JP2019220468A - Electrode member, all-solid battery, powder for electrode member, manufacturing method of the electrode member, and manufacturing method of the all-solid battery - Google Patents

Electrode member, all-solid battery, powder for electrode member, manufacturing method of the electrode member, and manufacturing method of the all-solid battery Download PDF

Info

Publication number
JP2019220468A
JP2019220468A JP2019112246A JP2019112246A JP2019220468A JP 2019220468 A JP2019220468 A JP 2019220468A JP 2019112246 A JP2019112246 A JP 2019112246A JP 2019112246 A JP2019112246 A JP 2019112246A JP 2019220468 A JP2019220468 A JP 2019220468A
Authority
JP
Japan
Prior art keywords
particle size
solid electrolyte
positive electrode
fine powder
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019112246A
Other languages
Japanese (ja)
Other versions
JP6797241B2 (en
Inventor
秀文 本林
Hidefumi Motobayashi
秀文 本林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYOSHIMA SEISAKUSHO KK
Toshima Manufacturing Co Ltd
Original Assignee
TOYOSHIMA SEISAKUSHO KK
Toshima Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYOSHIMA SEISAKUSHO KK, Toshima Manufacturing Co Ltd filed Critical TOYOSHIMA SEISAKUSHO KK
Publication of JP2019220468A publication Critical patent/JP2019220468A/en
Application granted granted Critical
Publication of JP6797241B2 publication Critical patent/JP6797241B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide an electrode member which allows an all-solid battery to be fabricated in an inexpensive and simple manner without necessarily using a high-temperature thermal treatment process or a vacuum process which has been known in the past, and which can drive an all-solid battery thus fabricated, an all-solid battery, powder for the electrode member, and methods for manufacturing the electrode member and the all-solid battery.SOLUTION: An electrode member comprises: a solid electrolyte layer composed of a sintered body of an oxide-based solid electrolyte; and a positive electrode active material layer of a thin film shape disposed on the solid electrolyte layer, and formed from fine powder of an oxide-based positive electrode active material, of which the 10%-particle diameter (D) in a volume-based cumulative particle-size distribution is 0.01-0.5 μm, the 50%-particle diameter (D) is 0.01-1.0 μm, and in which the content of particles of 0.12 μm or less in particle diameter is 0.5 vol.% or more.SELECTED DRAWING: Figure 1

Description

本発明は、電極部材、全固体電池、電極部材用粉末、電極部材の製造方法及び全固体電池の製造方法に関する。   The present invention relates to an electrode member, an all-solid battery, a powder for an electrode member, a method for manufacturing an electrode member, and a method for manufacturing an all-solid battery.

電気自動車や小型電子機器などの電源として全固体電池の利用が注目されている。全固体電池は、従来のリチウムイオン電池などのように可燃性の有機溶媒を含む液体電解質の代わりに固体電解質材料を採用し、電池の構成物品をすべて固体にすることによって、より安全性が高く、大容量で高出力且つ高寿命化が期待できる点で、種々の開発が進んでいる。   The use of all-solid-state batteries as a power source for electric vehicles, small electronic devices, and the like has attracted attention. All-solid-state batteries use solid electrolyte materials instead of liquid electrolytes containing flammable organic solvents as in conventional lithium-ion batteries, etc. Various developments have been progressing in that large capacity, high output and long life can be expected.

例えば、特許文献1(特開2013−149433号公報)には、電極活物質と固体電解質材料との界面に特定の元素を固溶させた全固体電池の例が記載されている。非特許文献1には、固体電解質材料と電極材料との界面に金の層を導入した全固体電池の例が記載されている。   For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2013-149433) describes an example of an all-solid battery in which a specific element is dissolved in an interface between an electrode active material and a solid electrolyte material. Non-Patent Document 1 describes an example of an all-solid battery in which a gold layer is introduced at an interface between a solid electrolyte material and an electrode material.

特開2013−149433号公報JP 2013-149433 A

「固体電解質Li6.25Al0.25La3Zr2O12/Li負極の界面形成に及ぼす金属薄膜層の効果」、若杉淳吾ら、第57回電池討論会、平成28年11月、p.434"Effect of Metal Thin Film Layer on Interface Formation of Solid Electrolyte Li6.25Al0.25La3Zr2O12 / Li Anode", Jungo Wakasugi et al., The 57th Battery Symposium, November 2016, p. 434

酸化物系固体電解質を用いた全固体電池の作製においては、固体電解質と正極活物質との界面が高抵抗となることが課題となっている。例えば正極活物質の形成のために薄膜プロセスを用いた場合は、薄膜の結晶化のために高温の熱処理プロセスや真空プロセスが必要となる。粉末を用いた場合においても高温の焼結処理が必要となる。   In manufacturing an all-solid battery using an oxide-based solid electrolyte, it has been a problem that the interface between the solid electrolyte and the positive electrode active material has high resistance. For example, when a thin film process is used to form a positive electrode active material, a high-temperature heat treatment process or a vacuum process is required to crystallize the thin film. Even when powder is used, high-temperature sintering is required.

しかしながら、熱処理プロセスを実施することにより、固体電解質と正極活物質界面において物質間の反応や拡散現象が起こることから、意図しない高抵抗層が形成される場合がある。   However, when the heat treatment process is performed, a reaction or a diffusion phenomenon occurs at the interface between the solid electrolyte and the positive electrode active material, so that an unintended high-resistance layer may be formed.

特許文献1及び非特許文献1に記載された技術は、固体電解質と正極活物質との界面の低抵抗化の観点からは一定の対策が講じられているが、作製方法が複雑であり、作製に要する費用も高価であり未だ検討の余地がある。   In the techniques described in Patent Document 1 and Non-Patent Document 1, certain measures have been taken from the viewpoint of lowering the resistance of the interface between the solid electrolyte and the positive electrode active material, but the manufacturing method is complicated and the manufacturing method is complicated. The cost required is high and there is still room for study.

そこで、本発明は、従来知られる高温の熱処理プロセスや真空プロセスを必ずしも用いることなく、安価且つ簡易な手法で、室温下で駆動させられる内部抵抗の低い全固体電池を作製することが可能な電極部材、全固体電池、電極部材用粉末、及び電極部材及び全固体電池の製造方法を提供する。   Therefore, the present invention provides an electrode capable of manufacturing an all-solid-state battery with low internal resistance that can be driven at room temperature by a cheap and simple method without necessarily using a conventionally known high-temperature heat treatment process or vacuum process. Provided are a member, an all-solid battery, a powder for an electrode member, and a method for manufacturing an electrode member and an all-solid battery.

本発明の実施の形態に係る電極部材は一側面において、酸化物系固体電解質の焼結体からなる固体電解質層と、固体電解質層上に配置され、体積基準による累積粒度分布における10%粒径(D10)が0.01μm〜0.5μm、50%粒径(D50)が0.01μm〜1.0μmであり、粒径が0.12μm以下の粒子の含有率が0.5体積%以上の酸化物系正極活物質からなる微粉末で形成された薄膜状の正極活物質層とを備える電極部材である。 In one aspect, an electrode member according to an embodiment of the present invention has a solid electrolyte layer made of a sintered body of an oxide-based solid electrolyte and a 10% particle size in a cumulative particle size distribution based on volume, which is disposed on the solid electrolyte layer. (D 10 ) is 0.01 μm to 0.5 μm, 50% particle size (D 50 ) is 0.01 μm to 1.0 μm, and the content of particles having a particle size of 0.12 μm or less is 0.5% by volume. An electrode member including a thin-film positive electrode active material layer formed of the above-described fine powder of an oxide-based positive electrode active material.

本実施形態に係る正極活物質層においては、酸化物系正極活物質からなる微粉末のみで正極活物質層が形成されるだけでなく、正極活物質層として要求される所望の特性を発現させるために、当業者に周知の材料を微粉末に更に含有させてもよいことは勿論である。例えば、酸化物系正極活物質からなる微粉末に対し、更に電子伝導性を促進する炭素材粉末及び/又は金属粉末を混合する態様、更にリチウムイオン導電助剤として固体電解質粉末を混合する態様、或いは、更に電子伝導性を促進する炭素材粉末と金属粉末とリチウムイオン導電助剤とを混合する態様等が挙げられ、このような態様も本実施形態に含有し得ることは勿論である。また、粉末固化体は単一の正極活物質微粒子によって構成される態様に限られるものではなく、異なる種類の微粒子からなる粉末固化体を単層或いは複数層形成することも可能であることは勿論である。   In the positive electrode active material layer according to the present embodiment, not only the positive electrode active material layer is formed only by the fine powder of the oxide-based positive electrode active material, but also the desired characteristics required as the positive electrode active material layer are exhibited. To this end, of course, materials well known to those skilled in the art may be further included in the fine powder. For example, a mode in which a carbon material powder and / or a metal powder for further promoting electron conductivity are mixed with a fine powder composed of an oxide-based positive electrode active material, a mode in which a solid electrolyte powder is further mixed as a lithium ion conductive auxiliary, Alternatively, a mode in which a carbon material powder for promoting electron conductivity, a metal powder, and a lithium ion conductive additive are further mixed, and such a mode can be included in the present embodiment. Further, the solidified powder is not limited to the mode constituted by a single fine particle of the positive electrode active material, and it is needless to say that a single layer or a plurality of layers of the solidified powder composed of different kinds of fine particles can be formed. It is.

本発明の実施の形態に係る電極部材は一実施態様において、固体電解質層が、Li1.5Al0.5Ge1.5312、Li0.33La0.55TiO3、Li7La3Zr212(リチウムサイトへのAl又はGa等の置換型、及びジルコニウムサイトへのNb又はTa等の置換型を含む)のいずれかを含み、正極活物質微粉末が、LiCoO2(コバルトサイトへのMg等の置換型を含む)、LiNi0.33Co0.33Mn0.332、LiNi0.5Co0.3Mn0.22、LiNi0.8Co0.1Mn0.12、LiNi0.5Mn1.54、LiNiO2、LiFePO4等のオリビン構造酸化物、Li2CoP27等のピロリン酸金属複合酸化物等、一般的に知られている既知の正極活物質材料の何れを用いてもよい。 In the electrode member in one embodiment according to the embodiment of the present invention, the solid electrolyte layer, Li 1.5 Al 0.5 Ge 1.5 P 3 O 12, Li 0.33 La 0.55 TiO 3, Li 7 La 3 Zr 2 O 12 ( Li site And the positive electrode active material fine powder is LiCoO 2 (substitution type such as Mg for the cobalt site). Olivine structure oxides such as LiNi 0.33 Co 0.33 Mn 0.33 O 2 , LiNi 0.5 Co 0.3 Mn 0.2 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.5 Mn 1.5 O 4 , LiNiO 2 , and LiFePO 4 ; Any of generally known positive electrode active material materials such as a metal pyrophosphate composite oxide such as Li 2 CoP 2 O 7 may be used.

本発明の実施の形態に係る電極部材は別の一側面において、酸化物系固体電解質の焼結体からなる固体電解質層と、固体電解質層上に配置され、体積基準による累積粒度分布における10%粒径(D10)が0.01μm〜0.5μm、50%粒径(D50)が0.01μm〜1.0μmであり、粒径0.20μm以下の粒子の含有率が5質量%以上のLiNi0.5Mn1.54からなる微粉末で形成された薄膜状(バルク状)の正極活物質層とを備える電極部材である。 In another aspect, the electrode member according to the embodiment of the present invention has a solid electrolyte layer formed of a sintered body of an oxide solid electrolyte and a solid electrolyte layer disposed on the solid electrolyte layer and having a volume-based cumulative particle size distribution of 10%. particle size (D 10) is 0.01Myuemu~0.5Myuemu, is 50% particle size (D 50) is 0.01Myuemu~1.0Myuemu, the content of particles smaller than the particle size 0.20μm 5 mass% or more And a thin-film (bulk) positive electrode active material layer formed of fine powder of LiNi 0.5 Mn 1.5 O 4 .

本発明の実施の形態に係る全固体電池は一側面において、上記電極部材を用いた全固体電池である。   In one aspect, an all-solid-state battery according to an embodiment of the present invention is an all-solid-state battery using the electrode member.

