JP2017003431A - Measuring method of vulcanized rubber - Google Patents

Measuring method of vulcanized rubber Download PDF

Info

Publication number
JP2017003431A
JP2017003431A JP2015117654A JP2015117654A JP2017003431A JP 2017003431 A JP2017003431 A JP 2017003431A JP 2015117654 A JP2015117654 A JP 2015117654A JP 2015117654 A JP2015117654 A JP 2015117654A JP 2017003431 A JP2017003431 A JP 2017003431A
Authority
JP
Japan
Prior art keywords
vulcanized rubber
nmr
sulfur
qcpmg
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015117654A
Other languages
Japanese (ja)
Other versions
JP6501637B2 (en
Inventor
仁太 宇川
Nita Ukawa
仁太 宇川
英昭 木村
Hideaki Kimura
英昭 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2015117654A priority Critical patent/JP6501637B2/en
Publication of JP2017003431A publication Critical patent/JP2017003431A/en
Application granted granted Critical
Publication of JP6501637B2 publication Critical patent/JP6501637B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measuring method of vulcanized rubber capable of directly observing sulfur in the vulcanized rubber by solid high resolutionS-NMR method.SOLUTION: In a method for measuring vulcanized rubber vulcanized with sulfur by solid high resolution NMR method, a spectrum of the vulcanized rubber having a signal derived fromS is obtained by solid high resolutionS-NMR method using QCPMG (quadrupole car-parcel-may boom-gill) method. In the QCPMG method, a detection time τa of an echo signal in a step for repeating irradiation of π pulse and detection of the echo signal is set within a range of 0.1-3.0 ms.SELECTED DRAWING: Figure 1

Description

本発明は、固体高分解能NMR法を用いた加硫ゴムの測定方法に関する。   The present invention relates to a method for measuring vulcanized rubber using a solid high-resolution NMR method.

硫黄で加硫された加硫ゴムは、タイヤや防振ゴムなどの様々なゴム製品に用いられている。これらのゴム製品の開発や性能評価等を行う上で、加硫ゴムの架橋構造を解析する技術が求められており、固体高分解能NMR(核磁気共鳴分光)法を用いて加硫ゴムを測定する方法が提案されている。   Vulcanized rubber vulcanized with sulfur is used in various rubber products such as tires and vibration-proof rubbers. Technology for analyzing the cross-linked structure of vulcanized rubber is required for the development and performance evaluation of these rubber products, and measurement of vulcanized rubber using solid high-resolution NMR (nuclear magnetic resonance spectroscopy). A method has been proposed.

例えば、特許文献1には、硫黄で加硫された天然ゴムを含むイソプレン系ゴムの耐熱劣化性能を予測する方法として、観測核を1HとするMAS(Magic Angle Spinning)を用いた固体NMR(1H−NMR)法により、加硫ゴムの架橋構造を解析する方法が開示されている。また、非特許文献1には、観測核を13Cとする固体高分解能NMR(13C−NMR)法により、加硫ゴムの架橋構造を解析する方法が開示されている。特許文献2には、かかる13C−固体NMRにおける解析の困難性を解消するために、加硫ゴムの微粒子を含む分散液を測定対象とする、溶液高分解能NMR法による架橋構造の評価方法が開示されている。このように従来、加硫ゴムに対するNMR測定は、加硫ゴム中の1Hまたは13Cを観測核として観察することにより間接的に硫黄の架橋構造を推定しており、硫黄(33S)を直接観測した例は知られていない。 For example, in Patent Document 1, as a method for predicting the heat-resistant deterioration performance of isoprene-based rubber including natural rubber vulcanized with sulfur, solid-state NMR using MAS (Magic Angle Spinning) with an observation nucleus of 1 H ( A method for analyzing the crosslinked structure of vulcanized rubber by the 1 H-NMR method is disclosed. Non-Patent Document 1 discloses a method for analyzing a crosslinked structure of a vulcanized rubber by a solid high-resolution NMR ( 13 C-NMR) method using 13 C as an observation nucleus. Patent Document 2 discloses a method for evaluating a crosslinked structure by a solution high-resolution NMR method using a dispersion containing fine particles of vulcanized rubber as a measurement object in order to eliminate the difficulty of analysis in 13 C-solid NMR. It is disclosed. Thus, conventionally, NMR measurement for vulcanized rubber has indirectly estimated the sulfur cross-linking structure by observing 1 H or 13 C in the vulcanized rubber as an observation nucleus, and sulfur ( 33 S) There are no known examples of direct observation.

観測核を33SとするNMR(33S−NMR)法自体は、例えば非特許文献2に記載されているように、従来実施されているが、ポリマーではない硫黄化合物についての溶液NMR法を開示したものであり、加硫ゴムなどのポリマーに対して固体NMR法により実施した例は知られていない。 The NMR ( 33 S-NMR) method itself using 33 S as the observation nucleus has been conventionally performed as disclosed in, for example, Non-Patent Document 2, but discloses a solution NMR method for sulfur compounds that are not polymers. No examples have been known in which the solid NMR method was performed on polymers such as vulcanized rubber.

