metallic lithium (Li) is formed on the second main surface, which is the other surface of the solid electrolyte layer 1 and faces the first main surface, to obtain an all-solid-state battery. ..
  • the internal resistance of the obtained all-solid-state battery is as small as 1000 to 5000 ⁇ ⁇ cm 2 (when the thickness of the solid electrolyte layer is about 0.5 mm to 1 mm), which is a simpler and cheaper method. Therefore, an electrode member capable of driving a battery at room temperature (25 ° C.), an all-solid-state battery, and a method for manufacturing these can be provided.
  • a method for manufacturing an electrode member and an all-solid-state battery according to an embodiment of the present invention will be described.
  • a solid electrolyte layer 1 is prepared, and the 10% particle size (D 10 ) in the cumulative particle size distribution based on the volume is 0.01 ⁇ m to 0.5 ⁇ m on the solid electrolyte layer 1, and the 50% particle size (D 50).
  • the fine powder is deposited over the entire surface on the solid electrolyte layer 1.
  • applying a predetermined pressure to the entire surface of the fine powder can be mentioned.
  • a pressure of about 10 kPa to 500 kPa, preferably 20 kPa to 300 kPa, and further about 50 kPa to 200 kPa from the surface of the fine powder the fine powders are brought into close contact with each other and solidified to form a powder solidified body.
  • a low resistance interface can be formed between the solid electrolyte layer 1 and the solidified powder.
  • a mechanical external force so as to cause friction in the fine powder on the solid electrolyte layer 1.
  • a friction member such as cloth or paper
  • various materials such as paper waste, cloth waste, and resin fiber can be used.
  • the rubbing direction is not particularly limited, and the surface may be rubbed in a specific direction or in multiple directions.
  • the production of the positive electrode active material layer does not necessarily require high-temperature heat treatment, and therefore the interface between the solid electrolyte layer 1 and the positive electrode active material layer 2 In, the reaction and diffusion phenomenon between substances can be suppressed, and the formation of an unintended high resistance layer can be suppressed. As a result, an electrode member having a lower resistance can be manufactured.
  • the electrode member according to another embodiment of the present invention has a 10% particle size (D 10 ) of 0.01 ⁇ m to 0.5 ⁇ m and a 50% particle size (D 50 ) of 0.01 ⁇ m in the cumulative particle size distribution based on the volume.
  • D 10 10% particle size
  • D 50 50% particle size
  • the positive electrode mixture is placed on the solid electrolyte layer 1, and the same predetermined pressure as described above is applied to the entire surface of the positive electrode mixture. Includes forming the material layer 2.
  • Examples of the powder composed of the oxide-based solid electrolyte include Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 (LAGP), Li 3 BO 3 (LBO) (Li 3 BO 3 and Li 2 SO 4 ), in addition to the above-mentioned LLZ. Includes amorphous or crystallized glass of one or more of the materials Li 2 CO 3 and Li 4 SiO 4 ), Li 1.3 Al 0.3 Ti 1.7 P 3 O 12 (LATP), Li 0.33 Materials selected from any one or more of the group consisting of La 0.55 TiO 3 (LLTO) can be used, preferably one or two of these solid electrolyte materials.
  • the particle size of the powder made of the oxide-based solid electrolyte to be added is preferably such that the 50% particle size (D 50 ) in the cumulative particle size distribution based on the volume is 10 ⁇ m or less, more preferably 5 ⁇ m or less.
  • the optimum composition ratio of the fine powder composed of the oxide-based positive electrode active material in the mixture and the powder composed of the oxide-based solid electrolyte can be adjusted by the combination of materials. It is preferable that the powder composed of the solid electrolyte is contained in an amount of 25 to 99% by volume.
  • LCO lithium cobaltate (LCO) fine powder
  • D 10 particle size
  • D 50 particle size
  • LAGP average particle size of 1.5 ⁇ m
  • the interfacial resistance between the solid electrolyte-positive electrode mixture layer when the mixture is prepared and arranged on the solid electrolyte layer 1 to form the positive electrode active material layer 2 shows a tendency as shown in Table 1.
  • LAGP which is a powder composed of an oxide-based solid electrolyte
  • LAGP is mixed in the mixture by 30 to 50% by mass ratio, and further by mixing 35 to 40%.
  • the interfacial resistance with the solid electrolyte can be made smaller.
  • the interface resistance with the solid electrolyte layer 1 may be further reduced by heat-treating the mixture prior to supporting the mixture on the solid electrolyte layer 1 to form the positive electrode active material layer 2.
  • the solid electrolyte layer 1 and the positive electrode active material layer are obtained by heat-treating a raw material in which LCO: LAGP is mixed at a ratio of 75:25 mass% in an oxygen atmosphere at typically 300 to 400 ° C. for 1 to 10 hours.
  • the interfacial resistance with 2 can be significantly reduced.
  • the optimum heat treatment conditions differ depending on the combination of materials, but at least the heat treatment temperature must be equal to or lower than the temperature at which the mixed materials cause a reaction.
  • the fine powder made of the above-mentioned oxide-based positive electrode active material was used alone. It is the same as the manufacturing method of the case.
  • Example 1- Manufacturing of electrode members
  • Sandpaper manufactured by Sankyo Rikagaku Co., Ltd.
  • Li 7 La 3 Zr 2 O 12 sintered substrate hereinafter referred to as "LLZ substrate”
  • LLZ substrate Li 7 La 3 Zr 2 O 12 sintered substrate
  • the surface of the sintered substrate is fine powder of lithium cobaltate (LCO) (manufactured by Toyoshima Seisakusho Co., Ltd., 10% particle size (D 10 ) 0.097 ⁇ m, 50% particle size (D 50 ) 0.
  • LCO lithium cobaltate
  • the positive electrode active material layer was supported by applying a mechanical external force of 10 kPa to 500 kPa so as to rub it against the LLZ substrate using (manufactured by Nippon Paper Cresia Co., Ltd.). When the supported weight of the positive electrode active material layer formed by the micro balance was measured, it was confirmed that it was 0.25 mg from the difference from the weight of the LLZ substrate measured in advance.
  • the above lithium ion secondary battery was installed in a beaker cell, the Au collecting electrode surface was connected to the anode terminal, the Li negative electrode surface was connected to the cathode terminal, and various electrochemical measurements were performed using a potentiogalvanostat device.
  • a good battery was obtained. The drive was confirmed (Fig. 7).
  • impedance measurement AC impedance measuring device attached to the potential galvanostat device
  • the internal resistance of the all-solid-state battery was about 2 k ⁇ (FIG. 8).
  • the above-mentioned method for producing the electrode member and the production of the all-solid-state battery are performed by changing the material of the solid electrolyte layer and the particle size of the fine powder constituting the positive electrode active material layer to be supported on the solid electrolyte layer as shown in Tables 2 to 4. It was evaluated whether or not the electrode member according to the present embodiment could be produced according to the method.
  • the "content rate" in Tables 2 to 4 is obtained from the measurement results of the cumulative particle size distribution based on the volume using the laser diffraction / scattering type particle size distribution measuring device "Microtrac MT-3000" manufactured by Microtrac Bell Co., Ltd. It was.
  • the 10% particle size (D 10 ) is 0.01 ⁇ m to 0.5 ⁇ m
  • the 50% particle size (D 50 ) is 0.01 ⁇ m to 1.0 ⁇ m
  • the particle size is 0.12 ⁇ m or less.
  • the positive electrode active material layer could be appropriately formed on the solid electrolyte layer.
  • the 10% particle size (D 10 ) and 50% particle size (D 50 ) are outside the appropriate range and do not contain particles with a particle size of 0.12 ⁇ m or less (rightmost column), a positive electrode active material layer should be formed. I could't.
  • the 10% particle size (D 10 ) was 0.01 ⁇ m to 0.5 ⁇ m
  • the 50% particle size (D 50 ) was 0.01 ⁇ m to 1.
  • a fine powder containing 5% by volume or more of particles having a particle size of 0 ⁇ m and a particle size of 0.20 ⁇ m or less was used (left column)
  • the positive electrode active material layer could be appropriately formed.
  • the material (right column) whose properties of the fine powder were out of the appropriate range could not form the positive electrode active material layer.
  • the 10% particle size (D 10 ) is 0.01 ⁇ m to 0.5 ⁇ m
  • the 50% particle size (D 50 ) is 0.01 ⁇ m to 1.0 ⁇ m
  • the particle size is 0.12 ⁇ m or less.
  • the oxide solid electrolyte can be obtained.
  • a solid electrolyte layer could not be formed on the positive electrode active material layer.
  • Example 2- Preparation of positive electrode mixture
  • the same LCO fine powder as in Example 1 and the LAGP solid electrolyte powder prepared by the solid phase synthesis method were mixed so that the LCO: LAGP ratio was 75:25.
  • a mixed powder was obtained by stirring and mixing for 10 minutes using an agate mortar. The obtained mixed powder was heat-treated at 350 ° C. for 3 hours in an air atmosphere to obtain a positive electrode mixture composed of a mixture of LCO and LAGP.
  • LLZ substrate Ga-doped LLZ (hereinafter referred to as "LLZ substrate") having a relative density of 95% or more, a 10 mm square and a thickness of 1 mm is prepared by a solid-phase synthesis method, and one side of this LLZ substrate is sandpaper. Polishing treatment was performed with (# 400). An appropriate amount of the above-mentioned positive electrode mixture was added to the non-woven fabric, and an external pressure of about 10 kPa to 500 kPa was applied to the polished surface of the LLZ substrate to support about 0.3 mg. The LLZ substrate on which this positive electrode mixture was supported was heat-treated at 350 ° C.

Abstract

Provided are: an electrode member with which it is possible to produce an all-solid-state battery using an inexpensive and easy method without necessarily using a previously known high-temperature heat treatment process or vacuum process, the electrode member also being capable of driving the all-solid-state battery thus produced; the all-solid-state battery; a powder for an electrode member; and methods for manufacturing the electrode member and the all-solid state battery. The electrode member comprises: a solid electrolyte layer composed of a sintered compact of an oxide-based solid electrolyte; and a thin-film-form positive electrode active material layer that is positioned on the solid electrolyte layer and is formed of a fine powder composed of an oxide-based positive electrode active material for which the 10% grain diameter (D10) in the cumulative volumetric grain size distribution is 0.01-0.5 µm, the 50% grain diameter (D50) in said cumulative grain size distribution is 0.01-1.0 µm, and the amount of particles having a grain diameter of 0.12 µm or less is 0.5 vol% or greater.

