JP7082367B2 - Prediction method of wear resistance of vulcanized rubber - Google Patents
Prediction method of wear resistance of vulcanized rubber Download PDFInfo
- Publication number
- JP7082367B2 JP7082367B2 JP2018088786A JP2018088786A JP7082367B2 JP 7082367 B2 JP7082367 B2 JP 7082367B2 JP 2018088786 A JP2018088786 A JP 2018088786A JP 2018088786 A JP2018088786 A JP 2018088786A JP 7082367 B2 JP7082367 B2 JP 7082367B2
- Authority
- JP
- Japan
- Prior art keywords
- wear resistance
- spin
- vulcanized rubber
- rubber
- prediction method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Tires In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、加硫ゴムの耐摩耗性の予測方法に関するものであり、詳しくは、加硫ゴムの耐摩耗性を簡便に精度良く予測することのできる加硫ゴムの耐摩耗性の予測方法に関するものである。 The present invention relates to a method for predicting wear resistance of vulcanized rubber, and more particularly to a method for predicting wear resistance of vulcanized rubber, which can easily and accurately predict the wear resistance of vulcanized rubber. It is a thing.
近年、環境問題への関心の高まりや省資源化の観点から、高いレベルでタイヤの耐摩耗性が求められている。そこで、原料配合の段階で加硫ゴムの耐摩耗性が予測できれば当該要求を満たすのに有効と言える。
下記特許文献1、2には、X線散乱測定または中性子散乱測定によってゴム組成物の耐摩耗性を評価する方法が開示されている。しかし、下記特許文献1、2に記載の方法は、ゴム組成物全体を上記測定に施すものであり、組成物に含まれる原料ゴムそれ自体を測定対象にするものではない。
また、下記特許文献3には、耐摩耗性および低燃費性に優れたゴム組成物が開示され、スチレン-ブタジエン共重合体ゴム(SBR)のラジカル生成指数が測定されている。しかし、下記特許文献3では、SBRのラジカル生成指数は特定の組成を基準にしたものであり、またSBRのスチレン単位およびビニル単位量を特定範囲に定めるものであるので、加硫したゴムの耐摩耗性を原料ゴムそれ自体の評価によって予測しようとする技術思想は開示されていない。また、下記特許文献3には、下記で説明する本発明の構成要件である、SBRおよびスピントラップ剤の混合物を加熱してラジカルを発生させる工程については何ら開示または示唆がない。
In recent years, tire wear resistance is required at a high level from the viewpoint of increasing interest in environmental issues and resource saving. Therefore, if the wear resistance of the vulcanized rubber can be predicted at the stage of blending the raw materials, it can be said that it is effective to satisfy the requirement.
The following Patent Documents 1 and 2 disclose a method for evaluating the wear resistance of a rubber composition by X-ray scattering measurement or neutron scattering measurement. However, the methods described in Patent Documents 1 and 2 below apply the entire rubber composition to the above measurement, and do not measure the raw rubber itself contained in the composition.
Further, Patent Document 3 below discloses a rubber composition having excellent wear resistance and low fuel consumption, and measures the radical generation index of styrene-butadiene copolymer rubber (SBR). However, in Patent Document 3 below, the radical generation index of SBR is based on a specific composition, and the amount of styrene unit and vinyl unit of SBR is defined in a specific range. The technical idea of predicting the wear resistance by the evaluation of the raw rubber itself is not disclosed. Further, Patent Document 3 below does not disclose or suggest any step of heating a mixture of SBR and a spin trapping agent to generate radicals, which is a constituent requirement of the present invention described below.
したがって本発明の目的は、未加硫のゴム組成物に配合された原料ゴムを測定対象として、加硫ゴムの耐摩耗性を簡便に精度良く予測することのできる加硫ゴムの耐摩耗性の予測方法を提供することにある。 Therefore, an object of the present invention is to determine the wear resistance of vulcanized rubber, which can easily and accurately predict the wear resistance of the vulcanized rubber, targeting the raw material rubber blended in the unvulcanized rubber composition. It is to provide a prediction method.
本発明者らは鋭意研究を重ねた結果、未加硫のゴム組成物に配合されたスチレン-ブタジエン共重合体ゴム(SBR)およびスピントラップ剤の混合物を加熱させて発生したラジカル量を測定することにより、上記課題を解決できることを見出し、本発明を完成することができた。
すなわち本発明は以下の通りである。
As a result of diligent research, the present inventors measure the amount of radicals generated by heating a mixture of styrene-butadiene copolymer rubber (SBR) and a spin trapping agent blended in an unvulcanized rubber composition. As a result, it was found that the above problems could be solved, and the present invention could be completed.
