JP2006064610A - Coaxial-type spatial light interference tomographic image measuring instrument - Google Patents

Coaxial-type spatial light interference tomographic image measuring instrument Download PDF

Info

Publication number
JP2006064610A
JP2006064610A JP2004249545A JP2004249545A JP2006064610A JP 2006064610 A JP2006064610 A JP 2006064610A JP 2004249545 A JP2004249545 A JP 2004249545A JP 2004249545 A JP2004249545 A JP 2004249545A JP 2006064610 A JP2006064610 A JP 2006064610A
Authority
JP
Japan
Prior art keywords
light
light wave
tomographic image
interference
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004249545A
Other languages
Japanese (ja)
Other versions
JP3934131B2 (en
Inventor
Naohiro Tanno
直弘 丹野
Eriko Umetsu
枝里子 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MICROTOMOGRAPHY KK
Tanno Naohiro
Original Assignee
MICROTOMOGRAPHY KK
Tanno Naohiro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MICROTOMOGRAPHY KK, Tanno Naohiro filed Critical MICROTOMOGRAPHY KK
Priority to JP2004249545A priority Critical patent/JP3934131B2/en
Publication of JP2006064610A publication Critical patent/JP2006064610A/en
Application granted granted Critical
Publication of JP3934131B2 publication Critical patent/JP3934131B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coaxial type spatial light interference tomographic image measuring instrument, utilizing a spatially correlated wave capable of effectively performing parallel detection of depth detection data due to space interference, using a low coherent light source at a high speed, using a simple constitution. <P>SOLUTION: In the coaxial-type spatial light interference tomographic image measuring instrument, a diffraction lattice 9 is arranged in the optical path of a reference light wave of an interferometer and a coaxial-type spatial light interferometer for combining the diffracted light waves, having a correlation wave front forming an angle with respect to a phase wave front with a signal light wave on the same axis, is constituted and a spatial interference signal is detected in parallel by an optical array sensor 12 to acquire the tomographic image of a target of inspection 6. The correlation wave fronts of the reference light wave and the signal light wave interfere with each other, and the form information in the deep direction of the inspection target are projected in the lateral direction on the detection surface of the optical array sensor 12. Since the shape wave fronts are parallel, the spatial cycle of the spatial interference fringe becomes infinite and the envelope of the interference signal can be detected directly. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、被検体、特に不均一な構造をもつ光散乱媒質に光波ビームを照射し、その被検体の表面又は内部から反射する光を利用して、その被検体の断層像を光計測する同軸型空間光干渉断層画像計測装置に関するものである。   The present invention irradiates a subject, particularly a light scattering medium having an inhomogeneous structure, with a light wave beam, and optically measures a tomographic image of the subject using light reflected from the surface or the inside of the subject. The present invention relates to a coaxial spatial light coherence tomographic image measurement apparatus.

1960年代のレーザの発明と1970年代の光ファイバの実用化以来、様々な光波を利用した計測法の研究が進められている。光波を用いた計測法には基本的に高感度、高分解能、高精度、高速検出などの特徴があり、様々な光波を利用した計測技術が開発され、多くの計測装置が市販されている。さらに、非接触、無侵襲計測が可能な光波は生体計測にも適しており、光波の中でも可視域に近い近赤外光は生体中を比較的透過し易いため、光波を用いた画像診断技術にはこの波長域の光が用いられている。しかし、この波長域の光が比較的生体中を透過し易いとはいえ、不均一で複雑な微細構造を持つ生体組織が高散乱媒体であるという事実は、光波を用いた診断装置の実現の大きな障害となっていた。   Since the invention of the laser in the 1960s and the practical use of optical fibers in the 1970s, research on measurement methods using various light waves has been underway. Measurement methods using light waves basically have features such as high sensitivity, high resolution, high accuracy, and high-speed detection, and various measurement techniques using light waves have been developed, and many measurement devices are commercially available. In addition, light waves that can be non-contact and non-invasive are also suitable for living body measurements, and near-infrared light that is close to the visible range among light waves is relatively easy to pass through the living body, so image diagnostic technology using light waves Is used in this wavelength range. However, although the light in this wavelength range is relatively easy to pass through the living body, the fact that the living tissue having a non-uniform and complicated microstructure is a high scattering medium is the realization of a diagnostic device using light waves. It was a big obstacle.

1980年代後半から、光波による生体画像診断への道を切り開くため、生体中の光波の伝播特性を計測する研究が積極的に行われるようになり、それに伴い、光波を用いた多種多様な計測法が考案された。それらの計測法の中で、近年、高い関心が向けられている一つの計測法として波長帯域が広い低コヒーレント光源の干渉を利用した光コヒーレンス断層画像化法(Optical Coherence Tomography:OCT)がある(例えば、下記特許文献1および非特許文献1を参照)。この計測法は低コヒーレント光源をプローブとし、波長帯域の広い低コヒーレント光源の干渉性のなさを利用して、生体内部の形態をミクロンオーダの空間分解能で計測するものである。また、生体内部から反射してきた散乱・拡散成分が支配的な光の中から、後方散乱光を光ヘテロダイン法で選択的に検出し、干渉信号が持つ位置と振幅の情報を断層画像化するものである。   From the latter half of the 1980s, research on measuring the propagation characteristics of light waves in a living body has been actively conducted in order to open the way to biological image diagnosis using light waves, and accordingly, various measurement methods using light waves. Was devised. Among these measurement methods, there is an optical coherence tomography (OCT) method using interference of a low-coherent light source having a wide wavelength band as one of the measurement methods that have been attracting high interest in recent years ( For example, see Patent Document 1 and Non-Patent Document 1 below). This measurement method uses a low coherent light source as a probe and measures the form inside the living body with a spatial resolution of micron order by utilizing the incoherence of the low coherent light source having a wide wavelength band. In addition, the backscattered light is selectively detected by the optical heterodyne method from the light that is scattered and diffused components reflected from the inside of the living body, and the position and amplitude information of the interference signal is converted into a tomographic image. It is.

光コヒーレンス断層画像化法は、例えば、マイケルソン干渉計において、低コヒーレント光源を用いる。その基本構成を図10に示す。低コヒーレント光源81からの光波ビームを半透明鏡82により参照光波と信号光波に2分割する。参照光波は反射鏡83に照射され反射する。一方、信号光波は被検体84に照射され、被検体84の表面や内部からの後方散乱光が参照光波と半透明鏡82により再び合波され、点光センサ85で検出される。この参照光波と信号光波は、光路長差が光源のコヒーレント長(低コヒーレント光源のコヒーレント長は数十μm)以下の時、相関がある成分のみが干渉し合う。従って、反射鏡83の位置を光軸方向に走査し、参照光の光路長を変化させることにより、信号光波照射位置での被検体84の形態情報をもつ反射強度プロファイルを検出することができる。さらに、信号光波の横方向の走査により2次元断層画像を計測することができる。   Optical coherence tomographic imaging uses a low coherent light source, for example, in a Michelson interferometer. The basic configuration is shown in FIG. The light wave beam from the low-coherent light source 81 is divided into a reference light wave and a signal light wave by a semi-transparent mirror 82. The reference light wave is applied to the reflecting mirror 83 and reflected. On the other hand, the signal light wave is applied to the subject 84, and the backscattered light from the surface or inside of the subject 84 is combined again by the reference light wave and the semitransparent mirror 82 and detected by the point light sensor 85. When the difference between the optical path lengths of the reference light wave and the signal light wave is less than or equal to the coherent length of the light source (the coherent length of the low coherent light source is several tens of μm), only correlated components interfere with each other. Therefore, by scanning the position of the reflecting mirror 83 in the optical axis direction and changing the optical path length of the reference light, it is possible to detect the reflection intensity profile having the shape information of the subject 84 at the signal light wave irradiation position. Furthermore, a two-dimensional tomographic image can be measured by scanning the signal light wave in the horizontal direction.

しかし、上記のような2次元断層画像計測は、反射鏡の光軸方向の走査と信号光波ビームの横方向走査を必要とするため、計測時間の短縮には制約がある。より高速に画像計測を行うためには、機械的な走査機構を持たないことが望ましく、これには2次元断層画像をCCDカメラのような2次元アレイセンサを用いて空間的に並列検出する方法が有効である。   However, since the two-dimensional tomographic image measurement as described above requires scanning of the reflecting mirror in the optical axis direction and horizontal scanning of the signal light wave beam, there is a limitation in shortening the measurement time. In order to perform image measurement at a higher speed, it is desirable not to have a mechanical scanning mechanism, and for this, a method of spatially detecting two-dimensional tomographic images in parallel using a two-dimensional array sensor such as a CCD camera. Is effective.

その空間並列検出法の1つとして低コヒーレント光源を用いた軸外し干渉計がある(例えば、下記非特許文献2参照)。図11に示す軸外し干渉計において、参照光波er と信号光波es が光アレイセンサ91の中心位置Oに対して左右からそれぞれ角度θで入射する。光の伝播方向と垂直な位相波面と2光波の干渉に寄与する相関波面は等しく、2光波が交差する検出面で検出される光強度は、 As one of the spatial parallel detection methods, there is an off-axis interferometer using a low-coherent light source (for example, see Non-Patent Document 2 below). In the off-axis interferometer shown in FIG. 11, the reference light wave er and the signal light wave es are incident on the center position O of the optical array sensor 91 from the left and right at an angle θ. The phase wavefront perpendicular to the light propagation direction and the correlated wavefront contributing to the interference of the two lightwaves are equal, and the light intensity detected at the detection surface where the two lightwaves intersect is

Figure 2006064610
で与えられる。ただし、zは光アレイセンサ91の検出面上の位置、Er 、Es はそれぞれ参照光波と信号光波の電界振幅、fは光周波数、cは光速、Δzは参照光波と信号光波の光路長差である。
Figure 2006064610
Given in. Where z is the position on the detection surface of the optical array sensor 91, E r and E s are the electric field amplitudes of the reference light wave and the signal light wave, f is the optical frequency, c is the speed of light, and Δz is the optical path length of the reference light wave and the signal light wave. It is a difference.

