JP2017003397A - Flat surface vibration measurement device and flat surface vibration measurement method - Google Patents

Flat surface vibration measurement device and flat surface vibration measurement method Download PDF

Info

Publication number
JP2017003397A
JP2017003397A JP2015116904A JP2015116904A JP2017003397A JP 2017003397 A JP2017003397 A JP 2017003397A JP 2015116904 A JP2015116904 A JP 2015116904A JP 2015116904 A JP2015116904 A JP 2015116904A JP 2017003397 A JP2017003397 A JP 2017003397A
Authority
JP
Japan
Prior art keywords
light
frequency
measurement object
distribution
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015116904A
Other languages
Japanese (ja)
Other versions
JP6555712B2 (en
Inventor
森悦 崔
Samuel Choi
森悦 崔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata University NUC
Original Assignee
Niigata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata University NUC filed Critical Niigata University NUC
Priority to JP2015116904A priority Critical patent/JP6555712B2/en
Publication of JP2017003397A publication Critical patent/JP2017003397A/en
Application granted granted Critical
Publication of JP6555712B2 publication Critical patent/JP6555712B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flat surface vibration measurement device that can determine the distributions of the two-dimensional frequency, phase, and amplitude of a vibration surface all together of a large-sized measurement object, using an optical interferometer having such an imaging element as an existing CCD camera.SOLUTION: The flat surface vibration measurement device includes: a light source 1 emitting a light; a measurement object 4, which vibrates at a first frequency; a reference mirror 6, which vibrates at a second frequency; a light receiving element 9; a controller 12; a division part 3, which divides the light emitted from the light source 1 into plural lights and emits the lights to the directions of the measurement object 4 and of the reference mirror 6; and integration parts 3 and 8 integrating lights reflected from the measurement object 4 and from the reference mirror 6 and emitting the lights to the light receiving element 9, the difference of the first and second frequencies being smaller than a frame rate of the light receiving element 9, the light receiving element 9 generating an interference image based on the integrated light obtained by the integration parts 3 and 8, and the controller 12 determining a frequency distribution, a phase distribution, and an amplitude distribution on a flat surface of the measurement object 4 based on the interference image.SELECTED DRAWING: Figure 1

Description

本発明は、振動する物体の表面または内部の段層面の振動周波数、位相及び振幅の2次元分布を同時に計測できる平面振動計測装置及び平面振動計測方法に関する。   The present invention relates to a planar vibration measuring apparatus and a planar vibration measuring method capable of simultaneously measuring a two-dimensional distribution of vibration frequency, phase, and amplitude of a surface of an oscillating object or an internal stepped surface.

車体や工業製品、または、生体試料などの微弱で高速な振動を計測するために、従来からレーザドップラー振動計測装置が用いられている(例えば、特許文献1参照)。これらのレーザドップラー振動計測装置は、光学干渉計と組み合わせて光コヒーレンストモグラフィー計測(ドップラーOCT)などに応用されている(例えば、特許文献2参照)。そして、近年の生体計測における光非接触計測技術へのニーズの拡大とともに、これらのドップラーOCTは大いに注目されている。   Conventionally, a laser Doppler vibration measuring device has been used to measure weak and high-speed vibration of a vehicle body, an industrial product, or a biological sample (see, for example, Patent Document 1). These laser Doppler vibration measurement devices are applied to optical coherence tomography measurement (Doppler OCT) in combination with an optical interferometer (see, for example, Patent Document 2). These Doppler OCTs are attracting a great deal of attention as the need for optical non-contact measurement techniques in living body measurement has increased in recent years.

特開2013−33014号公報JP2013-33014A 特開2014−178338号公報JP 2014-178338 A

従来のレーザドップラー振動計測装置やドップラーOCTは、ある一つの計測点の変位、流速、振動を計測するため、広い面積を有する測定面の同時測定が困難である。大きな物体の振動計測においては、空間的なプローブ走査が欠かせないが、数kHzから数百kHzの高速な振動を受光するためにはフォトディテクターなどが必要で、物体平面の分布を一括で取得できるCCDカメラ等の撮像素子を使用することが困難であるためである。   The conventional laser Doppler vibration measuring apparatus and Doppler OCT measure the displacement, flow velocity, and vibration of a single measurement point, so that it is difficult to simultaneously measure a measurement surface having a large area. Spatial probe scanning is indispensable for measuring vibrations of large objects, but a photodetector is required to receive high-speed vibrations of several kHz to several hundred kHz, and the object plane distribution can be acquired in a batch. This is because it is difficult to use an image sensor such as a CCD camera.