That is, the present invention is as follows.
1.スチレン-ブタジエン共重合体ゴムをゴム成分として含有する加硫ゴムの耐摩耗性を予測する方法であって、
加硫前の前記スチレン-ブタジエン共重合体ゴムにスピントラップ剤を混合し、混合物を調製する工程(1)と、
前記工程(1)で調製された前記混合物を加熱し、ラジカルを発生させる工程(2)と、
前記工程(2)で発生したラジカルと前記スピントラップ剤との反応により生じたスピンアダクトを電子スピン共鳴装置(ESR)により測定し、前記ラジカル量を把握する工程(3)と、
前記工程(3)により把握したラジカル量から、前記加硫ゴムの耐摩耗性を予測する工程(4)と
を有する前記予測方法。
2.前記スピントラップ剤がニトロソ化合物あるいはニトロン化合物である前記1に記載の予測方法。
3.前記スピントラップ剤が下記式(1)で表される化合物である前記2に記載の予測方法。
1. 1. A method for predicting the wear resistance of vulcanized rubber containing styrene-butadiene copolymer rubber as a rubber component.
The step (1) of mixing a spin trapping agent with the styrene-butadiene copolymer rubber before vulcanization to prepare a mixture, and
In the step (2) of heating the mixture prepared in the step (1) to generate radicals,
The step (3) of measuring the spin adduct generated by the reaction between the radical generated in the step (2) and the spin trapping agent with an electron spin resonance apparatus (ESR) and grasping the amount of the radical.
The prediction method including the step (4) of predicting the wear resistance of the vulcanized rubber from the amount of radicals grasped in the step (3).
2. 2. The prediction method according to 1 above, wherein the spin trapping agent is a nitroso compound or a nitrone compound.
3. 3. The prediction method according to 2 above, wherein the spin trapping agent is a compound represented by the following formula (1).
(式(1)中、R1は、炭素数1~10のアルキル基またはスルホン酸塩を表す。R2、R3はそれぞれ独立して、炭素数1~10のアルキル基またはハロゲン原子を表す。)
4.前記式(1)で表される化合物が、2,4,6-トリ-tert-ブチルニトロソベンゼン(TTBNB)である前記3に記載の予測方法。
(In the formula (1), R 1 represents an alkyl group or a sulfonate having 1 to 10 carbon atoms. R 2 and R 3 independently represent an alkyl group or a halogen atom having 1 to 10 carbon atoms. .)
4. The prediction method according to 3 above, wherein the compound represented by the formula (1) is 2,4,6-tri-tert-butylnitrosobenzene (TTBNB).
本発明の加硫ゴムの耐摩耗性の予測方法は、スチレン-ブタジエン共重合体ゴム(SBR)にスピントラップ剤を混合し、混合物を調製し、前記混合物を加熱し、発生したラジカルと前記スピントラップ剤との反応により生じたスピンアダクトを電子スピン共鳴装置(ESR)により測定し、把握されたラジカル量から、前記加硫ゴムの耐摩耗性を予測することを特徴としている。このように加硫ゴムの耐摩耗性を、未加硫の状態のSBRを測定対象にして予測しているので、加硫ゴムの耐摩耗性を簡便に予測できる。また、前記ラジカルの発生を前記混合物の加熱により行っているので、SBR中のラジカル量を正確に把握することができ、加硫ゴムの耐摩耗性を精度良く予測することができる。 In the method for predicting the wear resistance of the vulture rubber of the present invention, a spin trapping agent is mixed with styrene-butadiene copolymer rubber (SBR) to prepare a mixture, the mixture is heated, and the generated radicals and the spin are generated. The spin adduct generated by the reaction with the trapping agent is measured by an electron spin resonance apparatus (ESR), and the wear resistance of the vulture rubber is predicted from the grasped radical amount. Since the wear resistance of the vulcanized rubber is predicted by using the SBR in the unvulcanized state as a measurement target in this way, the wear resistance of the vulcanized rubber can be easily predicted. Further, since the radicals are generated by heating the mixture, the amount of radicals in the SBR can be accurately grasped, and the wear resistance of the vulcanized rubber can be accurately predicted.