本発明の実施の形態に係る電極部材用粉末は一側面において、体積基準による累積粒度分布における10%粒径(D10)が0.01μm〜0.5μm、50%粒径(D50)が0.01μm〜1.0μmであり、粒径0.12μm以下の粒子の含有率が0.5体積%以上の酸化物系正極活物質からなり、酸化物系固体電解質の焼結体からなる固体電解質層上に正極活物質層を形成させるための電極部材用粉末である。 In one aspect, the powder for an electrode member according to the embodiment of the present invention has a 10% particle size (D 10 ) of 0.01 μm to 0.5 μm and a 50% particle size (D 50 ) in a cumulative particle size distribution on a volume basis. A solid made of an oxide-based positive electrode active material having a particle size of 0.01 μm to 1.0 μm and a particle size of 0.12 μm or less having a volume content of 0.5% by volume or more, and a sintered body of an oxide-based solid electrolyte It is a powder for an electrode member for forming a positive electrode active material layer on an electrolyte layer.

本発明の実施の形態に係る電極部材の製造方法は一側面において、酸化物系固体電解質の焼結体からなる固体電解質層上に、体積基準による累積粒度分布における10%粒径(D10)が0.01μm〜0.5μm、50%粒径(D50)が0.01μm〜1.0μmであり、粒径0.12μm以下の粒子の含有率が0.5体積%以上の酸化物系正極活物質からなる微粉末を堆積させ、固体電解質層上の微粉末の表面に機械的外力を与え、微粉末を互いに密着させて固化させることにより、薄膜状の正極活物質層を固体電解質層上に形成させることを含む電極部材の製造方法である。 In one aspect of the method for manufacturing an electrode member according to an embodiment of the present invention, a 10% particle size (D 10 ) in a cumulative particle size distribution on a volume basis is formed on a solid electrolyte layer formed of a sintered body of an oxide-based solid electrolyte. Is an oxide type having a particle size (D 50 ) of 0.01 μm to 1.0 μm, a particle size of 0.12 μm or less, and a content of 0.5% by volume or more. By depositing the fine powder composed of the positive electrode active material, applying a mechanical external force to the surface of the fine powder on the solid electrolyte layer, and bringing the fine powder into close contact with each other and solidifying, the thin film-shaped positive electrode active material layer is formed into a solid electrolyte layer. It is a manufacturing method of an electrode member including forming on it.

本発明の実施の形態に係る電極部材の製造方法は一実施態様において、微粉末の表面に沿って機械的外力を与えることが、微粉末同士または微粉末と固体電解質層との界面に摩擦を生じさせることを含む。   In one embodiment of the method for manufacturing an electrode member according to the embodiment of the present invention, applying a mechanical external force along the surface of the fine powder causes friction at the interface between the fine powders or at the interface between the fine powder and the solid electrolyte layer. Including causing.

本発明の実施の形態に係る電極部材の製造方法は別の一実施態様において、微粉末の表面に沿って機械的外力を与えることが、微粉末の表面を摩擦部材で擦ることを含む。   In another embodiment of the method for manufacturing an electrode member according to an embodiment of the present invention, applying a mechanical external force along the surface of the fine powder includes rubbing the surface of the fine powder with a friction member.

本発明の実施の形態に係る全固体電池の製造方法は一側面において、上記固体電解質層の第1主面に形成された正極活物質層上に第1の金属層を成膜することと、固体電解質層の第1主面と対向する第2主面上に第2の金属層を成膜することと、を含む全固体電池の製造方法である。   In one aspect, the method for manufacturing an all-solid battery according to the embodiment of the present invention includes: forming a first metal layer on a positive electrode active material layer formed on a first main surface of the solid electrolyte layer; Forming a second metal layer on a second main surface opposite to the first main surface of the solid electrolyte layer.

本発明の実施の形態に係る電極部材は別の一側面において、酸化物系固体電解質の焼結体からなる固体電解質層と、固体電解質層上に配置され、体積基準による累積粒度分布における10%粒径(D10)が0.01μm〜0.5μm、50%粒径(D50)が0.01μm〜1.0μmであり、粒径が0.12μm以下の粒子の含有率が0.5体積%以上の酸化物系正極活物質からなる微粉末と酸化物系固体電解質からなる粉末との混合物で形成されたバルク状の正極合材層とを備える電極部材である。 In another aspect, the electrode member according to the embodiment of the present invention has a solid electrolyte layer made of a sintered body of an oxide-based solid electrolyte and a 10% by volume-based cumulative particle size distribution arranged on the solid electrolyte layer. The particle size (D 10 ) is 0.01 μm to 0.5 μm, the 50% particle size (D 50 ) is 0.01 μm to 1.0 μm, and the content of particles having a particle size of 0.12 μm or less is 0.5%. An electrode member including a bulk-shaped positive electrode mixture layer formed of a mixture of fine powder composed of an oxide-based positive electrode active material in an amount of at least% by volume and a powder composed of an oxide-based solid electrolyte.

本発明の実施の形態に係る電極部材は一実施態様において、酸化物系固体電解質からなる粉末が、Li7La3Zr212(リチウムサイトへのAl又はGaの置換型、及びジルコニウムサイトへのNb又はTaの置換型を含む)、Li1.5Al0.5Ge1.5312、Li3BO3(Li3BO3にLi2SO4、Li2CO3、Li4SiO4なる材料群のうち1種類もしくは2種類以上混合した非晶質状または結晶化ガラスを含む)、Li1.3Al0.3Ti1.7312、Li0.33La0.55TiO3からなる群のいずれか1種以上から選択される。 In one embodiment of the electrode member according to the embodiment of the present invention, the powder made of an oxide-based solid electrolyte is formed by converting Li 7 La 3 Zr 2 O 12 (a substitution type of Al or Ga to a lithium site, and a zirconium site). , Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 , Li 3 BO 3 (Li 3 BO 3 is composed of Li 2 SO 4 , Li 2 CO 3 , and Li 4 SiO 4 ). One or a mixture of two or more of them, including amorphous or crystallized glass), Li 1.3 Al 0.3 Ti 1.7 P 3 O 12 , and Li 0.33 La 0.55 TiO 3. You.

本発明の実施の形態に係る電極部材は別の一実施態様において、酸化物系固体電解質からなる粉末は、体積基準による累積粒度分布における50%粒径(D50)が10μm以下である。 In another embodiment of the electrode member according to the embodiment of the present invention, the powder composed of the oxide-based solid electrolyte has a 50% particle size (D 50 ) of 10 μm or less in a cumulative particle size distribution on a volume basis.

本発明の実施の形態に係る電極部材は更に別の一実施態様において、混合物中に、酸化物系固体電解質からなる粉末が、質量比で25〜99%含有される。   In another embodiment of the electrode member according to the embodiment of the present invention, the mixture contains 25 to 99% by mass of a powder made of an oxide-based solid electrolyte.

本発明によれば、従来知られるバインダーや有機溶媒を用いた湿式プロセスや高温の熱処理プロセス、真空プロセスを必ずしも用いることなく、安価且つ簡易な手法で室温下における電池駆動を可能とする程の低い内部抵抗を実現した全固体電池を不活性雰囲気下に限定されず、大気雰囲気下に於いてさえも作製可能な電極部材、全固体電池、電極部材用粉末及び電極部材及び全固体電池の製造方法が提供できる。   According to the present invention, a wet process or a high-temperature heat treatment process using a conventionally known binder or organic solvent, without necessarily using a vacuum process, is low enough to enable battery driving at room temperature with an inexpensive and simple method. An electrode member, an all-solid battery, a powder for an electrode member, an electrode member and an electrode member capable of producing an all-solid battery realizing internal resistance not only in an inert atmosphere but also in an air atmosphere, and a method of manufacturing an all-solid battery Can be provided.

本発明の実施の形態に係る電極部材の一例を示す断面図である。It is sectional drawing which shows an example of the electrode member which concerns on embodiment of this invention. 本発明の実施の形態に係る固体電解質層の焼結体(LLZ焼結体)の破断面の一例を示す写真である。It is a photograph which shows an example of the fractured surface of the sintered compact (LLZ sintered compact) of the solid electrolyte layer which concerns on embodiment of this invention. 本発明の実施の形態に係る電極部材の作製に好適な微粉末の粒度分布の一例を表すグラフである。5 is a graph illustrating an example of a particle size distribution of fine powder suitable for producing an electrode member according to an embodiment of the present invention. 固体電解質層1上へ正極活物質層(正極合材層)2を形成させるための微粉末を堆積した状態を表す説明図である。FIG. 2 is an explanatory diagram showing a state in which fine powder for forming a positive electrode active material layer (positive electrode mixture layer) 2 on a solid electrolyte layer 1 is deposited. 本発明の実施の形態に係る電極部材の一例を示す電子顕微鏡写真である。5 is an electron micrograph showing an example of an electrode member according to an embodiment of the present invention. 実施例の正極活物質層の担持面をX線回折装置にて測定した場合の回折パターンを表すグラフである。4 is a graph showing a diffraction pattern when a supporting surface of a positive electrode active material layer of an example is measured by an X-ray diffractometer. 本発明の実施の形態に係る全固体電池の充放電特性の一例を表すグラフである。5 is a graph illustrating an example of charge / discharge characteristics of the all solid state battery according to the embodiment of the present invention. 本発明の実施の形態に係る全固体電池の交流インピーダンス測定結果の一例を示すナイキストプロットグラフである。5 is a Nyquist plot graph showing an example of an AC impedance measurement result of the all solid state battery according to the embodiment of the present invention. 本発明の実施の形態の変形例に係る電極部材の一例を示す電子顕微鏡写真である。It is an electron micrograph which shows an example of the electrode member which concerns on the modification of embodiment of this invention. 本発明の実施の形態に係る全固体電池の交流インピーダンス測定結果の一例を表すグラフである。6 is a graph illustrating an example of an AC impedance measurement result of the all solid state battery according to the embodiment of the present invention. 本発明の実施の形態に係る全固体電池の室温(25℃)における放電レート特性測定結果の一例を示すナイキストプロットグラフである。6 is a Nyquist plot graph showing an example of a measurement result of discharge rate characteristics at room temperature (25 ° C.) of the all solid state battery according to the embodiment of the present invention. 実施例4の充放電特性(CV)を表すグラフである。13 is a graph showing charge / discharge characteristics (CV) of Example 4.

以下、図面を参照しながら本発明の実施の形態を説明する。以下に示す実施の形態は、この発明の技術的思想を具体化するための装置又は製造方法を例示するものであって、この発明の技術的思想は、各構成要素の構造、配置等を下記のものに特定するものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiments described below exemplify an apparatus or a manufacturing method for embodying the technical idea of the present invention, and the technical idea of the present invention is as follows. It is not something specific.

(第1の実施の形態)
本発明の実施の形態に係る電極部材は、図1に模式的に示すように、酸化物系固体電解質の焼結体からなる固体電解質層1と、固体電解質層1の表面に配置された正極活物質層2とを備える。
(First Embodiment)
As schematically shown in FIG. 1, an electrode member according to an embodiment of the present invention includes a solid electrolyte layer 1 made of a sintered body of an oxide-based solid electrolyte and a positive electrode disposed on the surface of the solid electrolyte layer 1. And an active material layer 2.

固体電解質層1としては、酸化系固体電解質材料からなる固体電解質層1が利用できる。酸化系固体電解質材料としては、例えば、NASICON型結晶構造のLi1.5Al0.5Ge1.5312やペロブスカイト型結晶構造のLi0.33La0.55TiO3、ガーネット型結晶構造のLi7La3Zr212等が用いられる。具体的には、Li1.5Al0.5Ge1.5312、Li0.33La0.55TiO3、Li7La3Zr212(リチウムサイトへのAl又はGa等の置換型、及びジルコニウムサイトへのNb又はTa等の置換型を含む)のいずれかが用いられることが好ましい。 As the solid electrolyte layer 1, a solid electrolyte layer 1 made of an oxidized solid electrolyte material can be used. Examples of the oxidized solid electrolyte material include, for example, Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 having a NASICON type crystal structure, Li 0.33 La 0.55 TiO 3 having a perovskite type crystal structure, and Li 7 La 3 Zr 2 O having a garnet type crystal structure. 12 etc. are used. Specifically, Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 , Li 0.33 La 0.55 TiO 3 , Li 7 La 3 Zr 2 O 12 (substitution type such as Al or Ga for lithium site, and Nb for zirconium site Or including a substitution type such as Ta).

中でも特に、ガーネット型結晶構造のLi7La3Zr212で表される立方晶リチウムランタンジルコニウム酸化物(通称「LLZ」)(リチウムサイトへのAl又はGa等の置換型、及びジルコニウムサイトへのNb又はTa等の置換型を含む)が、リチウムイオンの高い伝導性に加え、他の酸化物系固体電解質と比較すると金属リチウムとの反応性が極めて低くリチウムイオンによるデンドライト形成を回避することができる点、或いは酸化物系固体電解質からなる焼結体基板の表面に直接、リチウム金属層を形成できる点などにおいて固体電解質層1の酸化系固体電解質材料として特に好適に用いられる。 Among them, cubic lithium lanthanum zirconium oxide (commonly known as “LLZ”) represented by Li 7 La 3 Zr 2 O 12 having a garnet-type crystal structure (substitution type of Al or Ga to lithium site, and zirconium site) In addition to the high conductivity of lithium ions, and extremely low reactivity with metallic lithium as compared with other oxide-based solid electrolytes to avoid dendrite formation by lithium ions. It is particularly preferably used as an oxidized solid electrolyte material of the solid electrolyte layer 1 in that a lithium metal layer can be formed directly on the surface of a sintered substrate made of an oxide solid electrolyte.