本発明は、前記の現状に鑑み開発されたもので、広い面積を有する測定物体(物体平面)について、空間的走査を必要とせず、CCDカメラ等の撮像素子を備える光学干渉計を用いて、振動面の2次元的な周波数、位相、振幅の分布を一括で求めることができる平面振動計測装置及び平面振動計測方法を提供することを目的とする。   The present invention has been developed in view of the above-described situation, and a measurement object (object plane) having a large area does not require spatial scanning, and uses an optical interferometer including an image sensor such as a CCD camera. It is an object of the present invention to provide a plane vibration measuring apparatus and a plane vibration measuring method capable of obtaining a two-dimensional frequency, phase, and amplitude distribution of a vibrating surface in a lump.

上記目的を達成するために、本発明の平面振動計測装置は、光を出射する光源と、第1周波数で振動する測定物体と、振動部が取り付けられ、当該振動部により第2周波数で振動する参照ミラーと、受光素子と、制御部と、前記光源が出射する光を分岐し、前記測定物体の方向と、前記参照ミラーの方向にそれぞれ出射する分岐部と、前記測定物体から反射された光と、前記参照ミラーから反射された光とを統合して前記受光素子に出射する統合部と、を備え、前記第1周波数と前記第2周波数との差は、前記受光素子のフレームレートより小さく、前記受光素子は、前記統合部により統合された光に基づく干渉画像を生成し、前記制御部は、前記干渉画像に基づいて、前記測定物体の平面上の周波数分布、位相分布、及び振幅分布を求めることを特徴とする。   In order to achieve the above object, a planar vibration measuring apparatus of the present invention is provided with a light source that emits light, a measurement object that vibrates at a first frequency, and a vibrating part, and vibrates at a second frequency by the vibrating part. A reference mirror, a light receiving element, a control unit, a light branched from the light source, and a light beam reflected from the measurement object, a branching unit that emits light in the direction of the measurement object, and the direction of the reference mirror, respectively. And an integration unit that integrates the light reflected from the reference mirror and emits the light to the light receiving element, and a difference between the first frequency and the second frequency is smaller than a frame rate of the light receiving element. The light receiving element generates an interference image based on the light integrated by the integration unit, and the control unit generates a frequency distribution, a phase distribution, and an amplitude distribution on the plane of the measurement object based on the interference image. Ask for And wherein the door.

また、上記目的を達成するために、本発明の平面振動計測方法は、光を出射する光源と、第1周波数で振動する測定物体と、振動部が取り付けられ当該振動部により第2周波数で振動する参照ミラーと、受光素子と、制御部と、前記光源が出射する光を分岐し前記測定物体の方向と前記参照ミラーの方向にそれぞれ出射する分岐部と、前記測定物体から反射された光と前記参照ミラーから反射された光とを統合して前記受光素子に出射する統合部と、を備える平面振動計測装置における平面振動計測方法であって、前記第1周波数と前記第2周波数との差を、前記受光素子のフレームレートより小さくするステップと、前記受光素子が、前記統合部により統合された光に基づく干渉画像を生成するステップと、前記制御部が、前記干渉画像に基づいて、前記測定物体の平面上の周波数分布、位相分布、及び振幅分布を求めるステップと、を含むことを特徴とする。   In order to achieve the above object, the planar vibration measuring method of the present invention includes a light source that emits light, a measurement object that vibrates at a first frequency, and a vibration unit that is attached and vibrates at a second frequency by the vibration unit. A reference mirror, a light receiving element, a control unit, a branching unit that branches the light emitted from the light source and emits the light in the direction of the measurement object and the reference mirror, and the light reflected from the measurement object, A plane vibration measurement method in a plane vibration measurement apparatus comprising: an integration unit that integrates light reflected from the reference mirror and emits the light to the light receiving element, wherein the difference between the first frequency and the second frequency Is made smaller than the frame rate of the light receiving element, the light receiving element generates an interference image based on the light integrated by the integrating unit, and the control unit adds the interference image to the interference image. Zui, the frequency distribution on the plane of the measurement object, characterized in that it comprises determining a phase distribution, and amplitude distribution, the.

本発明によれば、広い面積を有する測定物体について、空間的走査を必要とせず、CCDカメラ等の撮像素子を備える光学干渉計を用いて、振動面の2次元的な周波数、位相、振幅の分布を一括で求めることができる。   According to the present invention, a measurement object having a large area does not require spatial scanning, and an optical interferometer including an imaging device such as a CCD camera is used to measure the two-dimensional frequency, phase, and amplitude of the vibration surface. Distribution can be obtained in a lump.