Description

電極部材、全固体電池、電極部材用粉末、電極部材の製造方法及び全固体電池の製造方法Electrode member, all-solid-state battery, powder for electrode member, method for manufacturing electrode member, and method for manufacturing all-solid-state battery
 本発明は、電極部材、全固体電池、電極部材用粉末、電極部材の製造方法及び全固体電池の製造方法に関する。 The present invention relates to an electrode member, an all-solid-state battery, a powder for an electrode member, a method for manufacturing an electrode member, and a method for manufacturing an all-solid-state battery.
 電気自動車や小型電子機器などの電源として全固体電池の利用が注目されている。全固体電池は、従来のリチウムイオン電池などのように可燃性の有機溶媒を含む液体電解質の代わりに固体電解質材料を採用し、電池の構成物品をすべて固体にすることによって、より安全性が高く、大容量で高出力且つ高寿命化が期待できる点で、種々の開発が進んでいる。 The use of all-solid-state batteries as a power source for electric vehicles and small electronic devices is drawing attention. The all-solid-state battery is safer by adopting a solid electrolyte material instead of the liquid electrolyte containing a flammable organic solvent like a conventional lithium-ion battery and making all the constituent parts of the battery solid. Various developments are underway in that a large capacity, high output, and long life can be expected.
 例えば、特許文献1(特開2013-149433号公報)には、電極活物質と固体電解質材料との界面に特定の元素を固溶させた全固体電池の例が記載されている。非特許文献1には、固体電解質材料と電極材料との界面に金の層を導入した全固体電池の例が記載されている。 For example, Patent Document 1 (Japanese Unexamined Patent Publication No. 2013-149433) describes an example of an all-solid-state battery in which a specific element is solid-solved at the interface between an electrode active material and a solid electrolyte material. Non-Patent Document 1 describes an example of an all-solid-state battery in which a gold layer is introduced at an interface between a solid electrolyte material and an electrode material.
特開2013-149433号公報Japanese Unexamined Patent Publication No. 2013-149433
 酸化物系固体電解質を用いた全固体電池の作製においては、固体電解質と正極活物質との界面が高抵抗となることが課題となっている。例えば正極活物質の形成のために薄膜プロセスを用いた場合は、薄膜の結晶化のために高温の熱処理プロセスや真空プロセスが必要となる。粉末を用いた場合においても高温の焼結処理が必要となる。 In the production of an all-solid-state battery using an oxide-based solid electrolyte, there is a problem that the interface between the solid electrolyte and the positive electrode active material has a high resistance. For example, when a thin film process is used to form a positive electrode active material, a high temperature heat treatment process or a vacuum process is required to crystallize the thin film. Even when powder is used, high-temperature sintering treatment is required.
 しかしながら、熱処理プロセスを実施することにより、固体電解質と正極活物質界面において物質間の反応や拡散現象が起こることから、意図しない高抵抗層が形成される場合がある。 However, by carrying out the heat treatment process, a reaction or diffusion phenomenon between the substances occurs at the interface between the solid electrolyte and the positive electrode active material, so that an unintended high resistance layer may be formed.
 特許文献1及び非特許文献1に記載された技術は、固体電解質と正極活物質との界面の低抵抗化の観点からは一定の対策が講じられているが、作製方法が複雑であり、作製に要する費用も高価であり未だ検討の余地がある。 The techniques described in Patent Document 1 and Non-Patent Document 1 have taken certain measures from the viewpoint of reducing the resistance of the interface between the solid electrolyte and the positive electrode active material, but the manufacturing method is complicated and the manufacturing method is complicated. The cost required for this is also high, and there is still room for consideration.
 そこで、本発明は、従来知られる高温の熱処理プロセスや真空プロセスを必ずしも用いることなく、安価且つ簡易な手法で、室温下で駆動させられる内部抵抗の低い全固体電池を作製することが可能な電極部材、全固体電池、電極部材用粉末、及び電極部材及び全固体電池の製造方法を提供する。 Therefore, the present invention is an electrode capable of manufacturing an all-solid-state battery having a low internal resistance that can be driven at room temperature by an inexpensive and simple method without necessarily using a conventionally known high-temperature heat treatment process or vacuum process. A member, an all-solid-state battery, a powder for an electrode member, and a method for manufacturing an electrode member and an all-solid-state battery are provided.
 本発明の実施の形態に係る電極部材は一側面において、酸化物系固体電解質の焼結体からなる固体電解質層と、固体電解質層上に配置され、体積基準による累積粒度分布における10%粒径(D10)が0.01μm~0.5μm、50%粒径(D50)が0.01μm~1.0μmであり、粒径が0.12μm以下の粒子の含有率が0.5体積%以上の酸化物系正極活物質からなる微粉末で形成された薄膜状の正極活物質層とを備える電極部材である。 On one side, the electrode member according to the embodiment of the present invention is arranged on a solid electrolyte layer made of a sintered body of an oxide-based solid electrolyte and a solid electrolyte layer, and has a 10% particle size in a cumulative particle size distribution based on a volume basis. (D 10 ) is 0.01 μm to 0.5 μm, 50% particle size (D 50 ) is 0.01 μm to 1.0 μm, and the content of particles having a particle size of 0.12 μm or less is 0.5% by volume. It is an electrode member including a thin-film positive electrode active material layer formed of fine powder made of the above oxide-based positive electrode active material.
 本実施形態に係る正極活物質層においては、酸化物系正極活物質からなる微粉末のみで正極活物質層が形成されるだけでなく、正極活物質層として要求される所望の特性を発現させるために、当業者に周知の材料を微粉末に更に含有させてもよいことは勿論である。例えば、酸化物系正極活物質からなる微粉末に対し、更に電子伝導性を促進する炭素材粉末及び/又は金属粉末を混合する態様、更にリチウムイオン導電助剤として固体電解質粉末を混合する態様、或いは、更に電子伝導性を促進する炭素材粉末と金属粉末とリチウムイオン導電助剤とを混合する態様等が挙げられ、このような態様も本実施形態に含有し得ることは勿論である。また、粉末固化体は単一の正極活物質微粒子によって構成される態様に限られるものではなく、異なる種類の微粒子からなる粉末固化体を単層或いは複数層形成することも可能であることは勿論である。 In the positive electrode active material layer according to the present embodiment, not only the positive electrode active material layer is formed only by the fine powder made of the oxide-based positive electrode active material, but also the desired characteristics required for the positive electrode active material layer are exhibited. Therefore, it goes without saying that a material well known to those skilled in the art may be further contained in the fine powder. For example, a mode in which a carbon material powder and / or a metal powder that further promotes electron conductivity is mixed with a fine powder made of an oxide-based positive electrode active material, and a mode in which a solid electrolyte powder is mixed as a lithium ion conductivity aid. Alternatively, an embodiment of mixing a carbon material powder, a metal powder, and a lithium ion conductive auxiliary agent that further promotes electron conductivity can be mentioned, and it goes without saying that such an embodiment can also be included in the present embodiment. Further, the powder solidified body is not limited to the embodiment composed of a single positive electrode active material fine particles, and it is of course possible to form a single layer or a plurality of layers of a powder solidified body composed of different types of fine particles. Is.
 本発明の実施の形態に係る電極部材は一実施態様において、固体電解質層が、Li1.5Al0.5Ge1.5312、Li0.33La0.55TiO3、Li7La3Zr212(リチウムサイトへのAl又はGa等の置換型、及びジルコニウムサイトへのNb又はTa等の置換型を含む)のいずれかを含み、正極活物質微粉末が、LiCoO2(コバルトサイトへのMg等の置換型を含む)、LiNi0.33Co0.33Mn0.332、LiNi0.5Co0.3Mn0.22、LiNi0.8Co0.1Mn0.12、LiNi0.5Mn1.54、LiNiO2、LiFePO4等のオリビン構造酸化物、Li2CoP27等のピロリン酸金属複合酸化物等、一般的に知られている既知の正極活物質材料の何れを用いてもよい。 In one embodiment, the electrode member according to the embodiment of the present invention has a solid electrolyte layer of Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 , Li 0.33 La 0.55 TiO 3 , Li 7 La 3 Zr 2 O 12 (lithium site). The positive electrode active material fine powder contains LiCoO 2 (substitution type of Mg etc. to cobalt site) containing either Al or Ga substitution type to Al or Ga and substitution type such as Nb or Ta to zirconium site. ), LiNi 0.33 Co 0.33 Mn 0.33 O 2 , LiNi 0.5 Co 0.3 Mn 0.2 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.5 Mn 1.5 O 4 , LiNiO 2 , LiFePO 4, etc. Any known positive electrode active material such as a metal pyrophosphate composite oxide such as Li 2 CoP 2 O 7 may be used.
 本発明の実施の形態に係る電極部材は別の一側面において、酸化物系固体電解質の焼結体からなる固体電解質層と、固体電解質層上に配置され、体積基準による累積粒度分布における10%粒径(D10)が0.01μm~0.5μm、50%粒径(D50)が0.01μm~1.0μmであり、粒径0.20μm以下の粒子の含有率が5質量%以上のLiNi0.5Mn1.54からなる微粉末で形成された薄膜状(バルク状)の正極活物質層とを備える電極部材である。 In another aspect, the electrode member according to the embodiment of the present invention is arranged on a solid electrolyte layer made of a sintered body of an oxide-based solid electrolyte and a solid electrolyte layer, and is 10% in the cumulative particle size distribution based on the volume. The particle size (D 10 ) is 0.01 μm to 0.5 μm, the 50% particle size (D 50 ) is 0.01 μm to 1.0 μm, and the content of particles with a particle size of 0.20 μm or less is 5% by mass or more. It is an electrode member including a thin-film (bulk-like) positive electrode active material layer formed of a fine powder made of LiNi 0.5 Mn 1.5 O 4 of the above.
 本発明の実施の形態に係る全固体電池は一側面において、上記電極部材を用いた全固体電池である。 The all-solid-state battery according to the embodiment of the present invention is an all-solid-state battery using the electrode member on one side.
 本発明の実施の形態に係る電極部材用粉末は一側面において、体積基準による累積粒度分布における10%粒径(D10)が0.01μm~0.5μm、50%粒径(D50)が0.01μm~1.0μmであり、粒径0.12μm以下の粒子の含有率が0.5体積%以上の酸化物系正極活物質からなり、酸化物系固体電解質の焼結体からなる固体電解質層上に正極活物質層を形成させるための電極部材用粉末である。 On one side, the electrode member powder according to the embodiment of the present invention has a 10% particle size (D 10 ) of 0.01 μm to 0.5 μm and a 50% particle size (D 50 ) in the cumulative particle size distribution based on the volume. A solid composed of an oxide-based positive electrode active material having a particle size of 0.01 μm to 1.0 μm and a particle size of 0.12 μm or less and a content of 0.5% by volume or more, and a sintered body of an oxide-based solid electrolyte. It is a powder for an electrode member for forming a positive electrode active material layer on an electrolyte layer.
 本発明の実施の形態に係る電極部材の製造方法は一側面において、酸化物系固体電解質の焼結体からなる固体電解質層上に、体積基準による累積粒度分布における10%粒径(D10)が0.01μm~0.5μm、50%粒径(D50)が0.01μm~1.0μmであり、粒径0.12μm以下の粒子の含有率が0.5体積%以上の酸化物系正極活物質からなる微粉末を堆積させ、固体電解質層上の微粉末の表面に機械的外力を与え、微粉末を互いに密着させて固化させることにより、薄膜状の正極活物質層を固体電解質層上に形成させることを含む電極部材の製造方法である。 In one aspect, the method for manufacturing an electrode member according to an embodiment of the present invention has a 10% particle size (D 10 ) in a cumulative particle size distribution on a volume basis on a solid electrolyte layer made of a sintered body of an oxide-based solid electrolyte. Is 0.01 μm to 0.5 μm, the 50% particle size (D 50 ) is 0.01 μm to 1.0 μm, and the content of particles with a particle size of 0.12 μm or less is 0.5% by volume or more. By depositing fine powder made of positive electrode active material, applying a mechanical external force to the surface of the fine powder on the solid electrolyte layer, and causing the fine powder to adhere to each other and solidify, the thin positive electrode active material layer is formed into a solid electrolyte layer. It is a method of manufacturing an electrode member including forming on the surface.
 本発明の実施の形態に係る電極部材の製造方法は一実施態様において、微粉末の表面に沿って機械的外力を与えることが、微粉末同士または微粉末と固体電解質層との界面に摩擦を生じさせることを含む。 In one embodiment of the method for manufacturing an electrode member according to an embodiment of the present invention, applying a mechanical external force along the surface of the fine powder causes friction between the fine powders or at the interface between the fine powders and the solid electrolyte layer. Including to cause.
 本発明の実施の形態に係る電極部材の製造方法は別の一実施態様において、微粉末の表面に沿って機械的外力を与えることが、微粉末の表面を摩擦部材で擦ることを含む。 In another embodiment, the method for manufacturing an electrode member according to an embodiment of the present invention includes applying a mechanical external force along the surface of the fine powder to rubbing the surface of the fine powder with a friction member.
 本発明の実施の形態に係る全固体電池の製造方法は一側面において、上記固体電解質層の第1主面に形成された正極活物質層上に第1の金属層を成膜することと、固体電解質層の第1主面と対向する第2主面上に第2の金属層を成膜することと、を含む全固体電池の製造方法である。 The method for producing an all-solid-state battery according to the embodiment of the present invention comprises, on one aspect, forming a first metal layer on the positive electrode active material layer formed on the first main surface of the solid electrolyte layer. This is a method for manufacturing an all-solid-state battery, which comprises forming a second metal layer on a second main surface facing the first main surface of the solid electrolyte layer.
 本発明の実施の形態に係る電極部材は別の一側面において、酸化物系固体電解質の焼結体からなる固体電解質層と、固体電解質層上に配置され、体積基準による累積粒度分布における10%粒径(D10)が0.01μm~0.5μm、50%粒径(D50)が0.01μm~1.0μmであり、粒径が0.12μm以下の粒子の含有率が0.5体積%以上の酸化物系正極活物質からなる微粉末と酸化物系固体電解質からなる粉末との混合物で形成されたバルク状の正極合材層とを備える電極部材である。 In another aspect, the electrode member according to the embodiment of the present invention is arranged on a solid electrolyte layer made of a sintered body of an oxide-based solid electrolyte and a solid electrolyte layer, and is 10% in the cumulative particle size distribution based on the volume. The particle size (D 10 ) is 0.01 μm to 0.5 μm, the 50% particle size (D 50 ) is 0.01 μm to 1.0 μm, and the content of particles having a particle size of 0.12 μm or less is 0.5. It is an electrode member including a bulk-shaped positive electrode mixture layer formed of a mixture of a fine powder made of an oxide-based positive electrode active material in an volume of% or more and a powder made of an oxide-based solid electrolyte.
 本発明の実施の形態に係る電極部材は一実施態様において、酸化物系固体電解質からなる粉末が、Li7La3Zr212(リチウムサイトへのAl又はGaの置換型、及びジルコニウムサイトへのNb又はTaの置換型を含む)、Li1.5Al0.5Ge1.5312、Li3BO3(Li3BO3にLi2SO4、Li2CO3、Li4SiO4なる材料群のうち1種類もしくは2種類以上混合した非晶質状または結晶化ガラスを含む)、Li1.3Al0.3Ti1.7312、Li0.33La0.55TiO3からなる群のいずれか1種以上から選択される。 In one embodiment of the electrode member according to the embodiment of the present invention, the powder made of an oxide-based solid electrolyte is transferred to Li 7 La 3 Zr 2 O 12 (a substitution type of Al or Ga to lithium site, and zirconium site). (Including Nb or Ta substitution type), Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 , Li 3 BO 3 (Li 3 BO 3 to Li 2 SO 4 , Li 2 CO 3 , Li 4 SiO 4 of the material group (Including amorphous or crystallized glass in which one or more of them are mixed), Li 1.3 Al 0.3 Ti 1.7 P 3 O 12 , Li 0.33 La 0.55 TIO 3 is selected from one or more of the group. To.
 本発明の実施の形態に係る電極部材は別の一実施態様において、酸化物系固体電解質からなる粉末は、体積基準による累積粒度分布における50%粒径(D50)が10μm以下である。 In another embodiment of the electrode member according to the embodiment of the present invention, the powder made of an oxide-based solid electrolyte has a 50% particle size (D 50 ) of 10 μm or less in the cumulative particle size distribution based on the volume.