固体電解質層1の破断面の写真を図2に示す。図2に示すように、固体電解質層1は、電子顕微鏡観察に基づく粒径が概ね2〜10μmの結晶粒からなる焼結体であり、結晶粒同士の結び付きにより、より大きな結晶粒へと成長し、結晶粒界界面が不明瞭となっている。本実施形態に係る固体電解質層1の焼結体は、図2に示す通り、緻密な焼結体であり気孔が少ない。以下に限定されるものではないが、固体電解質層1の気孔率は例えば0.1〜5.0%程度である。固体電解質層1の気孔率は、例えば、JIS R1634(1998)に基づいて測定することができる。   FIG. 2 shows a photograph of a fractured surface of the solid electrolyte layer 1. As shown in FIG. 2, the solid electrolyte layer 1 is a sintered body composed of crystal grains having a particle size of approximately 2 to 10 μm based on observation with an electron microscope, and grows into larger crystal grains by linking the crystal grains. However, the grain boundary interface is unclear. As shown in FIG. 2, the sintered body of the solid electrolyte layer 1 according to the present embodiment is a dense sintered body and has few pores. Although not limited to the following, the porosity of the solid electrolyte layer 1 is, for example, about 0.1 to 5.0%. The porosity of the solid electrolyte layer 1 can be measured based on, for example, JIS R1634 (1998).

本実施形態に係る固体電解質層1、例えばLLZ焼結体を、交流インピーダンス測定した結果、固体電解質層1は、5.0E−4〜2.0E−03(S/cm)程度のイオン電導率を示す。このような固体電解質層1を電極部材の材料として採用することにより、固体電解質層1の粒界抵抗を低くすることができ、イオン電導率を向上させることができる。こうした酸化物系固体電解質基板と以下に述べる正極活物質を組み合わせることで、従来の高温プロセス等を用いることなく、より安価な室温プロセスで電池駆動が可能な全固体電池が得られる。   As a result of AC impedance measurement of the solid electrolyte layer 1 according to the present embodiment, for example, a LLZ sintered body, the solid electrolyte layer 1 has an ion conductivity of about 5.0E-4 to 2.0E-03 (S / cm). Is shown. By employing such a solid electrolyte layer 1 as a material for an electrode member, the grain boundary resistance of the solid electrolyte layer 1 can be reduced, and the ionic conductivity can be improved. By combining such an oxide-based solid electrolyte substrate with a cathode active material described below, an all-solid-state battery that can be driven by a less expensive room temperature process without using a conventional high-temperature process or the like can be obtained.

正極活物質層2に用いられる微粉末としては、具体的には、コバルト酸リチウム(LiCoO2)、ニッケルコバルトマンガン酸リチウム(LiNi0.33Co0.33Mn0.332、LiNi0.5Co0.3Mn0.22、LiNi0.8Co0.1Mn0.12)、ニッケルマンガン酸リチウム(LiNi0.5Mn1.54)、ニッケル酸リチウム(LiNiO2)、鉄リン酸リチウム(LiFePO4)、コバルトリン酸リチウム(Li2CoP27)などが利用可能である。中でも、コバルト酸リチウム、ニッケルコバルトマンガン酸リチウム、ニッケルマンガン酸リチウムを正極活物質層2の材料として用いることが好ましい。 Specific examples of the fine powder used for the positive electrode active material layer 2 include lithium cobalt oxide (LiCoO 2 ), lithium nickel cobalt manganate (LiNi 0.33 Co 0.33 Mn 0.33 O 2 , LiNi 0.5 Co 0.3 Mn 0.2 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 ), lithium nickel manganate (LiNi 0.5 Mn 1.5 O 4 ), lithium nickelate (LiNiO 2 ), lithium iron phosphate (LiFePO 4 ), lithium cobalt phosphate (Li 2 CoP 2 O) 7 ) etc. are available. Among them, it is preferable to use lithium cobaltate, lithium nickel cobalt manganate, and lithium nickel manganate as the material of the positive electrode active material layer 2.

正極活物質層2は、酸化物系正極活物質からなる微粉末、または、酸化物系正極活物質と酸化物系固体電解質粉末との混合物(以下「正極合材」ともいう)からなる粉末を含む粉体が互いに密着して固化し、薄膜状又はバルク状を有する粉末固化体で構成されている。この粉末固化体は、酸化物系正極活物質または正極合材からなる微粉末を含む粉体の表面上に与えられた機械的外力によって密着して固化し、あたかも焼結体のように、粉末間で粒界の結び付きにより固化し、バルク質となった層を意味するものである。作製にあたっては、固体電解質層1との界面において高温条件(少なくとも500℃以上)を必ずしも必要とするものでなく、例えば室温程度(具体的には約1〜30℃、より具体的には15〜25℃)の低温条件によっても容易に作製することができる。粉末固化体からなる正極活物質層(正極合材層)2の形成方法は後述する。   The positive electrode active material layer 2 is made of fine powder of an oxide-based positive electrode active material or powder of a mixture of an oxide-based positive electrode active material and an oxide-based solid electrolyte powder (hereinafter, also referred to as “positive electrode mixture”). The powders contained are solidified in close contact with each other, and are formed of a solidified powder having a thin film shape or a bulk shape. The solidified powder is solidified and adhered by mechanical external force applied to the surface of the powder including the fine powder of the oxide-based positive electrode active material or the positive electrode mixture, as if it were a sintered body. It means a layer that has been solidified by bonding of grain boundaries between the layers and has become bulky. In the production, high-temperature conditions (at least 500 ° C. or more) are not necessarily required at the interface with the solid electrolyte layer 1, and for example, about room temperature (specifically, about 1 to 30 ° C., more specifically, 15 to 30 ° C.). (25 ° C.). A method for forming the positive electrode active material layer (positive electrode mixture layer) 2 made of the solidified powder will be described later.

固体電解質層1上に粉末固化体からなる正極活物質層(正極合材層)2を適切に形成するためには、原料となる微粉末の性状を適切に選択することが特に重要である。本実施形態に係る電極部材では、微粉末が持つ可塑性(微細結晶粒超塑性)と微粉末−固体電解質層界面における力学的接着力(アンカー効果を含む)、化学的接着力、或いは拡散接着力をより適切に得る必要がある。本実施形態に係る粉末固化体を形成させるためにはナノ粒子と呼ばれる100nm未満の超微粉末の比率が高ければ高いほど望ましく、特に、体積基準による累積粒度分布における10%粒径(D10)が0.01μm〜0.5μm、50%粒径(D50)が0.01μm〜1.0μmである酸化物系正極活物質を原料として用いることがより好ましい。 In order to appropriately form the positive electrode active material layer (positive electrode mixture layer) 2 composed of the solidified powder on the solid electrolyte layer 1, it is particularly important to appropriately select the properties of the fine powder as a raw material. In the electrode member according to the present embodiment, the plasticity (fine crystal grain superplasticity) of the fine powder and the mechanical adhesive force (including the anchor effect) at the interface between the fine powder and the solid electrolyte layer, the chemical adhesive force, or the diffusion adhesive force Needs to be obtained more appropriately. In order to form the solidified powder according to the present embodiment, it is desirable that the ratio of the ultrafine powder having a diameter of less than 100 nm, which is referred to as nanoparticles, be as high as possible. In particular, the 10% particle size (D 10 ) in the cumulative particle size distribution on a volume basis. It is more preferable to use an oxide-based positive electrode active material having a particle size of 0.01 μm to 0.5 μm and a 50% particle diameter (D 50 ) of 0.01 μm to 1.0 μm as a raw material.

微粉末の10%粒径(D10)が0.5μmより大きいと、微粉末同士が固体電解質層1上に上手く密着せず、粉末固化体を形成させることができない場合がある。全固体電池の正極活物質層(正極合材層)2としてより適切な粉末固化体を形成するためには、微粉末の平均粒径(D50)は小さければ小さいほど好ましく、0.15μm以下が好ましく、更に好ましくは0.12μm以下、より更に好ましくは0.1μm以下である。微粉末の10%粒径(D10)は以下に限定されるものではないが、取り扱い性等の観点から例えば0.01μm以上、より好ましくは0.02μm以上であるのが好ましい。 If the 10% particle size (D 10 ) of the fine powder is larger than 0.5 μm, the fine powders may not adhere well to the solid electrolyte layer 1 and a solidified powder may not be formed. In order to form a more suitable powder solidified body as the positive electrode active material layer (positive electrode mixture layer) 2 of the all solid state battery, the smaller the average particle size (D 50 ) of the fine powder is, the more preferable it is, 0.15 μm or less. Is more preferably 0.12 μm or less, and still more preferably 0.1 μm or less. The 10% particle size (D 10 ) of the fine powder is not limited to the following, but is preferably, for example, 0.01 μm or more, and more preferably 0.02 μm or more, from the viewpoint of handleability and the like.

微粉末として例えばコバルト酸リチウムを使用する場合には、10%粒径(D10)が0.01〜0.3μm、更には0.01〜0.2μm、更には0.01〜0.17μmの微粉末を用いることが好ましい。微粉末として例えばニッケルマンガン酸リチウムを使用する場合には、10%粒径(D10)が0.01〜0.4μm、更には0.01〜0.35μm、更には0.01〜0.3μmの微粉末を用いることが好ましい。微粉末としてニッケルコバルトマンガン酸リチウムを使用する場合には、10%粒径(D10)が0.01〜0.5μm、更に好ましくは0.01〜0.3μmの微粉末を用いることができる。 When, for example, lithium cobaltate is used as the fine powder, the 10% particle size (D 10 ) is 0.01 to 0.3 μm, further 0.01 to 0.2 μm, and further 0.01 to 0.17 μm. It is preferable to use fine powder of When, for example, lithium nickel manganate is used as the fine powder, the 10% particle size (D 10 ) is 0.01 to 0.4 μm, preferably 0.01 to 0.35 μm, and more preferably 0.01 to 0.3 μm. It is preferable to use a fine powder of 3 μm. When nickel nickel lithium manganate is used as the fine powder, a fine powder having a 10% particle size (D 10 ) of 0.01 to 0.5 μm, more preferably 0.01 to 0.3 μm can be used. .

微粉末の50%粒径(D50)が1.0μmより大きいと、微粉末同士が上手く密着せず、粉末固化体からなる正極活物質層(正極合材層)2を必要な厚さに形成できない場合がある。微粉末の50%粒径(D50)は小さいほど好ましく、0.8μm以下が好ましく、更に好ましくは0.5μm以下、より更に好ましくは0.3μm以下である。一方、微粉末の50%粒径(D50)の粒径の下限値は以下に限定されるものではないが、例えば0.01μm以上、更には0.05μm以上とすることができ、作業容易性の観点からより好ましくは0.1μm以上である。 If the 50% particle size (D 50 ) of the fine powder is larger than 1.0 μm, the fine powder does not adhere well to each other, and the positive electrode active material layer (positive mixture layer) 2 composed of the solidified powder has a required thickness. May not be formed. The 50% particle size (D 50 ) of the fine powder is preferably as small as possible, preferably 0.8 μm or less, more preferably 0.5 μm or less, and still more preferably 0.3 μm or less. On the other hand, the lower limit of the 50% particle size (D 50 ) of the fine powder is not limited to the following, but it can be, for example, 0.01 μm or more, and more preferably 0.05 μm or more. It is more preferably 0.1 μm or more from the viewpoint of properties.

図3に正極活物質層(正極合材層)2に用いられる微粉末として好適な微粉末の累積粒度分布の例を示す。図3に示すように、0.01〜1.4μmの範囲において累積粒度分布の50%粒径(D50)が0.01〜1.0μm、更には0.1μm〜1.0μmの範囲にある微粉末を用いることが、作業容易性の観点から特に好ましい。 FIG. 3 shows an example of the cumulative particle size distribution of fine powder suitable as the fine powder used for the positive electrode active material layer (positive electrode mixture layer) 2. As shown in FIG. 3, the 50% particle size (D 50 ) of the cumulative particle size distribution is in the range of 0.01 to 1.0 μm in the range of 0.01 to 1.4 μm, and further in the range of 0.1 to 1.0 μm. It is particularly preferable to use a fine powder from the viewpoint of workability.