上記式(1)は単一周波数fの光波における光強度を表したものであり、低コヒーレント(広周波数帯域)光源を用いた場合の検出光強度は、式(1)を光源の周波数分布において積分することにより求めることができる。計算の便宜上、光源の周波数分布関数をガウシアン型と仮定すると、検出される干渉成分は光源の中心波長λ0 と波長幅Δλを用いて、 The above equation (1) represents the light intensity in a light wave having a single frequency f, and the detected light intensity when a low coherent (wide frequency band) light source is used can be expressed by the equation (1) in the frequency distribution of the light source. It can be obtained by integrating. For convenience of calculation, assuming that the frequency distribution function of the light source is a Gaussian type, the detected interference component uses the center wavelength λ 0 and the wavelength width Δλ of the light source,

Figure 2006064610
となる。
Figure 2006064610
It becomes.

上記式(2)は空間周期λ0 /(2sinθ)の正弦関数で変調されたガウシアン関数を表し、ガウシアン関数のプロファイルが干渉信号の包絡線に対応する。また、ガウシアン関数のピーク(Δz−2zsinθ=0)が2光波の光路長差Δzに対応する。式(2)から、低コヒーレント光源を用いた場合、被検体の内部の各部位から反射してくる信号光波と別の光路をとる参照光波の相関成分が重なる位置、すなわち2光波の光路長が一致する位置で局所的に干渉し、被検体の深さ方向の情報が光アレイセンサ91の検出面上の横方向に投影され並列検出される。
特公平6−35946号公報 「光学」28巻3号、1999年、p.116 「Optics Letters」 vol.18,1993,p.2129
The above equation (2) represents a Gaussian function modulated by a sine function having a spatial period λ 0 / (2 sin θ), and the profile of the Gaussian function corresponds to the envelope of the interference signal. Further, the peak (Δz−2zsin θ = 0) of the Gaussian function corresponds to the optical path length difference Δz of the two light waves. From the equation (2), when a low-coherent light source is used, the position where the correlation component of the reference light wave taking another optical path and the signal light wave reflected from each part inside the subject overlaps, that is, the optical path length of the two light waves is Interference occurs locally at the matching position, and information on the depth direction of the subject is projected in the horizontal direction on the detection surface of the optical array sensor 91 and detected in parallel.
Japanese Examined Patent Publication No. 6-35946 “Optics”, Vol. 28, No. 3, 1999, p. 116 “Optics Letters” vol. 18, 1993, p. 2129

しかし、上記式(2)で与えられる干渉信号は空間周期が波長オーダと短いため、この干渉信号のプロファイルを実サイズで検出することは難しく、また、高い空間分解能を持つ光アレイセンサが必要である。例えば、中心波長840nmの低コヒーレント光源を用い、光アレイセンサへの光の入射角を45°とすると、検出される干渉信号の空間周期は約600nmであり、その干渉信号を検出するためには、ナイキストのサンプリング定理より最低でも300nmの空間分解能をもつ光アレイセンサが必要である。また、検出した干渉信号から2次元断層画像を得るためには、フーリエ変換などの煩雑な演算が必要である。この演算の必要性は、低コヒーレント光源を用いた軸外し干渉計による計測の高速化を困難にするものである。   However, since the interference signal given by the above equation (2) has a spatial period as short as the wavelength order, it is difficult to detect the profile of this interference signal in actual size, and an optical array sensor with high spatial resolution is required. is there. For example, if a low coherent light source with a center wavelength of 840 nm is used and the incident angle of light to the optical array sensor is 45 °, the spatial period of the detected interference signal is about 600 nm, and in order to detect the interference signal From the Nyquist sampling theorem, an optical array sensor having a spatial resolution of at least 300 nm is required. Further, in order to obtain a two-dimensional tomographic image from the detected interference signal, complicated calculation such as Fourier transformation is required. The necessity of this calculation makes it difficult to increase the speed of measurement by an off-axis interferometer using a low-coherent light source.

本発明は、上記事情に鑑み、低コヒーレント光源を用いた空間干渉による深さ方向情報の並列検出を、簡便な構成かつ高速でかつ有効に実行できる、空間相関波を利用した同軸型空間光干渉断層画像計測装置を提供することを目的とする。   In view of the above circumstances, the present invention provides a coaxial spatial optical interference using a spatial correlation wave that can perform parallel detection of depth direction information by spatial interference using a low-coherent light source with a simple configuration and at high speed. An object is to provide a tomographic image measuring apparatus.

本発明は、上記目的を達成するために、
〔1〕同軸型空間光干渉断層画像計測装置において、広帯域な波長幅をもつ光源を用いる光干渉法による断層画像計測用干渉光学系において、参照光波を回折格子を経由させ、前記回折格子の入射位置に依存して遅延する、回折光の等位相面と角度を成す信号光波との干渉に寄与する相関波面をもつ回折光波を発生させ、この回折光波を信号光波と略同軸で干渉させ、前記遅延に依存する位置に局在した空間干渉信号を発生させるとともに、同軸干渉系を構成することを特徴とする。
In order to achieve the above object, the present invention provides
[1] In a coaxial spatial optical coherence tomographic image measurement apparatus, in a tomographic image measurement interference optical system using a light source having a wide wavelength range, a reference light wave is made to enter the diffraction grating through the diffraction grating. A diffracted light wave having a correlation wavefront that contributes to interference with the signal light wave that forms an angle with the equiphase surface of the diffracted light that is delayed depending on the position is generated, and the diffracted light wave is caused to interfere with the signal light wave substantially coaxially, A spatial interference signal localized at a position depending on the delay is generated, and a coaxial interference system is configured.

〔2〕同軸型空間光干渉断層画像計測装置において、波長帯域幅の広い光波を射出する光源と、その光源から射出した光波のビーム径を拡大し、平行光束に変換するレンズと、前記並行光束を、被検体が配置される光路を辿る信号光波と、前記被検体を経由する光路とは異なる、回折格子が配置される光路を辿る参照光波に2分し、前記被検体へ照射され、その内部より後方散乱する信号光波または前方散乱する信号光波と、前記参照光波の光路長を調整するための半透明鏡と反射鏡による遅延機構と、その遅延機構を経由した参照光波をさらに回折格子を経由させることにより、位相波面と角度を成す信号光波との干渉に寄与する前記空間遅延相関波面を持たせ、該空間遅延相関波面をもつ参照光波と前記信号光波とを、略同軸で合波し空間的な干渉信号を生成する干渉光学系と、その干渉光学系で生成される干渉光を受光検出する空間的に受光素子が多数配列される光アレイセンサと、その光アレイセンサの多数の受光素子で検出された光干渉信号を統合・処理し、信号光波が照射された位置での被検体の表面もしくは内部の形態情報を構成する信号処理系とを具備することを特徴とする。   [2] In a coaxial spatial light coherence tomographic image measurement apparatus, a light source that emits a light wave having a wide wavelength bandwidth, a lens that expands the beam diameter of the light wave emitted from the light source, and converts it into a parallel light beam, and the parallel light beam The signal light wave that follows the optical path in which the subject is arranged and the reference light wave that follows the optical path in which the diffraction grating is arranged, which are different from the optical path that passes through the subject, are irradiated to the subject, A signal light wave that scatters backward from the inside or a signal light wave that scatters forward, a delay mechanism using a translucent mirror and a reflecting mirror for adjusting the optical path length of the reference light wave, and a reference light wave that passes through the delay mechanism further includes a diffraction grating. By passing, the spatial delay correlation wavefront that contributes to interference with the signal lightwave that forms an angle with the phase wavefront is provided, and the reference lightwave having the spatial delay correlation wavefront and the signal lightwave are combined substantially coaxially. Sky Interference optical system for generating a general interference signal, an optical array sensor in which a large number of light receiving elements are arranged in space to detect and detect interference light generated by the interference optical system, and a large number of light receiving elements of the optical array sensor And a signal processing system that integrates and processes the optical interference signals detected in step (1), and forms morphological information on the surface or inside of the subject at the position irradiated with the signal light wave.

〔3〕上記〔1〕記載の同軸型空間光干渉断層画像計測装置において、前記干渉光学系の参照光波側において、前記参照光波が前記回折格子を経由することによって発生する回折光の波長分散を補正するため、前記回折格子からの回折光をレンズ系により光アレイセンサ上に投影することを特徴とする。   [3] In the coaxial spatial optical coherence tomographic image measurement device according to [1], the wavelength dispersion of diffracted light generated by the reference light wave passing through the diffraction grating on the reference light wave side of the interference optical system. In order to correct, the diffracted light from the diffraction grating is projected onto the optical array sensor by a lens system.

〔4〕上記〔1〕又は〔2〕記載の同軸型空間光干渉断層画像計測装置において、前記干渉光学系が、前記信号光波側において、前記被検体へ入射する光波をレンズ系を経て照射し、前記被検体からの信号光波をレンズ系を用いて集光し、さらに円柱レンズ系を用いて前記光アレイセンサの検出面上に投影することを特徴とする。   [4] In the coaxial spatial light coherence tomographic image measurement apparatus according to [1] or [2], the interference optical system irradiates a light wave incident on the subject through a lens system on the signal light wave side. The signal light wave from the subject is condensed using a lens system, and further projected onto the detection surface of the optical array sensor using a cylindrical lens system.