本発明の一実施形態に係る平面振動計測装置図の構成例を示す図である。It is a figure which shows the structural example of the plane vibration measuring device figure which concerns on one Embodiment of this invention. 干渉画像の時間波形から得られた、(a)0次強度分布画像、(b)0次強度分布の2次元FFT画像、(c)周波数フィルタリングされた0次強度分布のFFT画像、(d)画像処理後の0次強度分布画像を示す図である。(A) 0th-order intensity distribution image, (b) 2-dimensional FFT image of 0th-order intensity distribution, (c) FFT-filtered 0th-order intensity distribution FFT image obtained from the temporal waveform of the interference image, (d) It is a figure which shows the 0th-order intensity distribution image after image processing. 干渉画像の時間波形から得られた、(a)1次強度分布画像、(b)1次強度分布の2次元FFT画像、(c)周波数フィルタリングされた1次強度分布のFFT画像、(d)画像処理後の1次強度分布画像を示す図である。(A) a primary intensity distribution image, (b) a two-dimensional FFT image of the primary intensity distribution, (c) an FFT image of the frequency-filtered primary intensity distribution obtained from the temporal waveform of the interference image, (d) It is a figure which shows the primary intensity distribution image after image processing. 01のプロット線を示す図である。It shows a plot of R 01. 実験によって得られた測定物体における(a)振幅分布、(b)周波数分布、(c)位相分布を示す図である。It is a figure which shows (a) amplitude distribution, (b) frequency distribution, and (c) phase distribution in the measurement object obtained by experiment.

以下、本発明に係る実施形態について、図面を参照して説明する。   Hereinafter, embodiments according to the present invention will be described with reference to the drawings.

図1に示すように、本実施形態に係る平面振動計測装置100は、空間系で構成された光学干渉計を含み、光源1と、コリメータ2と、ビームスプリッタ3と、測定物体4と、第1ピエゾ素子5と、参照ミラー6と、第2ピエゾ素子7と、レンズ系8と、受光素子9と、コンピュータ10とを備える。また、コンピュータ10は、フレーム取得部11と、制御部12と、D/A変換部13と、を備える。   As shown in FIG. 1, the planar vibration measuring apparatus 100 according to the present embodiment includes an optical interferometer configured by a spatial system, and includes a light source 1, a collimator 2, a beam splitter 3, a measurement object 4, 1 piezo element 5, reference mirror 6, second piezo element 7, lens system 8, light receiving element 9, and computer 10. In addition, the computer 10 includes a frame acquisition unit 11, a control unit 12, and a D / A conversion unit 13.

光源1は、本例では、ピーク波長を650nmとするコヒーレント光を出射する半導体レーザで構成される。コリメータ2は、光源1から入射する光を平行光線として出射する。ビームスプリッタ3は、コリメータ2から入射する光を分岐し、一部を透過して測定物体4の方向に出射し、残りを反射して参照ミラー6の方向に出射する分岐部として機能する。   In this example, the light source 1 is configured by a semiconductor laser that emits coherent light having a peak wavelength of 650 nm. The collimator 2 emits light incident from the light source 1 as parallel light rays. The beam splitter 3 functions as a branching portion that splits the light incident from the collimator 2, transmits part of the light, emits it in the direction of the measurement object 4, reflects the rest, and emits it in the direction of the reference mirror 6.

測定物体(測定表面)4は、本例ではサンプルとして直径15mmの平面ミラーで構成される。なお、実際の測定にあたっては、測定対象とする測定物体が取り付けられる。測定物体4は、ビームスプリッタ3から入射する光を表面で反射する。   In this example, the measurement object (measurement surface) 4 is constituted by a flat mirror having a diameter of 15 mm as a sample. In actual measurement, a measurement object to be measured is attached. The measurement object 4 reflects light incident from the beam splitter 3 on the surface.

また、本例では平面ミラー4には第1ピエゾ素子5が取り付けられている。第1ピエゾ素子5は、制御部12からの信号によってD/A変換部13から送信される電圧信号に応じて、所定の周波数の振動、本例では1kHzの正弦波状の振動を平面ミラー4に発生させる。なお、本例は検証実験であるため、測定物体4の振動を再現するために第1ピエゾ素子5を用いたが、測定物体4として振動物体を用いる際には、第1ピエゾ素子5は不要である。   In this example, a first piezo element 5 is attached to the plane mirror 4. In response to the voltage signal transmitted from the D / A conversion unit 13 by the signal from the control unit 12, the first piezo element 5 causes the flat mirror 4 to vibrate at a predetermined frequency, in this example, a sine wave vibration of 1 kHz. generate. Since this example is a verification experiment, the first piezo element 5 is used to reproduce the vibration of the measurement object 4. However, when the vibration object is used as the measurement object 4, the first piezo element 5 is not necessary. It is.