また、体積基準による累積粒度分布における50%粒径(D50)の10%粒径(D10)に対する比(D50/D10)が3以下、より好ましくは2以下である微粉末を用いることが好ましく、90%粒径(D90)の10%粒径(D10)に対する比(D90/D10)が10以下、より好ましくは6以下である微粉末を用いることが好ましい。 Further, a fine powder having a ratio (D 50 / D 10 ) of 50% particle size (D 50 ) to 10% particle size (D 10 ) in the cumulative particle size distribution on a volume basis is 3 or less, more preferably 2 or less. It is preferable to use a fine powder having a ratio (D 90 / D 10 ) of 90% particle size (D 90 ) to 10% particle size (D 10 ) of 10 or less, more preferably 6 or less.

このような特性を有する微粉末は本実施形態に係る粉末固化体の形成に大きく寄与すると考えられる粒径約0.12μm又は0.08μm以下の微粉末を所定の割合で含むものであり、本実施形態に係る粉末固化体を適切な厚さに容易に堆積させることができるため特に好適である。   The fine powder having such characteristics contains a fine powder having a particle diameter of about 0.12 μm or 0.08 μm or less at a predetermined ratio, which is considered to greatly contribute to the formation of the solidified powder according to the present embodiment. This is particularly preferable because the solidified powder according to the embodiment can be easily deposited to an appropriate thickness.

例えば微粉末として好適な例えばコバルト酸リチウム、ニッケルコバルトマンガン酸リチウム、ニッケルマンガン酸リチウムを使用する場合には、原料中、粒径0.12μm以下の粒子を例えば0.5体積%以上、好ましくは2体積%以上、更に好ましくは5体積%以上含有し、原料中、粒径0.08μm以下の粒子を例えば0.1体積%以上、好ましくは0.5体積%以上、更に好ましくは2体積%以上含有する微粉末を用いることが、粉末固化体を適切且つ容易に形成できる点で好ましい。粒径0.12μm以下の粒子の原料中における組成比の上限は特に限定されず、多いほど好ましい。   For example, when lithium cobaltate, lithium nickel cobalt manganate, or lithium nickel manganate suitable as fine powder is used, particles having a particle size of 0.12 μm or less in the raw material are, for example, 0.5 volume% or more, preferably It contains 2% by volume or more, more preferably 5% by volume or more, and contains particles having a particle size of 0.08 μm or less in the raw material, for example, 0.1% by volume or more, preferably 0.5% by volume or more, more preferably 2% by volume. The use of the fine powder containing the above is preferable in that the solidified powder can be appropriately and easily formed. The upper limit of the composition ratio of the particles having a particle size of 0.12 μm or less in the raw material is not particularly limited, and the upper limit is more preferable.

一方で、10%粒径(D10)及び50%粒径(D50)が適切な範囲に調整されていたとしても、粒径0.12μm以下の粒子が例えば0.5体積%未満であると、正極活物質層2を少量は形成できるものの、全固体電池の正極活物質層として機能させることができる程度の厚さにまでは堆積できない場合がある。以下に限定されるものではないが、原料中、粒径0.12μm以下の粒子の含有率を好ましくは0.5〜15体積%とすることができ、更には2〜4体積%とすることが好ましい。 On the other hand, even if the 10% particle size (D 10 ) and the 50% particle size (D 50 ) are adjusted to an appropriate range, particles having a particle size of 0.12 μm or less are, for example, less than 0.5% by volume. In some cases, the cathode active material layer 2 can be formed in a small amount, but cannot be deposited to such a thickness that it can function as a cathode active material layer of an all-solid-state battery. Although not limited to the following, the content of particles having a particle size of 0.12 μm or less in the raw material can be preferably 0.5 to 15% by volume, and more preferably 2 to 4% by volume. Is preferred.

ニッケルコバルトマンガン酸リチウムを微粉末として用いた場合には、粒径0.20μm以下の粒子を5体積%以上、好ましくは10体積%以上、更に好ましくは15体積%以上含有する材料であってもよい。微粉末に使用する材料の種類によって粉末固化体の形成に好適な粒径範囲は種々異なるが、正極活物質層(正極合材層)2の材料として上記に示した酸化物系正極活物質においては、少なくとも粒径0.12μm以下の粒子を0.5体積%以上含む微粉末であれば好適に利用可能であるといえる。なお、所定の粒径以下の粒子の含有率は上記に限定されるものではなく、その含有率が多くなるほど正極活物質層(正極合材層)2の形成がより効率的に行える。   When lithium nickel cobalt manganate is used as a fine powder, a material containing 5% by volume or more, preferably 10% by volume or more, more preferably 15% by volume or more of particles having a particle size of 0.20 μm or less is used. Good. The particle size range suitable for the formation of the solidified powder varies depending on the type of the material used for the fine powder, but the oxide-based positive electrode active material shown above as the material of the positive electrode active material layer (positive electrode mixture layer) 2 It can be said that any fine powder containing at least 0.5% by volume of particles having a particle size of 0.12 μm or less can be suitably used. The content of the particles having a predetermined particle size or less is not limited to the above, and the higher the content, the more efficiently the positive electrode active material layer (positive electrode mixture layer) 2 can be formed.

なお、本実施形態において「粒径」とは、レーザー回折/散乱式粒度分布測定装置を用いて測定した粒径分布の体積基準による累積粒度曲線に基づく粒径をいう。「D10」、「D50」および「D90」とは、累積粒度分布における体積基準のそれぞれ、10%粒径、50%粒径、および90%粒径を示し、レーザー回折/散乱式粒度分布測定装置を用いて測定した粒径分布の累積粒度曲線において、その積算量が体積基準でそれぞれ、10%、50%、および90%を占めるときの粒径を示す。 In the present embodiment, the “particle size” refers to a particle size based on a volume-based cumulative particle size curve of a particle size distribution measured using a laser diffraction / scattering type particle size distribution measuring device. “D 10 ”, “D 50 ”, and “D 90 ” mean 10% particle size, 50% particle size, and 90% particle size, respectively, on a volume basis in the cumulative particle size distribution, and are represented by a laser diffraction / scattering particle size. In the cumulative particle size curve of the particle size distribution measured using a distribution measuring device, the particle size when the integrated amount occupies 10%, 50%, and 90% on a volume basis, respectively.

微粉末の粒径は、例えば、マイクロトラック・ベル株式会社製レーザー回折・散乱式粒子径分布測定装置「Microtrac MT−3000」を用いて測定することができ、その測定結果から付属のソフトを利用して体積基準による累積粒度分布を評価することができる。   The particle size of the fine powder can be measured using, for example, a laser diffraction / scattering type particle size distribution measuring device “Microtrac MT-3000” manufactured by Microtrac Bell Co., Ltd., and the attached software is used from the measurement result. Thus, the cumulative particle size distribution on a volume basis can be evaluated.

このような分布を有する微粉末を用いることにより、表面に僅かな機械的外力を与えることによって微粉末同士の力学的接着及び拡散接着が生じ、これにより正極活物質微粉末同士、或いは後述する正極活物質微粉末と酸化物固体電解質粉末とを密着して固着させることができる。このようにして得られた電極部材は固体電解質層1と正極活物質層(正極合材層)2との接着性も良好で、低抵抗な界面を形成できるため、電極部材を用いた全固体電池は室温下で十分に駆動させることが可能である。粒度分布測定は当業者に公知の測定方法を用いることができる。なお、このようにして得られた電極部材に対し、大気雰囲気、不活性雰囲気または酸素雰囲気下で100〜500℃、10秒〜1時間熱処理を行うことで、さらに固体電解質層1と正極活物質層(正極合材層)2との界面を低抵抗化することができる場合がある。   By using a fine powder having such a distribution, mechanical adhesion and diffusion bonding between the fine powders are caused by applying a slight mechanical external force to the surface, and thereby, the fine particles of the positive electrode active material, or a positive electrode described later. The active material fine powder and the oxide solid electrolyte powder can be closely adhered and fixed. The electrode member thus obtained has good adhesion between the solid electrolyte layer 1 and the positive electrode active material layer (positive electrode mixture layer) 2 and can form a low-resistance interface. The battery can be sufficiently driven at room temperature. The particle size distribution can be measured by a measurement method known to those skilled in the art. The solid electrolyte layer 1 and the positive electrode active material are further heated by subjecting the electrode member thus obtained to a heat treatment at 100 to 500 ° C. for 10 seconds to 1 hour in an air atmosphere, an inert atmosphere, or an oxygen atmosphere. In some cases, the interface with the layer (positive electrode mixture layer) 2 can be reduced in resistance.

図4の模式図に示すように、本発明の実施の形態に係る電極部材は、固体電解質層1の焼結体の微小な凹凸を有する表面上に上記の微粉末を堆積させ、固体電解質層1の上方から固体電解質層1の内側へ向けて機械的外力を与えることにより、図1に示すように、薄膜状の正極活物質層2が形成される。これは、ナノ粒子(粒径0.1μm以下)及びナノ粒子に近い粒径を持つ粒径0.1μm程度の微粉末の可塑性により、微粉末の表面に圧力を加えただけで、焼結したかのように微粉末が一体化してバルク化する現象を利用したものである。   As shown in the schematic diagram of FIG. 4, the electrode member according to the embodiment of the present invention is obtained by depositing the above fine powder on the surface of the sintered body of the solid electrolyte layer 1 having minute irregularities, By applying a mechanical external force from above to the inside of the solid electrolyte layer 1, a thin-film positive electrode active material layer 2 is formed as shown in FIG. This is because of the plasticity of nanoparticles (particle diameter of 0.1 μm or less) and fine particles having a particle diameter of about 0.1 μm having a particle diameter close to the nanoparticles, sintered only by applying pressure to the surface of the fine powder. This utilizes the phenomenon in which fine powders are integrated into a bulk.

下記の推察によって本実施形態が限定されることを意図するものではないが、微粉末の持つ膨大な表面エネルギーの解放と、微粉末よりも硬度が高い固体電解質層1に対して、固体電解質層1よりも硬度が低い微粉末を押しつけることによって正極活物質粉末の結合により緻密化が進行し粉末固化体が形成されるとともに、固体電解質層との間にアンカー効果等の接着力により均一かつ強固な界面が形成されて外観上は一定の光沢を有する薄膜状の層(粉末固化体)が形成されるものと推察される。   Although the present embodiment is not intended to be limited by the following inference, the solid electrolyte layer 1 having a higher release of the enormous surface energy of the fine powder and the solid electrolyte layer 1 having a higher hardness than the fine powder may be used. By pressing the fine powder having a hardness lower than 1, the compaction proceeds due to the binding of the positive electrode active material powder to form a solidified powder, and is uniform and strong due to the adhesive force such as an anchor effect between the solid electrolyte layer and the solid electrolyte layer. It is presumed that a thin interface (solidified powder) having a certain gloss is formed on the external surface by forming an appropriate interface.

粉末またはその焼結体に機械的またはその他の外力を加えて薄膜を形成する技術自体は従来から種々知られている。例えば、従来のスパッタ法やPLD(パルスレーザー堆積法)等の真空プロセスやエアロゾルデポジション法とよばれる粉末を高速で噴射し、その運動エネルギーにより基板上に粉末材料からなる薄膜を形成する手法がある。近年はこれら真空プロセスやエアロゾルデポジション法などにより基板上に薄膜を形成して電池駆動を実現させている例もあるが、試験レベルの極小さい面積に対する薄膜形成技術にとどまり、汎用的なリチウムイオン二次電池製品の製造プロセスとしては設備導入及びランニングコストを考えると極めて高コストなプロセスといえる。   Conventionally, various techniques for forming a thin film by applying a mechanical or other external force to a powder or a sintered body thereof have been known. For example, there is a method in which a conventional vacuum process such as a sputtering method or a PLD (pulse laser deposition method) or a powder called an aerosol deposition method is sprayed at a high speed and a kinetic energy forms a thin film made of a powder material on a substrate. is there. In recent years, there have been cases in which a thin film is formed on a substrate by such a vacuum process or aerosol deposition method to achieve battery driving. Considering the equipment introduction and running costs, it can be said that the production process of the secondary battery product is extremely expensive.