〔5〕上記〔1〕記載の同軸型空間光干渉断層画像計測装置において、前記干渉光学系が、前記信号光波側において、前記被検体へ入射する光波をその光波の入射方向と垂直な縦方向に線状に絞るために円柱レンズと集光レンズとを用い、前記被検体からの信号光波をレンズ系を用いて集光し、さらに前記円柱レンズを用いて前記光アレイセンサの検出面上に投影することを特徴とする。   [5] In the coaxial spatial optical coherence tomographic image measuring device according to [1], the interference optical system is configured to cause the light wave incident on the subject to be incident on the signal light wave side in a vertical direction perpendicular to the incident direction of the light wave. A cylindrical lens and a condensing lens for condensing into a linear shape, condensing the signal light wave from the subject using a lens system, and further using the cylindrical lens on the detection surface of the optical array sensor It is characterized by projecting.

〔6〕上記〔4〕又は〔5〕記載の同軸型空間光干渉断層画像計測装置において、前記被検体へ入射する光波を、偏向走査する機構を設けたことを特徴とする。   [6] The coaxial spatial light coherence tomographic image measuring apparatus according to [4] or [5], wherein a mechanism for deflecting and scanning light waves incident on the subject is provided.

〔7〕上記〔4〕記載の同軸型空間光干渉断層画像計測装置において、前記光アレイセンサが、受光素子が空間的に線形配列され、空間的な干渉信号をそれぞれ独立・並列検出できる光アレイセンサであり、その光アレイセンサの検出面は前記回折格子からの参照光波と前記被検体からの信号光波が投影される面に配置され、前記光アレイセンサの1方向に並んだ受光素子で検出された光干渉信号は、統合・処理により、前記被検体の信号光波照射位置での伝播方向の形態情報を構築するものであり、前記偏向走査により前記信号光波照射位置を順次移動して信号光波を検出・統合・処理することにより2次元断層画像を構築することを特徴とする。   [7] In the coaxial spatial optical coherence tomographic image measurement device according to [4], the optical array sensor is a light array in which light receiving elements are spatially linearly arranged and spatial interference signals can be detected independently and in parallel. The detection surface of the optical array sensor is arranged on the surface on which the reference light wave from the diffraction grating and the signal light wave from the subject are projected, and is detected by light receiving elements arranged in one direction of the optical array sensor. The obtained optical interference signal is used to construct the form information of the propagation direction at the signal light wave irradiation position of the subject by integration and processing, and the signal light wave irradiation position is sequentially moved by the deflection scanning to thereby generate the signal light wave. A two-dimensional tomographic image is constructed by detecting, integrating, and processing.

〔8〕上記〔5〕記載の同軸型空間光干渉断層画像計測装置において、前記光アレイセンサが、受光素子が空間的に2次元配列され、空間的な干渉信号をそれぞれ独立・並列検出できる2次元光アレイセンサであり、その2次元光アレイセンサの検出面は前記回折格子からの1次回折参照光波と前記被検体からの信号光波が投影される面に配置され、前記2次元光アレイセンサの1方向に並んだ受光素子で検出された光干渉信号は、統合・処理により、前記被検体の信号光波照射位置での伝播方向の形態情報を構築し、一方、前記2次元光アレイセンサの他の1方向に並んだ受光素子で検出された光干渉信号は、統合・処理により、前記被検体の線状信号光波照射位置での光伝播方向と垂直な縦方向の形態情報を構築する信号処理部を備えたことを特徴とする。   [8] In the coaxial spatial optical coherence tomographic image measuring apparatus according to [5], the optical array sensor has a light receiving element spatially arranged in a two-dimensional array and can detect spatial interference signals independently and in parallel 2 A two-dimensional optical array sensor, wherein a detection surface of the two-dimensional optical array sensor is disposed on a surface on which a first-order diffraction reference light wave from the diffraction grating and a signal light wave from the subject are projected, and the two-dimensional optical array sensor The optical interference signals detected by the light receiving elements arranged in one direction are constructed and processed to construct morphological information in the propagation direction at the signal light wave irradiation position of the subject, while the two-dimensional optical array sensor The optical interference signal detected by the other light receiving elements arranged in one direction is a signal for constructing vertical morphological information perpendicular to the light propagation direction at the linear signal light wave irradiation position of the subject by integration and processing. With a processing unit And wherein the door.

〔9〕上記〔6〕記載の同軸型空間光干渉断層画像計測装置において、上記〔8〕記載の干渉光学系が、前記参照光波側において、前記被検体へ入射する光波または前記被検体を、光波の伝播方向と垂直に1次元走査することにより、前記被検体の3次元形態情報を取得する機能を備えたことを特徴とする。   [9] In the coaxial spatial light coherence tomographic image measurement device according to [6], the interference optical system according to [8] described above may include a light wave incident on the subject or the subject on the reference light wave side. It is characterized in that it has a function of acquiring three-dimensional shape information of the subject by one-dimensional scanning perpendicular to the light wave propagation direction.

〔10〕上記〔1〕記載の同軸型空間光干渉断層画像計測装置において、前記干渉光学系が、前記被検体への照射光波の偏光方向を制御する偏光素子を備えることを特徴とする。   [10] The coaxial spatial light coherence tomographic image measurement apparatus according to [1], wherein the interference optical system includes a polarizing element that controls a polarization direction of a light wave applied to the subject.

〔11〕上記〔2〕記載の同軸型空間光干渉断層画像計測装置において、前記干渉光学系が、振動機構により前記参照光波と前記信号光波の光路長差を伸縮することにより空間干渉信号に周波数シフトを与える周波数シフタを備え、背景光から干渉成分のみを抽出する機能をもつことを特徴とする。   [11] In the coaxial spatial optical coherence tomographic image measurement device according to [2], the interference optical system may generate a frequency in a spatial interference signal by expanding and contracting an optical path length difference between the reference light wave and the signal light wave by a vibration mechanism. It has a frequency shifter that gives a shift, and has a function of extracting only interference components from background light.

〔12〕上記〔2〕記載の同軸型空間光干渉断層画像計測装置において、前記光源が、可干渉距離100μm以下のスーパールミネッセントダイオードであることを特徴とする。   [12] The coaxial spatial light coherence tomographic image measuring apparatus according to [2], wherein the light source is a superluminescent diode having a coherence distance of 100 μm or less.

〔13〕上記〔2〕記載の同軸型空間光干渉断層画像計測装置において、前記光源が、可干渉距離50μ以下の発光ダイオードであることを特徴とする。   [13] The coaxial spatial light coherence tomographic image measuring apparatus according to [2], wherein the light source is a light emitting diode having a coherence distance of 50 μm or less.

〔14〕上記〔2〕記載の同軸型空間光干渉断層画像計測装置において、前記被検体が光散乱媒体であることを特徴とする。   [14] The coaxial spatial light coherence tomographic image measurement apparatus according to [2], wherein the subject is a light scattering medium.

〔15〕上記〔2〕記載の同軸型空間光干渉断層画像計測装置において、前記参照光波と信号光波間の光路長差を走査する遅延機構を設けたことを特徴とする。   [15] The coaxial spatial light coherence tomographic image measuring apparatus according to [2], wherein a delay mechanism for scanning an optical path length difference between the reference light wave and the signal light wave is provided.

〔16〕上記〔2〕記載の同軸型空間光干渉断層画像計測装置において、前記光アレイセンサがCCDあるいはMOS素子で構成されていることを特徴とする。   [16] The coaxial spatial light coherence tomographic image measuring apparatus according to [2], wherein the optical array sensor is composed of a CCD or a MOS element.

〔17〕上記〔2〕記載の同軸型空間光干渉断層画像計測装置において、前記光アレイセンサが電子増倍機構付き撮像デバイスであることを特徴とする。   [17] The coaxial spatial light coherence tomographic image measurement apparatus according to [2], wherein the optical array sensor is an imaging device with an electron multiplication mechanism.

本発明によれば、以下のような効果を奏することができる。   According to the present invention, the following effects can be achieved.

(A)低コヒーレント干渉計において、参照光波の光路に回折格子を配置し、回折光が持つ位相波面と角度を成す相関波面を利用し、また、回折格子による波長分散をレンズを使用して検出面上で補正することにより、同軸型の空間干渉計が構築できる。   (A) In a low coherent interferometer, a diffraction grating is arranged in the optical path of the reference light wave, a correlation wavefront that forms an angle with the phase wavefront of the diffracted light is used, and wavelength dispersion due to the diffraction grating is detected using a lens. By correcting on the surface, a coaxial spatial interferometer can be constructed.

(B)同軸型の干渉計であるため、参照光波と信号光波の位相波面は並行であり、空間周波数が無限小の干渉信号、すなわち、干渉縞の包絡線を直接検出できる。   (B) Since it is a coaxial interferometer, the phase wavefronts of the reference light wave and the signal light wave are parallel, and an interference signal with an infinitesimal spatial frequency, that is, an envelope of interference fringes can be directly detected.

(C)被検体の2次元断層像を非走査・高速で検出できることから、被検体への光照射位置を任意の方向に走査することにより、被検体内の3次元断層画像を容易に描画できる。   (C) Since the two-dimensional tomographic image of the subject can be detected at high speed without scanning, the three-dimensional tomographic image in the subject can be easily drawn by scanning the light irradiation position on the subject in an arbitrary direction. .