特開2013−257239号公報JP 2013-257239 A 特開2006−010462号公報JP 2006-010462 A

森麻樹夫、J. L. Koenig、「高分解能NMRによるゴム加硫物の分析」、日本ゴム協会誌、第71巻、第2号(1998)、p26−35Masaki Mori, J. L. Koenig, “Analysis of rubber vulcanizates by high resolution NMR”, Journal of the Japan Rubber Association, Vol. 71, No. 2 (1998), p26-35 G. Barbarella、“Sulfur-33 NMR”、Progress in NMR Spectroscopy, Vol. 25, pp.317-343, 1993G. Barbarella, “Sulfur-33 NMR”, Progress in NMR Spectroscopy, Vol. 25, pp.317-343, 1993

本発明は、上記の点に鑑み、固体高分解能33S−NMR法により加硫ゴムの硫黄を直接観測することを可能にする加硫ゴムの測定方法を提供することを目的とする。 In view of the above points, an object of the present invention is to provide a method for measuring a vulcanized rubber that makes it possible to directly observe sulfur in the vulcanized rubber by a solid high-resolution 33 S-NMR method.

本発明に係る加硫ゴムの測定方法は、硫黄で加硫された加硫ゴムを固体高分解能NMR法により測定する方法であって、QCPMG(四極子カー・パーセル・メイブーム・ギル)法を用いた固体高分解能33S−NMR法により33Sに由来するシグナルを持つ加硫ゴムのスペクトルを得ることを特徴するものである。 The method for measuring vulcanized rubber according to the present invention is a method for measuring vulcanized rubber vulcanized with sulfur by a solid high-resolution NMR method, and uses the QCPMG (quadrupole car, parcel, Mayboom, gill) method. It is characterized by obtaining a spectrum of a vulcanized rubber having a signal derived from 33 S by a solid high-resolution 33 S-NMR method.

本発明によれば、固体高分解能33S−NMR法にQCPMG法を組み合わせることにより、加硫ゴムの硫黄を直接観測することができる。 According to the present invention, sulfur in the vulcanized rubber can be directly observed by combining the QCPMG method with the solid high-resolution 33 S-NMR method.

QCPMG−MAS法のパルス系列のタイミング方式図である。It is a timing system figure of the pulse series of a QCPMG-MAS method. 実施例1の加硫ゴムの33S−NMRのスペクトル図である。3 is a 33 S-NMR spectrum of the vulcanized rubber of Example 1. FIG. 実施例2の加硫ゴムの33S−NMRのスペクトル図である。3 is a 33 S-NMR spectrum of the vulcanized rubber of Example 2. FIG. 実施例3の加硫ゴムの33S−NMRのスペクトル図である。3 is a 33 S-NMR spectrum of the vulcanized rubber of Example 3. FIG. 比較例に係る加硫ゴムの33S−NMRのスペクトル図であり、(A)はシングルパルス法(比較例1)、(B)はスピンエコー法(比較例2)の各図である。It is a 33 S-NMR spectrum figure of the vulcanized rubber concerning a comparative example, (A) is each figure of a single pulse method (comparative example 1), and (B) is each figure of a spin echo method (comparative example 2). 加硫ゴムの33S−NMRのスペクトル図であり、(A)はτa=0.05ms、(B)はτa=0.1ms、(C)はτa=1.0ms、(D)はτa=3.0ms、(E)はτa=4.0msの各図である。It is a spectrum figure of 33 S-NMR of vulcanized rubber, (A) is τ a = 0.05 ms, (B) is τ a = 0.1 ms, (C) is τ a = 1.0 ms, (D) Is a diagram of τ a = 3.0 ms, and (E) is a diagram of τ a = 4.0 ms.

以下、本発明の実施に関連する事項について詳細に説明する。   Hereinafter, matters related to the implementation of the present invention will be described in detail.

本実施形態に係る加硫ゴムの測定方法は、硫黄で加硫された加硫ゴムについて、QCPMG法を用いた固体高分解能33S−NMR法により、当該加硫ゴム中の硫黄を測定する方法である。 The measurement method of the vulcanized rubber according to the present embodiment is a method of measuring sulfur in the vulcanized rubber by a solid high-resolution 33 S-NMR method using the QCPMG method for the vulcanized rubber vulcanized with sulfur. It is.

測定対象である加硫ゴムとしては、硫黄を用いて加硫されたゴムであればよく、硫黄及びゴム成分を含むゴム組成物を加硫してなるものであれば、その他の成分として充填剤などの各種添加剤を含む加硫ゴム組成物でもよい。   The vulcanized rubber to be measured may be a rubber vulcanized using sulfur, and if it is obtained by vulcanizing a rubber composition containing sulfur and a rubber component, a filler as another component. A vulcanized rubber composition containing various additives such as may be used.