 本発明の実施の形態に係る電極部材は更に別の一実施態様において、混合物中に、酸化物系固体電解質からなる粉末が、質量比で25~99%含有される。 In still another embodiment, the electrode member according to the embodiment of the present invention contains 25 to 99% by mass of a powder made of an oxide-based solid electrolyte in the mixture.
 本発明によれば、従来知られるバインダーや有機溶媒を用いた湿式プロセスや高温の熱処理プロセス、真空プロセスを必ずしも用いることなく、安価且つ簡易な手法で室温下における電池駆動を可能とする程の低い内部抵抗を実現した全固体電池を不活性雰囲気下に限定されず、大気雰囲気下に於いてさえも作製可能な電極部材、全固体電池、電極部材用粉末及び電極部材及び全固体電池の製造方法が提供できる。 According to the present invention, the battery can be driven at room temperature by an inexpensive and simple method without necessarily using a wet process using a conventionally known binder or an organic solvent, a high-temperature heat treatment process, or a vacuum process. A method for manufacturing an electrode member, an all-solid-state battery, a powder for an electrode member, an electrode member, and an all-solid-state battery that can be manufactured not only in an inert atmosphere but also in an air atmosphere. Can be provided.
本発明の実施の形態に係る電極部材の一例を示す断面図である。It is sectional drawing which shows an example of the electrode member which concerns on embodiment of this invention. 本発明の実施の形態に係る固体電解質層の焼結体(LLZ焼結体)の破断面の一例を示す写真である。It is a photograph which shows an example of the fracture surface of the sintered body (LLZ sintered body) of the solid electrolyte layer which concerns on embodiment of this invention. 本発明の実施の形態に係る電極部材の作製に好適な微粉末の粒度分布の一例を表すグラフである。It is a graph which shows an example of the particle size distribution of the fine powder suitable for manufacturing the electrode member which concerns on embodiment of this invention. 固体電解質層1上へ正極活物質層(正極合材層)2を形成させるための微粉末を堆積した状態を表す説明図である。It is explanatory drawing which shows the state in which the fine powder for forming a positive electrode active material layer (positive electrode mixture layer) 2 is deposited on the solid electrolyte layer 1. 本発明の実施の形態に係る電極部材の一例を示す電子顕微鏡写真である。It is an electron micrograph which shows an example of the electrode member which concerns on embodiment of this invention. 実施例の正極活物質層の担持面をX線回折装置にて測定した場合の回折パターンを表すグラフである。It is a graph which shows the diffraction pattern when the supporting surface of the positive electrode active material layer of an Example is measured by an X-ray diffractometer. 本発明の実施の形態に係る全固体電池の充放電特性の一例を表すグラフである。It is a graph which shows an example of charge / discharge characteristics of the all-solid-state battery which concerns on embodiment of this invention. 本発明の実施の形態に係る全固体電池の交流インピーダンス測定結果の一例を示すナイキストプロットグラフである。It is a Nyquist plot graph which shows an example of the AC impedance measurement result of the all-solid-state battery which concerns on embodiment of this invention. 本発明の実施の形態の変形例に係る電極部材の一例を示す電子顕微鏡写真である。It is an electron micrograph which shows an example of the electrode member which concerns on the modification of embodiment of this invention. 本発明の実施の形態に係る全固体電池の交流インピーダンス測定結果の一例を表すグラフである。It is a graph which shows an example of the AC impedance measurement result of the all-solid-state battery which concerns on embodiment of this invention. 本発明の実施の形態に係る全固体電池の室温(25℃)における放電レート特性測定結果の一例を示すナイキストプロットグラフである。It is a Nyquist plot graph which shows an example of the discharge rate characteristic measurement result at room temperature (25 degreeC) of the all-solid-state battery which concerns on embodiment of this invention. 実施例4の充放電特性(CV)を表すグラフである。It is a graph which shows the charge / discharge characteristic (CV) of Example 4.
 以下、図面を参照しながら本発明の実施の形態を説明する。以下に示す実施の形態は、この発明の技術的思想を具体化するための装置又は製造方法を例示するものであって、この発明の技術的思想は、各構成要素の構造、配置等を下記のものに特定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiments shown below exemplify an apparatus or a manufacturing method for embodying the technical idea of the present invention, and the technical idea of the present invention describes the structure, arrangement, etc. of each component as follows. It is not specific to the thing.
(第1の実施の形態)
 本発明の実施の形態に係る電極部材は、図1に模式的に示すように、酸化物系固体電解質の焼結体からなる固体電解質層1と、固体電解質層1の表面に配置された正極活物質層2とを備える。
(First Embodiment)
As schematically shown in FIG. 1, the electrode member according to the embodiment of the present invention includes a solid electrolyte layer 1 made of a sintered body of an oxide-based solid electrolyte and a positive electrode arranged on the surface of the solid electrolyte layer 1. It includes an active material layer 2.
 固体電解質層1としては、酸化系固体電解質材料からなる固体電解質層1が利用できる。酸化系固体電解質材料としては、例えば、NASICON型結晶構造のLi1.5Al0.5Ge1.5312やペロブスカイト型結晶構造のLi0.33La0.55TiO3、ガーネット型結晶構造のLi7La3Zr212等が用いられる。具体的には、Li1.5Al0.5Ge1.5312、Li0.33La0.55TiO3、Li7La3Zr212(リチウムサイトへのAl又はGa等の置換型、及びジルコニウムサイトへのNb又はTa等の置換型を含む)のいずれかが用いられることが好ましい。 As the solid electrolyte layer 1, a solid electrolyte layer 1 made of an oxidizing solid electrolyte material can be used. Examples of the oxidation-based solid electrolyte material include Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 having a NASICON type crystal structure, Li 0.33 La 0.55 TiO 3 having a perovskite type crystal structure, and Li 7 La 3 Zr 2 O having a garnet type crystal structure. 12 mag is used. Specifically, Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 , Li 0.33 La 0.55 TiO 3 , Li 7 La 3 Zr 2 O 12 (replacement type such as Al or Ga to lithium site, and Nb to zirconium site). Alternatively, any of (including a substitution type such as Ta) is preferably used.
 中でも特に、ガーネット型結晶構造のLi7La3Zr212で表される立方晶リチウムランタンジルコニウム酸化物(通称「LLZ」)(リチウムサイトへのAl又はGa等の置換型、及びジルコニウムサイトへのNb又はTa等の置換型を含む)が、リチウムイオンの高い伝導性に加え、他の酸化物系固体電解質と比較すると金属リチウムとの反応性が極めて低くリチウムイオンによるデンドライト形成を回避することができる点、或いは酸化物系固体電解質からなる焼結体基板の表面に直接、リチウム金属層を形成できる点などにおいて固体電解質層1の酸化系固体電解質材料として特に好適に用いられる。 Among them, in particular, a cubic lithium lanthanum zirconium oxide (commonly known as "LLZ") represented by Li 7 La 3 Zr 2 O 12 having a garnet-type crystal structure (substitution type such as Al or Ga to lithium site, and zirconium site In addition to the high conductivity of lithium ions, the reactivity with metallic lithium is extremely low compared to other oxide-based solid electrolytes, and dendrite formation by lithium ions is avoided. It is particularly preferably used as an oxidation-based solid electrolyte material for the solid electrolyte layer 1 in that it can form a lithium metal layer directly on the surface of a sintered substrate made of an oxide-based solid electrolyte.
 固体電解質層1の破断面の写真を図2に示す。図2に示すように、固体電解質層1は、電子顕微鏡観察に基づく粒径が概ね2~10μmの結晶粒からなる焼結体であり、結晶粒同士の結び付きにより、より大きな結晶粒へと成長し、結晶粒界界面が不明瞭となっている。本実施形態に係る固体電解質層1の焼結体は、図2に示す通り、緻密な焼結体であり気孔が少ない。以下に限定されるものではないが、固体電解質層1の気孔率は例えば0.1~5.0%程度である。固体電解質層1の気孔率は、例えば、JIS R1634(1998)に基づいて測定することができる。 A photograph of the fracture surface of the solid electrolyte layer 1 is shown in FIG. As shown in FIG. 2, the solid electrolyte layer 1 is a sintered body composed of crystal grains having a particle size of approximately 2 to 10 μm based on electron microscopic observation, and grows into larger crystal grains by binding the crystal grains to each other. However, the grain boundary interface is unclear. As shown in FIG. 2, the sintered body of the solid electrolyte layer 1 according to the present embodiment is a dense sintered body and has few pores. Although not limited to the following, the porosity of the solid electrolyte layer 1 is, for example, about 0.1 to 5.0%. The porosity of the solid electrolyte layer 1 can be measured based on, for example, JIS R1634 (1998).
 本実施形態に係る固体電解質層1、例えばLLZ焼結体を、交流インピーダンス測定した結果、固体電解質層1は、5.0E-4~2.0E-03(S/cm)程度のイオン電導率を示す。このような固体電解質層1を電極部材の材料として採用することにより、固体電解質層1の粒界抵抗を低くすることができ、イオン電導率を向上させることができる。こうした酸化物系固体電解質基板と以下に述べる正極活物質を組み合わせることで、従来の高温プロセス等を用いることなく、より安価な室温プロセスで電池駆動が可能な全固体電池が得られる。 As a result of measuring the AC impedance of the solid electrolyte layer 1 according to the present embodiment, for example, the LLZ sintered body, the solid electrolyte layer 1 has an ion conductivity of about 5.0E-4 to 2.0E-03 (S / cm). Is shown. By adopting such a solid electrolyte layer 1 as a material for the electrode member, the grain boundary resistance of the solid electrolyte layer 1 can be lowered, and the ion conductivity can be improved. By combining such an oxide-based solid electrolyte substrate with the positive electrode active material described below, an all-solid-state battery that can be driven by a cheaper room temperature process without using a conventional high-temperature process or the like can be obtained.
 正極活物質層2に用いられる微粉末としては、具体的には、コバルト酸リチウム(LiCoO2)、ニッケルコバルトマンガン酸リチウム(LiNi0.33Co0.33Mn0.332、LiNi0.5Co0.3Mn0.22、LiNi0.8Co0.1Mn0.12)、ニッケルマンガン酸リチウム(LiNi0.5Mn1.54)、ニッケル酸リチウム(LiNiO2)、鉄リン酸リチウム(LiFePO4)、コバルトリン酸リチウム(Li2CoP27)などが利用可能である。中でも、コバルト酸リチウム、ニッケルコバルトマンガン酸リチウム、ニッケルマンガン酸リチウムを正極活物質層2の材料として用いることが好ましい。 Specific examples of the fine powder used for the positive electrode active material layer 2 include lithium cobalt oxide (LiCoO 2 ), lithium nickel cobalt manganate (LiNi 0.33 Co 0.33 Mn 0.33 O 2 , LiNi 0.5 Co 0.3 Mn 0.2 O 2) . LiNi 0.8 Co 0.1 Mn 0.1 O 2 ), Lithium nickel manganate (LiNi 0.5 Mn 1.5 O 4 ), Lithium nickel oxide (LiNiO 2 ), Lithium iron phosphate (LiFePO 4 ), Lithium cobalt oxide (Li 2 CoP 2 O) 7 ) etc. are available. Above all, it is preferable to use lithium cobalt oxide, lithium nickel cobalt manganate, and lithium nickel manganate as the material of the positive electrode active material layer 2.
 正極活物質層2は、酸化物系正極活物質からなる微粉末、または、酸化物系正極活物質と酸化物系固体電解質粉末との混合物(以下「正極合材」ともいう)からなる粉末を含む粉体が互いに密着して固化し、薄膜状又はバルク状を有する粉末固化体で構成されている。この粉末固化体は、酸化物系正極活物質または正極合材からなる微粉末を含む粉体の表面上に与えられた機械的外力によって密着して固化し、あたかも焼結体のように、粉末間で粒界の結び付きにより固化し、バルク質となった層を意味するものである。作製にあたっては、固体電解質層1との界面において高温条件(少なくとも500℃以上)を必ずしも必要とするものでなく、例えば室温程度(具体的には約1~30℃、より具体的には15~25℃)の低温条件によっても容易に作製することができる。粉末固化体からなる正極活物質層(正極合材層)2の形成方法は後述する。 The positive electrode active material layer 2 is a fine powder made of an oxide-based positive electrode active material or a powder made of a mixture of an oxide-based positive electrode active material and an oxide-based solid electrolyte powder (hereinafter, also referred to as “positive electrode mixture”). The contained powders are in close contact with each other and solidified, and are composed of a powder solidified body having a thin film shape or a bulk shape. This powder solidified body adheres and solidifies on the surface of a powder containing a fine powder composed of an oxide-based positive electrode active material or a positive electrode mixture by an external mechanical force applied to the powder, and is powdered as if it were a sintered body. It means a layer that is solidified by the binding of grain boundaries and becomes bulky. The production does not necessarily require high temperature conditions (at least 500 ° C. or higher) at the interface with the solid electrolyte layer 1, for example, about room temperature (specifically, about 1 to 30 ° C., more specifically, 15 to 15 to It can be easily produced even under low temperature conditions of 25 ° C.). The method for forming the positive electrode active material layer (positive electrode mixture layer) 2 made of the solidified powder will be described later.
 固体電解質層1上に粉末固化体からなる正極活物質層(正極合材層)2を適切に形成するためには、原料となる微粉末の性状を適切に選択することが特に重要である。本実施形態に係る電極部材では、微粉末が持つ可塑性(微細結晶粒超塑性)と微粉末-固体電解質層界面における力学的接着力(アンカー効果を含む)、化学的接着力、或いは拡散接着力をより適切に得る必要がある。本実施形態に係る粉末固化体を形成させるためにはナノ粒子と呼ばれる100nm未満の超微粉末の比率が高ければ高いほど望ましく、特に、体積基準による累積粒度分布における10%粒径(D10)が0.01μm~0.5μm、50%粒径(D50)が0.01μm~1.0μmである酸化物系正極活物質を原料として用いることがより好ましい。 In order to appropriately form the positive electrode active material layer (positive electrode mixture layer) 2 made of a solidified powder on the solid electrolyte layer 1, it is particularly important to appropriately select the properties of the fine powder as a raw material. In the electrode member according to the present embodiment, the plasticity of the fine powder (fine crystal grain superplasticity), the mechanical adhesive force (including the anchor effect) at the fine powder-solid electrolyte layer interface, the chemical adhesive force, or the diffusion adhesive force. Need to be obtained more appropriately. In order to form the solidified powder according to the present embodiment, the higher the ratio of ultrafine powders of less than 100 nm called nanoparticles, the more desirable it is, and in particular, the 10% particle size (D 10 ) in the cumulative particle size distribution based on the volume. It is more preferable to use an oxide-based positive electrode active material having a particle size of 0.01 μm to 0.5 μm and a 50% particle size (D 50) of 0.01 μm to 1.0 μm as a raw material.
 微粉末の10%粒径(D10)が0.5μmより大きいと、微粉末同士が固体電解質層1上に上手く密着せず、粉末固化体を形成させることができない場合がある。全固体電池の正極活物質層(正極合材層)2としてより適切な粉末固化体を形成するためには、微粉末の平均粒径(D50)は小さければ小さいほど好ましく、0.15μm以下が好ましく、更に好ましくは0.12μm以下、より更に好ましくは0.1μm以下である。微粉末の10%粒径(D10)は以下に限定されるものではないが、取り扱い性等の観点から例えば0.01μm以上、より好ましくは0.02μm以上であるのが好ましい。 If the 10% particle size (D 10 ) of the fine powder is larger than 0.5 μm, the fine powders may not adhere well to each other on the solid electrolyte layer 1 and a solidified powder may not be formed. In order to form a more suitable powder solidified body as the positive electrode active material layer (positive electrode mixture layer) 2 of the all-solid-state battery, the smaller the average particle size (D 50 ) of the fine powder is, the more preferable it is, and it is 0.15 μm or less. Is more preferable, and even more preferably 0.12 μm or less, and even more preferably 0.1 μm or less. The 10% particle size (D 10 ) of the fine powder is not limited to the following, but is preferably 0.01 μm or more, more preferably 0.02 μm or more, for example, from the viewpoint of handleability and the like.