(D)広帯域偏光ビームスプリッタおよび波長板を使用することにより、被検体への入射光波および反射光波の偏光状態を制御して検出することができる。   (D) By using a broadband polarization beam splitter and a wave plate, it is possible to control and detect the polarization state of the incident light wave and the reflected light wave on the subject.

(E)参照光波側に振動機構による位相変調装置を備えた場合には、光アレイセンサによって検出される光干渉信号は、背景光による直流成分から分離することが可能である。   (E) When a phase modulation device using a vibration mechanism is provided on the reference light wave side, an optical interference signal detected by the optical array sensor can be separated from a direct current component due to background light.

(F)参照光波のみが回折格子を通過することから、信号光波が回折効率に制限されない計測システムが構築できる。   (F) Since only the reference light wave passes through the diffraction grating, a measurement system in which the signal light wave is not limited by the diffraction efficiency can be constructed.

(G)同軸型の空間光干渉計であるため、簡素な構成で容易に装置を構築できる。   (G) Since it is a coaxial spatial light interferometer, an apparatus can be easily constructed with a simple configuration.

(H)光アレイセンサには市販のCCDカメラやMOS型カメラを容易に使用でき、さらには光電子増倍機構付きの各種撮像装置の使用が可能で、被検体深部からの極微弱光信号の像増倍検出をも可能とする特徴がある。   (H) A commercially available CCD camera or MOS type camera can be easily used for the optical array sensor, and various imaging devices with a photomultiplier mechanism can be used. An image of a very weak light signal from the deep part of the subject. There is a feature that also enables multiplication detection.

本発明は、同軸型空間光干渉断層画像計測装置において、広帯域な波長幅をもつ光源を用いる光干渉法による断層画像計測用干渉光学系において、参照光波を回折格子を経由させ、前記回折格子の入射位置に依存して遅延する、回折光の等位相面と角度を成す信号光波との干渉に寄与する相関波面をもつ回折光波を発生させ、信号光波と略同軸で干渉させ、前記遅延に依存する位置に局在した空間干渉信号を発生させるにもかかわらず同軸干渉系を構成することを特徴とする。よって、参照光波の光路に回折格子を配置し、回折光が持つ位相波面と角度を成す相関波面を利用し、また、回折格子による波長分散をレンズを使用して検出面上で補正することにより、同軸型の空間干渉計が構築できる。   The present invention relates to a coaxial spatial optical coherence tomographic image measurement apparatus, in an interference optical system for tomographic image measurement by optical interferometry using a light source having a broadband wavelength width, and passing a reference light wave through the diffraction grating, Generates a diffracted light wave that has a correlation wave front that contributes to interference with the signal light wave that forms an angle with the equiphase surface of the diffracted light, which is delayed depending on the incident position, and interferes with the signal light wave substantially coaxially, depending on the delay The present invention is characterized in that a coaxial interference system is configured in spite of generating a spatial interference signal localized at a certain position. Therefore, by arranging a diffraction grating in the optical path of the reference light wave, utilizing the correlation wavefront that forms an angle with the phase wavefront of the diffracted light, and correcting the wavelength dispersion due to the diffraction grating on the detection surface using a lens A coaxial interferometer can be constructed.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1は本発明の第1実施例を示す空間相関波を利用した同軸型空間光干渉断層画像計測装置の構成図である。この図において、1は低コヒーレント光源、2、5、10はレンズ、3、7、11は半透明鏡、4、8は反射鏡、6は被検体、9は透過型回折格子、12は光アレイセンサである。   FIG. 1 is a configuration diagram of a coaxial spatial optical coherence tomographic image measurement apparatus using a spatial correlation wave according to a first embodiment of the present invention. In this figure, 1 is a low-coherent light source, 2, 5, 10 are lenses, 3, 7, 11 are translucent mirrors, 4, 8 are reflecting mirrors, 6 is a subject, 9 is a transmission diffraction grating, and 12 is light. It is an array sensor.

図1に示すように、広い周波数帯域幅を持つ低コヒーレント光源1から射出した光はレンズ2により幅広い平行光束に変換される。その平行光束は干渉計に入射し、半透明鏡3により信号光波と参照光波に2分される。信号光波は、反射鏡4で反射され、半透明鏡11を通過し、レンズ5により点に集光され、例えば不均一で光散乱を生じる構成物質からなる被検体6へ照射される。被検体6から内部反射してくる光はレンズ5で集められ、半透明鏡11に送られる。一方、参照光波は遅延機構(7、8)を経由して、透過型回折格子9に入射し、例えばその1次回折光がレンズ(結像レンズ)10で光アレイセンサ12の検出面上に結像する。ここで、遅延機構は半透明鏡7と反射鏡8からなり、この遅延機構中で参照光波は半透明鏡7を通過し、反射鏡8で全反射し、再び半透明鏡7に戻る。この時に反射鏡8を光の伝播方向に動かすことにより、干渉計における光路長を変化させ遅延させる。参照光波と信号光波は半透明鏡11で合波され、干渉信号が光アレイセンサ12で検出される。   As shown in FIG. 1, light emitted from a low coherent light source 1 having a wide frequency bandwidth is converted into a wide range of parallel light beams by a lens 2. The parallel light beam enters the interferometer, and is divided into a signal light wave and a reference light wave by the translucent mirror 3. The signal light wave is reflected by the reflecting mirror 4, passes through the semi-transparent mirror 11, is condensed at a point by the lens 5, and is irradiated to the subject 6 made of a constituent material that is nonuniform and causes light scattering, for example. The light internally reflected from the subject 6 is collected by the lens 5 and sent to the translucent mirror 11. On the other hand, the reference light wave enters the transmissive diffraction grating 9 via the delay mechanism (7, 8), and the first-order diffracted light is, for example, connected to the detection surface of the optical array sensor 12 by the lens (imaging lens) 10. Image. Here, the delay mechanism is composed of a semi-transparent mirror 7 and a reflecting mirror 8. In this delay mechanism, the reference light wave passes through the semi-transparent mirror 7, is totally reflected by the reflecting mirror 8, and returns to the semi-transparent mirror 7. At this time, by moving the reflecting mirror 8 in the light propagation direction, the optical path length in the interferometer is changed and delayed. The reference light wave and the signal light wave are combined by the translucent mirror 11, and the interference signal is detected by the optical array sensor 12.

なお、上記した光源としては、可干渉距離100μm以下のスーパールミネッセントダイオードを用いることができる。   Note that a superluminescent diode having a coherence distance of 100 μm or less can be used as the light source.

また、上記した光源としては、可干渉距離50μ以下の発光ダイオードをことができる。   Further, as the above light source, a light emitting diode having a coherence distance of 50 μm or less can be used.

従来の低コヒーレント光の空間干渉を利用した計測装置は、軸外し光干渉計を応用して構成されているが、本発明は、干渉計において参照光波を透過型回折格子9へ経由させ、透過型回折格子9上の光照射位置に依存して遅延され、信号光との干渉に寄与する相関波面を持つ回折光波を利用して、同軸光干渉計において空間干渉信号を検出する同軸型空間光干渉断層画像計測装置を提供する。   A conventional measurement apparatus using spatial interference of low-coherent light is configured by applying an off-axis optical interferometer. However, the present invention allows a reference light wave to pass through the transmission diffraction grating 9 in the interferometer and transmit it. Coaxial spatial light that detects a spatial interference signal in a coaxial optical interferometer using a diffracted light wave that has a correlation wavefront that is delayed depending on the light irradiation position on the diffraction grating 9 and contributes to interference with the signal light An interference tomographic image measurement apparatus is provided.

以下に、本発明による同軸型空間光干渉断層画像計測装置の動作原理を説明する。   The operation principle of the coaxial spatial light coherence tomographic image measuring apparatus according to the present invention will be described below.

図2は、透過型回折格子への光照射位置に依存した遅延相関波面の発生の原理について示したものである。透過型回折格子9がZ軸上に配置され、その法線がY方向と平行になるようにした。低コヒーレント光源から出た光は、位相波面と信号光波との干渉に寄与する相関波面が平行にある。透過型回折格子9に幅のある低コヒーレント光(参照光er )が回折格子面の垂直軸に対して角度θで入射する場合、回折格子方程式(sinθ―sinβ=mλ0 /d、ここで、mは次数、λ0 は光源の中心波長、dは格子間隔)を満たす角度βでm次回折光が射出する。本実施例では1次回折光を対象にして説明するが、2次以上の回折光においても同様の原理が適用できる。例えばこのときホイヘンスの原理より1次回折光の位相波面の法線方向が伝播方向となる。

Figure 2006064610
FIG. 2 shows the principle of generation of the delayed correlation wavefront depending on the light irradiation position on the transmissive diffraction grating. The transmission type diffraction grating 9 was arranged on the Z axis so that the normal line was parallel to the Y direction. The light emitted from the low-coherent light source has a parallel correlation wavefront that contributes to interference between the phase wavefront and the signal lightwave. When wide and low coherent light (reference light e r ) is incident on the transmissive diffraction grating 9 at an angle θ with respect to the vertical axis of the diffraction grating surface, the diffraction grating equation (sin θ−sin β = mλ 0 / d, where , M is the order, λ 0 is the center wavelength of the light source, and d is the grating interval). In the present embodiment, description will be made on the first-order diffracted light, but the same principle can be applied to second-order or higher-order diffracted light. For example, at this time, the normal direction of the phase wavefront of the first-order diffracted light becomes the propagation direction by Huygens' principle.
Figure 2006064610