一方、本発明の実施の形態に係る電極部材及びこれを用いた全固体電池によれば、固体電解質層1として酸化物系固体電解質の焼結体を使用し、この上に、体積基準による累積粒度分布における10%粒径(D10)が0.01μm〜0.5μmであり、50%粒径(D50)が0.01μm〜1.0μm、粒径0.12μm以下の粒子を0.5体積%以上、更には5体積%以上含む酸化物系正極活物質からなる微粉末が互いに密着して固化した薄膜状の粉末固化体を備えた正極活物質層2が配置される。かかる構成を具備することにより、固体電解質層1と正極活物質層2との接合を、真空プロセスなどによらずに室温下で安価且つ簡易に行うことができる。更に、得られた電極部材に対し、例えば以下に示す手法により全固体電池を作製することによって、得られた全固体電池を室温において電池として駆動させることも可能である。 On the other hand, according to the electrode member according to the embodiment of the present invention and the all-solid-state battery using the same, a sintered body of an oxide-based solid electrolyte is used as the solid electrolyte layer 1, Particles having a 10% particle size (D 10 ) in the particle size distribution of 0.01 μm to 0.5 μm and a 50% particle size (D 50 ) of 0.01 μm to 1.0 μm and a particle size of 0.12 μm or less are defined as 0.1%. The positive electrode active material layer 2 is provided with a thin-film solidified powder in which fine powders of an oxide-based positive electrode active material containing 5% by volume or more, and more preferably 5% by volume or more, adhere to each other and solidify. With such a configuration, the joining between the solid electrolyte layer 1 and the positive electrode active material layer 2 can be performed inexpensively and easily at room temperature without depending on a vacuum process or the like. Further, by producing an all-solid-state battery with the obtained electrode member by, for example, a method described below, the obtained all-solid-state battery can be driven as a battery at room temperature.

例えば、上記の電極部材の固体電解質層1の一方の表面である第1主面上に形成された正極活物質層2上に、第1の集電極層として例えば金(Au)などの金属層を成膜する。更に、固体電解質層1の他方の表面であり、第1主面と対向する第2主面上に例えば金属リチウム(Li)などの第2の負極電極層を成膜し、全固体電池を得る。本実施形態によれば、得られた全固体電池の内部抵抗は1000〜5000Ω・cm2(固体電解質層の厚みは0.5mm〜1mm程度の場合)程度と小さくなり、より簡易且つ安価な手法により室温下(25℃)で電池駆動が可能な電極部材、全固体電池及びこれらの製造方法が提供できる。 For example, on the positive electrode active material layer 2 formed on the first main surface which is one surface of the solid electrolyte layer 1 of the above-mentioned electrode member, a metal layer such as gold (Au) is used as a first collector electrode layer. Is formed. Further, a second negative electrode layer made of, for example, metallic lithium (Li) is formed on a second main surface opposite to the first main surface, which is the other surface of the solid electrolyte layer 1, to obtain an all-solid-state battery. . According to the present embodiment, the internal resistance of the obtained all-solid-state battery is as small as about 1000 to 5000 Ω · cm 2 (when the thickness of the solid electrolyte layer is about 0.5 mm to 1 mm), which is a simpler and cheaper method. Accordingly, it is possible to provide an electrode member, an all-solid-state battery, and a method for manufacturing the same that can be driven at room temperature (25 ° C.).

本発明の実施の形態に係る電極部材及び全固体電池の製造方法について説明する。まず、固体電解質層1を用意し、この固体電解質層1上に体積基準による累積粒度分布における10%粒径(D10)が0.01μm〜0.5μmであり、50%粒径(D50)が0.01μm〜1.0μm、粒径0.12μm以下の粒子を0.5体積%以上含む酸化物系正極活物質からなる微粉末を堆積させる。微粉末は、固体電解質層1上の表面全体に堆積させる。例えば、固体電解質層1の表面(表面積100mm2)に対して総量で0.05〜10mg程度、好ましくは0.1〜10mg程度、堆積させることが好ましい。 An electrode member and an all-solid-state battery manufacturing method according to an embodiment of the present invention will be described. First, the solid electrolyte layer 1 is prepared, and the 10% particle size (D 10 ) in the cumulative particle size distribution on a volume basis is 0.01 μm to 0.5 μm, and the 50% particle size (D 50 ) Deposits a fine powder made of an oxide-based positive electrode active material containing 0.5% by volume or more of particles having a particle size of 0.01 μm to 1.0 μm and a particle size of 0.12 μm or less. The fine powder is deposited on the entire surface of the solid electrolyte layer 1. For example, it is preferable to deposit a total amount of about 0.05 to 10 mg, and preferably about 0.1 to 10 mg, on the surface (surface area 100 mm 2 ) of the solid electrolyte layer 1.

次いで、固体電解質層1上の微粉末の表面に沿って機械的外力を与えることにより、固体電解質層の表面に、微粉末が互いに密着した一定の膜厚を有する粉末固化体を形成させる。   Next, by applying a mechanical external force along the surface of the fine powder on the solid electrolyte layer 1, a solidified powder having a certain film thickness in which the fine powder is in close contact with each other is formed on the surface of the solid electrolyte layer.

固体電解質層1上の微粉末の表面に沿って機械的外力を与える方法としては、例えば、微粉末の表面全体に所定の圧力を加えることが挙げられる。例えば、微粉末の表面上から10kPa〜500kPa、好ましくは20kPa〜300kPa、更には50kPa〜200kPa程度の圧力を印加することで、微粉末同士を密着させて固化して粉末固化体を形成させるとともに、固体電解質層1と粉末固化体との間の低抵抗な界面を形成することができる。   As a method of applying a mechanical external force along the surface of the fine powder on the solid electrolyte layer 1, for example, a predetermined pressure is applied to the entire surface of the fine powder. For example, by applying a pressure of 10 kPa to 500 kPa, preferably 20 kPa to 300 kPa, and further about 50 kPa to 200 kPa from the surface of the fine powder, the fine powders are brought into close contact with each other and solidified to form a powder solidified body, A low-resistance interface between the solid electrolyte layer 1 and the solidified powder can be formed.

具体的には、固体電解質層1上の微粉末に摩擦を生じさせるように機械的外力を与えることが好ましい。例えば、微粉末の表面を布又は紙等の摩擦部材で所定の方向に擦る方法がある。摩擦部材としては、紙ウエス、布ウエス、樹脂繊維など様々な材料を用いることができる。微粉末の表面を、布、紙或いは樹脂等からなる摩擦部材で擦る場合において、その擦る方向は特に限定されず、特定の一方向に擦っても、多方向に擦ってもよい。   Specifically, it is preferable to apply a mechanical external force so as to cause friction on the fine powder on the solid electrolyte layer 1. For example, there is a method in which the surface of the fine powder is rubbed in a predetermined direction with a friction member such as cloth or paper. Various materials such as paper waste, cloth waste, and resin fiber can be used as the friction member. When the surface of the fine powder is rubbed with a friction member made of cloth, paper, resin or the like, the rubbing direction is not particularly limited, and it may be rubbed in one specific direction or in multiple directions.

本発明の実施の形態に係る電極部材及び全固体電池の製造方法によれば、正極化活物質層の作製は高温の熱処理を必ずしも必要としないため、固体電解質層1と正極活物質層2の界面において物質間の反応や拡散現象を抑制でき、意図しない高抵抗層の形成を抑制することができる。その結果、より低抵抗な電極部材を作製することができる。   According to the method for manufacturing the electrode member and the all-solid-state battery according to the embodiment of the present invention, since the production of the positive electrode active material layer does not necessarily require a high-temperature heat treatment, the solid electrolyte layer 1 and the positive electrode active material layer 2 Reaction and diffusion phenomena between substances at the interface can be suppressed, and formation of an unintended high-resistance layer can be suppressed. As a result, a lower resistance electrode member can be manufactured.

また、特定の微粉末を使用して微粉末に圧力を加えて固化することで、公知のエアロゾルデポジション(AD)装置などを用いたプロセスに比べてより簡単且つ低コストで、固体電池として駆動できるレベルの電極部材を作製することができる。   In addition, by applying pressure to a specific fine powder and solidifying the fine powder, it can be driven as a solid battery at a simpler and lower cost than a process using a known aerosol deposition (AD) device. A possible level of electrode members can be manufactured.

(第2の実施の形態)
本発明の別の実施の形態に係る電極部材は、体積基準による累積粒度分布における10%粒径(D10)が0.01μm〜0.5μm、50%粒径(D50)が0.01μm〜1.0μmであり、粒径が0.12μm以下の粒子を0.5体積%以上含む酸化物系正極活物質からなる微粉末と酸化物系固体電解質からなる粉末との混合物(正極合材)を準備し、この正極合材を固体電解質層1上へ配置して正極合材の表面全体に上述と同様の所定の圧力を加えることで、粉末同士が密着した粉末固化体からなる正極合材層2を形成させることを含む。
(Second embodiment)
An electrode member according to another embodiment of the present invention has a 10% particle size (D 10 ) of 0.01 μm to 0.5 μm and a 50% particle size (D 50 ) of 0.01 μm in a cumulative particle size distribution on a volume basis. A mixture of a fine powder of an oxide-based positive electrode active material containing 0.5% by volume or more of particles having a particle size of 0.12 μm or less and a powder of an oxide-based solid electrolyte (a positive electrode mixture ) Is prepared, and the positive electrode mixture is placed on the solid electrolyte layer 1 and a predetermined pressure similar to the above is applied to the entire surface of the positive electrode mixture, whereby the positive electrode mixture composed of a powder solidified body in which powders are in close contact with each other is prepared. And forming the material layer 2.

酸化物系固体電解質からなる粉末としては、上述のLLZの他に、Li1.5Al0.5Ge1.5312(LAGP)、Li3BO3(LBO)(Li3BO3にLi2SO4、Li2CO3、Li4SiO4なる材料群のうち1種類もしくは2種類以上混合した非晶質状または結晶化ガラスを含む)、Li1.3Al0.3Ti1.7312(LATP)、Li0.33La0.55TiO3(LLTO)からなる群のいずれか1種以上から選択される材料を使用することができ、好ましくは、これら固体電解質材料を1種又は2種利用する。 Examples of the powder composed of the oxide-based solid electrolyte include, in addition to the above-described LLZ, Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 (LAGP), Li 3 BO 3 (LBO) (Li 3 BO 3 to Li 2 SO 4 , One or a mixture of two or more of the material groups Li 2 CO 3 and Li 4 SiO 4 , including amorphous or crystallized glass), Li 1.3 Al 0.3 Ti 1.7 P 3 O 12 (LATP), Li 0.33 A material selected from any one or more of the group consisting of La 0.55 TiO 3 (LLTO) can be used, and preferably, one or two of these solid electrolyte materials are used.

添加される酸化物系固体電解質からなる粉末の粒度は、体積基準による累積粒度分布における50%粒径(D50)が10μm以下、更には5μm以下であることが好ましい。 Regarding the particle size of the oxide solid electrolyte to be added, the 50% particle size (D 50 ) in the cumulative particle size distribution on a volume basis is preferably 10 μm or less, more preferably 5 μm or less.

混合物中の酸化物系正極活物質からなる微粉末と、酸化物系固体電解質からなる粉末との最適な組成比は、材料の組み合わせによって調整できるが、具体的には、混合物中に酸化物系固体電解質からなる粉末が体積比で25〜99%含有されることが好ましい。   The optimal composition ratio between the fine powder of the oxide-based positive electrode active material in the mixture and the powder of the oxide-based solid electrolyte can be adjusted by a combination of materials. It is preferable that the volume of the powder composed of the solid electrolyte is 25 to 99%.

例えば、酸化物系正極活物質からなる微粉末として、LCO(コバルト酸リチウム(LCO))微粉末(株式会社豊島製作所製、10%粒径(D10)0.097μm、50%粒径(D50)0.208μm、90%粒径(D90)0.534μm)を使用し、酸化物系固体電解質からなる粉末として平均粒径(D50)が1.5μmのLAGPを混合して混合物を作製し、この混合物を固体電解質層1上へ配置して正極合材層2を形成させた場合の固体電解質−正極合材層間の界面抵抗は、表1に示すような傾向を示す。 For example, as fine powder composed of an oxide-based positive electrode active material, LCO (lithium cobalt oxide (LCO)) fine powder (manufactured by Toyo Seisakusho Co., Ltd., 10% particle size (D 10 ) 0.097 μm, 50% particle size (D 50 ) Using 0.208 μm, 90% particle size (D 90 ) 0.534 μm), and mixing LAGP having an average particle size (D 50 ) of 1.5 μm as a powder composed of an oxide solid electrolyte to form a mixture. The interface resistance between the solid electrolyte and the positive electrode mixture layer in the case where the mixture was prepared and this mixture was arranged on the solid electrolyte layer 1 to form the positive electrode mixture layer 2 has a tendency as shown in Table 1.