 微粉末として例えばコバルト酸リチウムを使用する場合には、10%粒径(D10)が0.01~0.3μm、更には0.01~0.2μm、更には0.01~0.17μmの微粉末を用いることが好ましい。微粉末として例えばニッケルマンガン酸リチウムを使用する場合には、10%粒径(D10)が0.01~0.4μm、更には0.01~0.35μm、更には0.01~0.3μmの微粉末を用いることが好ましい。微粉末としてニッケルコバルトマンガン酸リチウムを使用する場合には、10%粒径(D10)が0.01~0.5μm、更に好ましくは0.01~0.3μmの微粉末を用いることができる。 When lithium cobalt oxide is used as the fine powder, for example, the 10% particle size (D 10 ) is 0.01 to 0.3 μm, further 0.01 to 0.2 μm, and further 0.01 to 0.17 μm. It is preferable to use the fine powder of. When, for example, lithium nickel manganate is used as the fine powder, the 10% particle size (D 10 ) is 0.01 to 0.4 μm, further 0.01 to 0.35 μm, and further 0.01 to 0. It is preferable to use a fine powder of 3 μm. When lithium nickel cobalt manganate is used as the fine powder, a fine powder having a 10% particle size (D 10 ) of 0.01 to 0.5 μm, more preferably 0.01 to 0.3 μm can be used. ..
 微粉末の50%粒径(D50)が1.0μmより大きいと、微粉末同士が上手く密着せず、粉末固化体からなる正極活物質層(正極合材層)2を必要な厚さに形成できない場合がある。微粉末の50%粒径(D50)は小さいほど好ましく、0.8μm以下が好ましく、更に好ましくは0.5μm以下、より更に好ましくは0.3μm以下である。一方、微粉末の50%粒径(D50)の粒径の下限値は以下に限定されるものではないが、例えば0.01μm以上、更には0.05μm以上とすることができ、作業容易性の観点からより好ましくは0.1μm以上である。 If the 50% particle size (D 50 ) of the fine powder is larger than 1.0 μm, the fine powders do not adhere well to each other, and the positive electrode active material layer (positive electrode mixture layer) 2 made of the solidified powder has a required thickness. It may not be possible to form. The smaller the 50% particle size (D 50 ) of the fine powder is, the more preferable it is, preferably 0.8 μm or less, still more preferably 0.5 μm or less, and even more preferably 0.3 μm or less. On the other hand, the lower limit of the particle size of the 50% particle size (D 50 ) of the fine powder is not limited to the following, but can be, for example, 0.01 μm or more, further 0.05 μm or more, and the work is easy. From the viewpoint of sex, it is more preferably 0.1 μm or more.
 図3に正極活物質層(正極合材層)2に用いられる微粉末として好適な微粉末の累積粒度分布の例を示す。図3に示すように、0.01~1.4μmの範囲において累積粒度分布の50%粒径(D50)が0.01~1.0μm、更には0.1μm~1.0μmの範囲にある微粉末を用いることが、作業容易性の観点から特に好ましい。 FIG. 3 shows an example of the cumulative particle size distribution of the fine powder suitable as the fine powder used for the positive electrode active material layer (positive electrode mixture layer) 2. As shown in FIG. 3, in the range of 0.01 to 1.4 μm, the 50% particle size (D 50 ) of the cumulative particle size distribution is in the range of 0.01 to 1.0 μm, and further in the range of 0.1 μm to 1.0 μm. It is particularly preferable to use a certain fine powder from the viewpoint of workability.
 また、体積基準による累積粒度分布における50%粒径(D50)の10%粒径(D10)に対する比(D50/D10)が3以下、より好ましくは2以下である微粉末を用いることが好ましく、90%粒径(D90)の10%粒径(D10)に対する比(D90/D10)が10以下、より好ましくは6以下である微粉末を用いることが好ましい。 Further, a fine powder having a ratio (D 50 / D 10 ) of 50% particle size (D 50 ) to 10% particle size (D 10 ) in the cumulative particle size distribution based on the volume is 3 or less, more preferably 2 or less is used. it is preferred, the ratio of 10% particle size and 90% particle diameter (D 90) (D 10) (D 90 / D 10) of 10 or less, more preferably to use a fine powder is 6 or less.
 このような特性を有する微粉末は本実施形態に係る粉末固化体の形成に大きく寄与すると考えられる粒径約0.12μm又は0.08μm以下の微粉末を所定の割合で含むものであり、本実施形態に係る粉末固化体を適切な厚さに容易に堆積させることができるため特に好適である。 The fine powder having such characteristics contains a fine powder having a particle size of about 0.12 μm or 0.08 μm or less, which is considered to greatly contribute to the formation of the solidified powder according to the present embodiment, in a predetermined ratio. It is particularly suitable because the solidified powder according to the embodiment can be easily deposited to an appropriate thickness.
 例えば微粉末として好適な例えばコバルト酸リチウム、ニッケルコバルトマンガン酸リチウム、ニッケルマンガン酸リチウムを使用する場合には、原料中、粒径0.12μm以下の粒子を例えば0.5体積%以上、好ましくは2体積%以上、更に好ましくは5体積%以上含有し、原料中、粒径0.08μm以下の粒子を例えば0.1体積%以上、好ましくは0.5体積%以上、更に好ましくは2体積%以上含有する微粉末を用いることが、粉末固化体を適切且つ容易に形成できる点で好ましい。粒径0.12μm以下の粒子の原料中における組成比の上限は特に限定されず、多いほど好ましい。 For example, when lithium cobaltate, lithium nickel cobalt manganate, or lithium nickel manganate, which are suitable as fine powders, are used, particles having a particle size of 0.12 μm or less are contained in the raw material, for example, by 0.5% by volume or more, preferably 0.5% by volume or more. 2% by volume or more, more preferably 5% by volume or more, and particles having a particle size of 0.08 μm or less are contained in the raw material, for example, 0.1% by volume or more, preferably 0.5% by volume or more, still more preferably 2% by volume. It is preferable to use the fine powder containing the above because the solidified powder can be formed appropriately and easily. The upper limit of the composition ratio of particles having a particle size of 0.12 μm or less in the raw material is not particularly limited, and the larger the particle size, the more preferable.
 一方で、10%粒径(D10)及び50%粒径(D50)が適切な範囲に調整されていたとしても、粒径0.12μm以下の粒子が例えば0.5体積%未満であると、正極活物質層2を少量は形成できるものの、全固体電池の正極活物質層として機能させることができる程度の厚さにまでは堆積できない場合がある。以下に限定されるものではないが、原料中、粒径0.12μm以下の粒子の含有率を好ましくは0.5~15体積%とすることができ、更には2~4体積%とすることが好ましい。 On the other hand, even if the 10% particle size (D 10 ) and the 50% particle size (D 50 ) are adjusted to appropriate ranges, the particles having a particle size of 0.12 μm or less are, for example, less than 0.5% by volume. Although a small amount of the positive electrode active material layer 2 can be formed, it may not be possible to deposit the positive electrode active material layer 2 to a thickness sufficient to function as the positive electrode active material layer of the all-solid-state battery. Although not limited to the following, the content of particles having a particle size of 0.12 μm or less in the raw material can be preferably 0.5 to 15% by volume, and more preferably 2 to 4% by volume. Is preferable.
 ニッケルコバルトマンガン酸リチウムを微粉末として用いた場合には、粒径0.20μm以下の粒子を5体積%以上、好ましくは10体積%以上、更に好ましくは15体積%以上含有する材料であってもよい。微粉末に使用する材料の種類によって粉末固化体の形成に好適な粒径範囲は種々異なるが、正極活物質層(正極合材層)2の材料として上記に示した酸化物系正極活物質においては、少なくとも粒径0.12μm以下の粒子を0.5体積%以上含む微粉末であれば好適に利用可能であるといえる。なお、所定の粒径以下の粒子の含有率は上記に限定されるものではなく、その含有率が多くなるほど正極活物質層(正極合材層)2の形成がより効率的に行える。 When lithium nickel-cobalt manganate is used as a fine powder, even a material containing 5% by volume or more, preferably 10% by volume or more, and more preferably 15% by volume or more of particles having a particle size of 0.20 μm or less. Good. The particle size range suitable for forming the solidified powder varies depending on the type of material used for the fine powder, but in the oxide-based positive electrode active material shown above as the material of the positive electrode active material layer (positive electrode mixture layer) 2. Can be said to be suitably usable as long as it is a fine powder containing 0.5% by volume or more of particles having a particle size of 0.12 μm or less. The content of particles having a predetermined particle size or less is not limited to the above, and the larger the content, the more efficiently the positive electrode active material layer (positive electrode mixture layer) 2 can be formed.
 なお、本実施形態において「粒径」とは、レーザー回折/散乱式粒度分布測定装置を用いて測定した粒径分布の体積基準による累積粒度曲線に基づく粒径をいう。「D10」、「D50」および「D90」とは、累積粒度分布における体積基準のそれぞれ、10%粒径、50%粒径、および90%粒径を示し、レーザー回折/散乱式粒度分布測定装置を用いて測定した粒径分布の累積粒度曲線において、その積算量が体積基準でそれぞれ、10%、50%、および90%を占めるときの粒径を示す。 In the present embodiment, the “particle size” refers to a particle size based on a cumulative particle size curve based on the volume of the particle size distribution measured using a laser diffraction / scattering type particle size distribution measuring device. “D 10 ”, “D 50 ” and “D 90 ” indicate 10% particle size, 50% particle size, and 90% particle size, respectively, based on the volume in the cumulative particle size distribution, and are laser diffraction / scattering particle size. In the cumulative particle size curve of the particle size distribution measured using the distribution measuring device, the particle size when the integrated amount occupies 10%, 50%, and 90%, respectively, on a volume basis is shown.
 微粉末の粒径は、例えば、マイクロトラック・ベル株式会社製レーザー回折・散乱式粒子径分布測定装置「Microtrac MT-3000」を用いて測定することができ、その測定結果から付属のソフトを利用して体積基準による累積粒度分布を評価することができる。 The particle size of the fine powder can be measured using, for example, the laser diffraction / scattering type particle size distribution measuring device "Microtrac MT-3000" manufactured by Microtrac Bell Co., Ltd., and the attached software is used from the measurement results. Then, the cumulative particle size distribution based on the volume can be evaluated.
 このような分布を有する微粉末を用いることにより、表面に僅かな機械的外力を与えることによって微粉末同士の力学的接着及び拡散接着が生じ、これにより正極活物質微粉末同士、或いは後述する正極活物質微粉末と酸化物固体電解質粉末とを密着して固着させることができる。このようにして得られた電極部材は固体電解質層1と正極活物質層(正極合材層)2との接着性も良好で、低抵抗な界面を形成できるため、電極部材を用いた全固体電池は室温下で十分に駆動させることが可能である。粒度分布測定は当業者に公知の測定方法を用いることができる。なお、このようにして得られた電極部材に対し、大気雰囲気、不活性雰囲気または酸素雰囲気下で100~500℃、10秒~1時間熱処理を行うことで、さらに固体電解質層1と正極活物質層(正極合材層)2との界面を低抵抗化することができる場合がある。 By using the fine powder having such a distribution, a slight mechanical external force is applied to the surface to cause mechanical adhesion and diffusion adhesion between the fine powders, whereby the positive electrode active material fine powders or the positive electrode described later will be used. The active material fine powder and the oxide solid electrolyte powder can be adhered and fixed. The electrode member thus obtained has good adhesiveness between the solid electrolyte layer 1 and the positive electrode active material layer (positive electrode mixture layer) 2 and can form a low resistance interface. Therefore, the electrode member is an all-solid state using the electrode member. The battery can be sufficiently driven at room temperature. A measuring method known to those skilled in the art can be used for the particle size distribution measurement. The electrode member thus obtained is further heat-treated at 100 to 500 ° C. for 10 seconds to 1 hour in an air atmosphere, an inert atmosphere or an oxygen atmosphere to further solidify the electrolyte layer 1 and the positive electrode active material. It may be possible to reduce the resistance of the interface with the layer (positive electrode mixture layer) 2.
 図4の模式図に示すように、本発明の実施の形態に係る電極部材は、固体電解質層1の焼結体の微小な凹凸を有する表面上に上記の微粉末を堆積させ、固体電解質層1の上方から固体電解質層1の内側へ向けて機械的外力を与えることにより、図1に示すように、薄膜状の正極活物質層2が形成される。これは、ナノ粒子(粒径0.1μm以下)及びナノ粒子に近い粒径を持つ粒径0.1μm程度の微粉末の可塑性により、微粉末の表面に圧力を加えただけで、焼結したかのように微粉末が一体化してバルク化する現象を利用したものである。 As shown in the schematic view of FIG. 4, in the electrode member according to the embodiment of the present invention, the above-mentioned fine powder is deposited on the surface of the sintered body of the solid electrolyte layer 1 having minute irregularities, and the solid electrolyte layer is formed. As shown in FIG. 1, a thin-film positive electrode active material layer 2 is formed by applying a mechanical external force from above 1 toward the inside of the solid electrolyte layer 1. This was sintered by simply applying pressure to the surface of the nanoparticles (particle size 0.1 μm or less) and the plasticity of the fine powder having a particle size close to the nanoparticles and having a particle size of about 0.1 μm. This utilizes the phenomenon that fine powders are integrated and bulked as described above.
 下記の推察によって本実施形態が限定されることを意図するものではないが、微粉末の持つ膨大な表面エネルギーの解放と、微粉末よりも硬度が高い固体電解質層1に対して、固体電解質層1よりも硬度が低い微粉末を押しつけることによって正極活物質粉末の結合により緻密化が進行し粉末固化体が形成されるとともに、固体電解質層との間にアンカー効果等の接着力により均一かつ強固な界面が形成されて外観上は一定の光沢を有する薄膜状の層(粉末固化体)が形成されるものと推察される。 Although it is not intended that the present embodiment is limited by the following inference, the solid electrolyte layer is released with respect to the release of the enormous surface energy of the fine powder and the solid electrolyte layer 1 having a hardness higher than that of the fine powder. By pressing a fine powder having a hardness lower than 1 as a result, densification progresses due to the bonding of the positive electrode active material powder to form a solidified powder, and the powder is uniformly and strongly bonded to the solid electrolyte layer due to an adhesive force such as an anchor effect. It is presumed that a thin interface (powder solidified body) having a certain gloss in appearance is formed by forming an interface.
 粉末またはその焼結体に機械的またはその他の外力を加えて薄膜を形成する技術自体は従来から種々知られている。例えば、従来のスパッタ法やPLD(パルスレーザー堆積法)等の真空プロセスやエアロゾルデポジション法とよばれる粉末を高速で噴射し、その運動エネルギーにより基板上に粉末材料からなる薄膜を形成する手法がある。近年はこれら真空プロセスやエアロゾルデポジション法などにより基板上に薄膜を形成して電池駆動を実現させている例もあるが、試験レベルの極小さい面積に対する薄膜形成技術にとどまり、汎用的なリチウムイオン二次電池製品の製造プロセスとしては設備導入及びランニングコストを考えると極めて高コストなプロセスといえる。 Various techniques for forming a thin film by applying a mechanical or other external force to a powder or a sintered body thereof have been conventionally known. For example, a method called a vacuum process such as a conventional sputtering method or PLD (pulse laser deposition method) or an aerosol deposition method is used to inject powder at high speed and use the kinetic energy to form a thin film made of powder material on a substrate. is there. In recent years, there have been cases where a thin film is formed on a substrate by these vacuum processes or the aerosol deposition method to realize battery drive, but this is limited to thin film formation technology for extremely small test-level areas, and general-purpose lithium ions. It can be said that the manufacturing process of secondary battery products is an extremely high cost process considering the equipment installation and running costs.
 一方、本発明の実施の形態に係る電極部材及びこれを用いた全固体電池によれば、固体電解質層1として酸化物系固体電解質の焼結体を使用し、この上に、体積基準による累積粒度分布における10%粒径(D10)が0.01μm~0.5μmであり、50%粒径(D50)が0.01μm~1.0μm、粒径0.12μm以下の粒子を0.5体積%以上、更には5体積%以上含む酸化物系正極活物質からなる微粉末が互いに密着して固化した薄膜状の粉末固化体を備えた正極活物質層2が配置される。かかる構成を具備することにより、固体電解質層1と正極活物質層2との接合を、真空プロセスなどによらずに室温下で安価且つ簡易に行うことができる。更に、得られた電極部材に対し、例えば以下に示す手法により全固体電池を作製することによって、得られた全固体電池を室温において電池として駆動させることも可能である。 On the other hand, according to the electrode member according to the embodiment of the present invention and the all-solid-state battery using the electrode member, a sintered body of an oxide-based solid electrolyte is used as the solid electrolyte layer 1, and the cumulative amount is accumulated on a volume basis. Particles having a 10% particle size (D 10 ) of 0.01 μm to 0.5 μm, a 50% particle size (D 50 ) of 0.01 μm to 1.0 μm, and a particle size of 0.12 μm or less in the particle size distribution are defined as 0. The positive electrode active material layer 2 is arranged with a thin film-like powder solidified body in which fine powders made of an oxide-based positive electrode active material containing 5% by volume or more and further 5% by volume or more are adhered to each other and solidified. By providing such a configuration, the solid electrolyte layer 1 and the positive electrode active material layer 2 can be joined inexpensively and easily at room temperature without using a vacuum process or the like. Further, it is also possible to drive the obtained all-solid-state battery as a battery at room temperature by producing an all-solid-state battery for the obtained electrode member by, for example, the method shown below.