前記空間遅延相関波面に基づく相対的な最大遅延距離、即ち、最大深度測定可能距離Zmaxは、透過型回折格子9への入射波のビームの直径をDとすると、Zmax=mλ0 D/2d cosθで与えられる。数値例として、例えば1次回折光を対象にするとm=1、として、中心波長λ0 =835nm、格子間隔d=1.2μm、角度θ=45度、ビーム直径D=10mmとすると、深度S=3.5mmを得る。現在使用されている眼底などの断層像観測では、およそ2mm程度の範囲で深部が観測できれば充分であるので、本発明におけるZ軸方向の観測深度は充分に実用に供与することができる。 The relative maximum delay distance based on the spatial delay correlation wavefront, that is, the maximum depth measurable distance Zmax is Zmax = mλ 0 D / 2d cos θ, where D is the diameter of the beam of the incident wave to the transmissive diffraction grating 9. Given in. As a numerical example, for example, when a first-order diffracted light is targeted, m = 1, a center wavelength λ 0 = 835 nm, a grating interval d = 1.2 μm, an angle θ = 45 degrees, and a beam diameter D = 10 mm, a depth S = 3.5mm is obtained. In currently used tomographic image observation of the fundus and the like, it is sufficient if the deep part can be observed in a range of about 2 mm. Therefore, the observation depth in the Z-axis direction in the present invention can be provided to practical use.

また、透過型回折格子9に低コヒーレント光(広周波数帯域の光)を入射させると、回折格子方程式に従い波長分散が発生する。上記した回折格子方程式から、透過型回折格子9における角分散Δβは、   When low coherent light (light in a wide frequency band) is incident on the transmissive diffraction grating 9, chromatic dispersion occurs according to the diffraction grating equation. From the above diffraction grating equation, the angular dispersion Δβ in the transmissive diffraction grating 9 is

Figure 2006064610
で与えられる。ただし、zは透過型回折格子9上の位置座標、λは任意の光波長、λ0 は光源の中心波長である。
Figure 2006064610
Given in. However, z is a position coordinate on the transmission type diffraction grating 9, λ is an arbitrary light wavelength, and λ 0 is a center wavelength of the light source.

従って、波長分散した回折光波の位相差Δφは   Therefore, the phase difference Δφ of the wavelength-dispersed diffracted light wave is

Figure 2006064610
である。上記式(4)は中心波長λ0 の光と波長λの光の、中心点Oを通過する光に対する任意座標Zを通過する光の相関波面の距離的な遅れのずれを表したものである。その透過型回折格子9での波長分散を補正するため、各波長における1次回折光波をレンズ(結像レンズ)10を使って光アレイセンサ12の検出面上に投影する必要がある。
Figure 2006064610
It is. The above formula (4) represents the shift in the distance delay of the correlation wavefront of the light passing through the arbitrary coordinate Z with respect to the light passing through the center point O between the light having the center wavelength λ 0 and the light having the wavelength λ. . In order to correct the chromatic dispersion in the transmissive diffraction grating 9, it is necessary to project the first-order diffracted light wave at each wavelength onto the detection surface of the optical array sensor 12 using the lens (imaging lens) 10.

この1次回折参照光波と信号光波は半透明鏡11により合波される。   The first-order diffracted reference light wave and the signal light wave are combined by the translucent mirror 11.

図3は参照光波側の波長分散補正と信号光波の合波を示したものである。本発明は図3に示すような同軸型の空間干渉計を構築することを特徴とする。参照光波er 側において、波長分散補正のため、適宜な焦点距離のレンズ10により、過型回折格子9から射出する1次回折光が光アレイセンサ12の検出面上に投影される。干渉に寄与する相関波面は、位相波面と角度θ1 〔=tan-1(cosθ)、θは回折格子への参照光波er の入射角〕を成す。一方、信号光波es 側においては、光照射された被検体6からの反射光がレンズ5で集められ、並行光束にされ参照光波er と半透明鏡11により合波される。信号光波es の干渉に寄与する相関波面は被検体6の各深さから連続的な位相波面と平行な波面である。低コヒーレント光源を使用するため、参照光波er と信号光波es の相関波面が交差するところでのみ干渉が発生し、被検体6内の各深さの信号が光アレイセンサ12の検出面上の異なる位置Zで検出される。 FIG. 3 shows chromatic dispersion correction on the reference light wave side and signal light wave multiplexing. The present invention is characterized by constructing a coaxial spatial interferometer as shown in FIG. On the reference light wave er side, the first-order diffracted light emitted from the over-diffractive grating 9 is projected onto the detection surface of the optical array sensor 12 by the lens 10 having an appropriate focal length for correcting chromatic dispersion. Contributes correlation wavefront interference phase front and the angle theta 1 [= tan -1 (cosθ), θ is the incident angle of the reference light wave e r of the diffraction grating] form a. On the other hand, in the signal light wave e s side, the light reflected from the subject 6, which is the light irradiation are collected by the lens 5, are multiplexed by the reference light wave e r translucent mirror 11 is parallel light flux. Contributes correlation wavefront interference signal lightwave e s is a continuous phase front and parallel wavefronts from each depth of the subject 6. To use the low coherent light source, the reference light wave e correlation wavefront of r and the signal lightwave e s only interference where cross occurs, the signal of each depth in the object 6 on the detection surface of the optical array sensor 12 It is detected at a different position Z.

このように本発明は、同軸干渉計であるにもかかわらず、空間干渉信号を検出できる優れた特徴がある。干渉信号の空間周波数に寄与する位相波面は、参照光波er と信号光波es とで平行である、すなわち交差角はゼロであるため、空間周波数が無限小となる。従って、2光波の干渉信号の包絡線が直接検出できることとなる。 Thus, although the present invention is a coaxial interferometer, it has an excellent feature capable of detecting a spatial interference signal. Contributes phase front to the spatial frequency of the interference signal is parallel with the reference light wave e r and the signal lightwave e s, namely crossing angle is zero, the spatial frequency is infinitesimal. Therefore, the envelope of the interference signal of two light waves can be directly detected.

解析的に本発明の原理を説明する。光アレイセンサの検出面上での2光波の位相差は参照光波側、信号光波側ともにその結像系の結像倍率が1であるとすると、   The principle of the present invention will be described analytically. Assuming that the phase difference of the two light waves on the detection surface of the optical array sensor is 1, the imaging magnification of the imaging system is 1 on both the reference light wave side and the signal light wave side.

Figure 2006064610
で与えられる。ただし、Δzは参照光波と信号光波の合波までの光路長差である。検出面で検出される光強度Iは次式のように計算される。
Figure 2006064610
Given in. However, Δz is an optical path length difference until the reference light wave and the signal light wave are combined. The light intensity I detected on the detection surface is calculated as follows:

Figure 2006064610
上記式(6)における右辺第2項の干渉項を光源のスペクトル分布がガウス分布と仮定して、中心波長λ0 、波長幅Δλとして積分すると、
Figure 2006064610
When the interference term of the second term on the right-hand side in the above equation (6) is integrated with the center wavelength λ 0 and the wavelength width Δλ assuming that the spectral distribution of the light source is a Gaussian distribution,

Figure 2006064610
と計算される。この干渉項は、荷重として正弦関数が掛けられたガウス関数を表している。
Figure 2006064610
Is calculated. This interference term represents a Gaussian function multiplied by a sine function as a load.

従来の空間干渉法での検出光強度を表す上記式(2)と比較すると、干渉信号の包絡線を表すガウシアン関数は等しく、荷重としてかけられる正弦関数の位相が異なる。信号光波と参照光波の相関波面が交差し干渉する位置z
z=Δλ/sinθ (8)
を中心に干渉信号が局在する。先に説明した軸外し空間干渉法と同様に、干渉信号のピーク位置、すなわちガウシアン関数の中心位置は2光波の光路長差Δzによって決まり、干渉信号の局在する干渉領域は光源のコヒーレント長に依存する。また、空間干渉法とは異なり正弦関数の位相に位置の変数zが存在しないことから、発生する干渉信号の空間周波数は無限小であり、すなわち、干渉信号の包絡線を直接検出できる特徴をもっている。
Compared with the above equation (2) representing the detected light intensity in the conventional spatial interference method, the Gaussian function representing the envelope of the interference signal is the same, and the phase of the sine function applied as a load is different. Position z where the correlation wavefront of the signal light wave and the reference light wave intersect and interfere
z = Δλ / sinθ (8)
The interference signal is localized around the center. Similar to the off-axis spatial interferometry described above, the peak position of the interference signal, that is, the center position of the Gaussian function is determined by the optical path length difference Δz of the two light waves, and the interference region where the interference signal is localized is determined by the coherent length of the light source. Dependent. In addition, unlike the spatial interferometry, since the position variable z does not exist in the phase of the sine function, the spatial frequency of the generated interference signal is infinitesimal, that is, the envelope of the interference signal can be directly detected. .