参照ミラー6は、ビームスプリッタ3から入射する光を反射する。また、参照ミラー6には、第2ピエゾ素子7が取り付けられている。第2ピエゾ素子7は、制御部12からの信号によってD/A変換部13から送信される電圧信号に応じて、測定物体4の振動とは僅かに異なる周波数の振動、本例では1.0044kHzの正弦波状の振動を参照ミラー6に発生させる振動部として機能する。   The reference mirror 6 reflects the light incident from the beam splitter 3. A second piezo element 7 is attached to the reference mirror 6. The second piezo element 7 has a vibration with a frequency slightly different from the vibration of the measurement object 4 according to the voltage signal transmitted from the D / A conversion unit 13 by the signal from the control unit 12, 1.0044 kHz in this example. It functions as a vibration part that generates the sine wave-like vibration of the reference mirror 6.

測定物体4から反射された光及び参照ミラー6から反射された光は、再びビームスプリッタ3に入射し、共にレンズ系8の方向に出射する。   The light reflected from the measurement object 4 and the light reflected from the reference mirror 6 enter the beam splitter 3 again and are emitted in the direction of the lens system 8 together.

レンズ系8は、ビームスプリッタ3から入射する光を集光して受光素子9に出射するためのものであり、複数のレンズから構成される。なお、図1には2つのレンズを図示しているが、2つには限定されない。上述の通り、ビームスプリッタ3及びレンズ系8は全体として、測定物体4から反射された光と、参照ミラー6から反射された光とを統合して受光素子9に出射する統合部として機能する。   The lens system 8 is for collecting the light incident from the beam splitter 3 and emitting it to the light receiving element 9, and is composed of a plurality of lenses. FIG. 1 shows two lenses, but the number is not limited to two. As described above, the beam splitter 3 and the lens system 8 as a whole function as an integration unit that integrates the light reflected from the measurement object 4 and the light reflected from the reference mirror 6 and emits the light to the light receiving element 9.

受光素子9は、市販の従来型CCDカメラ(フレームレートが約30Hzから約60Hz)、本例ではフレームレートが35.2HzのCCDカメラで構成される。受光素子9は、レンズ系8から入射する光を電気信号に変換し干渉画像として取得する。ここで、受光素子9で得られる干渉画像は、参照ミラー6と測定物体4との周波数差に等しい周期、即ち本例では4.4Hzの周期で変化する。なお、この干渉画像の時間変化の高調波成分は、CCDのフレームレートによるローパスフィルタの作用によって平均化されるため、観測されない。受光素子9は、取得した干渉画像をフレーム取得部11に出力する。   The light receiving element 9 is composed of a commercially available conventional CCD camera (frame rate of about 30 Hz to about 60 Hz), and in this example, a CCD camera with a frame rate of 35.2 Hz. The light receiving element 9 converts the light incident from the lens system 8 into an electric signal and acquires it as an interference image. Here, the interference image obtained by the light receiving element 9 changes with a period equal to the frequency difference between the reference mirror 6 and the measurement object 4, that is, with a period of 4.4 Hz in this example. Note that the harmonic component of the time-varying image of the interference image is not observed because it is averaged by the action of the low-pass filter based on the CCD frame rate. The light receiving element 9 outputs the acquired interference image to the frame acquisition unit 11.

フレーム取得部11は、受光素子9から受信する干渉画像を取得し、記憶する。   The frame acquisition unit 11 acquires and stores an interference image received from the light receiving element 9.

制御部12は、不揮発性の記憶部と、これに格納される制御プログラムを実行するプロセッサとを有するマイクロコンピュータ等で構成され、各部の動作を制御する。制御部12は、具体的には、上述した通り、測定物体4及び参照ミラー6の振動を発生させるための信号をD/A変換部13に出力する他、フレーム取得部11が取得した干渉画像に後述する処理を施し、測定物体4の振幅分布、周波数分布、及び位相分布を求めることができる。   The control unit 12 includes a microcomputer having a nonvolatile storage unit and a processor that executes a control program stored in the nonvolatile storage unit, and controls the operation of each unit. Specifically, as described above, the control unit 12 outputs a signal for generating vibration of the measurement object 4 and the reference mirror 6 to the D / A conversion unit 13 and also the interference image acquired by the frame acquisition unit 11. The amplitude distribution, the frequency distribution, and the phase distribution of the measurement object 4 can be obtained by performing the processing described later.