ゴム成分としては、特に限定されず、例えば、天然ゴム(NR)、スチレンブタジエンゴム(SBR)、ポリブタジエンゴム(BR)、ポリイソプレンゴム(IR)、ニトリルゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)などの各種ジエン系ゴムが挙げられ、これらのジエン系ゴムを単独又は2種類以上ブレンドしたものでもよい。   The rubber component is not particularly limited. For example, natural rubber (NR), styrene butadiene rubber (SBR), polybutadiene rubber (BR), polyisoprene rubber (IR), nitrile rubber (NBR), chloroprene rubber (CR), Examples include various diene rubbers such as butyl rubber (IIR), and these diene rubbers may be used singly or as a blend of two or more.

加硫剤としての硫黄としては、特に限定されず、感度を高めるために、硫黄同位体濃縮した33S(即ち、33S標識した硫黄)を用いてもよく、そのような同位体濃縮をしていない硫黄を用いてもよい。33S同位体濃縮した硫黄としては、33Sの存在比が天然存在比である0.75%よりも高いものであればよく、例えば50%以上のものを用いてもよい。加硫ゴム中の硫黄の配合量は、特に限定されず、例えば、ゴム成分100質量部に対して0.1〜10質量部でもよく、1〜8質量部でもよい。 Sulfur as a vulcanizing agent is not particularly limited, and in order to increase sensitivity, sulfur isotope-enriched 33 S (that is, 33 S-labeled sulfur) may be used. Sulfur that is not used may be used. The sulfur enriched with 33 S isotopes may be any sulfur as long as the abundance ratio of 33 S is higher than the natural abundance ratio of 0.75%, for example, 50% or more. The compounding quantity of the sulfur in a vulcanized rubber is not specifically limited, For example, 0.1-10 mass parts may be sufficient with respect to 100 mass parts of rubber components, and 1-8 mass parts may be sufficient.

加硫ゴム組成物に配合可能な他の成分としては、特に限定されず、例えば、カーボンブラックやシリカなどの充填剤、シランカップリング剤、プロセスオイルなどの軟化剤、可塑剤、老化防止剤、亜鉛華、ステアリン酸、ワックス、加硫促進剤など、通常ゴム工業で使用される各種添加剤が挙げられる。これら各成分の配合量は特に限定されない。   Other components that can be blended in the vulcanized rubber composition are not particularly limited, for example, fillers such as carbon black and silica, silane coupling agents, softeners such as process oil, plasticizers, anti-aging agents, Various additives usually used in the rubber industry such as zinc white, stearic acid, wax, vulcanization accelerator and the like can be mentioned. The blending amount of each of these components is not particularly limited.

加硫ゴムは、バンバリーミキサーなどの混合機を用いて上記各成分を常法に従い混練して未加硫ゴム組成物を得て、該未加硫ゴム組成物を常法に従い加熱して加硫することにより調製することができる。   The vulcanized rubber is obtained by kneading the above components in accordance with a conventional method using a mixer such as a Banbury mixer to obtain an unvulcanized rubber composition, and heating the unvulcanized rubber composition according to a conventional method for vulcanization. Can be prepared.

本実施形態では、このようにして得られる硫黄加硫ゴムに対して、固体高分解能33S−NMR測定する際に、QCPMG法を組み合わせることを特徴とするものである。QCPMG法を33S−NMR測定に用いた例は従来知られておらず、QCPMG法を硫黄加硫ゴムの固体高分解能33S−NMR法に適用することにより、はじめて33Sに由来するシグナルを得ることに成功した。固体高分解能33S−NMR測定は、通常はシングルパルス法を適用して実施されるが、加硫ゴムの測定にシングルパルス法を用いると図5(A)に示すように感度が低く、ベースラインがひずむ。これに対し、π/2パルスを照射し、τ秒経過後にπパルスを照射し、それによって生じたエコー信号をフーリエ変換するスピンエコー法を用いると、図5(B)に示すようにベースラインのひずみは抑えられるものの、感度を向上させることはできず、33Sに由来するシグナルは検出されない。本実施形態であると、固体高分解能33S−NMR法とQCPMG法を組み合わせることにより、1H共鳴周波数が400MHzである比較的低磁場の普及NMR装置でありながら、加硫ゴムの33S−NMRスペクトルを得ることができる。 In the present embodiment, the sulfur vulcanized rubber thus obtained is combined with the QCPMG method when performing solid high-resolution 33 S-NMR measurement. An example of using the QCPMG method for 33 S-NMR measurement has not been known so far. By applying the QCPMG method to a solid high-resolution 33 S-NMR method of sulfur vulcanized rubber, a signal derived from 33 S is not used for the first time. Succeeded in getting. The solid high-resolution 33 S-NMR measurement is usually carried out by applying the single pulse method. However, when the single pulse method is used for measurement of vulcanized rubber, the sensitivity is low as shown in FIG. The line is distorted. On the other hand, if a spin echo method is used in which a π / 2 pulse is irradiated, a π pulse is irradiated after elapse of τ seconds, and an echo signal generated thereby is Fourier transformed, a baseline is obtained as shown in FIG. However, the sensitivity cannot be improved and no signal derived from 33 S is detected. In this embodiment, by combining the solid high-resolution 33 S-NMR method and the QCPMG method, the 1 H resonance frequency of 400 MHz is a relatively low magnetic field popular NMR apparatus, but the vulcanized rubber 33 S- NMR spectra can be obtained.