図11に示されるような軸外し干渉計を用いた空間干渉法でも、信号光波と参照光波の相関波面の交差位置において干渉信号が発生し、被検体の深さ方向(光照射方向)の情報が光アレイセンサ91の検出面上の横方向に投影される。軸外し干渉計では、また、位相波面も交差するため、交差角に反比例した高い空間周波数の干渉縞が発生する。本発明による同軸型空間光干渉断層画像計測装置においては、参照光波と信号光波の相関波面のみが交差し、位相波面は平行であるため空間周波数が無限小の干渉信号、すなわち、干渉縞の包絡線のみを検出できることとなる。   Even in the spatial interferometry using the off-axis interferometer as shown in FIG. 11, an interference signal is generated at the intersection position of the correlation wavefront of the signal light wave and the reference light wave, and information on the depth direction (light irradiation direction) of the subject. Is projected in the horizontal direction on the detection surface of the optical array sensor 91. In the off-axis interferometer, the phase wavefronts also intersect, and thus high spatial frequency interference fringes that are inversely proportional to the intersection angle are generated. In the coaxial spatial optical coherence tomographic image measuring apparatus according to the present invention, only the correlation wave fronts of the reference light wave and the signal light wave intersect and the phase wave fronts are parallel, so that an interference signal having an infinitely small spatial frequency, that is, an envelope of interference fringes. Only the line can be detected.

以上のことは、検出された空間的な光干渉信号の演算処理により、干渉信号の包絡線を求める従来の空間干渉計測とは根本的に異なるものである。   The above is fundamentally different from the conventional spatial interference measurement that obtains the envelope of the interference signal by calculating the detected spatial light interference signal.

図4は、本発明による光軸方向非走査断層画像計測装置の実施例図である。この図において、13は円柱レンズ、14は線形光アレイセンサ、15、16は被検体6のX−Y面走査用可動ミラーで例えばガルバノミラーである。他の素子は図1と同様であるので説明は省略する。   FIG. 4 is an embodiment diagram of an optical axis direction non-scanning tomographic image measuring apparatus according to the present invention. In this figure, 13 is a cylindrical lens, 14 is a linear optical array sensor, 15 and 16 are movable mirrors for scanning the XY plane of the subject 6, for example, galvanometer mirrors. The other elements are the same as in FIG.

本実施例は、図1の同軸型空間光干渉断層画像計測装置において、透過型回折格子9からの空間相関波面の参照光波をレンズ(結像レンズ)10を経て、さらに円柱レンズ13により、線形光アレイセンサ14の検出面に線状に集光する。他方、信号光波はX−Y面走査用可動ミラー15および16を用いて、被検体6の所定の位置に集光照射する。被検体6の表面あるいは深部からの反射信号光波はレンズ5により集光し、X−Y面走査用可動ミラー16、15を経て半透明鏡11で反射され、円柱レンズ13により参照光波と同様に線状にされ、参照光波と合波し干渉光として線形光アレイセンサ14に投影される。その結果、上記原理で述べたように被検体6の内部反射情報が干渉の法絡線となって線形光アレイセンサ14から1次元の位置と反射強度分布情報として描写できる出力を得る。さらに、可動ミラー15,16を動かし信号光波の照射点を偏向制御して所望の方向に移動走査し、暫時反射強度分布を得て、信号の統合・処理系を経て2次元断層画像を観測することができる。   In the present embodiment, in the coaxial spatial light coherence tomographic image measurement apparatus of FIG. 1, the reference light wave of the spatial correlation wavefront from the transmission diffraction grating 9 passes through the lens (imaging lens) 10 and is further linearized by the cylindrical lens 13. The light is condensed linearly on the detection surface of the optical array sensor 14. On the other hand, the signal light wave is condensed and applied to a predetermined position of the subject 6 using the movable mirrors 15 and 16 for XY plane scanning. The reflected signal light wave from the surface or deep part of the subject 6 is collected by the lens 5, reflected by the translucent mirror 11 through the movable mirrors 16 and 15 for XY plane scanning, and similarly to the reference light wave by the cylindrical lens 13. It is linear, combined with the reference light wave, and projected onto the linear light array sensor 14 as interference light. As a result, as described in the above principle, the internal reflection information of the subject 6 becomes a normal line of interference, and an output that can be drawn from the linear optical array sensor 14 as one-dimensional position and reflection intensity distribution information is obtained. Further, the movable mirrors 15 and 16 are moved to control the deflection of the signal light wave irradiation point and move and scan in a desired direction to obtain a temporary reflection intensity distribution and observe a two-dimensional tomographic image through a signal integration / processing system. be able to.

本実施例は、従来の断層画像化技術(例えば、上記非特許文献1参照)において、光軸(ここではZ軸)方向に参照光波を高速遅延するのに、機械的な反射鏡の移動や回転プリズムなどを用いた、機械的走査によって行う遅延走査は不要な技術を提供するものである。すなわち、空間遅延相関波面の発生が遅延走査の役目を担うため、機械的走査を一切必要としないで、Z軸方向の反射信号強度を一括して検出するものである。1次元線形光アレイセンサ14の検出速度は、通常数十MHzであるので、照射点の移動走査速度が、例えばガルバノミラーなどを用いて数十KHzであれば、後者によってサンプリング速度が決まり、従来のAスキャン最高速度1000Hzに比較して数十倍の高速化が実現されるものである。なお、半透明鏡7と反射鏡8で構成される遅延機構は、Z軸上の断層検出の走査開始位置を決めるものとして使用するものである。   In this embodiment, in a conventional tomographic imaging technique (for example, see Non-Patent Document 1 above), the reference light wave is delayed in the direction of the optical axis (here, the Z axis) at high speed. Delayed scanning performed by mechanical scanning using a rotating prism or the like provides an unnecessary technique. In other words, since the generation of the spatially delayed correlation wavefront plays a role of delayed scanning, the reflected signal intensity in the Z-axis direction is collectively detected without requiring any mechanical scanning. Since the detection speed of the one-dimensional linear optical array sensor 14 is usually several tens of MHz, if the moving scanning speed of the irradiation point is several tens KHz using, for example, a galvano mirror, the latter determines the sampling speed, and the conventional Compared to the A-scan maximum speed of 1000 Hz, a speed increase of several tens of times is realized. The delay mechanism composed of the translucent mirror 7 and the reflecting mirror 8 is used to determine the scanning start position for tomographic detection on the Z axis.

図5は、本発明による図1の同軸型空間光干渉断層画像計測装置において、信号光波側のみに円柱レンズを具備し線状に集光した光波を被検体に照射し、信号光波側に結像光学系を導入し、機械的な動作をせずに2次元断層画像の計測を可能にした実施例である。この図において、12は2次元光アレイセンサ(例えばCCDカメラあるいはMOS型カメラ、さらには電子増倍機構付き各種撮像デバイス)、13は円柱レンズ、17と19はフーリエ変換レンズ、18は開口である。他の素子は図1と同様であるので説明は省略する。   FIG. 5 shows the coaxial spatial optical coherence tomographic image measurement apparatus of FIG. 1 according to the present invention, which is provided with a cylindrical lens only on the signal light wave side and irradiates the subject with light waves collected in a linear form and connected to the signal light wave side. This is an embodiment in which an image optical system is introduced to enable measurement of a two-dimensional tomographic image without mechanical operation. In this figure, 12 is a two-dimensional optical array sensor (for example, a CCD camera or MOS camera, and various imaging devices with an electron multiplying mechanism), 13 is a cylindrical lens, 17 and 19 are Fourier transform lenses, and 18 is an aperture. . The other elements are the same as in FIG.

図5において、信号光波は、円柱レンズ13とレンズ5により光照射方向と垂直な縦方向に線状に収束され、例えば不均一な構成物質からなる被検体6へ照射される。被検体6から内部反射してくる光をレンズ5で集め、円柱レンズ13を介して半透明鏡11を経て光アレイセンサ12の検出面に投影される。   In FIG. 5, the signal light wave is converged linearly in the vertical direction perpendicular to the light irradiation direction by the cylindrical lens 13 and the lens 5, and is irradiated onto the subject 6 made of, for example, a non-uniform constituent material. The light internally reflected from the subject 6 is collected by the lens 5 and projected onto the detection surface of the optical array sensor 12 via the cylindrical lens 13 and the semitransparent mirror 11.

図6はその信号光波側の光の伝送について、図の直交軸を参照し、X−Z平面とY−Z平面について描写したものである。この図6において、被検体6への信号光の照射と被検体6からの内部反射光の捕捉は図左から右へ連続的に図解している。焦点距離f1 の円柱レンズ13と物側焦点距離f2b、像側焦点距離f2fのレンズ5は、被検体上6に線状収束ビームを照射するだけでなく、線状収束ビーム照射位置上の像を光アレイセンサ12の検出面上に結像するように配置される。一方、参照光波は図5に示すように遅延機構(7、8)を経由して、回折格子9に入射し、その1次回折光が結像レンズ系(17、19)で光アレイセンサ12の検出面上に結像する。参照光波と信号光波は半透明鏡11で合波され、前記2次元光アレイセンサ12上で干渉し検出される。2次元光アレイセンサ12の2次元に並んだ受光素子の一方向には被検体6の光照射軸方向すなわちZ軸方向に対応した深部断層反射光分布の干渉信号が、他方の一方向には線状の光波が照射される方向に対応した干渉信号が投影され、それらの干渉信号が各受光素子で並列に2次元座標で検出される。 FIG. 6 depicts the transmission of light on the signal light wave side with respect to the XZ plane and the YZ plane with reference to the orthogonal axes in the figure. In FIG. 6, the irradiation of the signal light onto the subject 6 and the capture of the internally reflected light from the subject 6 are illustrated continuously from the left to the right in the figure. The cylindrical lens 13 having the focal length f 1 and the lens 5 having the object-side focal length f 2b and the image-side focal length f 2f not only irradiate the object 6 with the linear convergent beam but also the linear convergent beam irradiation position. These images are arranged on the detection surface of the optical array sensor 12. On the other hand, as shown in FIG. 5, the reference light wave enters the diffraction grating 9 via the delay mechanism (7, 8), and the first-order diffracted light is incident on the optical array sensor 12 by the imaging lens system (17, 19). An image is formed on the detection surface. The reference light wave and the signal light wave are combined by the translucent mirror 11 and interfered and detected on the two-dimensional optical array sensor 12. In one direction of the two-dimensional light receiving elements of the two-dimensional optical array sensor 12, an interference signal of a deep tomographic reflected light distribution corresponding to the light irradiation axis direction of the subject 6, that is, the Z-axis direction, is present in the other direction. Interference signals corresponding to the direction in which the linear light wave is irradiated are projected, and these interference signals are detected in parallel by the respective light receiving elements with two-dimensional coordinates.