 例えば、上記の電極部材の固体電解質層1の一方の表面である第1主面上に形成された正極活物質層2上に、第1の集電極層として例えば金(Au)などの金属層を成膜する。更に、固体電解質層1の他方の表面であり、第1主面と対向する第2主面上に例えば金属リチウム(Li)などの第2の負極電極層を成膜し、全固体電池を得る。本実施形態によれば、得られた全固体電池の内部抵抗は1000~5000Ω・cm2(固体電解質層の厚みは0.5mm~1mm程度の場合)程度と小さくなり、より簡易且つ安価な手法により室温下(25℃)で電池駆動が可能な電極部材、全固体電池及びこれらの製造方法が提供できる。 For example, on the positive electrode active material layer 2 formed on the first main surface which is one surface of the solid electrolyte layer 1 of the electrode member, a metal layer such as gold (Au) is used as the first electrode collecting layer. Is formed. Further, a second negative electrode layer such as metallic lithium (Li) is formed on the second main surface, which is the other surface of the solid electrolyte layer 1 and faces the first main surface, to obtain an all-solid-state battery. .. According to this embodiment, the internal resistance of the obtained all-solid-state battery is as small as 1000 to 5000 Ω · cm 2 (when the thickness of the solid electrolyte layer is about 0.5 mm to 1 mm), which is a simpler and cheaper method. Therefore, an electrode member capable of driving a battery at room temperature (25 ° C.), an all-solid-state battery, and a method for manufacturing these can be provided.
 本発明の実施の形態に係る電極部材及び全固体電池の製造方法について説明する。まず、固体電解質層1を用意し、この固体電解質層1上に体積基準による累積粒度分布における10%粒径(D10)が0.01μm~0.5μmであり、50%粒径(D50)が0.01μm~1.0μm、粒径0.12μm以下の粒子を0.5体積%以上含む酸化物系正極活物質からなる微粉末を堆積させる。微粉末は、固体電解質層1上の表面全体に堆積させる。例えば、固体電解質層1の表面(表面積100mm2)に対して総量で0.05~10mg程度、好ましくは0.1~10mg程度、堆積させることが好ましい。 A method for manufacturing an electrode member and an all-solid-state battery according to an embodiment of the present invention will be described. First, a solid electrolyte layer 1 is prepared, and the 10% particle size (D 10 ) in the cumulative particle size distribution based on the volume is 0.01 μm to 0.5 μm on the solid electrolyte layer 1, and the 50% particle size (D 50). ) Is 0.01 μm to 1.0 μm, and a fine powder made of an oxide-based positive electrode active material containing 0.5% by volume or more of particles having a particle size of 0.12 μm or less is deposited. The fine powder is deposited over the entire surface on the solid electrolyte layer 1. For example, it is preferable to deposit a total amount of about 0.05 to 10 mg, preferably about 0.1 to 10 mg, on the surface (surface area 100 mm 2) of the solid electrolyte layer 1.
 次いで、固体電解質層1上の微粉末の表面に沿って機械的外力を与えることにより、固体電解質層の表面に、微粉末が互いに密着した一定の膜厚を有する粉末固化体を形成させる。 Next, by applying a mechanical external force along the surface of the fine powder on the solid electrolyte layer 1, a solidified powder having a certain film thickness in which the fine powder is in close contact with each other is formed on the surface of the solid electrolyte layer.
 固体電解質層1上の微粉末の表面に沿って機械的外力を与える方法としては、例えば、微粉末の表面全体に所定の圧力を加えることが挙げられる。例えば、微粉末の表面上から10kPa~500kPa、好ましくは20kPa~300kPa、更には50kPa~200kPa程度の圧力を印加することで、微粉末同士を密着させて固化して粉末固化体を形成させるとともに、固体電解質層1と粉末固化体との間の低抵抗な界面を形成することができる。 As a method of applying a mechanical external force along the surface of the fine powder on the solid electrolyte layer 1, for example, applying a predetermined pressure to the entire surface of the fine powder can be mentioned. For example, by applying a pressure of about 10 kPa to 500 kPa, preferably 20 kPa to 300 kPa, and further about 50 kPa to 200 kPa from the surface of the fine powder, the fine powders are brought into close contact with each other and solidified to form a powder solidified body. A low resistance interface can be formed between the solid electrolyte layer 1 and the solidified powder.
 具体的には、固体電解質層1上の微粉末に摩擦を生じさせるように機械的外力を与えることが好ましい。例えば、微粉末の表面を布又は紙等の摩擦部材で所定の方向に擦る方法がある。摩擦部材としては、紙ウエス、布ウエス、樹脂繊維など様々な材料を用いることができる。微粉末の表面を、布、紙或いは樹脂等からなる摩擦部材で擦る場合において、その擦る方向は特に限定されず、特定の一方向に擦っても、多方向に擦ってもよい。 Specifically, it is preferable to apply a mechanical external force so as to cause friction in the fine powder on the solid electrolyte layer 1. For example, there is a method of rubbing the surface of the fine powder with a friction member such as cloth or paper in a predetermined direction. As the friction member, various materials such as paper waste, cloth waste, and resin fiber can be used. When the surface of the fine powder is rubbed with a friction member made of cloth, paper, resin or the like, the rubbing direction is not particularly limited, and the surface may be rubbed in a specific direction or in multiple directions.
 本発明の実施の形態に係る電極部材及び全固体電池の製造方法によれば、正極活物質層の作製は高温の熱処理を必ずしも必要としないため、固体電解質層1と正極活物質層2の界面において物質間の反応や拡散現象を抑制でき、意図しない高抵抗層の形成を抑制することができる。その結果、より低抵抗な電極部材を作製することができる。 According to the method for manufacturing the electrode member and the all-solid-state battery according to the embodiment of the present invention, the production of the positive electrode active material layer does not necessarily require high-temperature heat treatment, and therefore the interface between the solid electrolyte layer 1 and the positive electrode active material layer 2 In, the reaction and diffusion phenomenon between substances can be suppressed, and the formation of an unintended high resistance layer can be suppressed. As a result, an electrode member having a lower resistance can be manufactured.
 また、特定の微粉末を使用して微粉末に圧力を加えて固化することで、公知のエアロゾルデポジション(AD)装置などを用いたプロセスに比べてより簡単且つ低コストで、固体電池として駆動できるレベルの電極部材を作製することができる。 In addition, by applying pressure to the fine powder to solidify it using a specific fine powder, it can be driven as a solid-state battery more easily and at lower cost than a process using a known aerosol deposition (AD) device or the like. It is possible to manufacture an electrode member of a level that can be produced.
(第2の実施の形態)
 本発明の別の実施の形態に係る電極部材は、体積基準による累積粒度分布における10%粒径(D10)が0.01μm~0.5μm、50%粒径(D50)が0.01μm~1.0μmであり、粒径が0.12μm以下の粒子を0.5体積%以上含む酸化物系正極活物質からなる微粉末と酸化物系固体電解質からなる粉末との混合物(正極合材)を準備し、この正極合材を固体電解質層1上へ配置して正極合材の表面全体に上述と同様の所定の圧力を加えることで、粉末同士が密着した粉末固化体からなる正極活物質層2を形成させることを含む。
(Second Embodiment)
The electrode member according to another embodiment of the present invention has a 10% particle size (D 10 ) of 0.01 μm to 0.5 μm and a 50% particle size (D 50 ) of 0.01 μm in the cumulative particle size distribution based on the volume. A mixture of a fine powder made of an oxide-based positive electrode active material containing 0.5% by volume or more of particles having a particle size of ~ 1.0 μm and a particle size of 0.12 μm or less and a powder made of an oxide-based solid electrolyte (positive electrode mixture). ) Is prepared, the positive electrode mixture is placed on the solid electrolyte layer 1, and the same predetermined pressure as described above is applied to the entire surface of the positive electrode mixture. Includes forming the material layer 2.
 酸化物系固体電解質からなる粉末としては、上述のLLZの他に、Li1.5Al0.5Ge1.5312(LAGP)、Li3BO3(LBO)(Li3BO3にLi2SO4、Li2CO3、Li4SiO4なる材料群のうち1種類もしくは2種類以上混合した非晶質状または結晶化ガラスを含む)、Li1.3Al0.3Ti1.7312(LATP)、Li0.33La0.55TiO3(LLTO)からなる群のいずれか1種以上から選択される材料を使用することができ、好ましくは、これら固体電解質材料を1種又は2種利用する。 Examples of the powder composed of the oxide-based solid electrolyte include Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 (LAGP), Li 3 BO 3 (LBO) (Li 3 BO 3 and Li 2 SO 4 ), in addition to the above-mentioned LLZ. Includes amorphous or crystallized glass of one or more of the materials Li 2 CO 3 and Li 4 SiO 4 ), Li 1.3 Al 0.3 Ti 1.7 P 3 O 12 (LATP), Li 0.33 Materials selected from any one or more of the group consisting of La 0.55 TiO 3 (LLTO) can be used, preferably one or two of these solid electrolyte materials.
 添加される酸化物系固体電解質からなる粉末の粒度は、体積基準による累積粒度分布における50%粒径(D50)が10μm以下、更には5μm以下であることが好ましい。 The particle size of the powder made of the oxide-based solid electrolyte to be added is preferably such that the 50% particle size (D 50 ) in the cumulative particle size distribution based on the volume is 10 μm or less, more preferably 5 μm or less.
 混合物中の酸化物系正極活物質からなる微粉末と、酸化物系固体電解質からなる粉末との最適な組成比は、材料の組み合わせによって調整できるが、具体的には、混合物中に酸化物系固体電解質からなる粉末が体積比で25~99%含有されることが好ましい。 The optimum composition ratio of the fine powder composed of the oxide-based positive electrode active material in the mixture and the powder composed of the oxide-based solid electrolyte can be adjusted by the combination of materials. It is preferable that the powder composed of the solid electrolyte is contained in an amount of 25 to 99% by volume.
 例えば、酸化物系正極活物質からなる微粉末として、LCO(コバルト酸リチウム(LCO))微粉末(株式会社豊島製作所製、10%粒径(D10)0.097μm、50%粒径(D50)0.208μm、90%粒径(D90)0.534μm)を使用し、酸化物系固体電解質からなる粉末として平均粒径(D50)が1.5μmのLAGPを混合して混合物を作製し、この混合物を固体電解質層1上へ配置して正極活物質層2を形成させた場合の固体電解質-正極合材層間の界面抵抗は、表1に示すような傾向を示す。 For example, as a fine powder made of an oxide-based positive electrode active material, LCO (lithium cobaltate (LCO)) fine powder (manufactured by Toyoshima Seisakusho Co., Ltd., 10% particle size (D 10 ) 0.097 μm, 50% particle size (D) 50 ) 0.208 μm, 90% particle size (D 90 ) 0.534 μm) is used, and LAGP having an average particle size (D 50 ) of 1.5 μm is mixed as a powder composed of an oxide-based solid electrolyte to prepare a mixture. The interfacial resistance between the solid electrolyte-positive electrode mixture layer when the mixture is prepared and arranged on the solid electrolyte layer 1 to form the positive electrode active material layer 2 shows a tendency as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、LCO、LAGPを混合した場合には、混合物中に酸化物系固体電解質からなる粉末であるLAGPが質量比で30~50%、更には35~40%混合させることにより、固体電解質との界面抵抗をより小さくすることができる。 As shown in Table 1, when LCO and LAGP are mixed, LAGP, which is a powder composed of an oxide-based solid electrolyte, is mixed in the mixture by 30 to 50% by mass ratio, and further by mixing 35 to 40%. , The interfacial resistance with the solid electrolyte can be made smaller.
 混合物を固体電解質層1上へ担持させて正極活物質層2を形成するに先立ち、混合物を熱処理することにより、固体電解質層1との界面抵抗が一層低下する場合がある。例えば、LCO:LAGPを75:25質量%の比率で混合した原料を酸素雰囲気下で典型的には300~400℃、1~10時間加熱処理することで、固体電解質層1と正極活物質層2との界面抵抗を大幅に低減できる場合がある。最適な熱処理条件は、材料の組み合わせにより異なるが、少なくとも熱処理温度は混合した材料がそれぞれ反応を起こす温度以下にする必要がある。例えば、LCC+LLZの場合は、約500℃付近、LCO+LAGPの場合は約400℃付近が材料間での化学反応(分解)を起こさない限界温度であるため、この限界温度以下で熱処理を行う必要がある。 The interface resistance with the solid electrolyte layer 1 may be further reduced by heat-treating the mixture prior to supporting the mixture on the solid electrolyte layer 1 to form the positive electrode active material layer 2. For example, the solid electrolyte layer 1 and the positive electrode active material layer are obtained by heat-treating a raw material in which LCO: LAGP is mixed at a ratio of 75:25 mass% in an oxygen atmosphere at typically 300 to 400 ° C. for 1 to 10 hours. In some cases, the interfacial resistance with 2 can be significantly reduced. The optimum heat treatment conditions differ depending on the combination of materials, but at least the heat treatment temperature must be equal to or lower than the temperature at which the mixed materials cause a reaction. For example, in the case of LCC + LLZ, about 500 ° C., and in the case of LCO + LAGP, about 400 ° C. is the limit temperature at which no chemical reaction (decomposition) occurs between materials, so it is necessary to perform heat treatment below this limit temperature. ..
 正極活物質微粉末と固体電解質粉末との混合物を用いた正極活物質層2を備える電極部材及び全固体電池の作製方法は、上述の酸化物系正極活物質からなる微粉末を単独で用いた場合の作製方法と同様である。 As a method for producing an electrode member and an all-solid-state battery including the positive electrode active material layer 2 using a mixture of the positive electrode active material fine powder and the solid electrolyte powder, the fine powder made of the above-mentioned oxide-based positive electrode active material was used alone. It is the same as the manufacturing method of the case.
 このように、本発明は上記の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。即ち、本発明は各実施形態に限定されるものではなく、その要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、各実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素からいくつかの構成要素を削除してもよい。更に、異なる実施形態の構成要素を適宜組み合わせてもよい。 Thus, although the present invention has been described in accordance with the above embodiments, the statements and drawings that form part of this disclosure should not be understood to limit the invention. That is, the present invention is not limited to each embodiment, and the components can be modified and embodied within a range that does not deviate from the gist thereof. In addition, various inventions can be formed by appropriately combining the plurality of components disclosed in each embodiment. For example, some components may be removed from all the components shown in the embodiments. Further, the components of different embodiments may be combined as appropriate.
 以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Examples of the present invention are shown below together with comparative examples, but these examples are provided for a better understanding of the present invention and its advantages, and are not intended to limit the invention.
-実施例1-
(電極部材の作製)
 アルゴンガス雰囲気のグローブボックス内にてLi7La3Zr212焼結体基板(以降「LLZ基板」という)(サイズ10mm×10mm×0.5mmt)をサンドペーパー(三共理化学(株)製)で両面研磨したのち、焼結体基板の表面にコバルト酸リチウム(LCO)微粉末(株式会社豊島製作所製、10%粒径(D10)0.097μm、50%粒径(D50)0.208μm、90%粒径(D90)0.534μm、粒径0.12μm以下の粒子を11.87体積%含む図3の単峰性分布を有する粒子)50mgをまぶし、その上から紙製ウエス(日本製紙クレシア(株)製)を使ってLLZ基板にこすりつけるように、10kPa~500kPaの機械的外力を加えることにより正極活物質層を担持させた。マイクロ天秤により形成された正極活物質層の担持重量を計測したところ、予め計測済のLLZ基板重量との差から0.25mgと確認できた。
-Example 1-
(Manufacturing of electrode members)