参照ミラー6と測定物体4とをそれぞれ周波数f、f、位相変調の振幅Z、Zで振動させた場合、受光素子9上で計測される干渉信号は、以下の(式1)で与えられる。
ここで、参照ミラー6と測定物体4との周波数の差(ビート周波数)が4.4Hzであり、受光素子のフレームレートである35.2Hzよりも小さいので、(式1)の高次成分はほとんど検出されず、以下の(式2及び3)で表される0次の成分及び1次の成分が検出される。
(式2) |A+BJ(Z)J(Z)cos(α)|
(式3) |BJ(Z)J(Z)cos(α)|cos(2π|f−f|+|ψ−ψ|)
ここで、J及びJは、第1種ベッセル関数である。
When the reference mirror 6 and the measurement object 4 are vibrated at frequencies f r and f s and phase modulation amplitudes Z r and Z s , interference signals measured on the light receiving element 9 are expressed by the following (Equation 1). Given in.
Here, since the frequency difference (beat frequency) between the reference mirror 6 and the measurement object 4 is 4.4 Hz, which is smaller than 35.2 Hz, which is the frame rate of the light receiving element, the higher-order component of (Expression 1) is Almost no detection is made, and the zeroth-order component and the first-order component represented by the following (Equations 2 and 3) are detected.
(Expression 2) | A + BJ 0 (Z r ) J 0 (Z s ) cos (α 0 ) |
(Formula 3) | BJ 1 (Z r ) J 1 (Z s ) cos (α 0 ) | cos (2π | f s −f r | + | ψ r −ψ s |)
Here, J 0 and J 1 are Bessel functions of the first kind.

図2(a)及び図3(a)に、本実施形態に係る平面振動計測装置100による測定で得られた干渉画像の時間波形から得られた0次強度分布画像と1次強度分布画像とをそれぞれ示す。これらの分布には、空間キャリア成分と直流成分が含まれるので、2次元高速フーリエ変換(FFT)の後、フィルタリング処理を施した。図2(b)及び図3(b)に、0次強度分布の2次元FFT画像と1次強度分布の2次元FFT画像とをそれぞれ示す。これらの周波数成分のうち、0次強度分布については空間キャリア成分(J(Z)J(Z))を取り出してcos(α)を分離した分布を得て、1次強度成分については直流成分のみを取り出すことで(J(Z)J(Z))に比例する分布を得る。その結果を、図2(c)及び図3(c)に示す。このように画像フィルタ処理されたFFT画像を逆FFT変換によって復元した。復元された0次及び1次の強度分布画像をそれぞれ図2(d)及び図3(d)に示す。復元した分布は共通の干渉振幅成分Bを含んでいるので、両者の比を計算することにより、振幅成分を除去でき、尚且つZ分布も知ることができる。その際、Zについては既知である必要がある。 FIGS. 2A and 3A show a zeroth-order intensity distribution image and a first-order intensity distribution image obtained from the time waveform of the interference image obtained by the measurement by the planar vibration measuring apparatus 100 according to this embodiment. Respectively. Since these distributions include a spatial carrier component and a direct current component, a filtering process was performed after two-dimensional fast Fourier transform (FFT). FIG. 2B and FIG. 3B show a two-dimensional FFT image of the zeroth-order intensity distribution and a two-dimensional FFT image of the first-order intensity distribution, respectively. Among these frequency components, for the zeroth-order intensity distribution, a spatial carrier component (J 0 (Z s ) J 0 (Z r )) is extracted to obtain a distribution obtained by separating cos (α 0 ), and the first-order intensity component With respect to, a distribution proportional to (J 1 (Z s ) J 1 (Z r )) is obtained by extracting only the DC component. The results are shown in FIGS. 2 (c) and 3 (c). The FFT image subjected to the image filtering in this way was restored by inverse FFT conversion. The restored zeroth-order and first-order intensity distribution images are shown in FIGS. 2 (d) and 3 (d), respectively. Since the restored distribution includes the common interference amplitude component B, the amplitude component can be removed by calculating the ratio between the two, and the Zs distribution can also be known. At that time, Z r needs to be known.