この実施例では、上記の説明のように被検体6の2次元断層画像を非走査かつ高速で並列検出できる。また、半透明鏡7と反射鏡8で構成される遅延機構は、Z軸上の断層検出の走査開始位置を決めるものとして使用するものである。さらには、被検体6をZ軸方向に移動することにより、同様に検査位置を制御しても計測できる。   In this embodiment, as described above, the two-dimensional tomographic image of the subject 6 can be detected in parallel at high speed without scanning. The delay mechanism composed of the semitransparent mirror 7 and the reflecting mirror 8 is used to determine the scanning start position for tomographic detection on the Z axis. Furthermore, by moving the subject 6 in the Z-axis direction, measurement can be performed even if the examination position is controlled in the same manner.

さらに、図5の実施例は、本発明による図1の参照光波側、回折格子9―光アレイセンサ12の検出面間の結像光学系を4f光学系(17,19)に変更したものである。レンズ17のフーリエ変換面側に適宜な直径の開口18を配置することにより、回折格子9からの1次回折光波以外の散乱光などを除去する効果をもつものである。   Further, in the embodiment of FIG. 5, the imaging optical system between the reference light wave side of FIG. 1 according to the present invention and the detection surface of the diffraction grating 9 and the optical array sensor 12 is changed to a 4f optical system (17, 19). is there. By arranging an opening 18 having an appropriate diameter on the Fourier transform surface side of the lens 17, it has an effect of removing scattered light other than the first-order diffracted light wave from the diffraction grating 9.

図7は、本発明の図5の同軸型空間光干渉断層画像計測装置に、被検体入射点走査機構を配備した実施例を示すものである。この図7において、15、16は偏向制御用可動ミラー(例えばガルバノミラー)などで構成してもよい。例えば、図6のようにY軸方向に被検体6へ線状の照射をした場合には、可動ミラー15あるいは16を傾斜してその照射位置を偏向制御して順次照射点を移動して走査すれば、3次元断層画像情報を取得でき、それらの信号を統合・処理して任意の切り口で3次元断層画像を表示できる。   FIG. 7 shows an embodiment in which a subject incident point scanning mechanism is provided in the coaxial spatial optical coherence tomographic image measuring apparatus of FIG. 5 of the present invention. In FIG. 7, reference numerals 15 and 16 may be composed of deflection control movable mirrors (for example, galvano mirrors). For example, when linear irradiation is performed on the subject 6 in the Y-axis direction as shown in FIG. 6, the movable mirror 15 or 16 is tilted, and the irradiation position is deflected to sequentially move the irradiation point and scan. Then, 3D tomographic image information can be acquired, and these signals can be integrated and processed to display a 3D tomographic image at an arbitrary angle.

図8は、本発明による図5の同軸型空間光干渉断層画像計測装置に、帯域偏光ビームスプリッタを用いた偏光制御による実施例である。   FIG. 8 shows an embodiment based on polarization control using a band polarization beam splitter in the coaxial spatial optical coherence tomographic image measuring apparatus of FIG. 5 according to the present invention.

図8において、20は広帯域偏光ビームスプリッタ(PBS)、21は半透明反射鏡、22はλ/4波長板である。他の素子は図1の場合と同様であるので説明は省略する。44は反射鏡である。   In FIG. 8, 20 is a broadband polarization beam splitter (PBS), 21 is a translucent reflecting mirror, and 22 is a λ / 4 wavelength plate. The other elements are the same as in FIG. Reference numeral 44 denotes a reflecting mirror.

SLDやLEDなどの低コヒーレント光源の出力は一般的に無偏光、すなわち、特定の電界ベクトル方向成分すなわち直線偏光特性を持っていない。図8では、低コヒーレント光源1からの光がPBS20によりS偏光成分とP偏光成分に分けられ、参照光波がS偏光成分を持ち、信号光波がP偏光成分を持つようにした。直線P偏光成分の信号光波はλ/4波長板22を通過し円偏光に変換され、円柱レンズ13とレンズ5により線状に集光され被検体6へ入射する。   The output of a low coherent light source such as an SLD or LED is generally non-polarized, i.e., does not have a specific electric field vector direction component, i.e. linear polarization. In FIG. 8, the light from the low-coherent light source 1 is divided into an S-polarized component and a P-polarized component by the PBS 20 so that the reference light wave has an S-polarized component and the signal light wave has a P-polarized component. The signal light wave of the linear P-polarized component passes through the λ / 4 wavelength plate 22 and is converted into circularly polarized light, and is condensed into a linear shape by the cylindrical lens 13 and the lens 5 and enters the subject 6.

一方、被検体6から反射した円偏光の信号光波は、再びレンズ5と円柱レンズ13とを通過し、その後、再びλ/4波長板22を通過することにより直線S偏光に変換される。他方、直線S偏光を持つ参照光波は透過型回折格子9を通過し、同じ直線S偏光を持つ信号光波と半透明鏡21により合波され、実施例4の図7の場合と同様に干渉信号が検出される。この実施例は、広帯域偏光ビームスプリッタ20及びλ/4波長板22を用いることにより、被検体6への入射光の偏光方向を制御することができ、被検体6の内部構造の高効率な検出と被検体6が複屈折率特性などを持つことを検出するのに極めて有効な方法である。   On the other hand, the circularly polarized signal light wave reflected from the subject 6 passes through the lens 5 and the cylindrical lens 13 again, and then passes through the λ / 4 wavelength plate 22 again to be converted into linear S-polarized light. On the other hand, the reference light wave having linear S-polarized light passes through the transmissive diffraction grating 9, and is combined with the signal light wave having the same linear S-polarized light by the semitransparent mirror 21, and the interference signal is the same as in the case of FIG. Is detected. In this embodiment, by using the broadband polarizing beam splitter 20 and the λ / 4 wavelength plate 22, the polarization direction of the incident light on the subject 6 can be controlled, and the internal structure of the subject 6 can be detected with high efficiency. This is an extremely effective method for detecting that the subject 6 has birefringence characteristics and the like.

図9は、本発明による図5の同軸型空間光干渉断層画像計測装置において、遅延機構中の反射鏡8を高速振動機構23上に配置し、この振動機構23の動作により干渉信号に周波数シフトを与え、背景光による直流成分から干渉成分を分離する機能を備えた実施例である。   FIG. 9 shows the coaxial spatial optical coherence tomographic image measuring apparatus of FIG. 5 according to the present invention, in which the reflecting mirror 8 in the delay mechanism is arranged on the high-speed vibration mechanism 23 and the frequency of the interference signal is shifted by the operation of the vibration mechanism 23 This is an embodiment having a function of separating an interference component from a direct current component caused by background light.

図9において、23は高速振動機構、24は反射鏡、25は反射型回折格子である。他の素子は図1と同様であるので説明は省略する。   In FIG. 9, 23 is a high-speed vibration mechanism, 24 is a reflecting mirror, and 25 is a reflection type diffraction grating. The other elements are the same as in FIG.

図9において、低コヒーレント光源1からの出力は半透明鏡3により参照光波と信号光波に2分される。参照光波は、遅延機構(7、8)に入射する。遅延機構中の反射鏡8は高速振動機構(例えばピエゾ振動子)23上に配置され、この高速遅延機構23から戻る光はピエゾ振動子により光路長が微少に伸縮され位相変調を受けている。位相変調を受けた参照光波は、その後、反射型回折格子25に入射し、その1次回折光が4f光学系(17、19)で光アレイセンサ12の検出面上に結像する。   In FIG. 9, the output from the low coherent light source 1 is divided into a reference light wave and a signal light wave by the semi-transparent mirror 3. The reference light wave enters the delay mechanism (7, 8). The reflecting mirror 8 in the delay mechanism is disposed on a high-speed vibration mechanism (for example, a piezo vibrator) 23, and the light returning from the high-speed delay mechanism 23 is subjected to phase modulation by the optical path length being slightly expanded and contracted by the piezo vibrator. The phase-modulated reference light wave is then incident on the reflective diffraction grating 25, and the first-order diffracted light forms an image on the detection surface of the optical array sensor 12 by the 4f optical system (17, 19).

この実施例において、ピエゾ振動子のような高速振動機構23を周期的に振動させることにより、参照光波は周期的に位相変調を受け、光アレイセンサ12によって検出される光干渉信号は、位相変調と同じ周波数をもつ交流信号となり、この交流信号を選択的に検出することで、上記式(6)に示されるように背景光と信号成分が重なり合う干渉信号から干渉成分のみを分離検出できる。   In this embodiment, by periodically vibrating a high-speed vibration mechanism 23 such as a piezo vibrator, the reference light wave is periodically phase-modulated, and the optical interference signal detected by the optical array sensor 12 is phase-modulated. By selectively detecting this AC signal, only the interference component can be separated and detected from the interference signal in which the background light and the signal component overlap as shown in the above equation (6).