QCPMG(四極子カー・パーセル・メイブーム・ギル:Quadrupolar Carr-Purcell-Meiboom-Gill)法については、F. H. Larsen他3名, “QCPMG-MAS NMR of Half-Integer Quadrupolar Nuclei”, Journal of Magnetic Resonance, 131, pp.144-147, 1998(以下、非特許文献3という。)に開示されており、同文献に記載方法を適用することができる。   For the QCPMG (Quadrupolar Carr-Purcell-Meiboom-Gill) method, FH Larsen et al., “QCPMG-MAS NMR of Half-Integer Quadrupolar Nuclei”, Journal of Magnetic Resonance, 131 , pp. 144-147, 1998 (hereinafter referred to as non-patent document 3), and the method described in the document can be applied.

詳細には、一実施形態として、試料をマジック角で高速回転させる固体高分解能33S−MAS(Magic Angle Spinning)−NMR測定において、半整数四極子核の感度増大法であるQCPMG法を適用すればよい。図1は、該QCPMG法で用いるパルス系列を示したものである。試料をマジック角(静磁場に対してθ=54.7°)で高速回転させつつ、まず、工程Aにおいて、π/2パルス(90°パルス)を照射し(X軸から照射)、遅延時間τ1経過後に位相を90°ずらしてπパルス(180°パルス)を照射し(Y軸から照射)、遅延時間τ1経過後に、エコー信号の頂点から後半部分をτa/2の間取り込む。次いで、工程Bにおいて、πパルスの照射と現れるエコー信号の検出をM回繰り返す。詳細には、遅延時間τ2経過後にπパルスを照射し(Y軸から照射)、遅延時間τ2経過後にエコー信号をτaの間取り込み、この工程を複数回(M回)繰り返す。次いで、工程Cにおいて、サンプリング期間をτdの間延長して、FID(自由誘導減衰:Free Induction Decay)を完全に減衰させる。ここで、τdはFIDの完全な減衰を確保するための遅延時間である。このようにして取り込まれたエコー信号をフーリエ変換することにより、NMRスペクトルが得られる。 Specifically, as one embodiment, the QCPMG method, which is a method of increasing the sensitivity of half-integer quadrupole nuclei, is applied in solid high-resolution 33 S-MAS (Magic Angle Spinning) -NMR measurement in which a sample is rotated at a high magic angle. do it. FIG. 1 shows a pulse sequence used in the QCPMG method. While rotating the sample at a magic angle (θ = 54.7 ° with respect to the static magnetic field) at high speed, first, in step A, a π / 2 pulse (90 ° pulse) was irradiated (irradiated from the X axis), and the delay time After τ 1 elapses, the phase is shifted by 90 ° and irradiated with π pulse (180 ° pulse) (irradiation from the Y axis), and after the delay time τ 1 elapses, the latter half of the echo signal is captured for τ a / 2. Next, in step B, the detection of the echo signal that appears with the irradiation of the π pulse is repeated M times. Specifically, a π pulse is irradiated after the delay time τ 2 has elapsed (irradiation from the Y axis), and an echo signal is captured during τ a after the delay time τ 2 has elapsed, and this process is repeated a plurality of times (M times). Next, in step C, the sampling period is extended for τ d to completely attenuate FID (Free Induction Decay). Here, τ d is a delay time for ensuring complete attenuation of the FID. An NMR spectrum is obtained by Fourier-transforming the echo signal thus captured.

ここで、τ1=τr−τπ/2であり、τ2及びτaは、2Nτr=τa+2τ2+τπにより与えられる(但し、τr(=2π/ωr)は回転の周期、τπ/2はπ/2パルスの持続時間、Nは整数、τπはπパルスの持続時間である。)。 Here, τ 1 = τ r −τ π / 2 , and τ 2 and τ a are given by 2Nτ r = τ a + 2τ 2 + τ π (where τ r (= 2π / ω r ) is the rotation Period, τ π / 2 is the duration of π / 2 pulse, N is an integer, and τ π is the duration of π pulse.)