以下、本発明をさらに詳細に説明する。
本発明は、スチレン-ブタジエン共重合体ゴム(SBR)をゴム成分として含有する加硫ゴムの耐摩耗性を予測する方法を提供するものであって、下記の工程を順次有する。
(1)加硫前の前記スチレン-ブタジエン共重合体ゴムにスピントラップ剤を混合し、混合物を調製する工程。
(2)前記工程(1)で調製された前記混合物を加熱し、ラジカルを発生させる工程。
(3)前記工程(2)で発生したラジカルと前記スピントラップ剤との反応により生じたスピンアダクトを電子スピン共鳴装置(ESR)により測定し、前記ラジカル量を把握する工程。
(4)前記工程(3)により把握したラジカル量から、前記加硫ゴムの耐摩耗性を予測する工程。
Hereinafter, the present invention will be described in more detail.
The present invention provides a method for predicting the wear resistance of a vulcanized rubber containing styrene-butadiene copolymer rubber (SBR) as a rubber component, and has the following steps in sequence.
(1) A step of mixing a spin trap agent with the styrene-butadiene copolymer rubber before vulcanization to prepare a mixture.
(2) A step of heating the mixture prepared in the step (1) to generate radicals.
(3) A step of measuring a spin adduct generated by a reaction between a radical generated in the step (2) and the spin trapping agent with an electron spin resonance apparatus (ESR) and grasping the amount of the radical.
(4) A step of predicting the wear resistance of the vulcanized rubber from the amount of radicals grasped in the step (3).
前記工程(1)において、測定対象となるSBRの組成はとくに制限されず、その分子量やミクロ構造は任意である。また、アミン、アミド、シリル、アルコキシシリル、カルボキシル、ヒドロキシル基等で末端変性されていても、エポキシ化されていてもよい。 In the step (1), the composition of the SBR to be measured is not particularly limited, and its molecular weight and microstructure are arbitrary. Further, the terminal may be denatured with an amine, an amide, a silyl, an alkoxysilyl, a carboxyl, a hydroxyl group or the like, or may be epoxidized.
スピントラップ剤としては、フリーラジカルを捕捉できる特性を有していれば、とくにに制限されないが、中でも、SBRから発生したラジカルを良好に捕捉できるという観点から、ニトロソ化合物あるいはニトロン化合物であるのが好ましく、さらに、上記効果に加えSBRから発生したラジカルの捕捉に影響を及ぼす副反応が生じにくいという観点から、下記式(1)で表される化合物であることがとくに好ましい。 The spin trapping agent is not particularly limited as long as it has a property of being able to capture free radicals, but among them, a nitroso compound or a nitrone compound is used from the viewpoint of being able to satisfactorily capture radicals generated from SBR. Further, the compound represented by the following formula (1) is particularly preferable from the viewpoint that, in addition to the above effects, side reactions that affect the capture of radicals generated from SBR are unlikely to occur.
(式(1)中、R1は、炭素数1~10のアルキル基またはスルホン酸塩を表す。R2、R3はそれぞれ独立して、炭素数1~10のアルキル基またはハロゲン原子を表す。) (In the formula (1), R 1 represents an alkyl group or a sulfonate having 1 to 10 carbon atoms. R 2 and R 3 independently represent an alkyl group or a halogen atom having 1 to 10 carbon atoms. .)
前記式(1)で表される化合物としては、3,5-ジブロモ-4-ニトロソベンゼンスルホン酸ナトリウム塩(DBNBS)、2,4,6-トリ-tert-ブチルニトロソベンゼン(TTBNB)等が挙げられ、中でも、TTBNBが最適である。 Examples of the compound represented by the formula (1) include 3,5-dibromo-4-nitrosobenzenesulfonic acid sodium salt (DBNBS), 2,4,6-tri-tert-butylnitrosobenzene (TTBNB) and the like. Among them, TTBNB is the most suitable.
加硫前のSBRとスピントラップ剤との混合方法は、例えば、溶媒に溶解させ、室温かつ窒素雰囲気条件下で5分~30分混合する方法が挙げられる。溶媒はSBRおよびスピントラップ剤を溶解させる必要があり、例えばベンゼンやトルエンが好ましい。その後溶媒を揮発させ、混合物を得る。 Examples of the method of mixing the SBR and the spin trapping agent before vulcanization include a method of dissolving in a solvent and mixing at room temperature and under nitrogen atmosphere conditions for 5 to 30 minutes. The solvent needs to dissolve the SBR and the spin trapping agent, and for example, benzene and toluene are preferable. The solvent is then volatilized to give a mixture.
スピントラップ剤の添加量は、発生するラジカルを十分に捕捉できる量であればとくに制限されないが、例えばSBRに対し、0.5~15質量%であり、好ましくは1~10質量%である。 The amount of the spin trapping agent added is not particularly limited as long as it can sufficiently capture the generated radicals, but is, for example, 0.5 to 15% by mass, preferably 1 to 10% by mass, based on SBR.