ここで、図4は、
(式4)R01=J(Z)J(Z)/J(Z)J(Z
のプロット線を示す。上述の処理により得られた図2(d)及び図3(d)の分布の比を計算し、図4のプロット線との比較を行うことで、Z分布を得た。ここで、Zは実験前に既知の値である。
Here, FIG.
(Equation 4) R 01 = J 0 ( Z s) J 0 (Z r) / J 1 (Z s) J 1 (Z r)
The plot line is shown. The ratio of the distributions of FIG. 2 (d) and FIG. 3 (d) obtained by the above processing was calculated, and the Zs distribution was obtained by comparing with the plot line of FIG. Here, Zr is a known value before the experiment.

が2.4以下の範囲においては、R01と実験値の比との比較によって一意的にZが得られる。得られたZ分布を図5(a)に示す。また、周波数分布は1次分布の周波数値から得られ、図5(b)に示す結果となった。さらに、位相分布は1次分布の位相値から求められ、その位相値は、1次分布の実数値と虚数値の比の逆正接で計算できる。求めた位相分布を図5(c)に示す。 In the range where Z s is 2.4 or less, Z s is uniquely obtained by comparing R 01 with the ratio of experimental values. The obtained Z s distribution is shown in FIG. Further, the frequency distribution was obtained from the frequency values of the primary distribution, and the result shown in FIG. 5B was obtained. Further, the phase distribution is obtained from the phase value of the primary distribution, and the phase value can be calculated by the arc tangent of the ratio between the real value and the imaginary value of the primary distribution. The obtained phase distribution is shown in FIG.

以上説明したように、本実施形態に係る平面振動計測装置100によると、広い面積を有する測定物体について、従来のCCDカメラ等の撮像素子を備える光学干渉計を用いて、振動面の2次元的な周波数、位相、振幅の分布を一括で求めることができる。   As described above, according to the planar vibration measuring apparatus 100 according to the present embodiment, a two-dimensional vibration surface is measured on a measurement object having a large area using an optical interferometer including an image sensor such as a conventional CCD camera. It is possible to obtain a uniform frequency, phase, and amplitude distribution all at once.

従って、従来のレーザドップラー計では空間的なプローブ走査が必要であった大規模な測定物体についても、一括で高速にフルフィールドの振動計測を行うことができる。その結果、計測時間の短縮化が図れ、同期制御などの制御装置の簡略化が可能となる。さらに、平面の振動計測の効率化と可視化における横方向(x軸−y軸)の画像分解能の著しい向上を期待できる。また本発明は、光断層撮像装置などの生体計測機器への導入が容易である。   Therefore, it is possible to perform full-field vibration measurement at a high speed collectively even for a large-scale measurement object that requires a spatial probe scan in the conventional laser Doppler meter. As a result, measurement time can be shortened and control devices such as synchronous control can be simplified. Furthermore, it is possible to expect a significant improvement in image resolution in the horizontal direction (x-axis-y-axis) in the efficiency improvement and visualization of planar vibration measurement. Further, the present invention can be easily introduced into a biological measuring instrument such as an optical tomographic imaging apparatus.

本発明を諸図面や実施形態に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。従って、これらの変形や修正は本発明の範囲に含まれることに留意されたい。例えば、各構成部などに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の構成部などを1つに組み合わせたり、或いは分割したりすることが可能である。   Although the present invention has been described based on the drawings and embodiments, it should be noted that those skilled in the art can easily make various changes and modifications based on the present disclosure. Therefore, it should be noted that these variations and modifications are included in the scope of the present invention. For example, the functions included in each component can be rearranged so as not to be logically contradictory, and a plurality of components can be combined into one or divided.

1 光源
2 コリメータ
3 ビームスプリッタ
4 測定物体(平面ミラー)
5 第1ピエゾ素子
6 参照ミラー
7 第2ピエゾ素子
8 レンズ系
9 受光素子
10 コンピュータ
11 フレーム取得部
12 制御部
13 D/A変換部
100 平面振動計測装置
1 Light source 2 Collimator 3 Beam splitter 4 Measurement object (plane mirror)
DESCRIPTION OF SYMBOLS 5 1st piezo element 6 Reference mirror 7 2nd piezo element 8 Lens system 9 Light receiving element 10 Computer 11 Frame acquisition part 12 Control part 13 D / A conversion part 100 Plane vibration measuring device

Claims (4)