Sandpaper (manufactured by Sankyo Rikagaku Co., Ltd.) with Li 7 La 3 Zr 2 O 12 sintered substrate (hereinafter referred to as "LLZ substrate") (size 10 mm x 10 mm x 0.5 mm t) in a glove box with an argon gas atmosphere. After polishing both sides with, the surface of the sintered substrate is fine powder of lithium cobaltate (LCO) (manufactured by Toyoshima Seisakusho Co., Ltd., 10% particle size (D 10 ) 0.097 μm, 50% particle size (D 50 ) 0. Sprinkle 50 mg of particles having a monomodal distribution of FIG. 3 containing particles having a particle size of 208 μm, 90% particle size (D 90) of 0.534 μm, and a particle size of 0.12 μm or less (11.87% by volume), and a paper waste cloth from above. The positive electrode active material layer was supported by applying a mechanical external force of 10 kPa to 500 kPa so as to rub it against the LLZ substrate using (manufactured by Nippon Paper Cresia Co., Ltd.). When the supported weight of the positive electrode active material layer formed by the micro balance was measured, it was confirmed that it was 0.25 mg from the difference from the weight of the LLZ substrate measured in advance.
 試料の正極活物質担持面をX線回折装置にて測定したところ、LLZ基板の回折パターンとともにLiCoO2由来の回折パターンが確認された(図6)。また、当該試料の断面を走査型電子顕微鏡にて観察したところ、基板上に一定の厚みの膜が形成されていることが観察された(図5)。これらの分析結果よりコバルト酸リチウム微粉末による粉末固化体からなる正極活物質層がLLZ基板上に間違いなく担持されていることが確認された。 When the surface of the sample carrying the positive electrode active material was measured by an X-ray diffractometer, a diffraction pattern derived from LiCoO 2 was confirmed together with the diffraction pattern of the LLZ substrate (FIG. 6). Further, when the cross section of the sample was observed with a scanning electron microscope, it was observed that a film having a certain thickness was formed on the substrate (FIG. 5). From these analysis results, it was confirmed that the positive electrode active material layer made of the powder solidified body of lithium cobalt oxide fine powder was definitely supported on the LLZ substrate.
(全固体電池の作製)
 全固体リチウムイオン二次電池を作製するため以下の操作を行った。上記の正極活物質を担持させた電極部材の正極活物質層側の表面に集電極としてAuをスパッタ装置(サンユー電子製)により成膜した(膜厚0.5μm)。一方、本電極部材のAuを成膜した反対面に対し負極として金属Li膜を抵抗加熱蒸着機により成膜した(膜厚5μm)。
(Manufacturing of all-solid-state battery)
The following operation was performed to prepare an all-solid-state lithium-ion secondary battery. Au was formed as a collecting electrode on the surface of the electrode member carrying the above-mentioned positive electrode active material on the positive electrode active material layer side by a sputtering device (manufactured by Sanyu Electronics) (thickness: 0.5 μm). On the other hand, a metal Li film was formed as a negative electrode on the opposite surface of the electrode member where Au was formed by a resistance heating vapor deposition machine (thickness: 5 μm).
 上記リチウムイオン二次電池をビーカーセルに設置しAu集電極面を陽極端子とつなぎ、Li負極面を陰極端子とつないだ上で、ポテンショガルバノスタット装置により各種電気化学測定を行った。CC-CV充電(1C→CV4.2V、2h充電)並びに1C、0.5C、0.2C、0.1C、再度1Cの順番で放電レートを変えながら充放電試験を行った結果、良好な電池駆動が確認された(図7)。充電終了後、インピーダンス測定(上記ポテンショガルバノスタット装置付属の交流インピーダンス測定機器)を行ったところ、全固体電池の内部抵抗は約2kΩであった(図8)。 The above lithium ion secondary battery was installed in a beaker cell, the Au collecting electrode surface was connected to the anode terminal, the Li negative electrode surface was connected to the cathode terminal, and various electrochemical measurements were performed using a potentiogalvanostat device. As a result of performing a charge / discharge test while changing the discharge rate in the order of CC-CV charging (1C → CV 4.2V, 2h charging), 1C, 0.5C, 0.2C, 0.1C, and 1C again, a good battery was obtained. The drive was confirmed (Fig. 7). After charging was completed, impedance measurement (AC impedance measuring device attached to the potential galvanostat device) was performed, and the internal resistance of the all-solid-state battery was about 2 kΩ (FIG. 8).
(微粉末の違いによる電極部材作製への影響)
 固体電解質層の材質とその上に担持させる正極活物質層を構成する微粉末の粒径を表2~表4に示すように変化させて、上述の電極部材の作製方法及び全固体電池の作製方法に従って本実施形態に係る電極部材が作製できるか否かを評価した。表2~表4中の「含有率」は、マイクロトラック・ベル株式会社製レーザー回折・散乱式粒子径分布測定装置「Microtrac MT-3000」を用いた体積基準による累積粒度分布の測定結果から求めた。
(Effect of different fine powders on electrode member fabrication)
The above-mentioned method for producing the electrode member and the production of the all-solid-state battery are performed by changing the material of the solid electrolyte layer and the particle size of the fine powder constituting the positive electrode active material layer to be supported on the solid electrolyte layer as shown in Tables 2 to 4. It was evaluated whether or not the electrode member according to the present embodiment could be produced according to the method. The "content rate" in Tables 2 to 4 is obtained from the measurement results of the cumulative particle size distribution based on the volume using the laser diffraction / scattering type particle size distribution measuring device "Microtrac MT-3000" manufactured by Microtrac Bell Co., Ltd. It was.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2に示すように、10%粒径(D10)が0.01μm~0.5μm、50%粒径(D50)が0.01μm~1.0μmであり、粒径0.12μm以下の粒子を0.5体積%以上含む酸化物系正極活物質からなる微粉末を用いた場合は、固体電解質層上に適切に正極活物質層を形成することができた。10%粒径(D10)及び50%粒径(D50)が適切な範囲外で且つ粒径0.12μm以下の粒子を含まない場合(最右欄)は正極活物質層を形成させることができなかった。 As shown in Table 2, the 10% particle size (D 10 ) is 0.01 μm to 0.5 μm, the 50% particle size (D 50 ) is 0.01 μm to 1.0 μm, and the particle size is 0.12 μm or less. When a fine powder made of an oxide-based positive electrode active material containing 0.5% by volume or more of particles was used, the positive electrode active material layer could be appropriately formed on the solid electrolyte layer. When the 10% particle size (D 10 ) and 50% particle size (D 50 ) are outside the appropriate range and do not contain particles with a particle size of 0.12 μm or less (rightmost column), a positive electrode active material layer should be formed. I couldn't.
 表3に示すように、ニッケルマンガン酸微粉末を用いた場合は、10%粒径(D10)が0.01μm~0.5μm、50%粒径(D50)が0.01μm~1.0μm、粒径0.20μm以下の粒子を5体積%以上含む微粉末を用いた場合(左欄)は適切に正極活物質層を形成することができた。微粉末の性状が適切な範囲外である材料(右欄)は正極活物質層を形成することができなかった。 As shown in Table 3, when the nickel manganese acid fine powder was used, the 10% particle size (D 10 ) was 0.01 μm to 0.5 μm, and the 50% particle size (D 50 ) was 0.01 μm to 1. When a fine powder containing 5% by volume or more of particles having a particle size of 0 μm and a particle size of 0.20 μm or less was used (left column), the positive electrode active material layer could be appropriately formed. The material (right column) whose properties of the fine powder were out of the appropriate range could not form the positive electrode active material layer.
 表4に示すように、10%粒径(D10)が0.01μm~0.5μm、50%粒径(D50)が0.01μm~1.0μmであり、粒径0.12μm以下の粒子を0.5体積%以上含む酸化物系正極活物質からなる微粉末を用いた場合(左欄)は、固体電解質層上に適切に正極活物質層を形成することができた。微粉末の性状が適切な範囲内に無い場合(右欄)は正極活物質層を形成させることができなかった。 As shown in Table 4, the 10% particle size (D 10 ) is 0.01 μm to 0.5 μm, the 50% particle size (D 50 ) is 0.01 μm to 1.0 μm, and the particle size is 0.12 μm or less. When a fine powder made of an oxide-based positive electrode active material containing 0.5% by volume or more of particles was used (left column), the positive electrode active material layer could be appropriately formed on the solid electrolyte layer. When the properties of the fine powder were not within the appropriate range (right column), the positive electrode active material layer could not be formed.
 一方で、上述の酸化物系正極活物質の焼結体からなる正極活物質層上に、酸化物固体電解質の微粉末を上述の手順で堆積して摩擦力を加えることにより酸化物固体電解質の固化層を形成しようと試みたところ、正極活物質層上に固体電解質層を作製することができなかった。 On the other hand, by depositing fine powder of the oxide solid electrolyte on the positive electrode active material layer made of the sintered body of the above-mentioned oxide-based positive electrode active material by the above-mentioned procedure and applying a frictional force, the oxide solid electrolyte can be obtained. When an attempt was made to form a solidified layer, a solid electrolyte layer could not be formed on the positive electrode active material layer.
-実施例2-
(正極合材の作製)
 大気中室温下(25℃)で実施例1と同様のLCO微粉末と、固相合成法により作製したLAGP固体電解質粉末を、LCO:LAGPが質量比で75:25となるように混合し、メノウ乳鉢を用いて10分間攪拌・混合処理を行って混合粉末を得た。得られた混合粉末を大気雰囲気、350℃にて3時間加熱処理を行って、LCOとLAGPの混合物からなる正極合材を得た。
-Example 2-
(Preparation of positive electrode mixture)
At room temperature (25 ° C.) in the air, the same LCO fine powder as in Example 1 and the LAGP solid electrolyte powder prepared by the solid phase synthesis method were mixed so that the LCO: LAGP ratio was 75:25. A mixed powder was obtained by stirring and mixing for 10 minutes using an agate mortar. The obtained mixed powder was heat-treated at 350 ° C. for 3 hours in an air atmosphere to obtain a positive electrode mixture composed of a mixture of LCO and LAGP.
(電極部材の作製)
 固体電解質層として、固相合成法にて作製し、相対密度95%以上、10mm角で厚さ1mmのGaドープLLZ(以下「LLZ基板」という)を用意し、このLLZ基板の片面をサンドペーパー(#400)で研磨処理した。不織布に上述の正極合材を適量含ませ、LLZ基板の研磨面に10kPa~500kPa程度の外圧をかけて約0.3mg担持させた。この正極合材を担持させたLLZ基板を大気雰囲気で350℃、30分間加熱処理を行い、電極部材を作製した。この電極部材の断面を走査型電子顕微鏡にて観察したところ、基板上に一定の厚みの膜が形成されていることが観察された(図9)。これらの分析結果よりLCO、LAGP混合微粉末で形成された正極合材層がLLZ基板上に間違いなく担持されていることが確認された。
(Manufacturing of electrode members)
As a solid electrolyte layer, a Ga-doped LLZ (hereinafter referred to as "LLZ substrate") having a relative density of 95% or more, a 10 mm square and a thickness of 1 mm is prepared by a solid-phase synthesis method, and one side of this LLZ substrate is sandpaper. Polishing treatment was performed with (# 400). An appropriate amount of the above-mentioned positive electrode mixture was added to the non-woven fabric, and an external pressure of about 10 kPa to 500 kPa was applied to the polished surface of the LLZ substrate to support about 0.3 mg. The LLZ substrate on which this positive electrode mixture was supported was heat-treated at 350 ° C. for 30 minutes in an air atmosphere to prepare an electrode member. When the cross section of this electrode member was observed with a scanning electron microscope, it was observed that a film having a certain thickness was formed on the substrate (FIG. 9). From these analysis results, it was confirmed that the positive electrode mixture layer formed of the LCO / LAGP mixed fine powder was definitely supported on the LLZ substrate.
(全固体電池の作製)
 加熱処理後、室温まで空冷したLLZ基板の正極活物質層上にスパッタ蒸着によりAuを0.5μm成膜し、LLZ基板のAu蒸着面と反対側の面をサンドペーパー(#1000)で研磨処理した。研磨処理面に金属インジウムシートを圧着させて負極とし、全固体電池を作製した。
(Manufacturing of all-solid-state battery)
After heat treatment, 0.5 μm of Au was formed by sputter deposition on the positive electrode active material layer of the LLZ substrate that was air-cooled to room temperature, and the surface of the LLZ substrate opposite to the Au vapor deposition surface was sanded with sandpaper (# 1000). did. A metal indium sheet was crimped onto the polished surface to form a negative electrode, and an all-solid-state battery was produced.
-実施例3-
 正極合材の組成比率をLCO:LAGP=50:50とした以外は実施例2と同様の方法により全固体電池を作製した。
-Example 3-
An all-solid-state battery was produced by the same method as in Example 2 except that the composition ratio of the positive electrode mixture was LCO: LAGP = 50: 50.
-実施例4-
 正極合材の組成比率をLCO:LAGP=65:35とした以外は実施例2と同様の方法により全固体電池を作製した。
-Example 4-
An all-solid-state battery was produced by the same method as in Example 2 except that the composition ratio of the positive electrode mixture was LCO: LAGP = 65: 35.
-実施例5-
 正極合材の組成比率をLCO:LAGP=55:45とした以外は実施例2と同様の方法により全固体電池を作製した。
-Example 5-
An all-solid-state battery was produced by the same method as in Example 2 except that the composition ratio of the positive electrode mixture was LCO: LAGP = 55: 45.
(電池特性評価)
 実施例2~5で作製した全固体電池に対し、電気化学測定装置(BioLogic社製VSP-300)にて交流インピーダンス測定を行い、室温下(25℃)での全固体電池の内部抵抗を測定した。結果を図10に示す。図10に示すように、実施例2~5のいずれも室温下における電池駆動を可能とする程の低い内部抵抗を実現でき、特に、実施例4が最も低い電池内部抵抗を実現することができた。
(Battery characteristic evaluation)
The AC impedance of the all-solid-state battery produced in Examples 2 to 5 was measured with an electrochemical measuring device (VSP-300 manufactured by BioLogic), and the internal resistance of the all-solid-state battery was measured at room temperature (25 ° C.). did. The results are shown in FIG. As shown in FIG. 10, all of Examples 2 to 5 can realize low internal resistance enough to enable battery drive at room temperature, and in particular, Example 4 can realize the lowest internal battery resistance. It was.
 実施例4で作製した全固体電池に対し、電気化学測定装置(BioLogic社製VSP-300)にて、室温下(25℃)での充放電特性(定電流-定電圧充放電試験、及びサイクリックボルタンメトリー)を測定した。全固体電池の室温(25℃)における放電レート特性測定結果を図11に示し、充放電特性(CV)を図12に示す。放電レート測定においては、一定の充電電流(定電流(50μA/cm2)-定電圧(3.58V 2時間)を組み合わせたCCCV放電)にて異なる放電レートにおける電池容量の変化を調べた。放電は図11中に示す1~7の順番に行った。 For the all-solid-state battery produced in Example 4, charge / discharge characteristics (constant current-constant voltage charge / discharge test, and size) at room temperature (25 ° C) using an electrochemical measuring device (VSP-300 manufactured by BioLogic). Click voltammetry) was measured. The discharge rate characteristic measurement result at room temperature (25 ° C.) of the all-solid-state battery is shown in FIG. 11, and the charge / discharge characteristic (CV) is shown in FIG. In the discharge rate measurement, changes in battery capacity at different discharge rates were investigated with a constant charging current (CCCV discharge combining constant current (50 μA / cm 2) -constant voltage (3.58 V 2 hours)). The discharge was performed in the order of 1 to 7 shown in FIG.
 放電時の電流密度を上げるに従って放電容量は減少したが、最大で0.5mA/cm2の放電電流を得た(図11の「4」参照)。同じ25μA/cm2で放電を行った「1」、「4」、「7」において、「4」では「1」とほぼ同等の放電容量を得た。しかしながら「7」では放電容量がやや減少している。これは0.25mA/cm2(「5」)~0.5mA/cm2(「6」)という比較的大きな電流を経たことで固体電解質層中または正極合材層中、もしくは固体電解質層-正極合材層の界面のいずれか又は複数箇所において何らかの抵抗成分が発生したことが起因していると考察できる。 Although the discharge capacity decreased as the current density during discharge increased, a maximum discharge current of 0.5 mA / cm 2 was obtained (see “4” in FIG. 11). In "1", "4", and "7" which were discharged at the same 25 μA / cm 2 , the discharge capacity of “4” was almost the same as that of “1”. However, in "7", the discharge capacity is slightly reduced. This is due to a relatively large current of 0.25 mA / cm 2 (“5”) to 0.5 mA / cm 2 (“6”) in the solid electrolyte layer, in the positive electrode mixture layer, or in the solid electrolyte layer-. It can be considered that the cause is that some resistance component is generated at any or a plurality of interfaces of the positive electrode mixture layer.
1 固体電解質層
2 正極活物質層
1 Solid electrolyte layer 2 Positive electrode active material layer