前記混合物の加熱温度は、例えば120~200℃、好ましくは140~180℃、典型的には160℃であり、加熱時間は、例えば1分~180分、好ましくは30分~120分、典型的には60分である。なお、上述の特許文献3(国際公開WO2016/178375号パンフレット)では、SBRを冷凍粉砕機により粉砕し、これをラジカル量算出のサンプルとして用いている。しかし、このような加熱工程を経ない特許文献3に記載のラジカル量の算出方法では、冷凍粉砕後からESR測定を実施するまでの操作に時間がかかるためラジカル量の再現性が得づらいという理由により、加硫ゴムの耐摩耗性を精度良く予測することができない。 The heating temperature of the mixture is, for example, 120 to 200 ° C., preferably 140 to 180 ° C., typically 160 ° C., and the heating time is, for example, 1 minute to 180 minutes, preferably 30 minutes to 120 minutes, typically. Is 60 minutes. In the above-mentioned Patent Document 3 (Pamphlet of International Publication WO2016 / 178375), SBR is crushed by a freezing crusher and used as a sample for calculating the amount of radicals. However, in the method for calculating the radical amount described in Patent Document 3 which does not go through such a heating step, it takes time to perform the operation from the time of vulcanization and crushing until the ESR measurement is performed, so that it is difficult to obtain the reproducibility of the radical amount. Therefore, the wear resistance of the vulcanized rubber cannot be predicted accurately.
次に、前記工程(3)は、前記工程(2)で発生したラジカルと前記スピントラップ剤との反応により生じたスピンアダクトを電子スピン共鳴装置(ESR)により測定し、前記ラジカル量を把握する工程である。
本発明において、ESRの条件はとくに指定されず、常法により行えばよいが、本発明における下記実施例では、次の条件を採用している。
ESR:ブルカー・ジャパン株式会社製 EMX-Plus
ESR測定条件:
Frequency(周波数): 9.52 GHz、Microwave Power(マイクロ波出力): 2.00 mW、Modulation Amplitude(変調磁場): 0.1G 、Sweep Width(掃引幅):200 G
SBRの発生するラジカル種は、例えばブタジエン骨格あるいはスチレン骨格由来の第一級炭素ラジカル、第二級炭素ラジカルであり、これらのラジカル種を前記スピントラップ剤で捕捉することが可能である。
Next, in the step (3), the spin adduct generated by the reaction between the radical generated in the step (2) and the spin trapping agent is measured by an electron spin resonance apparatus (ESR), and the amount of the radical is grasped. It is a process.
In the present invention, the ESR conditions are not particularly specified and may be carried out by a conventional method, but in the following examples of the present invention, the following conditions are adopted.
ESR: EMX-Plus manufactured by Bruker Japan Co., Ltd.
ESR measurement conditions:
Frequency: 9.52 GHz, Microwave Power: 2.00 mW, Modulation Amplitude: 0.1 G, Sweep Width: 200 G
The radical species in which SBR is generated are, for example, primary carbon radicals and secondary carbon radicals derived from a butadiene skeleton or a styrene skeleton, and these radical species can be captured by the spin trapping agent.
前記工程(3)を実施した後、スピンアダクトに相当するESRスペクトル上のピークの合計面積を演算装置により算出し、該スピンアダクトに由来するピークの合計面積をラジカル量の指標として用いる。なお、検出されるピークは全てスピンアダクトに由来する。通常、該指標はサンプルの質量で除したものを用いる。 After performing the step (3), the total area of the peaks on the ESR spectrum corresponding to the spin adduct is calculated by an arithmetic unit, and the total area of the peaks derived from the spin adduct is used as an index of the radical amount. All the detected peaks are derived from spin adduct. Usually, the index is divided by the mass of the sample.