表1に示すように、LCO、LAGPを混合した場合には、混合物中に酸化物系固体電解質からなる粉末であるLAGPが質量比で30〜50%、更には35〜40%混合させることにより、固体電解質との界面抵抗をより小さくすることができる。   As shown in Table 1, when LCO and LAGP are mixed, LAGP, which is a powder composed of an oxide-based solid electrolyte, is mixed in the mixture at a mass ratio of 30 to 50%, and more preferably 35 to 40%. In addition, the interface resistance with the solid electrolyte can be further reduced.

混合物を固体電解質層1上へ担持させて正極合材層2を形成するに先立ち、混合物を熱処理することにより、固体電解質層1との界面抵抗が一層低下する場合がある。例えば、LCO:LAGPを75:25質量%の比率で混合した原料を酸素雰囲気下で典型的には300〜400℃、1〜10時間加熱処理することで、固体電解質層1と正極合材層2との界面抵抗を大幅に低減できる場合がある。最適な熱処理条件は、材料の組み合わせにより異なるが、少なくとも熱処理温度は混合した材料がそれぞれ反応を起こす温度以下にする必要がある。例えば、LCC+LLZの場合は、約500℃付近、LCO+LAGPの場合は約400℃付近が材料間での化学反応(分解)を起こさない限界温度であるため、この限界温度以下で熱処理を行う必要がある。   Prior to forming the positive electrode mixture layer 2 by supporting the mixture on the solid electrolyte layer 1, heat treatment of the mixture may further reduce the interface resistance with the solid electrolyte layer 1. For example, a solid electrolyte layer 1 and a positive electrode mixture layer are obtained by subjecting a raw material obtained by mixing LCO: LAGP at a ratio of 75:25 mass% to heat treatment typically at 300 to 400 ° C. for 1 to 10 hours in an oxygen atmosphere. In some cases, the interfacial resistance with No. 2 can be significantly reduced. Optimum heat treatment conditions vary depending on the combination of materials, but at least the heat treatment temperature must be lower than the temperature at which the mixed materials react. For example, in the case of LCC + LLZ, about 500 ° C., and in the case of LCO + LAGP, about 400 ° C., which is a limit temperature at which a chemical reaction (decomposition) does not occur between materials. .

正極活物質微粉末と固体電解質粉末との混合物を用いた正極合材層2を備える電極部材及び全固体電池の作製方法は、上述の酸化物系正極活物質からなる微粉末を単独で用いた場合の作製方法と同様である。   An electrode member including the positive electrode mixture layer 2 using a mixture of the positive electrode active material fine powder and the solid electrolyte powder and a method for manufacturing an all-solid battery used the fine powder composed of the above-described oxide-based positive electrode active material alone. It is the same as the manufacturing method in the case.

このように、本発明は上記の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。即ち、本発明は各実施形態に限定されるものではなく、その要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、各実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素からいくつかの構成要素を削除してもよい。更に、異なる実施形態の構成要素を適宜組み合わせてもよい。   As described above, the present invention has been described with reference to the above embodiments. However, it should not be understood that the description and drawings constituting a part of the present disclosure limit the present invention. That is, the present invention is not limited to each embodiment, and can be embodied by modifying the components without departing from the scope of the invention. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in each embodiment. For example, some components may be deleted from all the components shown in the embodiment. Further, components of different embodiments may be appropriately combined.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   Hereinafter, Examples of the present invention are shown together with Comparative Examples, but these Examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.

−実施例1−
(電極部材の作製)
アルゴンガス雰囲気のグローブボックス内にてLi7La3Zr212焼結体基板(以降「LLZ基板」という)(サイズ10mm×10mm×0.5mmt)をサンドペーパー(三共理化学(株)製)で両面研磨したのち、焼結体基板の表面にコバルト酸リチウム(LCO)微粉末(株式会社豊島製作所製、10%粒径(D10)0.097μm、50%粒径(D50)0.208μm、90%粒径(D90)0.534μm、粒径0.12μm以下の粒子を11.87体積%含む図3の単峰性分布を有する粒子)50mgをまぶし、その上から紙製ウエス(日本製紙クレシア(株)製)を使ってLLZ基板にこすりつけるように、10kPa〜500kPaの機械的外力を加えることにより正極活物質層を担持させた。マイクロ天秤により形成された正極活物質層の担持重量を計測したところ、予め計測済のLLZ基板重量との差から0.25mgと確認できた。
-Example 1-
(Preparation of electrode member)
A Li 7 La 3 Zr 2 O 12 sintered body substrate (hereinafter referred to as “LLZ substrate”) (size 10 mm × 10 mm × 0.5 mmt) is sandpapered (manufactured by Sankyo Rikagaku Co., Ltd.) in a glove box in an argon gas atmosphere. After polishing on both surfaces of the sintered body substrate, lithium cobalt oxide (LCO) fine powder (manufactured by Toshima Seisakusho Co., Ltd., 10% particle size (D 10 ) 0.097 μm, 50% particle size (D 50 ) 0. Particles having a unimodal distribution of 208 μm, 90% particle diameter (D 90 ) 0.534 μm, and particles having a particle diameter of 0.12 μm or less and having a density of 11.87 vol. The positive electrode active material layer was supported by applying a mechanical external force of 10 kPa to 500 kPa so as to rub against the LLZ substrate using (Nippon Paper Crecia Co., Ltd.). When the weight of the positive electrode active material layer formed by the micro balance was measured, it was confirmed to be 0.25 mg from the difference from the previously measured LLZ substrate weight.

試料の正極活物質担持面をX線回折装置にて測定したところ、LLZ基板の回折パターンとともにLiCoO2由来の回折パターンが確認された(図6)。また、当該試料の断面を走査型電子顕微鏡にて観察したところ、基板上に一定の厚みの膜が形成されていることが観察された(図5)。これらの分析結果よりコバルト酸リチウム微粉末による粉末固化体からなる正極活物質層がLLZ基板上に間違いなく担持されていることが確認された。 When the positive electrode active material supporting surface of the sample was measured with an X-ray diffractometer, a diffraction pattern derived from LiCoO 2 was confirmed together with the diffraction pattern of the LLZ substrate (FIG. 6). Further, when the cross section of the sample was observed with a scanning electron microscope, it was observed that a film having a certain thickness was formed on the substrate (FIG. 5). From these analysis results, it was confirmed that the positive electrode active material layer composed of the solidified powder of the lithium cobalt oxide fine powder was definitely supported on the LLZ substrate.

(全固体電池の作製)
全固体リチウムイオン二次電池を作製するため以下の操作を行った。上記の正極活物質を担持させた電極部材の正極活物質層側の表面に集電極としてAuをスパッタ装置(サンユー電子製)により成膜した(膜厚0.5μm)。一方、本電極部材のAuを成膜した反対面に対し負極として金属Li膜を抵抗加熱蒸着機により成膜した(膜厚5μm)。
(Preparation of all solid state battery)
The following operation was performed to produce an all-solid lithium ion secondary battery. Au was formed as a collecting electrode on the surface of the electrode member supporting the positive electrode active material on the side of the positive electrode active material layer by a sputtering apparatus (manufactured by Sanyu Electronics) (film thickness: 0.5 μm). On the other hand, a metal Li film was formed as a negative electrode on the opposite side of the electrode member on which Au was formed by a resistance heating evaporator (film thickness: 5 μm).

上記リチウムイオン二次電池をビーカーセルに設置しAu集電極面を陽極端子とつなぎ、Li負極面を陰極端子とつないだ上で、ポテンショガルバノスタット装置により各種電気化学測定を行った。CC−CV充電(1C→CV4.2V、2h充電)並びに1C、0.5C、0.2C、0.1C、再度1Cの順番で放電レートを変えながら充放電試験を行った結果、良好な電池駆動が確認された(図7)。充電終了後、インピーダンス測定(上記ポテンショガルバノスタット装置付属の交流インピーダンス測定機器)を行ったところ、全固体電池の内部抵抗は約2kΩであった(図8)。   The lithium ion secondary battery was set in a beaker cell, and the Au collector electrode surface was connected to the anode terminal, the Li negative electrode surface was connected to the cathode terminal, and various electrochemical measurements were performed using a potentiogalvanostat device. As a result of performing a charge / discharge test while changing the discharge rate in the order of CC-CV charge (1C → CV 4.2V, 2h charge) and 1C, 0.5C, 0.2C, 0.1C, and 1C again, a good battery was obtained. Driving was confirmed (FIG. 7). After completion of the charging, the impedance was measured (AC impedance measuring device attached to the potentiogalvanostat device), and the internal resistance of the all-solid-state battery was about 2 kΩ (FIG. 8).

(微粉末の違いによる電極部材作製への影響)
固体電解質層の材質とその上に担持させる正極活物質層を構成する微粉末の粒径を表2〜表4に示すように変化させて、上述の電極部材の作製方法及び全固体電池の作製方法に従って本実施形態に係る電極部材が作製できるか否かを評価した。表2〜表4中の「含有率」は、マイクロトラック・ベル株式会社製レーザー回折・散乱式粒子径分布測定装置「Microtrac MT−3000」を用いた体積基準による累積粒度分布の測定結果から求めた。
(Effects on electrode member production due to differences in fine powder)
By changing the material of the solid electrolyte layer and the particle diameter of the fine powder constituting the positive electrode active material layer carried thereon as shown in Tables 2 to 4, the above-described method for producing the electrode member and the production of the all-solid-state battery It was evaluated whether the electrode member according to the present embodiment can be manufactured according to the method. "Content" in Tables 2 to 4 is obtained from the measurement result of the cumulative particle size distribution on a volume basis using a laser diffraction / scattering type particle size distribution analyzer "Microtrac MT-3000" manufactured by Microtrac Bell Co., Ltd. Was.

表2に示すように、10%粒径(D10)が0.01μm〜0.5μm、50%粒径(D50)が0.01μm〜1.0μmであり、粒径0.12μm以下の粒子を0.5体積%以上含む酸化物系正極活物質からなる微粉末を用いた場合は、固体電解質層上に適切に正極活物質層を形成することができた。10%粒径(D10)及び50%粒径(D50)が適切な範囲外で且つ粒径0.12μm以下の粒子を含まない場合(最右欄)は正極活物質層を形成させることができなかった。 As shown in Table 2, the 10% particle size (D 10 ) is 0.01 μm to 0.5 μm, the 50% particle size (D 50 ) is 0.01 μm to 1.0 μm, and the particle size is 0.12 μm or less. When a fine powder of an oxide-based positive electrode active material containing 0.5% by volume or more of particles was used, a positive electrode active material layer could be appropriately formed on the solid electrolyte layer. When the 10% particle size (D 10 ) and the 50% particle size (D 50 ) are out of the appropriate range and do not include particles having a particle size of 0.12 μm or less (the rightmost column), a positive electrode active material layer is formed. Could not.

表3に示すように、ニッケルマンガン酸微粉末を用いた場合は、10%粒径(D10)が0.01μm〜0.5μm、50%粒径(D50)が0.01μm〜1.0μm、粒径0.20μm以下の粒子を5体積%以上含む微粉末を用いた場合(左欄)は適切に正極活物質層を形成することができた。微粉末の性状が適切な範囲外である材料(右欄)は正極活物質層を形成することができなかった。 As shown in Table 3, when nickel manganate fine powder is used, the 10% particle size (D 10 ) is 0.01 μm to 0.5 μm, and the 50% particle size (D 50 ) is 0.01 μm to 1.0 μm. When a fine powder containing 0 μm and 5% by volume or more of particles having a particle size of 0.20 μm or less was used (left column), a positive electrode active material layer could be appropriately formed. A material in which the properties of the fine powder were out of the appropriate range (right column) could not form a positive electrode active material layer.

表4に示すように、10%粒径(D10)が0.01μm〜0.5μm、50%粒径(D50)が0.01μm〜1.0μmであり、粒径0.12μm以下の粒子を0.5体積%以上含む酸化物系正極活物質からなる微粉末を用いた場合(左欄)は、固体電解質層上に適切に正極活物質層を形成することができた。微粉末の性状が適切な範囲内に無い場合(右欄)は正極活物質層を形成させることができなかった。 As shown in Table 4, the 10% particle size (D 10 ) is 0.01 μm to 0.5 μm, the 50% particle size (D 50 ) is 0.01 μm to 1.0 μm, and the particle size is 0.12 μm or less. When a fine powder of an oxide-based positive electrode active material containing 0.5% by volume or more of particles was used (left column), a positive electrode active material layer could be appropriately formed on the solid electrolyte layer. When the properties of the fine powder were not within an appropriate range (right column), the positive electrode active material layer could not be formed.