Claims (13)

  1.  酸化物系固体電解質の焼結体からなる固体電解質層と、
     前記固体電解質層上に配置され、体積基準による累積粒度分布における10%粒径(D10)が0.01μm~0.5μm、50%粒径(D50)が0.01μm~1.0μmであり、粒径が0.12μm以下の粒子の含有率が0.5体積%以上の酸化物系正極活物質からなる微粉末で形成された薄膜状の正極活物質層と
     を備えることを特徴とする電極部材。
    A solid electrolyte layer made of a sintered body of an oxide-based solid electrolyte,
    Arranged on the solid electrolyte layer, the 10% particle size (D 10 ) is 0.01 μm to 0.5 μm and the 50% particle size (D 50 ) is 0.01 μm to 1.0 μm in the cumulative particle size distribution based on the volume. It is characterized by having a thin-film positive electrode active material layer formed of a fine powder made of an oxide-based positive electrode active material having a particle size of 0.12 μm or less and a content of 0.5% by volume or more. Electrode member to be used.
  2.  前記固体電解質層が、Li1.5Al0.5Ge1.5312、Li0.33La0.55TiO3、Li7La3Zr212(リチウムサイトへのAl又はGaの置換型、及びジルコニウムサイトへのNb又はTaの置換型を含む)のいずれかを含み、
     前記微粉末が、LiCoO2、LiNi0.33Co0.33Mn0.332、LiNi0.5Mn1.54、LiNiO2、LiFePO4、Li2CoP27の何れかを含むことを特徴とする請求項1に記載の電極部材。
    The solid electrolyte layer is Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 , Li 0.33 La 0.55 TiO 3 , Li 7 La 3 Zr 2 O 12 (substitution of Al or Ga to lithium site, and Nb to zirconium site). Or including a replacement type of Ta), including
    According to claim 1, the fine powder contains any one of LiCoO 2 , LiNi 0.33 Co 0.33 Mn 0.33 O 2 , LiNi 0.5 Mn 1.5 O 4 , LiNiO 2 , LiFePO 4 , and Li 2 CoP 2 O 7. The electrode member described.
  3.  酸化物系固体電解質の焼結体からなる固体電解質層と、
     前記固体電解質層上に配置され、体積基準による累積粒度分布における10%粒径(D10)が0.01μm~0.5μm、50%粒径(D50)が0.01μm~1.0μmであり、粒径0.20μm以下の粒子の含有率が5体積%以上のLiNi0.5Mn1.54からなる微粉末で形成された薄膜状の正極活物質層と
     を備えることを特徴とする電極部材。
    A solid electrolyte layer made of a sintered body of an oxide-based solid electrolyte,
    Arranged on the solid electrolyte layer, the 10% particle size (D 10 ) is 0.01 μm to 0.5 μm and the 50% particle size (D 50 ) is 0.01 μm to 1.0 μm in the cumulative particle size distribution based on the volume. An electrode member having a thin positive electrode active material layer formed of a fine powder made of LiNi 0.5 Mn 1.5 O 4 having a particle size of 0.20 μm or less and a content of 5% by volume or more. ..
  4.  請求項1~3のいずれか1項に記載の電極部材を用いた全固体電池。 An all-solid-state battery using the electrode member according to any one of claims 1 to 3.
  5.  体積基準による累積粒度分布における10%粒径(D10)が0.01μm~0.5μm、50%粒径(D50)が0.01μm~1.0μmであり、粒径0.12μm以下の粒子の含有率が0.5体積%以上の酸化物系正極活物質からなり、酸化物系固体電解質の焼結体からなる固体電解質層上に正極活物質層を形成させるための電極部材用粉末。 The 10% particle size (D 10 ) is 0.01 μm to 0.5 μm, the 50% particle size (D 50 ) is 0.01 μm to 1.0 μm, and the particle size is 0.12 μm or less in the cumulative particle size distribution based on the volume. Powder for electrode members for forming a positive electrode active material layer on a solid electrolyte layer made of an oxide-based positive electrode active material having a particle content of 0.5% by volume or more and made of a sintered body of an oxide-based solid electrolyte. ..
  6.  酸化物系固体電解質の焼結体からなる固体電解質層上に、体積基準による累積粒度分布における10%粒径(D10)が0.01μm~0.5μm、50%粒径(D50)が0.01μm~1.0μmであり、粒径0.12μm以下の粒子の含有率が0.5体積%以上の酸化物系正極活物質からなる微粉末を堆積させ、前記固体電解質層上の前記微粉末の表面に機械的外力を与え、前記微粉末を互いに密着させて固化させることにより、薄膜状の正極活物質層を前記固体電解質層上に形成させることを含む電極部材の製造方法。 On the solid electrolyte layer made of the sintered body of the oxide-based solid electrolyte, the 10% particle size (D 10 ) in the cumulative particle size distribution based on the volume is 0.01 μm to 0.5 μm, and the 50% particle size (D 50 ) is A fine powder made of an oxide-based positive electrode active material having a particle size of 0.12 μm or less and a particle size of 0.12 μm or less and having a particle size of 0.5% by volume or more is deposited on the solid electrolyte layer. A method for producing an electrode member, which comprises forming a thin-film positive electrode active material layer on the solid electrolyte layer by applying a mechanical external force to the surface of the fine powder to bring the fine powder into close contact with each other and solidify them.
  7.  前記微粉末の表面に沿って機械的外力を与えることが、前記微粉末同士または前記微粉末と前記固体電解質層との界面に摩擦を生じさせることを含む請求項6に記載の電極部材の製造方法。 The production of the electrode member according to claim 6, wherein applying a mechanical external force along the surface of the fine powder causes friction between the fine powders or at an interface between the fine powders and the solid electrolyte layer. Method.
  8.  前記微粉末の表面に沿って機械的外力を与えることが、前記微粉末の表面を摩擦部材で擦ることを含む請求項6又は7に記載の電極部材の製造方法。 The method for manufacturing an electrode member according to claim 6 or 7, wherein applying a mechanical external force along the surface of the fine powder includes rubbing the surface of the fine powder with a friction member.
  9.  請求項6~8のいずれか1項に記載の固体電解質層の第1主面に形成された正極活物質層上に第1の金属層を成膜することと、
     前記固体電解質層の第1主面と対向する第2主面上に第2の金属層を成膜することとを含む全固体電池の製造方法。
    To form a first metal layer on the positive electrode active material layer formed on the first main surface of the solid electrolyte layer according to any one of claims 6 to 8.
    A method for manufacturing an all-solid-state battery, which comprises forming a second metal layer on a second main surface facing the first main surface of the solid electrolyte layer.
  10.  酸化物系固体電解質の焼結体からなる固体電解質層と、
     前記固体電解質層上に配置され、体積基準による累積粒度分布における10%粒径(D10)が0.01μm~0.5μm、50%粒径(D50)が0.01μm~1.0μmであり、粒径が0.12μm以下の粒子の含有率が0.5体積%以上の酸化物系正極活物質からなる微粉末と酸化物系固体電解質からなる粉末との混合物で形成されたバルク状の正極合材層と
     を備えることを特徴とする電極部材。
    A solid electrolyte layer made of a sintered body of an oxide-based solid electrolyte,
    Arranged on the solid electrolyte layer, the 10% particle size (D 10 ) is 0.01 μm to 0.5 μm and the 50% particle size (D 50 ) is 0.01 μm to 1.0 μm in the cumulative particle size distribution based on the volume. A bulk form formed by a mixture of a fine powder made of an oxide-based positive electrode active material having a particle size of 0.12 μm or less and a particle content of 0.5% by volume or more and a powder made of an oxide-based solid electrolyte. An electrode member comprising the positive electrode mixture layer of the above.
  11.  前記酸化物系固体電解質からなる粉末が、Li7La3Zr212(リチウムサイトへのAl又はGaの置換型、及びジルコニウムサイトへのNb又はTaの置換型を含む)、Li1.5Al0.5Ge1.5312、Li3BO3(Li3BO3にLi2SO4、Li2CO3、Li4SiO4なる材料群のうち1種類もしくは2種類以上混合した非晶質状または結晶化ガラスを含む)、Li1.3Al0.3Ti1.7312、Li0.33La0.55TiO3からなる群のいずれか1種以上から選択される請求項10に記載の電極部材。 The powder composed of the oxide-based solid electrolyte is Li 7 La 3 Zr 2 O 12 (including a substitution type of Al or Ga for lithium site and a substitution type of Nb or Ta for zirconium site), Li 1.5 Al 0.5. Ge 1.5 P 3 O 12 , Li 3 BO 3 (Li 3 BO 3 mixed with one or more of the materials Li 2 SO 4 , Li 2 CO 3 , and Li 4 SiO 4 in amorphous or crystalline The electrode member according to claim 10, which is selected from any one or more of the group consisting of (including glass-ceramic), Li 1.3 Al 0.3 Ti 1.7 P 3 O 12 , Li 0.33 La 0.55 TiO 3.
  12.  前記酸化物系固体電解質からなる粉末は、体積基準による累積粒度分布における50%粒径(D50)が10μm以下である請求項10又は11に記載の電極部材。 The electrode member according to claim 10 or 11, wherein the powder made of the oxide-based solid electrolyte has a 50% particle size (D 50) of 10 μm or less in the cumulative particle size distribution based on the volume.
  13.  前記混合物中に、前記酸化物系固体電解質からなる粉末が、質量比で25~99%含有される請求項10~12のいずれか1項に記載の電極部材。 The electrode member according to any one of claims 10 to 12, wherein the powder containing the oxide-based solid electrolyte is contained in the mixture in an amount of 25 to 99% by mass ratio.
PCT/JP2019/047454 2019-12-04 2019-12-04 Electrode member, all-solid-state battery, powder for electrode member, method for manufacturing electrode member, and method for manufacturing all-solid-state battery WO2021111551A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/047454 WO2021111551A1 (en) 2019-12-04 2019-12-04 Electrode member, all-solid-state battery, powder for electrode member, method for manufacturing electrode member, and method for manufacturing all-solid-state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/047454 WO2021111551A1 (en) 2019-12-04 2019-12-04 Electrode member, all-solid-state battery, powder for electrode member, method for manufacturing electrode member, and method for manufacturing all-solid-state battery