続いて、前記工程(4)は、前記工程(3)により把握したラジカル量から、前記加硫ゴムの耐摩耗性を予測する工程である。
前記工程(3)により求めたピークの合計面積が多いほど、SBRから発生したラジカル量も多いことを意味している。本発明者の検討によれば、例えばタイヤ用途のゴム組成物において原料ゴムは主要成分を構成し、SBRから発生するラジカルは、加硫ゴムの劣化の原因となり、ひいてはタイヤの耐摩耗性の悪化の原因となり得ることが判明した。そこで、前記工程(3)により求めたスピンアダクトに由来するピークの合計面積が多いほど、加硫ゴムの耐摩耗性の劣化度合いも増大すると言うことができる。
具体的には、複数のSBRを用い、前記スピンアダクトに由来するピークの合計面積を個別に求めておく。続いてこれらSBRを用いて所定の配合処方により加硫ゴムを調製し、これらの加硫ゴムの耐摩耗性を測定する。その結果により、前記工程(3)により求めたスピンアダクトに由来するピークの合計面積と加硫ゴムの耐摩耗性との相関関係が判明し、加硫ゴムの所望の耐摩耗性を得るための、前記工程(3)により求めたスピンアダクトに由来するピークの合計面積の閾値を知ることができる。
したがって、加硫前のSBRについて、前記工程(3)にしたがってスピンアダクトに由来するピークの合計面積を求め、前記閾値と照らし合わせることだけで、加硫ゴムの耐摩耗性を簡便に、かつ精度良く予測することができる。
Subsequently, the step (4) is a step of predicting the wear resistance of the vulcanized rubber from the amount of radicals grasped by the step (3).
The larger the total area of the peaks obtained in the step (3), the larger the amount of radicals generated from the SBR. According to the study of the present inventor, for example, in a rubber composition for a tire, the raw rubber constitutes a main component, and radicals generated from SBR cause deterioration of the vulcanized rubber, which in turn deteriorates the wear resistance of the tire. It turned out that it could be the cause of. Therefore, it can be said that the larger the total area of the peaks derived from the spin adduct obtained in the step (3), the greater the degree of deterioration of the wear resistance of the vulcanized rubber.
Specifically, using a plurality of SBRs, the total area of peaks derived from the spin adduct is individually obtained. Subsequently, vulcanized rubber is prepared using these SBRs according to a predetermined compounding formulation, and the wear resistance of these vulcanized rubbers is measured. As a result, the correlation between the total area of the peaks derived from the spin adduct obtained in the step (3) and the wear resistance of the vulcanized rubber was clarified, and the desired wear resistance of the vulcanized rubber was obtained. , The threshold value of the total area of peaks derived from the spin adduct obtained in the step (3) can be known.
Therefore, for SBR before vulcanization, the wear resistance of the vulcanized rubber can be easily and accurately determined by simply obtaining the total area of the peaks derived from the spin adduct according to the step (3) and comparing it with the threshold value. It can be predicted well.
なお、本発明の加硫ゴムの耐摩耗性の予測方法においては、SBR以外の成分から発生するラジカル量が比較的少量であるのが好ましい。
例えば、加硫ゴムがタイヤ用途である場合、未加硫のゴム組成物におけるカーボンブラクの配合量は、SBR100質量部に対し、0~40質量部が好ましく、0~20質量部がさらに好ましい。したがって、加硫ゴムがタイヤ用途である場合、ゴム組成物はシリカを含むことが望ましい。この形態においてシリカの配合量は、SBR100質量部に対し、0~100質量部が好ましく、0~80質量部がさらに好ましい。また、硫黄の配合量はSBR100質量部に対し、0~5質量部が好ましく、0~3質量部がさらに好ましく、老化防止剤の配合量はSBR100質量部に対し、0~5質量部が好ましく、0~3質量部がさらに好ましい。また、加硫促進剤の配合量はSBR100質量部に対し、0~8質量部が好ましく、0~5質量部がさらに好ましい。
In the method for predicting the wear resistance of the vulcanized rubber of the present invention, it is preferable that the amount of radicals generated from components other than SBR is relatively small.
For example, when the vulcanized rubber is used for a tire, the blending amount of carbon black in the unvulcanized rubber composition is preferably 0 to 40 parts by mass, more preferably 0 to 20 parts by mass with respect to 100 parts by mass of SBR. Therefore, when the vulcanized rubber is used for tires, it is desirable that the rubber composition contains silica. In this form, the blending amount of silica is preferably 0 to 100 parts by mass, more preferably 0 to 80 parts by mass with respect to 100 parts by mass of SBR. The amount of sulfur compounded is preferably 0 to 5 parts by mass with respect to 100 parts by mass of SBR, more preferably 0 to 3 parts by mass, and the compounding amount of antiaging agent is preferably 0 to 5 parts by mass with respect to 100 parts by mass of SBR. , 0 to 3 parts by mass is more preferable. The amount of the vulcanization accelerator to be blended is preferably 0 to 8 parts by mass, more preferably 0 to 5 parts by mass with respect to 100 parts by mass of SBR.