一方で、上述の酸化物系正極活物質の焼結体からなる正極活物質層上に、酸化物固体電解質の微粉末を上述の手順で堆積して摩擦力を加えることにより酸化物固体電解質の固化層を形成しようと試みたところ、正極活物質層上に固体電解質層を作製することができなかった。   On the other hand, a fine powder of an oxide solid electrolyte is deposited on the positive electrode active material layer made of a sintered body of the above-described oxide-based positive electrode active material by the above-described procedure, and a frictional force is applied to the oxide solid electrolyte to form a powder. When an attempt was made to form a solidified layer, a solid electrolyte layer could not be formed on the positive electrode active material layer.

−実施例2−
(正極合材の作製)
大気中室温下(25℃)で実施例1と同様のLCO微粉末と、固相合成法により作製したLAGP固体電解質粉末を、LCO:LAGPが質量比で75:25となるように混合し、メノウ乳鉢を用いて10分間攪拌・混合処理を行って混合粉末を得た。得られた混合粉末を大気雰囲気、350℃にて3時間加熱処理を行って、LCOとLAGPの混合物からなる正極合材を得た。
Example 2
(Preparation of positive electrode mixture)
The same LCO fine powder as in Example 1 and the LAGP solid electrolyte powder produced by the solid-phase synthesis method were mixed at room temperature (25 ° C.) in the air so that LCO: LAGP became 75:25 in mass ratio, Stirring and mixing were performed for 10 minutes using an agate mortar to obtain a mixed powder. The obtained mixed powder was subjected to a heat treatment at 350 ° C. for 3 hours in an air atmosphere to obtain a positive electrode mixture composed of a mixture of LCO and LAGP.

(電極部材の作製)
固体電解質層として、固相合成法にて作製し、相対密度95%以上、10mm角で厚さ1mmのGaドープLLZ(以下「LLZ基板」という)を用意し、このLLZ基板の片面をサンドペーパー(#400)で研磨処理した。不織布に上述の正極合材を適量含ませ、LLZ基板の研磨面に10kPa〜500kPa程度の外圧をかけて約0.3mg担持させた。この正極合材を担持させたLLZ基板を大気雰囲気で350℃、30分間加熱処理を行い、電極部材を作製した。この電極部材の断面を走査型電子顕微鏡にて観察したところ、基板上に一定の厚みの膜が形成されていることが観察された(図9)。これらの分析結果よりLCO、LAGP混合微粉末で形成された正極合材層がLLZ基板上に間違いなく担持されていることが確認された。
(Preparation of electrode member)
As a solid electrolyte layer, a Ga-doped LLZ (hereinafter referred to as “LLZ substrate”) having a relative density of 95% or more and a thickness of 10 mm square and a thickness of 1 mm (hereinafter referred to as “LLZ substrate”) was prepared as a solid electrolyte layer. Polishing was performed at (# 400). An appropriate amount of the above-described positive electrode mixture was contained in the nonwoven fabric, and about 0.3 mg of the positive electrode mixture was carried on the polished surface of the LLZ substrate by applying an external pressure of about 10 kPa to 500 kPa. The LLZ substrate supporting the positive electrode mixture was heated at 350 ° C. for 30 minutes in an air atmosphere to prepare an electrode member. When a cross section of this electrode member was observed with a scanning electron microscope, it was observed that a film having a constant thickness was formed on the substrate (FIG. 9). From these analysis results, it was confirmed that the positive electrode mixture layer formed of the LCO and LAGP mixed fine powder was definitely supported on the LLZ substrate.

(全固体電池の作製)
加熱処理後、室温まで空冷したLLZ基板の正極活物質層上にスパッタ蒸着によりAuを0.5μm成膜し、LLZ基板のAu蒸着面と反対側の面をサンドペーパー(#1000)で研磨処理した。研磨処理面に金属インジウムシートを圧着させて負極とし、全固体電池を作製した。
(Preparation of all solid state battery)
After the heat treatment, a 0.5 μm-thick Au film is formed by sputtering on the positive electrode active material layer of the LLZ substrate that has been cooled to room temperature, and the surface of the LLZ substrate opposite to the Au-deposited surface is polished with sandpaper (# 1000). did. An all-solid-state battery was produced by pressing a metal indium sheet on the polished surface to form a negative electrode.

−実施例3−
正極合材の組成比率をLCO:LAGP=50:50とした以外は実施例2と同様の方法により全固体電池を作製した。
Example 3
An all-solid-state battery was manufactured in the same manner as in Example 2, except that the composition ratio of the positive electrode mixture was LCO: LAGP = 50: 50.

−実施例4−
正極合材の組成比率をLCO:LAGP=65:35とした以外は実施例2と同様の方法により全固体電池を作製した。
Example 4
An all-solid-state battery was manufactured in the same manner as in Example 2, except that the composition ratio of the positive electrode mixture was LCO: LAGP = 65: 35.

−実施例5−
正極合材の組成比率をLCO:LAGP=55:45とした以外は実施例2と同様の方法により全固体電池を作製した。
Example 5
An all-solid-state battery was fabricated in the same manner as in Example 2, except that the composition ratio of the positive electrode mixture was LCO: LAGP = 55: 45.

(電池特性評価)
実施例2〜5で作製した全固体電池に対し、電気化学測定装置(BioLogic社製VSP−300)にて交流インピーダンス測定を行い、室温下(25℃)での全固体電池の内部抵抗を測定した。結果を図10に示す。図10に示すように、実施例2〜5のいずれも室温下における電池駆動を可能とする程の低い内部抵抗を実現でき、特に、実施例4が最も低い電池内部抵抗を実現することができた。
(Evaluation of battery characteristics)
For the all solid state batteries manufactured in Examples 2 to 5, AC impedance measurement was performed with an electrochemical measurement device (VSP-300 manufactured by BioLogic), and the internal resistance of the all solid state batteries at room temperature (25 ° C.) was measured. did. The results are shown in FIG. As shown in FIG. 10, all of Examples 2 to 5 can realize a low internal resistance enough to enable battery driving at room temperature, and particularly, Example 4 can realize the lowest battery internal resistance. Was.

実施例4で作製した全固体電池に対し、電気化学測定装置(BioLogic社製VSP−300)にて、室温下(25℃)での充放電特性(定電流−定電圧充放電試験、及びサイクリックボルタンメトリー)を測定した。全固体電池の室温(25℃)における放電レート特性測定結果を図11に示し、充放電特性(CV)を図12に示す。放電レート測定においては、一定の充電電流(定電流(50μA/cm2)−定電圧(3.58V 2時間)を組み合わせたCCCV放電)にて異なる放電レートにおける電池容量の変化を調べた。放電は図11中に示す1〜7の順番に行った。 The charge / discharge characteristics (constant current-constant voltage charge / discharge test) at room temperature (25 ° C.) of the all-solid-state battery prepared in Example 4 at room temperature (25 ° C.) were measured using an electrochemical measurement device (VSP-300 manufactured by BioLogic). Click voltammetry). FIG. 11 shows the measurement results of the discharge rate characteristics of the all solid state battery at room temperature (25 ° C.), and FIG. 12 shows the charge / discharge characteristics (CV). In the discharge rate measurement, changes in the battery capacity at different discharge rates were examined at a constant charge current (CCCV discharge combining a constant current (50 μA / cm 2 ) -constant voltage (3.58 V for 2 hours)). The discharge was performed in the order of 1 to 7 shown in FIG.

放電時の電流密度を上げるに従って放電容量は減少したが、最大で0.5mA/cm2の放電電流を得た(図11の「4」参照)。同じ25μA/cm2で放電を行った「1」、「4」、「7」において、「4」では「1」とほぼ同等の放電容量を得た。しかしながら「7」では放電容量がやや減少している。これは0.25mA/cm2(「5」)〜0.5mA/cm2(「6」)という比較的大きな電流を経たことで固体電解質層中または正極合材層中、もしくは固体電解質層−正極合材層の界面のいずれか又は複数箇所において何らかの抵抗成分が発生したことが起因していると考察できる。 Although the discharge capacity decreased as the current density during discharge increased, a discharge current of 0.5 mA / cm 2 at maximum was obtained (see “4” in FIG. 11). In “1”, “4”, and “7” where the discharge was performed at the same 25 μA / cm 2 , a discharge capacity almost equivalent to “1” was obtained in “4”. However, at "7", the discharge capacity was slightly reduced. This is because a relatively large current of 0.25 mA / cm 2 (“5”) to 0.5 mA / cm 2 (“6”) has passed, and the solid electrolyte layer or the positive electrode mixture layer or the solid electrolyte layer It can be considered that this is caused by the occurrence of some resistance component at any or a plurality of points on the interface of the positive electrode mixture layer.

1 固体電解質層
2 正極活物質層
1 solid electrolyte layer 2 positive electrode active material layer

Claims (13)