本実施形態では、かかるQCPMG法において、πパルスの照射とエコー信号の検出を繰り返す工程Bでのエコー信号の検出時間τaを0.1〜3.0msの範囲内に設定することが好ましい。この検出時間τaが0.1〜3.0msであることにより、加硫ゴム中の硫黄(33S)の検出感度を向上することができる。検出時間τaは0.5〜3.0msであることがより好ましい。 In the present embodiment, in the QCPMG method, it is preferable to set the echo signal detection time τ a in the step B in which the irradiation of the π pulse and the detection of the echo signal are repeated within the range of 0.1 to 3.0 ms. When the detection time τ a is 0.1 to 3.0 ms, the detection sensitivity of sulfur ( 33 S) in the vulcanized rubber can be improved. The detection time τ a is more preferably 0.5 to 3.0 ms.

QCPMG法の測定条件として、工程Bの繰り返し回数Mは、例えば3〜200回でもよい。遅延時間τ1は、例えば0.1〜10msでもよい。遅延時間τ2は、例えば0.1〜10msでもよい。QCPMG法について、その他の測定条件については、上記の非特許文献3に記載の方法に準じて設定することができる。 As measurement conditions of the QCPMG method, the number of repetitions M of the process B may be, for example, 3 to 200 times. The delay time τ 1 may be 0.1 to 10 ms, for example. The delay time τ 2 may be 0.1 to 10 ms, for example. About QCPMG method, about other measurement conditions, it can set according to the method of the above-mentioned nonpatent literature 3.

なお、本実施形態に係る固体高分解能33S−NMR法においては、QCPMG法にDFS法を組み合わせてもよく、また、QCPMG法にWURST法を組み合わせてもよく、これらを組み合わせることで更に感度を向上させることができる。ここで、DFS(Double Frequency Sweeps)法については、A. P. M. Kentgens他1名,“Advantages of double frequency sweeps in static, MAS and MQMAS NMR of spin I=3/2 nuclei”, Chemical Physics Letters 300, pp.435-443, 1999に開示されており、同文献に記載方法を適用することができる。また、WURST(Wideband, Uniform Rate, and Smooth Truncation)法については、E. Kupce他1名,“Adiabatic Pulses for Wideband Inversion and Broadband Decoupling”, Journal of Magnetic Resonance, Series A 115, pp.273-276, 1995に開示されており、同文献に記載の方法を適用することができる。 In the solid high-resolution 33 S-NMR method according to the present embodiment, the DFS method may be combined with the QCPMG method, or the WURST method may be combined with the QCPMG method. Can be improved. Here, regarding DFS (Double Frequency Sweeps) method, APM Kentgens et al., “Advantages of double frequency sweeps in static, MAS and MQMAS NMR of spin I = 3/2 nuclei”, Chemical Physics Letters 300, pp.435 -443, 1999, and the method described therein can be applied. As for the WURST (Wideband, Uniform Rate, and Smooth Truncation) method, E. Kupce et al., “Adiabatic Pulses for Wideband Inversion and Broadband Decoupling”, Journal of Magnetic Resonance, Series A 115, pp.273-276, The method disclosed in 1995 and described in this document can be applied.

本実施形態に係る固体高分解能33S−NMR法では、低周波核対応プローブを装着した固体高分解能NMR装置を用いることが好ましい。より詳細には、1H共鳴周波数が400MHzであるNMR装置では、33Sの共鳴周波数は30.7MHz付近であるため、30.0MHzに対応したプローブを装着した固体高分解能NMR装置を用いて測定すればよい。 In the solid high-resolution 33 S-NMR method according to this embodiment, it is preferable to use a solid high-resolution NMR apparatus equipped with a low-frequency nuclear probe. More specifically, in an NMR apparatus having a 1 H resonance frequency of 400 MHz, since the resonance frequency of 33 S is around 30.7 MHz, measurement is performed using a solid high-resolution NMR apparatus equipped with a probe corresponding to 30.0 MHz. do it.

本実施形態によれば、かかるQCPMG法を用いた固体高分解能33S−NMR法により、例として図2に示すように、33Sに由来するシグナル(ピーク)を持つ加硫ゴムのスペクトルを得ることができ、加硫ゴム中の硫黄を直接測定することができる。そのため、加硫ゴムの架橋構造、たとえばモノスルフィド、ポリスルフィドなどのスルフィド構造のほか、加硫促進剤-酸化亜鉛反応物、ペンダント加硫促進剤残基、架橋前駆体、副生成物などについて、構造解析および定量解析などに利用することができる。 According to the present embodiment, the solid high-resolution 33 S-NMR method using the QCPMG method obtains a spectrum of a vulcanized rubber having a signal (peak) derived from 33 S as shown in FIG. 2 as an example. The sulfur in the vulcanized rubber can be measured directly. Therefore, in addition to the crosslinked structure of vulcanized rubber, such as sulfide structures such as monosulfide and polysulfide, the structure of vulcanization accelerator-zinc oxide reactant, pendant vulcanization accelerator residue, crosslinking precursor, by-product, etc. It can be used for analysis and quantitative analysis.