なお、加硫ゴムがタイヤ用途である場合、未加硫のゴム組成物には、前記した成分に加えて、加硫又は架橋剤、加硫又は架橋促進剤、各種充填剤などのゴム組成物に一般的に配合されている各種添加剤を配合することができる。これらの添加剤の配合量も、本発明の目的に反しない限り、従来の一般的な配合量とすることができる。 When the vulcanized rubber is used for tires, the unvulcanized rubber composition includes, in addition to the above-mentioned components, a rubber composition such as a vulcanization or cross-linking agent, a vulcanization or cross-linking accelerator, and various fillers. Various additives generally blended in can be blended. The blending amount of these additives can also be a conventional general blending amount as long as it does not contradict the object of the present invention.
以下、本発明を実施例によりさらに説明するが、本発明は下記例に制限されるものではない。 Hereinafter, the present invention will be further described with reference to Examples, but the present invention is not limited to the following examples.
SBRとして、下記SBR1~4を用いた。
SBR1:横浜ゴム(株)製のMw:60万、スチレン/ブタジエン比:20/80のSBR
SBR2:日本ゼオン(株)製 NIPOL NS612
SBR3:日本ゼオン(株)製 NIPOL NS116R
SBR4:旭化成(株)製 タフデン 2000R
The following SBRs 1 to 4 were used as SBRs.
SBR1: SBR made by Yokohama Rubber Co., Ltd. with Mw: 600,000 and styrene / butadiene ratio: 20/80
SBR2: NIPOL NS612 manufactured by Zeon Corporation
SBR3: NIPOL NS116R manufactured by Zeon Corporation
SBR4: Toughden 2000R manufactured by Asahi Kasei Corporation
工程(1)として、前記SBR1~4の100質量部に対し、スピントラップ剤として2,4,6-トリ-tert-ブチルニトロソベンゼン(TTBNB)をそれぞれ5.5質量部添加し、ベンゼンに溶解させた後、室温かつ窒素雰囲気条件下で10分混合を行い、溶媒を揮発させて混合物1~4を得た。 In step (1), 5.5 parts by mass of 2,4,6-tri-tert-butylnitrosobenzene (TTBNB) as a spin trapping agent was added to 100 parts by mass of the SBRs 1 to 4 and dissolved in benzene. After that, the mixture was mixed for 10 minutes at room temperature and under nitrogen atmosphere conditions, and the solvent was volatilized to obtain mixtures 1 to 4.
続いて工程(2)として、混合物1~4それぞれについて、160℃、60分の加熱を行った。なお、この工程(2)はESR内に設けた加熱手段により行った。 Subsequently, as step (2), each of the mixtures 1 to 4 was heated at 160 ° C. for 60 minutes. In addition, this step (2) was performed by the heating means provided in the ESR.
次に工程(3)として、前記工程(2)で発生したラジカルとTTBNBとの反応により生じたスピンアダクトをESRにより測定し、スピンアダクトに由来するピークの合計面積を求めた。各SBRのスピンアダクトに由来するピークの合計面積は以下の通りである。なお、該ピークの合計面積は、ESRの測定に供した各SBRの質量で除したものとした。
SBR1のスピンアダクトに由来するピークの合計面積:1.3 × 1012
SBR2のスピンアダクトに由来するピークの合計面積:2.6 × 1012
SBR3のスピンアダクトに由来するピークの合計面積:3.1 × 1012
SBR4のスピンアダクトに由来するピークの合計面積:2.5 × 1012
Next, as step (3), the spin adduct generated by the reaction between the radical generated in the step (2) and TTBNB was measured by ESR, and the total area of the peaks derived from the spin adduct was determined. The total area of peaks derived from the spin adduct of each SBR is as follows. The total area of the peaks was divided by the mass of each SBR used for the measurement of ESR.
Total area of peaks derived from SBR1 spin adduct: 1.3 x 10 12
Total area of peaks derived from SBR2 spin adduct: 2.6 x 10 12
Total area of peaks derived from SBR3 spin adduct: 3.1 x 10 12
Total area of peaks from SBR4 spin adduct: 2.5 x 10 12
続いて、工程(4)として、前記工程(3)により把握したラジカル量から、前記加硫ゴムの耐摩耗性を予測した。
なお、本発明者の検討では、前記SBR2を用いた加硫ゴムの耐摩耗性が、実用上の閾値と判断された。したがって、前記SBR2のスピンアダクトに由来するピークの合計面積を基準(100)として、SBR1、3および4の前記ピークの合計面積の指数を求めた。
SBR1の前記ピークの合計面積の指数=50
SBR3の前記ピークの合計面積の指数=119
SBR4の前記ピークの合計面積の指数=96
したがって、SBR1およびSBR4は、前記指数が100未満であるので、ラジカルの発生量が少なく、加硫ゴムの耐摩耗性は良好であるものと予測された。一方、SBR3は、前記指数が100を超えているので、加硫ゴムの耐摩耗性が悪化するものと予測された。
Subsequently, as the step (4), the wear resistance of the vulcanized rubber was predicted from the amount of radicals grasped in the step (3).