光を出射する光源と、
第1周波数で振動する測定物体と、
振動部が取り付けられ、当該振動部により第2周波数で振動する参照ミラーと、
受光素子と、
制御部と、
前記光源が出射する光を分岐し、前記測定物体の方向と、前記参照ミラーの方向にそれぞれ出射する分岐部と、
前記測定物体から反射された光と、前記参照ミラーから反射された光とを統合して前記受光素子に出射する統合部と、
を備え、
前記第1周波数と前記第2周波数との差は、前記受光素子のフレームレートより小さく、
前記受光素子は、前記統合部により統合された光に基づく干渉画像を生成し、
前記制御部は、前記干渉画像に基づいて、前記測定物体の平面上の周波数分布、位相分布、及び振幅分布を求める、
平面振動計測装置。
A light source that emits light;
A measuring object that vibrates at a first frequency;
A reference mirror to which a vibration unit is attached and vibrates at a second frequency by the vibration unit;
A light receiving element;
A control unit;
Branching the light emitted from the light source, and branching portions respectively emitting in the direction of the measurement object and in the direction of the reference mirror;
An integration unit that integrates the light reflected from the measurement object and the light reflected from the reference mirror and emits the light to the light receiving element;
With
The difference between the first frequency and the second frequency is smaller than the frame rate of the light receiving element,
The light receiving element generates an interference image based on the light integrated by the integration unit,
The control unit obtains a frequency distribution, a phase distribution, and an amplitude distribution on a plane of the measurement object based on the interference image;
Plane vibration measuring device.
前記制御部は、前記干渉画像の時間波形から得られる0次強度分布画像及び1次強度分布画像に基づいて得られる各画像の分布の比と、
式:R01=J(Z)J(Z)/J(Z)J(Z
(Zは前記測定物体の位相変調の振幅、Zは前記参照ミラーの位相変調の振幅、J及びJは第1種ベッセル関数)
とを比較することで、前記測定物体の平面上の周波数分布、位相分布、及び振幅分布を求める、
請求項1に記載の平面振動計測装置。
The control unit, the ratio of the distribution of each image obtained based on the zero-order intensity distribution image and the first-order intensity distribution image obtained from the time waveform of the interference image,
Formula: R 01 = J 0 (Z s ) J 0 (Z r ) / J 1 (Z s ) J 1 (Z r )
(Z s is the phase modulation amplitude of the measurement object, Z r is the phase modulation amplitude of the reference mirror, and J 0 and J 1 are first-type Bessel functions)
To obtain the frequency distribution, phase distribution, and amplitude distribution on the plane of the measurement object,
The planar vibration measuring device according to claim 1.
前記受光素子はCCDカメラである、請求項1又は2に記載の平面振動計測装置。   The planar vibration measuring device according to claim 1, wherein the light receiving element is a CCD camera. 光を出射する光源と、第1周波数で振動する測定物体と、振動部が取り付けられ当該振動部により第2周波数で振動する参照ミラーと、受光素子と、制御部と、前記光源が出射する光を分岐し前記測定物体の方向と前記参照ミラーの方向にそれぞれ出射する分岐部と、前記測定物体から反射された光と前記参照ミラーから反射された光とを統合して前記受光素子に出射する統合部と、を備える平面振動計測装置における平面振動計測方法であって、
前記第1周波数と前記第2周波数との差を、前記受光素子のフレームレートより小さくするステップと、
前記受光素子が、前記統合部により統合された光に基づく干渉画像を生成するステップと、
前記制御部が、前記干渉画像に基づいて、前記測定物体の平面上の周波数分布、位相分布、及び振幅分布を求めるステップと、
を含む平面振動計測方法。
A light source that emits light, a measurement object that vibrates at a first frequency, a reference mirror that is attached with a vibration unit and vibrates at a second frequency by the vibration unit, a light receiving element, a control unit, and light emitted by the light source Branching part that emits light in the direction of the measurement object and the direction of the reference mirror, and the light reflected from the measurement object and the light reflected from the reference mirror are integrated and emitted to the light receiving element. A plane vibration measuring method in a plane vibration measuring apparatus comprising an integration unit,
Making a difference between the first frequency and the second frequency smaller than a frame rate of the light receiving element;
The light receiving element generating an interference image based on the light integrated by the integrating unit;
The control unit obtains a frequency distribution, a phase distribution, and an amplitude distribution on a plane of the measurement object based on the interference image;
A plane vibration measuring method including:
JP2015116904A 2015-06-09 2015-06-09 Plane vibration measuring apparatus and plane vibration measuring method Active JP6555712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015116904A JP6555712B2 (en) 2015-06-09 2015-06-09 Plane vibration measuring apparatus and plane vibration measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015116904A JP6555712B2 (en) 2015-06-09 2015-06-09 Plane vibration measuring apparatus and plane vibration measuring method

Publications (2)

Publication Number Publication Date
JP2017003397A true JP2017003397A (en) 2017-01-05
JP6555712B2 JP6555712B2 (en) 2019-08-07