以下、本発明の実施例を示すが、本発明はこれらの実施例に限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

[第1実施例]
バンバリーミキサーを使用し、下記表1に示す配合(質量部)に従い、ジエン系ゴムに亜鉛華、ステアリン酸、硫黄及び加硫促進剤を添加し混練して、未加硫ゴム組成物を調製した。得られた未加硫ゴム組成物を160℃で30分間加硫することにより加硫ゴムを得た。得られた加硫ゴムを測定試料として、下記測定方法の33S−NMR測定により加硫ゴムの33S−NMRスペクトルを得た。測定には、NMR装置としてBruker社製AVANCE III HD400(1H共鳴周波数:400MHz)を用い、使用プローブをBruker社製4mmMAS BL4 VTN低周波対応プローブとし、33S共鳴周波数を30.706MHzとし、測定温度を25℃とし、標準物質を二硫化炭素(0ppm)として実施した。加硫ゴムのスペクトルの測定は、QCPMG法(実施例1〜3)については配合1〜3のすべてを測定対象とし、シングルパルス法(比較例1)とスピンエコー法(比較例2)については配合1を測定対象とした。
[First embodiment]
Using a Banbury mixer, according to the composition (parts by mass) shown in Table 1 below, zinc oxide, stearic acid, sulfur and a vulcanization accelerator were added to the diene rubber and kneaded to prepare an unvulcanized rubber composition. . The obtained unvulcanized rubber composition was vulcanized at 160 ° C. for 30 minutes to obtain a vulcanized rubber. Using the obtained vulcanized rubber as a measurement sample, a 33 S-NMR spectrum of the vulcanized rubber was obtained by 33 S-NMR measurement according to the following measurement method. For the measurement, Bruker's AVANCE III HD400 (1H resonance frequency: 400 MHz) was used as the NMR apparatus, the probe used was a Bruker 4 mm MAS BL4 VTN low frequency probe, the 33 S resonance frequency was 30.706 MHz, and the measurement temperature was The temperature was 25 ° C., and the standard substance was carbon disulfide (0 ppm). The spectrum of the vulcanized rubber is measured for all of the blends 1 to 3 for the QCPMG method (Examples 1 to 3), and for the single pulse method (Comparative Example 1) and the spin echo method (Comparative Example 2). Formulation 1 was used as a measurement target.

(実施例1〜3:QCPMG法)
・パルス系列:QCPMG
・MAS速度:8000Hz
・遅延時間τ1:0.87ms
・π/2パルス持続時間τπ/2:4.0ms
・検出時間τa:1.00ms
・遅延時間τ2:0.80ms
・πパルス持続時間τπ:8.0ms
・工程Bの繰り返し回数M:14回
・遅延時間τd:0.5ms
(Examples 1-3: QCPMG method)
・ Pulse sequence: QCPMG
・ MAS speed: 8000Hz
Delay time τ 1 : 0.87 ms
・ Π / 2 pulse duration τ π / 2 : 4.0 ms
・ Detection time τ a : 1.00 ms
Delay time τ 2 : 0.80 ms
・ Π pulse duration τ π : 8.0 ms
-Number of repetitions of process B: 14 times-Delay time τ d : 0.5 ms

(比較例1:シングルパルス法)
・パルス系列:シングルパルス
・MAS速度:8000Hz
・π/2パルス持続時間τπ/2:4.0ms
(Comparative example 1: Single pulse method)
・ Pulse sequence: Single pulse ・ MAS speed: 8000 Hz
・ Π / 2 pulse duration τ π / 2 : 4.0 ms

(比較例2:スピンエコー法)
・パルス系列:スピンエコー
・MAS速度:8000Hz
・π/2パルス持続時間τπ/2:4.0ms
(Comparative Example 2: Spin echo method)
・ Pulse sequence: Spin echo ・ MAS speed: 8000 Hz
・ Π / 2 pulse duration τ π / 2 : 4.0 ms

実施例1〜3において得られたスペクトルを図2〜4に示し、比較例1,2において得られたスペクトルを図5に示す。図5(A)に示すように、シングルパルス法を用いた比較例1では、感度が低く、ベースラインがひずんでおり、33Sのシグナルは観測されなかった。図5(B)に示すように、スピンエコー法を用いた比較例2では、ベースラインのひずみは抑えられたものの、感度が低く、33Sのシグナルは観測されなかった。これに対し、QCPMG法を用いた実施例1〜3では、ベースラインのひずみが抑えられるとともに、−200〜−400ppmの間に33Sのシグナルが明確に観測されている。また、硫黄の配合量が5質量部である実施例1だけでなく、3質量部である実施例2でも、33Sのシグナルが明確に観測された。更に、実施例1,2に係る天然ゴムの場合だけでなく、実施例3に係るスチレンブタジエンゴムの場合にも、33Sのシグナルが観測されており、種々の硫黄加硫ゴムでの測定が可能であることが分かる。 The spectra obtained in Examples 1 to 3 are shown in FIGS. 2 to 4, and the spectra obtained in Comparative Examples 1 and 2 are shown in FIG. As shown in FIG. 5A, in Comparative Example 1 using the single pulse method, the sensitivity was low, the baseline was distorted, and no 33 S signal was observed. As shown in FIG. 5B, in Comparative Example 2 using the spin echo method, the baseline distortion was suppressed, but the sensitivity was low, and no 33 S signal was observed. On the other hand, in Examples 1 to 3 using the QCPMG method, the distortion of the baseline is suppressed, and a 33 S signal is clearly observed between −200 to −400 ppm. Further, not only Example 1 in which the amount of sulfur was 5 parts by mass but also Example 2 in which 3 parts by mass was 3 parts, a signal of 33 S was clearly observed. Further, not only in the case of the natural rubber according to Examples 1 and 2, but also in the case of the styrene butadiene rubber according to Example 3, a signal of 33 S is observed, and measurement with various sulfur vulcanized rubbers is possible. It turns out that it is possible.