In the study of the present inventor, the wear resistance of the vulcanized rubber using SBR2 was determined to be a practical threshold value. Therefore, the index of the total area of the peaks of SBR1, 3 and 4 was obtained by using the total area of the peaks derived from the spin adduct of SBR2 as a reference (100).
Index of total area of the peaks of SBR1 = 50
Index of total area of the peaks of SBR3 = 119
Index of total area of the peaks of SBR4 = 96
Therefore, since the index of SBR1 and SBR4 is less than 100, it is predicted that the amount of radicals generated is small and the wear resistance of the vulcanized rubber is good. On the other hand, since the index of SBR3 exceeds 100, it is predicted that the wear resistance of the vulcanized rubber will deteriorate.
次に、前記予測について、実際に加硫ゴムを用いて検証を行った。
未加硫のゴム組成物の配合処方(質量部)を以下の表1に示す。
Next, the prediction was actually verified using vulcanized rubber.
The compounding formulations (parts by mass) of the unvulcanized rubber composition are shown in Table 1 below.
表1における各成分の詳細は以下の通りである。
シリカ:Rhodia Silica Korea社製ZEOSIL 165GR
カーボンブラック:キャボットジャパン社製商品名ショウブラックN339
酸化亜鉛:正同化学工業(株)製酸化亜鉛3種
ステアリン酸:日油(株)製ステアリン酸YR
老化防止剤:Solutia Europe SPRL/BVBA社製SANTOFLEX 6PPD
シランカップリング剤:エボニックジャパン(株)製Si69
オイル:昭和シェル石油(株)製エクストラクト4号S
硫黄:軽井沢精錬所製油処理硫黄
加硫促進剤(CZ):大内新興化学工業(株)製ノクセラー CZ-G
加硫促進剤(DPG):住友化学(株)製ソクシノールD-G
The details of each component in Table 1 are as follows.
Silica: ZEOSIL 165GR manufactured by Rhodia Silica Korea
Carbon Black: Product name made by Cabot Japan Show Black N339
Zinc oxide: Zinc oxide 3 types manufactured by Shodo Chemical Industry Co., Ltd. Stearic acid: Stearic acid YR manufactured by NOF CORPORATION
Anti-aging agent: Solutia Europe SPRL / BVBA SANTOFLEX 6PPD
Silane coupling agent: Si69 manufactured by Evonik Japan Co., Ltd.
Oil: Showa Shell Sekiyu Co., Ltd. Extract No. 4 S
Sulfur: Karuizawa Smelter Oil Treatment Sulfur Vulcanization Accelerator (CZ): Noxeller CZ-G manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.
Vulcanization Accelerator (DPG): Soxinol DG manufactured by Sumitomo Chemical Co., Ltd.
耐摩耗性の測定は、JIS K6264に準拠し、室温で測定した。結果は、例2を100として指数で示した。この値が大きいほど、耐摩耗性が良好であることを示す。
結果を併せて表1に示した。
The wear resistance was measured at room temperature in accordance with JIS K6264. The results are shown exponentially with Example 2 as 100. The larger this value is, the better the wear resistance is.
The results are also shown in Table 1.
表1の結果から、SBR1およびSBR4を配合した例1および例4は、加硫ゴムの耐摩耗性が良好であることが証明された。一方、SBR3を配合した例3は、加硫ゴムの耐摩耗性が悪化した。 From the results in Table 1, it was proved that Example 1 and Example 4 in which SBR1 and SBR4 were blended had good wear resistance of the vulcanized rubber. On the other hand, in Example 3 in which SBR3 was blended, the wear resistance of the vulcanized rubber deteriorated.
Claims (4)
加硫前の前記スチレン-ブタジエン共重合体ゴムにスピントラップ剤を混合し、混合物を調製する工程(1)と、
前記工程(1)で調製された前記混合物を、加熱温度120~200℃および加熱時間1分~180分の条件で加熱し、ラジカルを発生させる工程(2)と、
前記工程(2)で発生したラジカルと前記スピントラップ剤との反応により生じたスピンアダクトを電子スピン共鳴装置(ESR)により測定し、前記ラジカル量を把握する工程(3)と、
前記工程(3)により把握したラジカル量から、前記加硫ゴムの耐摩耗性を予測する工程(4)と
を有する前記予測方法。 A method for predicting the wear resistance of vulcanized rubber containing styrene-butadiene copolymer rubber as a rubber component.