Family

ID=57752624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015116904A Active JP6555712B2 (en) 2015-06-09 2015-06-09 Plane vibration measuring apparatus and plane vibration measuring method

Country Status (1)

Country Link
JP (1) JP6555712B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111220258A (en) * 2020-01-18 2020-06-02 国网吉林省电力有限公司 High-voltage isolating switch vibration quantity detection system and detection method thereof
WO2021017828A1 (en) * 2019-07-27 2021-02-04 复旦大学 High-precision method for measuring high-frequency standing wave amplitude distribution
WO2021045135A1 (en) * 2019-09-03 2021-03-11 株式会社新川 Vibration detection system
JP2022532014A (en) * 2019-04-25 2022-07-13 プロフェシー エスエー Systems and methods for vibration imaging and sensing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170334A (en) * 1996-12-12 1998-06-26 Nikon Corp Vibration measuring instrument
JPH10221159A (en) * 1997-02-12 1998-08-21 Toshiba Corp Laser doppler type vibration distribution measuring apparatus
JP2008128911A (en) * 2006-11-22 2008-06-05 Sony Corp Vibration detector
WO2013172020A1 (en) * 2012-05-15 2013-11-21 パナソニック株式会社 Photoacoustic vibration meter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170334A (en) * 1996-12-12 1998-06-26 Nikon Corp Vibration measuring instrument
JPH10221159A (en) * 1997-02-12 1998-08-21 Toshiba Corp Laser doppler type vibration distribution measuring apparatus
JP2008128911A (en) * 2006-11-22 2008-06-05 Sony Corp Vibration detector
WO2013172020A1 (en) * 2012-05-15 2013-11-21 パナソニック株式会社 Photoacoustic vibration meter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022532014A (en) * 2019-04-25 2022-07-13 プロフェシー エスエー Systems and methods for vibration imaging and sensing
WO2021017828A1 (en) * 2019-07-27 2021-02-04 复旦大学 High-precision method for measuring high-frequency standing wave amplitude distribution
WO2021045135A1 (en) * 2019-09-03 2021-03-11 株式会社新川 Vibration detection system
JPWO2021045135A1 (en) * 2019-09-03 2021-03-11
JP7219990B2 (en) 2019-09-03 2023-02-09 株式会社新川 vibration detection system
CN111220258A (en) * 2020-01-18 2020-06-02 国网吉林省电力有限公司 High-voltage isolating switch vibration quantity detection system and detection method thereof
CN111220258B (en) * 2020-01-18 2020-10-23 国网吉林省电力有限公司 High-voltage isolating switch vibration quantity detection system and detection method thereof

Also Published As

Publication number Publication date
JP6555712B2 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
JP4633423B2 (en) Optical image measuring device
CN109416346B (en) Defect inspection apparatus and method
JP6555712B2 (en) Plane vibration measuring apparatus and plane vibration measuring method
JP2006112864A (en) Optical image measuring instrument and method
JP6463051B2 (en) Optical tomography system
JP5400481B2 (en) Optical image measuring device
EP3420324B1 (en) A method and system for monitoring parameters of a moving object
US7965394B2 (en) Method and apparatus for identifying dynamic characteristics of a vibratory object
JP2009025126A (en) Shape measuring apparatus
US11867611B2 (en) Optical-interference analysis
JP2009025245A (en) Device for observing optical interference
WO2013077137A1 (en) Measurement device and measurement method
JP7154542B2 (en) Apparatus and method for tomographic visualization of tissue viscoelasticity
JP2010164351A (en) Optical tomographic imaging apparatus
JP6014449B2 (en) Laser scanning microscope equipment
JP2013257302A (en) Heterodyne interference device
JP2020086204A (en) Optical image measurement device and optical image measurement method
JP2019063044A (en) OCT apparatus and OCT apparatus control program
JP2006064610A (en) Coaxial-type spatial light interference tomographic image measuring instrument
JP6501307B2 (en) Heterodyne interference device
JP5258052B2 (en) Shape measuring method and shape measuring device by phase shift method, complex amplitude measuring method and complex amplitude measuring device
Ribeiro et al. Vibration amplitude mapping by stroboscopic structured light projection
Schwarz et al. Elasticity and Depth Measurement using Both Secondary Speckle and Time Multiplexing Interference.
Choi et al. Wide-field heterodyne vibrometry for measurement of surface vibrations in biological tissues
JP6497921B2 (en) Sample clock generator for optical tomographic imaging apparatus, and optical tomographic imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190703

R150 Certificate of patent or registration of utility model

Ref document number: 6555712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250