Publications (1)

Publication Number Publication Date
WO2021111551A1 true WO2021111551A1 (en) 2021-06-10

Family

ID=76222544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047454 WO2021111551A1 (en) 2019-12-04 2019-12-04 Electrode member, all-solid-state battery, powder for electrode member, method for manufacturing electrode member, and method for manufacturing all-solid-state battery

Country Status (1)

Country Link
WO (1) WO2021111551A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004213533A (en) * 2003-01-08 2004-07-29 Seiko Epson Corp Screen reception device, screen delivery device, screen information transmission/reception system, screen reception method, screen delivery method and program therefor
JP2009181921A (en) * 2008-01-31 2009-08-13 Ohara Inc Solid battery
WO2012043566A1 (en) * 2010-09-28 2012-04-05 トヨタ自動車株式会社 Sintered body for use in battery, method for manufacturing sintered body for use in battery, and all-solid-state lithium battery
WO2013140607A1 (en) * 2012-03-23 2013-09-26 株式会社 東芝 Solid electrolyte, solid electrolyte production method, cell, and cell pack
JP2016001598A (en) * 2014-05-19 2016-01-07 Tdk株式会社 Lithium ion secondary battery
WO2016175217A1 (en) * 2015-04-30 2016-11-03 日本電気株式会社 Electrolyte solution for secondary batteries, and secondary battery
JP2017004824A (en) * 2015-06-12 2017-01-05 アルプス電気株式会社 Secondary battery and manufacturing method of the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004213533A (en) * 2003-01-08 2004-07-29 Seiko Epson Corp Screen reception device, screen delivery device, screen information transmission/reception system, screen reception method, screen delivery method and program therefor
JP2009181921A (en) * 2008-01-31 2009-08-13 Ohara Inc Solid battery
WO2012043566A1 (en) * 2010-09-28 2012-04-05 トヨタ自動車株式会社 Sintered body for use in battery, method for manufacturing sintered body for use in battery, and all-solid-state lithium battery
WO2013140607A1 (en) * 2012-03-23 2013-09-26 株式会社 東芝 Solid electrolyte, solid electrolyte production method, cell, and cell pack
JP2016001598A (en) * 2014-05-19 2016-01-07 Tdk株式会社 Lithium ion secondary battery
WO2016175217A1 (en) * 2015-04-30 2016-11-03 日本電気株式会社 Electrolyte solution for secondary batteries, and secondary battery
JP2017004824A (en) * 2015-06-12 2017-01-05 アルプス電気株式会社 Secondary battery and manufacturing method of the same

Similar Documents

Publication Publication Date Title
JP6983826B2 (en) Garnet material for Li secondary batteries
US9159989B2 (en) All-solid battery and method of manufacturing the same
CN103329334B (en) Nonaqueous electrolyte battery
JP5288816B2 (en) Solid battery
JP6013193B2 (en) Method for manufacturing monolithic batteries by pulsed current sintering
KR20200078479A (en) All-solid secondary battery and charging method
KR101624805B1 (en) Secondary battery comprising solid electrolyte layer
CN111864207B (en) All-solid battery
JP2012243743A (en) All-solid lithium ion battery
JP6927292B2 (en) All-solid-state lithium-ion secondary battery
JPWO2018225494A1 (en) All solid sodium ion secondary battery
CN110235295B (en) Lithium ion solid storage battery and method for manufacturing same
JP2010140664A (en) Method of manufacturing sintered cathode body and sintered cathode body
CN111525090A (en) Negative electrode layer and all-solid-state battery
JP2018181702A (en) Method for manufacturing all-solid lithium ion secondary battery
CN113764724A (en) Solid electrolyte, method for preparing same, protected positive electrode comprising same, electrochemical cell and electrochemical device
KR20200096738A (en) Anode layer and all solid state battery
JP2023547117A (en) Electrode powder for producing a dry electrode for secondary batteries, a method for producing the same, a method for producing a dry electrode using the same, a dry electrode, a secondary battery including the same, an energy storage device, and an apparatus for producing a dry electrode
JP6797241B2 (en) Electrode member, all-solid-state battery, powder for electrode member, method for manufacturing electrode member and method for manufacturing all-solid-state battery
US20140084203A1 (en) Method for producing a material for at least any one of an energy device and an electrical storage device
JP2017168387A (en) Inorganic solid electrolyte material, solid electrolyte sheet, and all-solid type lithium ion battery
JP5602541B2 (en) All-solid-state lithium ion battery
Zhao et al. Li+ selective transport network-assisted high-performance of garnet-based solid electrolyte for Li metal batteries
EP3671931A1 (en) Solid electrolyte layer and all-solid-state battery
JP2018181706A (en) Method for manufacturing all-solid lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 19954969

Country of ref document: EP

Kind code of ref document: A1