[第2実施例]
実施例1において、QCPMG法の測定条件におけるτaを0.05ms、0.1ms、1.0ms、3.0ms、4.0msと変更し、その他は実施例1と同様にして、33S−NMR測定を行った。各測定により得られた33S−NMRスペクトルを図6に示す。図6(A)に示すτa=0.05msの場合、及び図6(E)に示すτa=4.0msの場合、感度が低く、33Sのシグナルは観測されなかった。これに対し、図6(B)〜(D)に示すτa=0.1ms,1.0ms,3.0msの場合、感度の向上が認められ、−200〜−400ppmの間に33Sのシグナルが観測された。特に、図6(C)に示すτa=1.0msの場合と図6(D)に示すτa=3.0msの場合に、より明確な33Sのシグナルが観測された。
[Second Embodiment]
In Example 1, changes the tau a in the measurement conditions QCPMG method 0.05 ms, 0.1 ms, 1.0 ms, 3.0 ms, and 4.0 ms, others in the same manner as in Example 1, 33 S- NMR measurement was performed. The 33 S-NMR spectrum obtained by each measurement is shown in FIG. For tau a = 0.05 ms shown in FIG. 6 (A), and the case of tau a = 4.0 ms shown in FIG. 6 (E), the sensitivity is low, signal 33 S was observed. On the other hand, in the case of τ a = 0.1 ms, 1.0 ms, and 3.0 ms shown in FIGS. 6B to 6D, an improvement in the sensitivity is recognized, and 33 S of −200 to −400 ppm A signal was observed. In particular, a clearer 33 S signal was observed when τ a = 1.0 ms shown in FIG. 6C and when τ a = 3.0 ms shown in FIG. 6D.

Claims (2)

硫黄で加硫された加硫ゴムを固体高分解能NMR法により測定する方法であって、QCPMG(四極子カー・パーセル・メイブーム・ギル)法を用いた固体高分解能33S−NMR法により33Sに由来するシグナルを持つ加硫ゴムのスペクトルを得ることを特徴する加硫ゴムの測定方法。 The vulcanized vulcanized rubber with sulfur to a method of measuring the high-resolution solid-state NMR methods, by QCPMG (quadrupole car Parcel Meibumu Gill) method solid high-resolution 33 S-NMR method using 33 S A method for measuring vulcanized rubber, comprising obtaining a spectrum of vulcanized rubber having a signal derived from 前記QCPMG法において、πパルスの照射とエコー信号の検出を繰り返す工程での前記エコー信号の検出時間τaを0.1〜3.0msの範囲内に設定する、請求項1記載の加硫ゴムの測定方法。 2. The vulcanized rubber according to claim 1, wherein, in the QCPMG method, the detection time τ a of the echo signal in the step of repeating the irradiation of the π pulse and the detection of the echo signal is set within a range of 0.1 to 3.0 ms. Measuring method.
JP2015117654A 2015-06-10 2015-06-10 Measuring method of vulcanized rubber Active JP6501637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015117654A JP6501637B2 (en) 2015-06-10 2015-06-10 Measuring method of vulcanized rubber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015117654A JP6501637B2 (en) 2015-06-10 2015-06-10 Measuring method of vulcanized rubber

Publications (2)

Publication Number Publication Date
JP2017003431A true JP2017003431A (en) 2017-01-05
JP6501637B2 JP6501637B2 (en) 2019-04-17

Family

ID=57752718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015117654A Active JP6501637B2 (en) 2015-06-10 2015-06-10 Measuring method of vulcanized rubber

Country Status (1)

Country Link
JP (1) JP6501637B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001249091A (en) * 2000-03-07 2001-09-14 Mitsuboshi Belting Ltd Method for estimating durable life of rubber belt
JP2003102698A (en) * 2001-09-28 2003-04-08 Nihon Medi Physics Co Ltd Nuclear magnetic resonance image diagnosing agent
JP2006234842A (en) * 1995-02-24 2006-09-07 Btg Internatl Ltd Method of testing nuclear quadrupole resonance of sample, its apparatus and pulse sequence for exciting nuclear quadrupole resonance
JP2007218697A (en) * 2006-02-15 2007-08-30 Sumitomo Rubber Ind Ltd Rubber specimen tension tool, molecular structure/molecular motility property analyzer for rubber specimen in stretched state, and analysis method
JP2009162587A (en) * 2007-12-28 2009-07-23 Keio Gijuku Measuring instrument and measurement method
JP2012173093A (en) * 2011-02-21 2012-09-10 Bridgestone Corp Inspection method of rubber material
JP2012246208A (en) * 2011-05-25 2012-12-13 Si Science Co Ltd Fertilizer composition, method for using the same, and obtained living thing
JP2013159772A (en) * 2012-02-08 2013-08-19 Sumitomo Rubber Ind Ltd Method of quantifying strength of interface bonding between silica and modified polymer, rubber composition optimized by using the method and pneumatic tire using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234842A (en) * 1995-02-24 2006-09-07 Btg Internatl Ltd Method of testing nuclear quadrupole resonance of sample, its apparatus and pulse sequence for exciting nuclear quadrupole resonance
JP2001249091A (en) * 2000-03-07 2001-09-14 Mitsuboshi Belting Ltd Method for estimating durable life of rubber belt
JP2003102698A (en) * 2001-09-28 2003-04-08 Nihon Medi Physics Co Ltd Nuclear magnetic resonance image diagnosing agent
JP2007218697A (en) * 2006-02-15 2007-08-30 Sumitomo Rubber Ind Ltd Rubber specimen tension tool, molecular structure/molecular motility property analyzer for rubber specimen in stretched state, and analysis method
JP2009162587A (en) * 2007-12-28 2009-07-23 Keio Gijuku Measuring instrument and measurement method
JP2012173093A (en) * 2011-02-21 2012-09-10 Bridgestone Corp Inspection method of rubber material
JP2012246208A (en) * 2011-05-25 2012-12-13 Si Science Co Ltd Fertilizer composition, method for using the same, and obtained living thing
JP2013159772A (en) * 2012-02-08 2013-08-19 Sumitomo Rubber Ind Ltd Method of quantifying strength of interface bonding between silica and modified polymer, rubber composition optimized by using the method and pneumatic tire using the same

Also Published As

Publication number Publication date
JP6501637B2 (en) 2019-04-17

Similar Documents

Publication Publication Date Title
Chassé et al. Precise dipolar coupling constant distribution analysis in proton multiple-quantum NMR of elastomers
JP5603357B2 (en) Method for quantifying interfacial bond strength between silica and modified polymer, rubber composition optimized using the method, and pneumatic tire using the same
Koc et al. Optimal b value in diffusion‐weighted imaging for differentiation of abdominal lesions
Kuhn et al. Characterization of elastomeric materials by NMR-microscopy
JP6501636B2 (en) Method of measuring amount of silanol group of silica, and method of evaluating reaction of silane coupling agent
Dibbanti et al. Probing small network differences in sulfur‐cured rubber compounds by combining nuclear magnetic resonance and swelling methods
Karekar et al. NMR studies on the phase-resolved evolution of cross-link densities in thermo-oxidatively aged elastomer blends
Saito et al. Quantitative analysis of crosslinking junctions of vulcanized natural rubber through rubber-state NMR spectroscopy
KR100472644B1 (en) Method to measure degree of vulcanization and optimize vulcanization process by impedance measurement and analysis in wide frequency range
Silva et al. NMR investigation of commercial carbon black filled vulcanized natural rubber exposed to petrodiesel/biodiesel mixtures
JP6501637B2 (en) Measuring method of vulcanized rubber
JP2002071595A (en) Method for evaluating degree of crosslinking of rubber
JP6135971B2 (en) Test method for crosslink density
Mori Study of vulcanization and degradation chemistry in natural rubber by solid-state 13C NMR and physical property measurements
JP2012173093A (en) Inspection method of rubber material
Brown et al. Applications of FT-NMR to crosslink density determinations in natural rubber blend vulcanizates
JP6473123B2 (en) Rubber composition for tire
JP5580856B2 (en) Prediction method of heat resistant degradation performance of isoprene rubber
Klei et al. NMR imaging of the competitive vulcanization of natural rubber and polybutadiene blends
Li et al. Investigation of the Vulcanization Characteristics of Natural Rubber Coagulated by Microorganisms
JP2017040508A (en) Analysis method of unvulcanized rubber composition
JP7059834B2 (en) Performance evaluation method for elastic materials
Leblanc et al. Engineering performance and material viscoelastic analyses along a compounding line for silica‐based compounds, part 2: Nonlinear viscoelastic analysis
JP7082367B2 (en) Prediction method of wear resistance of vulcanized rubber
CN108700638B (en) Method for inhibiting water signal and enhancing metabolite signal by adjusting central frequency and receiving bandwidth of excitation signal band in MRS imaging method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190319

R150 Certificate of patent or registration of utility model

Ref document number: 6501637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250