酸化物系固体電解質の焼結体からなる固体電解質層と、
前記固体電解質層上に配置され、体積基準による累積粒度分布における10%粒径(D10)が0.01μm〜0.5μm、50%粒径(D50)が0.01μm〜1.0μmであり、粒径が0.12μm以下の粒子の含有率が0.5体積%以上の酸化物系正極活物質からなる微粉末で形成された薄膜状の正極活物質層と
を備えることを特徴とする電極部材。
A solid electrolyte layer made of a sintered body of an oxide solid electrolyte,
The 10% particle size (D 10 ) in the cumulative particle size distribution on a volume basis is 0.01 μm to 0.5 μm, and the 50% particle size (D 50 ) is 0.01 μm to 1.0 μm. And a thin-film positive electrode active material layer formed of a fine powder of an oxide-based positive electrode active material having a particle size of 0.12 μm or less and a content of 0.5% by volume or more. Electrode member.
前記固体電解質層が、Li1.5Al0.5Ge1.5312、Li0.33La0.55TiO3、Li7La3Zr212(リチウムサイトへのAl又はGaの置換型、及びジルコニウムサイトへのNb又はTaの置換型を含む)のいずれかを含み、
前記微粉末が、LiCoO2、LiNi0.33Co0.33Mn0.332、LiNi0.5Mn1.54、LiNiO2、LiFePO4、Li2CoP27の何れかを含むことを特徴とする請求項1に記載の電極部材。
The solid electrolyte layer is composed of Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 , Li 0.33 La 0.55 TiO 3 , Li 7 La 3 Zr 2 O 12 (Al or Ga substitution type for lithium site, and Nb for zirconium site) Or including a substitution form of Ta)
The method according to claim 1, wherein the fine powder contains LiCoO 2 , LiNi 0.33 Co 0.33 Mn 0.33 O 2 , LiNi 0.5 Mn 1.5 O 4 , LiNiO 2 , LiFePO 4 , or Li 2 CoP 2 O 7. The electrode member as described in the above.
酸化物系固体電解質の焼結体からなる固体電解質層と、
前記固体電解質層上に配置され、体積基準による累積粒度分布における10%粒径(D10)が0.01μm〜0.5μm、50%粒径(D50)が0.01μm〜1.0μmであり、粒径0.20μm以下の粒子の含有率が5体積%以上のLiNi0.5Mn1.54からなる微粉末で形成された薄膜状の正極活物質層と
を備えることを特徴とする電極部材。
A solid electrolyte layer made of a sintered body of an oxide solid electrolyte,
The 10% particle size (D 10 ) in the cumulative particle size distribution on a volume basis is 0.01 μm to 0.5 μm, and the 50% particle size (D 50 ) is 0.01 μm to 1.0 μm. And a thin-film positive electrode active material layer formed of a fine powder of LiNi 0.5 Mn 1.5 O 4 having a content of particles having a particle size of 0.20 μm or less of 5% by volume or more. .
請求項1〜3のいずれか1項に記載の電極部材を用いた全固体電池。   An all-solid-state battery using the electrode member according to claim 1. 体積基準による累積粒度分布における10%粒径(D10)が0.01μm〜0.5μm、50%粒径(D50)が0.01μm〜1.0μmであり、粒径0.12μm以下の粒子の含有率が0.5体積%以上の酸化物系正極活物質からなり、酸化物系固体電解質の焼結体からなる固体電解質層上に正極活物質層を形成させるための電極部材用粉末。 The 10% particle size (D 10 ) in the cumulative particle size distribution on a volume basis is 0.01 μm to 0.5 μm, the 50% particle size (D 50 ) is 0.01 μm to 1.0 μm, and the particle size is 0.12 μm or less. An electrode member powder comprising an oxide-based positive electrode active material having a particle content of 0.5% by volume or more and forming a positive electrode active material layer on a solid electrolyte layer formed of a sintered body of an oxide-based solid electrolyte . 酸化物系固体電解質の焼結体からなる固体電解質層上に、体積基準による累積粒度分布における10%粒径(D10)が0.01μm〜0.5μm、50%粒径(D50)が0.01μm〜1.0μmであり、粒径0.12μm以下の粒子の含有率が0.5体積%以上の酸化物系正極活物質からなる微粉末を堆積させ、前記固体電解質層上の前記微粉末の表面に機械的外力を与え、前記微粉末を互いに密着させて固化させることにより、薄膜状の正極活物質層を前記固体電解質層上に形成させることを含む電極部材の製造方法。 On a solid electrolyte layer made of a sintered body of an oxide-based solid electrolyte, a 10% particle size (D 10 ) in a volume-based cumulative particle size distribution is 0.01 μm to 0.5 μm, and a 50% particle size (D 50 ) is 50%. A fine powder of an oxide-based positive electrode active material having a particle size of 0.01 μm to 1.0 μm and a particle size of 0.12 μm or less and 0.5% by volume or more is deposited, and the fine powder on the solid electrolyte layer is deposited. A method for manufacturing an electrode member, comprising: forming a thin-film positive electrode active material layer on the solid electrolyte layer by applying a mechanical external force to the surface of the fine powder and causing the fine powder to adhere to each other and solidify. 前記微粉末の表面に沿って機械的外力を与えることが、前記微粉末同士または前記微粉末と前記固体電解質層との界面に摩擦を生じさせることを含む請求項6に記載の電極部材の製造方法。   The manufacturing of the electrode member according to claim 6, wherein applying a mechanical external force along the surface of the fine powder includes causing friction between the fine powders or an interface between the fine powder and the solid electrolyte layer. Method. 前記微粉末の表面に沿って機械的外力を与えることが、前記微粉末の表面を摩擦部材で擦ることを含む請求項6又は7に記載の電極部材の製造方法。   The method for manufacturing an electrode member according to claim 6, wherein applying a mechanical external force along the surface of the fine powder includes rubbing the surface of the fine powder with a friction member. 請求項6〜8のいずれか1項に記載の固体電解質層の第1主面に形成された正極活物質層上に第1の金属層を成膜することと、
前記固体電解質層の第1主面と対向する第2主面上に第2の金属層を成膜することとを含む全固体電池の製造方法。
A first metal layer is formed on the positive electrode active material layer formed on the first main surface of the solid electrolyte layer according to any one of claims 6 to 8,
Forming a second metal layer on a second main surface opposite to the first main surface of the solid electrolyte layer.
酸化物系固体電解質の焼結体からなる固体電解質層と、
前記固体電解質層上に配置され、体積基準による累積粒度分布における10%粒径(D10)が0.01μm〜0.5μm、50%粒径(D50)が0.01μm〜1.0μmであり、粒径が0.12μm以下の粒子の含有率が0.5体積%以上の酸化物系正極活物質からなる微粉末と酸化物系固体電解質からなる粉末との混合物で形成されたバルク状の正極合材層と
を備えることを特徴とする電極部材。
A solid electrolyte layer made of a sintered body of an oxide solid electrolyte,
The 10% particle size (D 10 ) in the cumulative particle size distribution on a volume basis is 0.01 μm to 0.5 μm, and the 50% particle size (D 50 ) is 0.01 μm to 1.0 μm. And a bulk formed from a mixture of a fine powder composed of an oxide-based positive electrode active material and a powder composed of an oxide-based solid electrolyte in which the content of particles having a particle size of 0.12 μm or less is 0.5% by volume or more. An electrode member comprising: a positive electrode mixture layer of the above.
前記酸化物系固体電解質からなる粉末が、Li7La3Zr212(リチウムサイトへのAl又はGaの置換型、及びジルコニウムサイトへのNb又はTaの置換型を含む)、Li1.5Al0.5Ge1.5312、Li3BO3(Li3BO3にLi2SO4、Li2CO3、Li4SiO4なる材料群のうち1種類もしくは2種類以上混合した非晶質状または結晶化ガラスを含む)、Li1.3Al0.3Ti1.7312、Li0.33La0.55TiO3からなる群のいずれか1種以上から選択される請求項10に記載の電極部材。 Powders comprising the oxide-based solid electrolyte include Li 7 La 3 Zr 2 O 12 (including a substitution type of Al or Ga for a lithium site and a substitution type of Nb or Ta for a zirconium site), and Li 1.5 Al 0.5 Ge 1.5 P 3 O 12, Li 3 BO 3 (Li 3 BO 3 to Li 2 SO 4, Li 2 CO 3, Li 4 amorphous Shitsujo or crystalline mixed one or two kinds or more of SiO 4 comprising material group 11. The electrode member according to claim 10, wherein the electrode member is selected from one or more of the group consisting of: Li 1.3 Al 0.3 Ti 1.7 P 3 O 12 and Li 0.33 La 0.55 TiO 3 . 前記酸化物系固体電解質からなる粉末は、体積基準による累積粒度分布における50%粒径(D50)が10μm以下である請求項10又は11に記載の電極部材。 The electrode member according to claim 10, wherein the powder made of the oxide-based solid electrolyte has a 50% particle size (D 50 ) of 10 μm or less in a cumulative particle size distribution on a volume basis. 前記混合物中に、前記酸化物系固体電解質からなる粉末が、質量比で25〜99%含有される請求項10〜12のいずれか1項に記載の電極部材。   The electrode member according to any one of claims 10 to 12, wherein the mixture contains 25 to 99% by mass of a powder made of the oxide-based solid electrolyte.
JP2019112246A 2018-06-15 2019-06-17 Electrode member, all-solid-state battery, powder for electrode member, method for manufacturing electrode member and method for manufacturing all-solid-state battery Active JP6797241B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018114949 2018-06-15
JP2018114949 2018-06-15

Publications (2)

Publication Number Publication Date
JP2019220468A true JP2019220468A (en) 2019-12-26
JP6797241B2 JP6797241B2 (en) 2020-12-09

Family

ID=69096954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019112246A Active JP6797241B2 (en) 2018-06-15 2019-06-17 Electrode member, all-solid-state battery, powder for electrode member, method for manufacturing electrode member and method for manufacturing all-solid-state battery

Country Status (1)

Country Link
JP (1) JP6797241B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131467A1 (en) * 2019-12-27 2021-07-01 株式会社村田製作所 Solid-state battery
CN115023831A (en) * 2020-01-17 2022-09-06 住友化学株式会社 Mixed powder for all-solid-state lithium-ion battery, mixed paste for all-solid-state lithium-ion battery, electrode, and all-solid-state lithium-ion battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004213938A (en) * 2002-12-27 2004-07-29 Toshiba Battery Co Ltd Lithium secondary battery and its manufacturing method
JP2009181921A (en) * 2008-01-31 2009-08-13 Ohara Inc Solid battery
WO2012043566A1 (en) * 2010-09-28 2012-04-05 トヨタ自動車株式会社 Sintered body for use in battery, method for manufacturing sintered body for use in battery, and all-solid-state lithium battery
WO2013140607A1 (en) * 2012-03-23 2013-09-26 株式会社 東芝 Solid electrolyte, solid electrolyte production method, cell, and cell pack
JP2014143133A (en) * 2013-01-25 2014-08-07 Toyota Motor Corp Positive electrode for secondary battery, method for manufacturing positive electrode for secondary battery, and all-solid secondary battery
JP2016001598A (en) * 2014-05-19 2016-01-07 Tdk株式会社 Lithium ion secondary battery
JP2016136516A (en) * 2015-01-09 2016-07-28 株式会社半導体エネルギー研究所 Electrode, power storage device, and electronic equipment
WO2016175217A1 (en) * 2015-04-30 2016-11-03 日本電気株式会社 Electrolyte solution for secondary batteries, and secondary battery
JP2017004824A (en) * 2015-06-12 2017-01-05 アルプス電気株式会社 Secondary battery and manufacturing method of the same
JP2017183024A (en) * 2016-03-30 2017-10-05 日立造船株式会社 All-solid type secondary battery and method for manufacturing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004213938A (en) * 2002-12-27 2004-07-29 Toshiba Battery Co Ltd Lithium secondary battery and its manufacturing method
JP2009181921A (en) * 2008-01-31 2009-08-13 Ohara Inc Solid battery
WO2012043566A1 (en) * 2010-09-28 2012-04-05 トヨタ自動車株式会社 Sintered body for use in battery, method for manufacturing sintered body for use in battery, and all-solid-state lithium battery
WO2013140607A1 (en) * 2012-03-23 2013-09-26 株式会社 東芝 Solid electrolyte, solid electrolyte production method, cell, and cell pack
JP2014143133A (en) * 2013-01-25 2014-08-07 Toyota Motor Corp Positive electrode for secondary battery, method for manufacturing positive electrode for secondary battery, and all-solid secondary battery
JP2016001598A (en) * 2014-05-19 2016-01-07 Tdk株式会社 Lithium ion secondary battery
JP2016136516A (en) * 2015-01-09 2016-07-28 株式会社半導体エネルギー研究所 Electrode, power storage device, and electronic equipment
WO2016175217A1 (en) * 2015-04-30 2016-11-03 日本電気株式会社 Electrolyte solution for secondary batteries, and secondary battery
JP2017004824A (en) * 2015-06-12 2017-01-05 アルプス電気株式会社 Secondary battery and manufacturing method of the same
JP2017183024A (en) * 2016-03-30 2017-10-05 日立造船株式会社 All-solid type secondary battery and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131467A1 (en) * 2019-12-27 2021-07-01 株式会社村田製作所 Solid-state battery
CN115023831A (en) * 2020-01-17 2022-09-06 住友化学株式会社 Mixed powder for all-solid-state lithium-ion battery, mixed paste for all-solid-state lithium-ion battery, electrode, and all-solid-state lithium-ion battery

Also Published As

Publication number Publication date
JP6797241B2 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
KR101938237B1 (en) Positive electrode for secondary battery and secondary battery comprising the same
CN102859759B (en) The method producing monolithic battery by pulse electric current sintering
CN111864207B (en) All-solid battery
CN109643794A (en) Cathode active material for secondary battery and preparation method thereof
CN103329334A (en) Nonaqueous electrolyte battery
JP5747848B2 (en) Method for producing positive electrode active material layer-containing body
CN111525090A (en) Negative electrode layer and all-solid-state battery
JP2018181702A (en) Method for manufacturing all-solid lithium ion secondary battery
JP2013235666A (en) Positive-electrode active material for batteries and method for manufacturing the same
JP6876820B2 (en) A composition for forming an active material layer and a method for producing the same, and a method for producing an electrode sheet for an all-solid-state secondary battery and an all-solid-state secondary battery.
WO2022118868A1 (en) Oxide solid electrolyte, binder, solid electrolyte layer, active material, electrode, and all-solid-state secondary battery
CN111525091B (en) Negative electrode layer and all-solid-state battery
JP2023547117A (en) Electrode powder for producing a dry electrode for secondary batteries, a method for producing the same, a method for producing a dry electrode using the same, a dry electrode, a secondary battery including the same, an energy storage device, and an apparatus for producing a dry electrode
JP6797241B2 (en) Electrode member, all-solid-state battery, powder for electrode member, method for manufacturing electrode member and method for manufacturing all-solid-state battery
JP2018181706A (en) Method for manufacturing all-solid lithium ion secondary battery
US20200194829A1 (en) Solid electrolyte layer and all-solid-state battery
JP5602541B2 (en) All-solid-state lithium ion battery
CN113594456B (en) Positive electrode slurry, preparation method thereof, positive plate and lithium ion battery
CN116093280A (en) Positive electrode active material with nano coating layer, preparation method thereof and lithium ion battery comprising positive electrode active material
WO2022004884A1 (en) Method for manufacturing sheet for all-solid-state secondary battery and all-solid-state secondary battery, sheet for all-solid-state secondary battery, and all-solid-state secondary battery
WO2021111551A1 (en) Electrode member, all-solid-state battery, powder for electrode member, method for manufacturing electrode member, and method for manufacturing all-solid-state battery
TW201806216A (en) Separators for high density electrochemical energy storage
JP2018120739A (en) Method of producing solid electrolyte-containing sheet, method of producing electrode sheet for all-solid secondary battery, and method of manufacturing all-solid secondary battery
TW202123522A (en) Electrode COMPONENT, all-solid-state battery, powder for electrode COMPONENT, method for producing electrode COMPONENT, and method for producing all-solid-state battery
JP2018181708A (en) Negative electrode mixture material for all-solid lithium ion secondary battery, negative electrode including the same, and all-solid lithium ion secondary battery having negative electrode hereof

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20190716

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190821

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190820

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201117

R150 Certificate of patent or registration of utility model

Ref document number: 6797241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20221206

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20221206

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250