The step (1) of mixing a spin trapping agent with the styrene-butadiene copolymer rubber before vulcanization to prepare a mixture, and
The step (2) of heating the mixture prepared in the step (1) under the conditions of a heating temperature of 120 to 200 ° C. and a heating time of 1 minute to 180 minutes to generate radicals.
The step (3) of measuring the spin adduct generated by the reaction between the radical generated in the step (2) and the spin trapping agent with an electron spin resonance apparatus (ESR) and grasping the amount of the radical.
The prediction method including the step (4) of predicting the wear resistance of the vulcanized rubber from the amount of radicals grasped in the step (3).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018088786A JP7082367B2 (en) | 2018-05-02 | 2018-05-02 | Prediction method of wear resistance of vulcanized rubber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018088786A JP7082367B2 (en) | 2018-05-02 | 2018-05-02 | Prediction method of wear resistance of vulcanized rubber |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019194551A JP2019194551A (en) | 2019-11-07 |
JP7082367B2 true JP7082367B2 (en) | 2022-06-08 |
Family
ID=68468994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018088786A Active JP7082367B2 (en) | 2018-05-02 | 2018-05-02 | Prediction method of wear resistance of vulcanized rubber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7082367B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060133996A1 (en) | 2002-10-31 | 2006-06-22 | Haywood Rachel M | Method and apparatus for determining effectiveness of sunscreens and other skin preparations in shielding human skin from uva radiation |
JP2007046960A (en) | 2005-08-08 | 2007-02-22 | Dainippon Printing Co Ltd | Measuring method of concentration of electron spin |
WO2016178375A1 (en) | 2015-05-01 | 2016-11-10 | 横浜ゴム株式会社 | Rubber composition and pneumatic tire |
JP2017075227A (en) | 2015-10-14 | 2017-04-20 | 住友ゴム工業株式会社 | tire |
-
2018
- 2018-05-02 JP JP2018088786A patent/JP7082367B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060133996A1 (en) | 2002-10-31 | 2006-06-22 | Haywood Rachel M | Method and apparatus for determining effectiveness of sunscreens and other skin preparations in shielding human skin from uva radiation |
JP2007046960A (en) | 2005-08-08 | 2007-02-22 | Dainippon Printing Co Ltd | Measuring method of concentration of electron spin |
WO2016178375A1 (en) | 2015-05-01 | 2016-11-10 | 横浜ゴム株式会社 | Rubber composition and pneumatic tire |
JP2017075227A (en) | 2015-10-14 | 2017-04-20 | 住友ゴム工業株式会社 | tire |
Also Published As
Publication number | Publication date |
---|---|
JP2019194551A (en) | 2019-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI385182B (en) | Conjugated diene (co) poly rubber and method for producing the same | |
JP7135392B2 (en) | Rubber composition and pneumatic tire | |
JP2008274017A (en) | Rubber composition | |
JP5374803B2 (en) | Rubber composition for tire tread | |
JP2005146115A (en) | Tire tread rubber composition | |
JP2008138086A (en) | Rubber composition for tire tread | |
US20190144647A1 (en) | Rubber composition for tires, and pneumatic tire using the same | |
JP5205876B2 (en) | Rubber composition for tire tread | |
JP2014218614A (en) | Coupling agent for rubber-carbon black, and rubber composition | |
JP2007099932A (en) | Tire tread rubber composition | |
JPH10195238A (en) | Tire tread rubber composition for racing | |
JP2006232881A (en) | Rubber composition for tire | |
JP7082367B2 (en) | Prediction method of wear resistance of vulcanized rubber | |
JP2008297445A (en) | Rubber composition for tire tread | |
JP2016113482A (en) | Rubber composition for tire tread and pneumatic tire | |
JP7189759B2 (en) | Method for producing rubber composition and method for producing tire | |
JP2018076433A (en) | Diene polymer and method for producing the same | |
JP2014214303A (en) | Coupling agent for rubber-carbon black, and rubber composition | |
JP2007186644A (en) | Rubber composition for tire tread | |
JP6017779B2 (en) | WING RUBBER COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND PNEUMATIC TIRE | |
JP6880573B2 (en) | Deterioration evaluation method for vulcanized rubber composition | |
JP2009057395A (en) | Rubber composition for tire | |
JPWO2003031511A1 (en) | Rubber composition | |
JP7189760B2 (en) | Method for producing rubber composition and method for producing tire | |
JP5428477B2 (en) | Polybutadiene rubber and rubber composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210408 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220323 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220329 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220509 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220517 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220519 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7082367 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |