JP2017003416A - 降水予測システム - Google Patents
降水予測システム Download PDFInfo
- Publication number
- JP2017003416A JP2017003416A JP2015117369A JP2015117369A JP2017003416A JP 2017003416 A JP2017003416 A JP 2017003416A JP 2015117369 A JP2015117369 A JP 2015117369A JP 2015117369 A JP2015117369 A JP 2015117369A JP 2017003416 A JP2017003416 A JP 2017003416A
- Authority
- JP
- Japan
- Prior art keywords
- precipitation
- prediction
- water vapor
- intensity
- precipitation intensity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
【課題】正確な降水予測を行う。【解決手段】降水強度を測定する降水強度測定部2と、大気中に含まれる水蒸気に関するデータである水蒸気データを算出する水蒸気データ算出部と、移流方程式に含まれる発達衰弱項を、水蒸気データ算出部によって算出された水蒸気データを用いて算出する発達衰弱項算出部と、発達衰弱項算出部によって算出された発達衰弱項が用いられた移流方程式に基づき、降水強度を予測して予測降水強度として算出する降水強度予測部と、を備えた降水予測システム1を構成する。【選択図】図1
Description
本発明は、降水強度を予測する降水予測システムに関する。
従来から知られている降水予測システムとして、例えば特許文献1に開示されるようなシステムが挙げられる。このシステムでは、例えば段落0035等に開示されるように、いわゆる移流方程式を用いて降水予測を行っている。また、移流方程式を用いた降水強度の具体的な予測手法については、例えば非特許文献1に開示されている。
中北英一他1名、"地形性降雨を考慮した移流モデルによる短時間降雨予測手法の精度向上に関する研究"、[online]、平成21年6月、京都大学防災研究所年報、[平成27年5月20日検索]、インターネット(URL: http://www.dpri.kyoto-u.ac.jp/nenpo/no52/ronbunB/a52b0p56.pdf)
ところで、上述した移流方程式は、既に存在している雨域の移動を予測するには有効な手法であるものの、新たな雨域が発生する場合には対応できない。また、局所的或いは急速な雨域の発達及び衰退にも対応できない虞がある。また、発達・衰退項(上記特許文献1の(1)式におけるw)が位置座標(x,y)の一次結合で表され、水蒸気から雲ができやがて雨になるといった物理過程に基づく数式になっていないので、実際の雨域の発達及び衰退を正しく記述できていない虞がある。
本発明は、上記課題を解決するためのものであり、その目的は、正確な降水予測を行うことである。
(1)上記課題を解決するため、本発明のある局面に係る降水予測システムは、移流方程式を用いて降水強度を予測する降水予測システムであって、降水強度を測定する降水強度測定部と、大気中に含まれる水蒸気に関するデータである水蒸気データを算出する水蒸気データ算出部と、前記移流方程式に含まれる発達衰弱項を、前記水蒸気データ算出部によって算出された前記水蒸気データを用いて算出する発達衰弱項算出部と、前記発達衰弱項算出部によって算出された前記発達衰弱項が用いられた前記移流方程式に基づき、降水強度を予測して予測降水強度として算出する降水強度予測部と、を備えている。
(2)好ましくは、前記降水強度予測部には、前記降水予測システムとは異なるシステムとしての気象データ処理システムによって処理された気象データも入力され、該降水強度予測部は、前記気象データにも基づいて前記予測降水強度を算出する。
(3)更に好ましくは、前記気象データ処理システムは、気象観測所で得られた前記気象データを処理して前記降水強度予測部に出力する。
(4)好ましくは、前記発達衰弱項算出部は、気温、気圧、風向、風速、及び雷放電数、のうちの少なくとも1つにも基づいて、前記発達衰弱項を算出する。
(5)好ましくは、前記降水強度予測部は、ある時刻における前記予測降水強度と前記降水強度測定部で測定された前記降水強度とが平滑化係数によって平滑化された平滑化降水強度に基づいて、前記ある時刻より後の時刻における前記予測降水強度を算出する。
(6)更に好ましくは、前記降水予測システムは、前記平滑化係数を、前記水蒸気データ算出部によって算出された前記水蒸気データの値に応じて変動させる平滑化係数決定部を更に備えている。
(7)好ましくは、前記水蒸気データ算出部は、前記水蒸気データとして、水蒸気量、及び水蒸気量の時間変化率、のうちの少なくとも1つを算出する。
(8)好ましくは、前記降水予測システムは、GPS信号を受信するGPS受信機を更に備え、前記水蒸気データ算出部は、前記GPS受信機で受信された前記GPS信号に基づいて前記水蒸気データを算出する。
(9)好ましくは、前記降水予測システムは、前記降水強度予測部によって算出された予測降水強度が閾値を超過した場合、該閾値を超過したエリアとしての豪雨予測エリアを楕円状に表示する表示装置、を更に備えている。
(10)更に好ましくは、前記表示装置には、楕円状に表示される前記豪雨予測エリアが、該豪雨予測エリアの進行方向に沿う方向が前記楕円の長軸方向となるように表示される。
(11)好ましくは、前記降水予測システムは、前記降水強度予測部によって算出された予測降水強度が閾値を超過した場合、該閾値を超過したエリアとしての豪雨予測エリアの形状が、該豪雨予測エリアの進行速度に応じて異なる形状に表示される表示装置、を更に備えている。
本発明によれば、正確な降水予測を行うことができる。
以下、本発明を実施するための形態について、図面を参照しつつ説明する。本発明は、降水強度を予測する降水予測システムとして広く適用することができる。
図1は、本発明の実施形態に係る降水予測システム1のブロック図である。本実施形態に係る降水予測システム1によれば、降水を観測可能な領域(観測領域)内の各地点における降水量の予測を精度良く行うことができる。降水予測システム1は、特に、突発的且つ局所的な豪雨を予測するのに適した構成を有している。
降水予測システム1は、図1に示すように、降水観測レーダー2(降水強度測定部)、GPS受信機3、予測処理装置10、表示用データ作成装置4、及び表示装置5、を備えている。
降水観測レーダー2は、電磁波を送受波可能なアンテナ(図示省略)等を有する。降水観測レーダー2では、アンテナが、観測領域に送信波としての電磁波を送信するとともに、当該送信波が雨粒によって反射して帰来する受信波を受波する。そして、降水観測レーダー2は、当該受信波から得られる受信信号に基づき、観予測処理装置測領域内の各地点における降水強度を、所定のタイミング毎に(タイムステップ毎に)算出する。降水観測レーダー2で算出された降水強度は、観測降水強度として、都度、予測処理装置10に通知される。
GPS受信機3は、観測領域内の各地点に含まれる水蒸気に関するデータを算出するためのものである。本実施形態では、GPS受信機3は、複数(例えば10個程度)設けられている。GPS受信機3は、GPS衛星(図示省略)から送信されたGPS信号を受信するとともに、当該GPS信号を予測処理装置10に出力する。
予測処理装置10は、降水観測レーダー2によって算出された観測降水強度と、GPS信号から得られる天頂大気遅延量ZTD(水蒸気データ)とに基づき、各地点における降水強度を予測する。予測処理装置10の詳細な構成及び動作については、詳しくは後述する。
図2は、表示用データ作成装置4によって作成された表示用データの一例を示す図であって、表示装置5に表示される所定時間後の予測降水強度分布図の一例を示す図である。表示用データ作成装置4は、予測処理装置10によって算出された、観測領域内における各地点での予測降水強度に基づき、所定時間後の予測降水強度分布図の画像データ(表示用データ)を生成する。表示用データ作成装置4は、このようにして生成した表示用データを、表示装置5に出力する。
表示装置5は、表示用データ作成装置4によって作成された表示用データに基づき、所定時間後の予測降水強度分布図(図2参照)を表示する。表示装置5では、各地点(図2における各セル)における予測降水強度が、色調に対応させられて各地点に表示される。具体的には、例えば一例として、降水強度が大きくなるにつれて、水色、青、黄色、橙、赤、の色調が、各地点に表示される。なお、図2では、降水強度を、各地点に表示されたドットの濃さに対応させている。
また、表示装置5では、例えば一例として、所定時間後に豪雨が予測されるエリアである豪雨予測エリアZが、図2に示すような円形状に表示される。これにより、ユーザは、豪雨が予測されるエリアを、画面上に表示される地図(図2に示す例では、大阪湾周辺が表示されている)に照らし合わせて容易に把握することができる。
[予測処理装置の構成]
図3は、予測処理装置10の構成を示すブロック図である。図3に示すように、予測処理装置10は、ゲイン決定処理部20と、降水強度予測処理部30と、を備えている。
図3は、予測処理装置10の構成を示すブロック図である。図3に示すように、予測処理装置10は、ゲイン決定処理部20と、降水強度予測処理部30と、を備えている。
ゲイン決定処理部20は、詳しくは後述する降水強度平滑部32で用いられるフィルタゲインα,βを決定するためのものである。ゲイン決定処理部20は、ZTD算出部21(水蒸気データ算出部)と、ZTD変化率算出部22(水蒸気データ算出部)と、ゲイン決定部23と、を備えている。
ZTD算出部21は、GPS受信機3で受信されたGPS信号に基づき、観測領域内の各地点に含まれる水蒸気量を指標する値である水蒸気量指標値(水蒸気データ)を算出する。ZTD算出部21は、この水蒸気指標値として、天頂大気遅延量ZTD(Zenith Total Delay)を算出する。ZTD算出部21は、所定のタイミング毎に、天頂大気遅延量ZTDを観測する。ZTD算出部21で算出された各タイミングにおける天頂大気遅延量ZTDは、都度、ZTD変化率算出部22及びゲイン決定部23に通知される。
ZTD変化率算出部22は、ZTD算出部21から通知された各地点における時刻毎のZTDの時間変化率ΔZTD(水蒸気データ)を算出する。具体的には、例えば、ZTD変化率算出部22は、連続する2つのタイミング間におけるZTDの差を前記タイミング間の時間で除算した値を、ZTD変化率ΔZTDとして算出する。ZTD変化率算出部22は、所定のタイミング毎に、ΔZTDを算出する。ZTD変化率算出部22で算出された各タイミングにおけるZTD変化率ΔZTDは、都度、ゲイン決定部23に通知される。
ゲイン決定部23は、ZTD算出部21から通知された天頂大気遅延量ZTDと、ZTD変化率算出部22から通知されたZTD変化率ΔZTDとに基づいて、第1フィルタゲインα(平滑化係数)及び第2フィルタゲインβ(平滑化係数)の値を決定する。
ゲイン決定部23は、フィルタゲインαを以下のように決定する。具体的には、ゲイン決定部23は、ZTDが所定値以下であり、且つ所定値を超えるΔZTDが所定タイムステップ連続して続いていない場合、詳しくは後述する所定関数を用いて決定される値であってタイムステップ毎に決定されるαA(k)の値を、第1フィルタゲインαの値として用いる。一方、ゲイン決定部23は、ZTDが所定値を超えた場合、又は所定値を超えるΔZTDが所定タイムステップ連続して続いた場合、αA(k)がかさ上げされて1に近い値となったαB(k)を、第1フィルタゲインαの値として用いる。
また、ゲイン決定部23は、フィルタゲインβを以下のように決定する。具体的には、ゲイン決定部23は、ZTDが所定値以下であり、且つ所定値を超えるΔZTDが所定タイムステップ連続して続いていない場合、詳しくは後述する所定関数を用いて決定される値であってタイムステップ毎に決定されるβA(k)の値を、第2フィルタゲインβの値として用いる。一方、ゲイン決定部23は、ZTDが所定値を超えた場合、又は所定値を超えるΔZTDが所定タイムステップ連続して続いた場合、βA(k)がかさ上げされて1に近い値となったβB(k)を、第2フィルタゲインβの値として用いる。
図4は、所定地点における天頂大気遅延量ZTDの経時変化と、該所定地点における降水強度の経時変化とを重ねて示すグラフである。なお、図4における破線のグラフが天頂大気遅延量ZTDの経時変化を示すグラフであり、図4における実線のグラフが降水強度の経時変化を示すグラフである。図4を参照すると、天頂大気遅延量ZTDが7時30分〜8時15分程度にかけて徐々に増加した後、9時10分程度をピークとする突発的な降水が観測されていることがわかる。すなわち、図4のように、天頂大気遅延量ZTDが所定値を超えた後、又は所定値を超える天頂大気遅延量の変化率ΔZTDが所定タイムステップ連続して続いた後、突発的な降水が発生することが推測される。ゲイン決定部23は、このように突発的な降水が予測されるような状況(ZTDが所定値を超えた場合、又は所定値を超えるΔZTDが所定タイムステップ連続して続いた場合)、1に近い比較的大きな値を、フィルタゲインの値として決定する。
降水強度予測処理部30は、観測領域内の各地点における今後の降水強度(予測降水強度)を予測する処理を行う。降水強度予測処理部30は、降水強度予測部31と、降水強度平滑部32と、変化速度平滑部33と、を有している。
降水強度予測部31は、以下の式(1)で示す移流方程式を用いて、降水強度を予測する。すなわち、降水強度予測部31は、予測降水強度を算出する。
式(1)において、zは、時刻tにおける地点(x,y)での降水強度である。また、u及びvは、移流ベクトルと呼ばれ、u=c1x+c2y+c3、v=c4x+c5y+c6、で表すことができる。c1〜c6は、降水強度予測部31によって同定されるパラメータであって、例えば一例として、過去30分の各タイムステップにおける予測降雨強度及び観測高強度を用いて、重回帰分析に基づき同定される。なお、c1〜c6の同定手法については、従来から知られているものであるため、その説明を省略する。
また、式(1)におけるwは、発達衰弱項と呼ばれる項であり、一般的な移流方程式では、w=c7x+c8y+c9、と表される。しかしながら、wがこのように表された移流方程式を用いると、新たな雨域の発生、並びに、局所的或いは急速な雨域の発達及び衰退に対応できない。更に、上述のように表された発達衰弱項は、位置座標(x,y)の一次結合で表されており、水蒸気から雲ができやがて雨になるといった物理過程に基づく数式になっていないので、実際の雨域の発達及び衰退を正しく記述できていない虞がある。
これに対して、本実施形態の降水強度予測部31は、以下の式(2)及び(3)で表すことができる平滑変化速度Zs’(Xk)を用いて発達衰弱項wを求める。すなわち、降水強度予測部31は、発達衰弱項を算出する発達衰弱項算出部31aを有している。降水強度予測部31によれば、詳しくは後述するが、過去に算出した予測降水強度と観測降水強度との誤差を学習しながら次のタイムステップにおける降水強度を予測できるため、各地点における降水強度を正確に予測することができる。そして、この平滑変化速度Zs’は、詳しくは後述するが、大気中に含まれる水蒸気についても加味したパラメータであるため、当該平滑変化速度Zs’を発達衰弱項wとして用いることにより、降水強度の予測精度をより高めることができる。
式(2)及び式(3)では、発達衰弱項をwk(k=1,2,3,…)としている。kは、予測降水強度が算出されるタイムステップを示す。発達衰弱項wkは、タイムステップ毎に算出される。本実施形態におけるタイムステップの間隔(ステップ時間Δτ)は、1分である。
また、Xkは、x及びyの関数であって、タイムステップk時における所定の雨域(雨雲)の位置を示し、当該Xkを過去30分間に含まれる各タイムステップ時における雨域の位置を繋いだ曲線は、特性基礎曲線と呼ばれるものである。この特性基礎曲線により、雨雲の軌跡(雨雲が経過とともにどのような経路に沿って移動してきたか)を知ることができる。
次に、降水強度予測部31は、同定されたc1〜c6、及び直近で算出された平滑変化速度(すなわち発達衰弱項w)を式(1)で示す移流方程式に代入してZを解析的に解くことにより、予測降水強度を算出する。この際、降水強度予測部31は、非特許文献1にも記載されているように、上述した特性基礎曲線を遡ることにより、予測降水強度を算出する。これにより、降水強度予測処理部30は、式(1)に示す移流方程式を解いて予測降水強度を算出する際、過去における予測降水強度と観測降水強度との誤差を学習し、且つ大気中に含まれる水蒸気についても加味した発達衰弱項を用いた降水強度予測を行っていることになる。従って、降水強度を正確に予測することができる。
降水強度平滑部32は、直近で算出されたタイムステップk時における予測降水強度Zp(Xk)と、降水観測レーダー2で算出されたタイムステップk時における観測降水強度Zo(Xk)と合成して平滑化することにより、直近のタイミングで予測された予測降水強度Zp(Xk)を補正して、平滑降水強度Zs(Xk)を算出する。具体的には、降水強度平滑部32は、以下の式(4)を用いて、平滑降水強度Zs(Xk)を算出する。
ここで、式(4)におけるα(k)は、上述した第1フィルタゲインαであって、その値として、以下の式(5)で表されるαA(k)、又は当該αA(k)がかさ上げされたαB(k)が用いられる。いずれの値が用いられるかは、上述したゲイン決定部23によって決定される。なお、この式(5)で示すフィルタゲインαA(k)は、あくまで一例であり、その他の関数によって定義されてもよく、或いは、定数として設定されてもよい。
変化速度平滑部33は、予測降水強度Zp(Xk)を時間微分した値として得られる予測変化速度Zp’(Xk)と、予測降水強度Zp(Xk)と、観測降水強度Zo(Xk)とを合成して平滑化することにより予測変化速度Zp’(Xk)を補正して、平滑変化速度Zs’(Xk)を算出する。具体的には、変化速度平滑部33は、以下の式(6)を用いて、平滑変化速度Zs’(Xk)を算出する。
ここで、式(6)におけるβ(k)は、上述した第2フィルタゲインβであって、その値として、以下の式(7)で表されるβA(k)、又は当該βA(k)がかさ上げされたαB(k)が用いられる。いずれの値が用いられるかは、上述したゲイン決定部23によって決定される。なお、この式(7)で示すフィルタゲインβA(k)は、あくまで一例であり、その他の関数によって定義されてもよく、或いは、定数として設定されてもよい。
そして、降水強度予測処理部30では、観測降水強度が算出される毎に(すなわち1分毎に)、その観測降水強度にも基づいてc1〜c6が新たに同定され、当該新たに同定されたc1〜c6に基づいて予測降水強度が算出される。
以上のように、降水強度予測処理部30では、(a)あるタイムステップで観測降水強度が算出された後における、当該観測降水強度を用いたc1〜c6の同定、(b)フィルタゲインα及びβによる発達衰弱項の補正、(c)補正された発達衰弱項の移流方程式への代入後、移流方程式におけるzを解析的に解くことによる予測降水強度の算出、(d)次のタイムステップで観測降水強度が算出された後における、当該観測降水強度を用いたc1〜c6の同定、が行われる。そして、降水強度予測処理部30では、その後(b)〜(d)の処理が繰り返されることにより、水蒸気データが加味された発達衰弱項が用いられた移流方程式により、30分後の降雨強度の予測が、タイムステップ間隔で(本実施形態の場合、1分間隔で)行われることになる。
[効果]
以上のように、本実施形態に係る降水予測システム1によれば、移流方程式における発達衰弱項wを、大気中に含まれる水蒸気に関するデータ(本実施形態の場合、ZTD及びΔZTD)に応じて決定している。本実施形態では、ZTD及びΔZTDの値に応じて、発達衰弱項wの値に影響を与える第1フィルタゲインα及び第2フィルタゲインβの値を決定している。すなわち、降水予測システム1によれば、発達衰弱項wに大きく影響を与える水蒸気データに応じて、当該発達衰弱項wの値を決定している。
以上のように、本実施形態に係る降水予測システム1によれば、移流方程式における発達衰弱項wを、大気中に含まれる水蒸気に関するデータ(本実施形態の場合、ZTD及びΔZTD)に応じて決定している。本実施形態では、ZTD及びΔZTDの値に応じて、発達衰弱項wの値に影響を与える第1フィルタゲインα及び第2フィルタゲインβの値を決定している。すなわち、降水予測システム1によれば、発達衰弱項wに大きく影響を与える水蒸気データに応じて、当該発達衰弱項wの値を決定している。
従って、降水予測システム1によれば、正確な降水予測を行うことができる。
また、降水予測システム1によれば、予測降水強度と観測降水強度とがフィルタゲインαによって平滑化された平滑化降水強度に基づいて、次のタイムステップにおける予測降水強度が算出される。これにより、予測降水強度が観測降水強度によって平滑化された値に基づいて(すなわち、観測降水強度によって補正された予測降水強度に基づいて、更に言い換えれば、観測降水強度との誤差が学習された予測降水強度に基づいて)、次のタイムステップにおける予測降水強度が算出されるため、より正確に降水強度を予測できる。
また、降水予測システム1によれば、水蒸気データとして、水蒸気量に相当するデータである天頂大気遅延量ZTD及び天頂大気遅延量の変化率ΔZTDを用いているため、比較的容易に得られた水蒸気データを用いて、降水強度を正確に予測できる。
また、降水予測システム1によれば、GPS受信機3によって受信されたGPS信号に基づいてZTD及びΔZTDを算出しているため、比較的容易にZTD及びΔZTDを算出することができる。
また、降水予測システム1によれば、豪雨予測の可能性が高くなったとき(すなわち、ZTDが所定値を超えたとき、又は所定値を超えるΔZTDが所定タイムステップ連続して続いた場合)に、フィルタゲインα及びβの値を1に近づけることにより、式(2)及び(3)を用いて算出される平滑降水強度及び平滑変化速度における、予測降水強度及び予測変化速度の比重を高めることができる。すなわち、降水予測システム1bによれば、豪雨予測性に優れた降水予測システムを提供できる。
[変形例]
以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。
以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。
(1)図5は、変形例に係る降水予測システム1aのブロック図である。上述した実施形態では、移流方程式における発達衰弱項wを水蒸気データに基づいて算出したが、これに限らない。具体的には、水蒸気データだけでなく、気象観測所50によって得られる気象データにも基づいて、発達衰弱項wを算出してもよい。気象観測所50から得られる気象データとしては、例えば、気温、気圧、風速、風向、雷放電数等が挙げられる。気象観測所50によって得られたこれらの気象データは、気象データ処理システム51によって適宜処理され、予測処理装置10aに入力される。そして、本変形例の予測処理装置10aの降水強度予測部は、水蒸気に関するデータだけでなく、気象データ処理システム51で処理された上記気象データにも基づき、発達衰弱項を算出する。
以上のように、本変形例によれば、移流方程式における発達衰弱項wを、水蒸気データだけでなく、その他の気象情報(気温、気圧等)にも基づいて算出できるため、より精度の高い予測降水強度を得ることができる。
また、例えば日本における気象庁は、気象観測所50のデータ等を用いて全国各地の気象を予測しているが、気象の予測対象となる計算領域は予め決定されているため、ユーザのニーズに合わせて計算領域をカスタマイズすることができない。また、気象庁で行われている局地モデルでは、3時間以上経過した後の気象予測においては比較的精度が高いが、短時間後(例えば30分後)における気象予測については、精度良く行うことができない。
これに対して、本変形例に係る降水予測システム1aによれば、降水観測レーダー2、GPS受信機3等を適切に配置することにより、ユーザのニーズに合わせて計算領域をカスタマイズできるとともに、降水強度を予測するために、気象観測所50によって得られた広範囲に亘るデータを利用することができる。すなわち、降水予測システム1aによれば、局所的な降水予測を、より正確に行うことができる。
また、降水予測システム1aによれば、各地に点在する気象観測所50の気象データを利用して予測降水強度を算出できる。すなわち、降水予測システム1aによれば、既存の設備(気象観測所)を利用して予測降水強度を算出できるため、設備を新たに設置することなく、予測降水強度を正確に算出することができる。
(2)図6は、変形例に係る降水予測システム1bのブロック図である。また、図7は、図6に示す予測処理装置10bのブロック図である。上述した実施形態では、移流方程式における発達衰弱項wを水蒸気データに基づいて算出したが、これに限らない。具体的には、水蒸気データだけでなく、その他のデータにも基づいて、発達衰弱項wを算出してもよい。図6及び図7に示す例では、発達衰弱項wの値に影響を与える第1フィルタゲインα及び第2フィルタゲインβを、水蒸気量、気温変化率、気圧変化率、風速変化率、風向変化率、及び雷放電数、によって決定している。なお、予測処理装置10bに入力されるこれらのパラメータは、ウェザーステーション等の気象観測計で得られたデータによって算出される。
本変形例のゲイン決定処理部20aは、上述した実施形態と同様、ZTD算出部と、ZTD変化率算出部と、ゲイン決定部23aと、を備えている。ここで、本変形例におけるZTD算出部及びZTD変化率算出部は、上述した実施形態におけるZTD算出部21及びZTD変化率算出部22と構成及び動作が同じであるため、説明を省略する。なお、図7では、ZTD算出部及びZTD変化率算出部の図示を省略している。
本変形例のゲイン決定部23aは、上述した実施形態のゲイン決定部23aと構成及び動作が異なる。具体的には、ゲイン決定部23aは、上述した実施形態のゲイン決定部23aと同様にしてZTD及びΔZTDに基づいてゲインα及びβを決定する。
ゲイン決定部23aは、豪雨可能性を判定する対象地点の予測降水強度を算出する際に用いられるフィルタゲインα及びβを決定する。その際、ゲイン決定部23aは、対象地点、及び当該対象地点に隣接する隣接地点のそれぞれについて、現在から所定時間遡った過去の所定時刻までの各時刻において、気温低下率が所定の閾値以上である点(気温が急激に低下した点)、気圧低下率が所定の閾値以上である点(気圧が急激に低下した点)、風速変化率が所定の閾値以上である点(風速が急激に変化した点)、風向変化率が所定の閾値以上である点(風の向きが急激に変化した点)、及び雷放電数が所定の閾値以上である点、をカウントする。そして、ゲイン決定部23aは、そのカウント値が所定数M以上の場合、集中豪雨の可能性が高くなったとして、式(5)及び式(7)で算出されるゲインαA(k)及びβA(k)がかさ上げされて1に近づいたαB(k)及びβB(k)を、ゲインα及びβとして決定する。
以上のように、本変形例に係る降水予測システム1bでは、大気中に含まれる水蒸気量に関するデータだけでなく、その他のパラメータ(気温変化率、気圧変化率等)にも基づいてゲインα及びβを決定している。このように、水蒸気に関するデータだけでなく、その他の気象データにも基づいて降水強度を予測することで、より正確に降水強度を算出することができる。
また、降水予測システム1bのように、豪雨予測の可能性が高くなったときにフィルタゲインα及びβの値を1に近づけることにより、式(2)及び(3)を用いて算出される平滑降水強度及び平滑変化速度における、予測降水強度及び予測変化速度の比重を高めることができる。すなわち、降水予測システム1bによれば、豪雨予測性に優れた降水予測システムを提供できる。
(3)図8は、変形例に係る降水予測システム1bの表示装置に表示される表示画面の一例である。上述した実施形態に係る降水予測システムでは、豪雨予測エリアZが円形状に表示されたが、これに限らず、豪雨予測エリアZを、図8に示すような楕円状に表示してもよい。なお、図8では、豪雨予測エリアZの見かけ上の進行方向が図8に示す直線矢印方向である例を示している。
実際に豪雨が予測される地点の予測誤差は、当該地点の見かけ上の進行方向に沿って大きくなる一方、その進行方向に直交する方向については小さくなる。すなわち、図8に示すように、豪雨が予測される地点の見かけ上の進行方向に楕円の長軸方向が沿い、且つその進行方向に直交する方向に楕円の短軸方向が沿うように豪雨予測エリアZを表示することで、実際に豪雨が予測されるエリアを、予測誤差も含めて適切に表示することができる。
以上のように、本変形例に係る降水予測システム1bでは、豪雨予測エリアZが楕円状に表示される。これにより、豪雨予測エリアZが点状或いは円状に表示される場合と比べて、豪雨予測エリアZの形状の自由度を上げることができるため、豪雨予測エリアZの形状を、実際に豪雨が発生すると予測されるエリアの範囲に近い形状で表示することができる。
また、降水予測システム1bでは、楕円の長軸が豪雨予測エリアZの進行方向に沿うように、豪雨予測エリアZが表示される。これにより、移動誤差が適切に加味された豪雨予測エリアZを表示することができるため、予報に対する空振り(予報発令したが豪雨が発生しない状況)、又は見逃し(予報発令しないのに豪雨が発生する状況)が起こる確率を低減することができる。
なお、本変形例では、豪雨予測エリアZの見かけ上の進行方向に楕円の長軸方向が沿うように豪雨予測エリアZを表示したが、これに限らず、豪雨予測エリアZの進行速度に応じて該豪雨予測エリアZの形状が変化してもよい。具体的には、例えば一例として、豪雨予測エリアZは、進行速度が比較的速い場合には短軸に対する長軸の比率が高い楕円状に表示され、進行速度が比較的遅い場合には短軸に対する長軸の比率が低い楕円状に表示され、進行速度がゼロに近い場合には円形状に表示されてもよい。これにより、豪雨予測エリアZの範囲をより適切に表現することができる。
1,1a,1b 降水予測システム
2 降水観測レーダー(降水強度測定部)
21 ZTD算出部(水蒸気データ算出部)
22 ZTD変化率算出部(水蒸気データ算出部)
31 降水強度予測部
31a 発達衰弱項算出部
2 降水観測レーダー(降水強度測定部)
21 ZTD算出部(水蒸気データ算出部)
22 ZTD変化率算出部(水蒸気データ算出部)
31 降水強度予測部
31a 発達衰弱項算出部
Claims (11)
- 移流方程式を用いて降水強度を予測する降水予測システムであって、
降水強度を測定する降水強度測定部と、
大気中に含まれる水蒸気に関するデータである水蒸気データを算出する水蒸気データ算出部と、
前記移流方程式に含まれる発達衰弱項を、前記水蒸気データ算出部によって算出された前記水蒸気データを用いて算出する発達衰弱項算出部と、
前記発達衰弱項算出部によって算出された前記発達衰弱項が用いられた前記移流方程式に基づき、降水強度を予測して予測降水強度として算出する降水強度予測部と、
を備えていることを特徴とする、降水予測システム。 - 請求項1に記載の降水予測システムにおいて、
前記降水強度予測部には、前記降水予測システムとは異なるシステムとしての気象データ処理システムによって処理された気象データも入力され、該降水強度予測部は、前記気象データにも基づいて前記予測降水強度を算出することを特徴とする、降水予測システム。 - 請求項2に記載の降水予測システムにおいて、
前記気象データ処理システムは、気象観測所で得られた前記気象データを処理して前記降水強度予測部に出力することを特徴とする、降水予測システム。 - 請求項1から請求項3に記載の降水予測システムにおいて、
前記発達衰弱項算出部は、気温、気圧、風向、風速、及び雷放電数、のうちの少なくとも1つにも基づいて、前記発達衰弱項を算出することを特徴とする、降水予測システム。 - 請求項1から請求項4に記載の降水予測システムにおいて、
前記降水強度予測部は、ある時刻における前記予測降水強度と前記降水強度測定部で測定された前記降水強度とが平滑化係数によって平滑化された平滑化降水強度に基づいて、前記ある時刻より後の時刻における前記予測降水強度を算出することを特徴とする、降水予測システム。 - 請求項5に記載の降水予測システムにおいて、
前記平滑化係数を、前記水蒸気データ算出部によって算出された前記水蒸気データの値に応じて変動させる平滑化係数決定部を更に備えていることを特徴とする、降水予測システム。 - 請求項1から請求項6に記載の降水予測システムにおいて、
前記水蒸気データ算出部は、前記水蒸気データとして、水蒸気量、及び水蒸気量の時間変化率、のうちの少なくとも1つを算出することを特徴とする、降水予測システム。 - 請求項1から請求項7に記載の降水予測システムにおいて、
GPS信号を受信するGPS受信機を更に備え、
前記水蒸気データ算出部は、前記GPS受信機で受信された前記GPS信号に基づいて前記水蒸気データを算出することを特徴とする、降水予測システム。 - 請求項1から請求項8に記載の降水予測システムにおいて、
前記降水強度予測部によって算出された予測降水強度が閾値を超過した場合、該閾値を超過したエリアとしての豪雨予測エリアを楕円状に表示する表示装置、を更に備えていることを特徴とする、降水予測システム。 - 請求項9に記載の降水予測システムにおいて、
前記表示装置には、楕円状に表示される前記豪雨予測エリアが、該豪雨予測エリアの進行方向に沿う方向が前記楕円の長軸方向となるように表示されることを特徴とする、降水予測システム。 - 請求項1から請求項8に記載の降水予測システムにおいて、
前記降水強度予測部によって算出された予測降水強度が閾値を超過した場合、該閾値を超過したエリアとしての豪雨予測エリアの形状が、該豪雨予測エリアの進行速度に応じて異なる形状に表示される表示装置、を更に備えていることを特徴とする、降水予測システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015117369A JP2017003416A (ja) | 2015-06-10 | 2015-06-10 | 降水予測システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015117369A JP2017003416A (ja) | 2015-06-10 | 2015-06-10 | 降水予測システム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017003416A true JP2017003416A (ja) | 2017-01-05 |
Family
ID=57753992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015117369A Pending JP2017003416A (ja) | 2015-06-10 | 2015-06-10 | 降水予測システム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017003416A (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT520436A4 (de) * | 2017-09-13 | 2019-04-15 | UBIMET GmbH | Verfahren zur Ermittlung zumindest einer meteorologischen Größe zur Beschreibung einer Zustandsform atmosphärischen Wassers |
JP2019152582A (ja) * | 2018-03-05 | 2019-09-12 | 株式会社東芝 | 気象レーダ装置及び豪雨予測方法 |
CN111832828A (zh) * | 2020-07-17 | 2020-10-27 | 国家卫星气象中心(国家空间天气监测预警中心) | 基于风云四号气象卫星的智能降水预测方法 |
CN112666634A (zh) * | 2021-01-14 | 2021-04-16 | 北京敏视达雷达有限公司 | 一种降水量预测方法及系统 |
KR102248974B1 (ko) * | 2020-06-23 | 2021-05-06 | 세종대학교산학협력단 | 인공지능 기반 레이더 강수 예측 방법 및 그 장치 |
KR102248963B1 (ko) * | 2020-06-23 | 2021-05-06 | 세종대학교산학협력단 | 해무 예측 방법 및 그 장치 |
WO2022104709A1 (zh) * | 2020-11-19 | 2022-05-27 | 中山大学 | 一种耦合伽马与高斯分布的月尺度降水预报校正方法 |
WO2023162482A1 (ja) * | 2022-02-25 | 2023-08-31 | 株式会社天地人 | 降水予測システム、降水予測方法、プログラム、基地局選択システム及び基地局選択方法 |
-
2015
- 2015-06-10 JP JP2015117369A patent/JP2017003416A/ja active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT520436A4 (de) * | 2017-09-13 | 2019-04-15 | UBIMET GmbH | Verfahren zur Ermittlung zumindest einer meteorologischen Größe zur Beschreibung einer Zustandsform atmosphärischen Wassers |
AT520436B1 (de) * | 2017-09-13 | 2019-04-15 | UBIMET GmbH | Verfahren zur Ermittlung zumindest einer meteorologischen Größe zur Beschreibung einer Zustandsform atmosphärischen Wassers |
US11300681B2 (en) | 2018-03-05 | 2022-04-12 | Kabushiki Kaisha Toshiba | Weather radar apparatus and severe rain prediction method |
WO2019171634A1 (ja) * | 2018-03-05 | 2019-09-12 | 株式会社 東芝 | 気象レーダ装置及び豪雨予測方法 |
CN111095033A (zh) * | 2018-03-05 | 2020-05-01 | 株式会社东芝 | 气象雷达装置及暴雨预测方法 |
JP2019152582A (ja) * | 2018-03-05 | 2019-09-12 | 株式会社東芝 | 気象レーダ装置及び豪雨予測方法 |
KR102248974B1 (ko) * | 2020-06-23 | 2021-05-06 | 세종대학교산학협력단 | 인공지능 기반 레이더 강수 예측 방법 및 그 장치 |
KR102248963B1 (ko) * | 2020-06-23 | 2021-05-06 | 세종대학교산학협력단 | 해무 예측 방법 및 그 장치 |
CN111832828A (zh) * | 2020-07-17 | 2020-10-27 | 国家卫星气象中心(国家空间天气监测预警中心) | 基于风云四号气象卫星的智能降水预测方法 |
CN111832828B (zh) * | 2020-07-17 | 2023-12-19 | 国家卫星气象中心(国家空间天气监测预警中心) | 基于风云四号气象卫星的智能降水预测方法 |
WO2022104709A1 (zh) * | 2020-11-19 | 2022-05-27 | 中山大学 | 一种耦合伽马与高斯分布的月尺度降水预报校正方法 |
CN112666634A (zh) * | 2021-01-14 | 2021-04-16 | 北京敏视达雷达有限公司 | 一种降水量预测方法及系统 |
WO2023162482A1 (ja) * | 2022-02-25 | 2023-08-31 | 株式会社天地人 | 降水予測システム、降水予測方法、プログラム、基地局選択システム及び基地局選択方法 |
JP7563822B2 (ja) | 2022-02-25 | 2024-10-08 | 株式会社天地人 | 降水予測システム、降水予測方法、プログラム、基地局選択システム及び基地局選択方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2017003416A (ja) | 降水予測システム | |
US11125915B2 (en) | Weather forecasting systems and methods tracking cumulus clouds over terrain | |
US11353625B1 (en) | Systems and methods for forecasting lightning and severe storms | |
US8818029B1 (en) | Weather forecasting systems and methods | |
US8072325B2 (en) | Trespass detection system | |
JP3794361B2 (ja) | レーダ信号処理装置及びレーダ信号処理方法 | |
KR100963532B1 (ko) | 기상레이더의 강수량 추정 방법 | |
US20200355846A1 (en) | Systems and methods for forecasting weather | |
US20210080614A1 (en) | Weather Prediction Correction Method and Weather Prediction System | |
KR101255966B1 (ko) | 기상레이더 3차원 반사도 자료를 이용한 밝은 띠 영역의 탐색 방법 및 그 시스템 | |
US20140316704A1 (en) | Weather prediction apparatus and weather prediction method | |
CN104180800A (zh) | 基于ads-b系统航迹点的修正方法和系统 | |
Le Marshall et al. | Error characterisation of atmospheric motion vectors | |
KR20130049521A (ko) | 강수에코 이동경로 예측 방법 및 장치 | |
CN104463841A (zh) | 衰减系数自适应的滤波方法及滤波系统 | |
JP2018038037A (ja) | 電力推定装置、それを備えた無線通信システム、コンピュータに実行させるためのプログラムおよびデータ構造 | |
Kida et al. | Improvement of rain/no-rain classification methods for microwave radiometer observations over the ocean using a 37 GHz emission signature | |
KR101875906B1 (ko) | 면적 강수 산출 장치 및 그 방법 | |
JP2019219236A (ja) | 処理装置、処理方法、およびプログラム | |
JP2006242747A (ja) | 気温予測補正装置 | |
Brazda et al. | Combination of two visibility sensors to predict fog attenuation on FSO links | |
JP6435040B2 (ja) | レーダシステム | |
US10670771B1 (en) | Systems and methods for forecasting weather | |
JP2007003396A (ja) | レーダ信号処理装置 | |
Karpushin et al. | Hardware-software complex for acoustic monitoring of meteorological fields in the atmospheric boundary layer |