一方、位相シフト検出の導入も可能である。ピエゾ振動子のような高速振動機構23を離散的に走査することにより、位相が異なる複数の干渉信号を検出し、これらの干渉信号を演算することにより、背景光と信号成分が重なり合う干渉信号から干渉成分のみを分離検出できる。   On the other hand, phase shift detection can also be introduced. By scanning a high-speed vibration mechanism 23 such as a piezo vibrator discretely, a plurality of interference signals having different phases are detected, and by calculating these interference signals, an interference signal in which background light and signal components overlap is detected. Only interference components can be separated and detected.

さらに、図9の実施例は、本発明による図4の透過型回折格子9の代わりに高い回折効率の反射型回折格子25を用い、参照光波の強度を高めSN比を上げる効果が得られるものである。   Further, the embodiment of FIG. 9 uses the reflective diffraction grating 25 with high diffraction efficiency instead of the transmissive diffraction grating 9 of FIG. 4 according to the present invention, and can obtain the effect of increasing the intensity of the reference light wave and increasing the SN ratio. It is.

図9において、遅延機構(7、8)から戻る参照光波は反射鏡24により反射され、反射型回折格子25へ照射される。反射型回折格子25からの例えば1次回折光が、2枚のレンズ(17、19)で検出面上に投影され信号光波との干渉信号が検出される。   In FIG. 9, the reference light wave returning from the delay mechanism (7, 8) is reflected by the reflecting mirror 24 and is applied to the reflective diffraction grating 25. For example, first-order diffracted light from the reflective diffraction grating 25 is projected onto the detection surface by the two lenses (17, 19), and an interference signal with the signal light wave is detected.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形、組み合わせが可能であり、これらを発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, A various deformation | transformation and combination are possible based on the meaning of this invention, These are not excluded from the scope of the invention.

本発明の同軸型空間光干渉断層画像計測装置は、光波による生体画像診断のためのツールとして利用可能である。   The coaxial spatial light coherence tomographic image measurement apparatus of the present invention can be used as a tool for biological image diagnosis using light waves.

本発明の実施例を示す空間相関波を用いた同軸型光空間干渉断層画像計測装置を示す図である。It is a figure which shows the coaxial optical space coherence tomographic image measuring apparatus using the spatial correlation wave which shows the Example of this invention. 本発明にかかる透過型回折格子への光照射位置に依存した遅延相関波面の発生の原理を示す図である。It is a figure which shows the principle of generation | occurrence | production of the delayed correlation wave front depending on the light irradiation position to the transmission type diffraction grating concerning this invention. 本発明の原理である参照光波側の波長分散補正と信号光波の合波を示す図である。It is a figure which shows the wavelength dispersion correction | amendment by the side of the reference light wave and the multiplexing of a signal light wave which are the principles of this invention. 本発明の光軸方向非走査断層画像計測装置の実施例図である。It is an Example figure of the optical axis direction non-scanning tomographic image measuring apparatus of this invention. 本発明による図1の同軸型光空間干渉断層画像計測装置の信号光波側に2次元断層画像計測のため円柱レンズ系を導入した実施例を示す図である。It is a figure which shows the Example which introduce | transduced the cylindrical lens system for the two-dimensional tomographic image measurement to the signal light wave side of the coaxial optical space coherence tomographic image measuring apparatus of FIG. 1 by this invention. 図5の同軸型光空間干渉断層画像計測装置の結像光学系について示す図である。It is a figure shown about the imaging optical system of the coaxial optical space coherence tomographic image measuring apparatus of FIG. 本発明の図5の同軸型光空間干渉断層画像計測装置に、被検体入射位置走査機構を配備した実施例を示すものである。6 shows an embodiment in which a subject incident position scanning mechanism is provided in the coaxial optical space coherence tomographic image measurement apparatus of FIG. 5 of the present invention. 本発明による図5の同軸型光空間干渉断層画像計測装置に偏光制御を用いた実施例を示す図である。It is a figure which shows the Example which used polarization control for the coaxial type optical space coherence tomographic image measuring apparatus of FIG. 5 by this invention. 本発明による図5の同軸型光空間干渉断層画像計測装置の参照光波側に干渉成分分離のための高速振動機構を用いた実施例を示す図である。FIG. 6 is a diagram showing an embodiment in which a high-speed vibration mechanism for separating interference components is used on the reference light wave side of the coaxial optical space coherence tomographic image measurement apparatus of FIG. 5 according to the present invention. マイケルソン干渉計を用いた光コヒーレンス断層画像計測装置の基本構成を示す図である。It is a figure which shows the basic composition of the optical coherence tomographic image measuring apparatus using a Michelson interferometer. 従来の低コヒーレント光源を用いた軸外し干渉計の基本構成とその原理を示す図である。It is a figure which shows the basic composition and the principle of the off-axis interferometer using the conventional low coherent light source.

符号の説明Explanation of symbols

1 低コヒーレント光源
2,5,10 レンズ
3,7,11,21 半透明鏡
4,8,24,44 反射鏡
6 被検体
9 透過型回折格子
12,14 光アレイセンサ
13 円柱レンズ
15,16 X−Y面走査用可動ミラー(ガルバノミラー)
17,19 フーリエ変換レンズ
18 開口
20 広帯域偏光ビームスプリッタ(PBS)
22 λ/4波長版
23 高速振動機構(ピエゾ振動子)
25 反射型回折格子
DESCRIPTION OF SYMBOLS 1 Low coherent light source 2,5,10 Lens 3,7,11,21 Translucent mirror 4,8,24,44 Reflector 6 Subject 9 Transmission type diffraction grating 12,14 Optical array sensor 13 Cylindrical lens 15,16 X -Movable mirror for Y-plane scanning (galvano mirror)
17, 19 Fourier transform lens 18 aperture 20 broadband polarization beam splitter (PBS)
22 λ / 4 wavelength version 23 High-speed vibration mechanism (piezo vibrator)
25 Reflective diffraction grating

Claims (17)

広帯域な波長幅をもつ光源を用いる光干渉法による断層画像計測用干渉光学系において、参照光波を回折格子を経由させ、前記回折格子の入射位置に依存して遅延する、回折光の等位相面と角度を成す信号光波との干渉に寄与する相関波面をもつ回折光波を発生させ、該回折光波を信号光波と略同軸で干渉させ、前記遅延に依存する位置に局在した空間干渉信号を発生させるとともに、同軸干渉系を構成することを特徴とする同軸型空間光干渉断層画像計測装置。   In an interferometric optical system for tomographic image measurement by optical interferometry using a light source having a wide wavelength width, an equiphase surface of diffracted light that delays the reference light wave through the diffraction grating and depends on the incident position of the diffraction grating A diffracted light wave having a correlation wave front that contributes to interference with the signal light wave that forms an angle with the signal light wave is generated, and the diffracted light wave is interfered substantially coaxially with the signal light wave to generate a spatial interference signal localized at the position depending on the delay. And a coaxial spatial light coherence tomographic image measuring apparatus, characterized in that a coaxial interference system is configured. (a)波長帯域幅の広い光波を射出する光源と、
(b)該光源から射出した光波のビーム径を拡大し、平行光束に変換するレンズと、
(c)前記並行光束を、被検体が配置される光路を辿る信号光波と、前記被検体を経由する光路とは異なる、回折格子が配置される光路を辿る参照光波に2分し、前記参照光波の光路長を調整するための半透明鏡と反射鏡よりなる遅延機構を経由した参照光波をさらに回折格子を経由させることにより、位相波面と角度を成す信号光波との干渉に寄与する前記空間遅延相関波面を持たせ、該空間遅延相関波面をもつ参照光波と、前記被検体へ照射され、その内部より後方散乱する信号光波または前方散乱する信号光波とを、略同軸で合波し空間的な干渉信号を生成する干渉光学系と、
(d)該干渉光学系で生成される干渉光を受光検出する空間的に受光素子が多数配列される光アレイセンサと、
(e)該光アレイセンサの多数の受光素子で検出された光干渉信号を統合・処理し、信号光波が照射された位置での被検体の表面もしくは内部の形態情報を構成する信号処理系とを具備することを特徴とする同軸型空間光干渉断層画像計測装置。
(A) a light source that emits a light wave having a wide wavelength bandwidth;
(B) a lens that enlarges the beam diameter of the light wave emitted from the light source and converts it into a parallel light beam;
(C) The parallel light beam is divided into a signal light wave that follows an optical path in which the subject is arranged and a reference light wave that is different from an optical path that passes through the subject and that follows an optical path in which a diffraction grating is arranged, and the reference The space that contributes to interference with the signal light wave that forms an angle with the phase wavefront by further passing the reference light wave that has passed through the delay mechanism composed of a translucent mirror and a reflecting mirror for adjusting the optical path length of the light wave, through the diffraction grating A delayed correlation wavefront is provided, and a reference light wave having the spatial delay correlation wavefront and a signal light wave irradiated to the subject and back-scattered from the inside or a signal light wave forward-scattered from the inside thereof are combined in a substantially coaxial manner and spatially combined. An interference optical system for generating a simple interference signal;
(D) an optical array sensor in which a large number of light receiving elements are arranged spatially for receiving and detecting interference light generated by the interference optical system;
(E) a signal processing system that integrates and processes optical interference signals detected by a large number of light receiving elements of the optical array sensor, and forms morphological information on the surface or inside of the subject at the position irradiated with the signal light wave; A coaxial spatial light coherence tomographic image measuring apparatus comprising:
前記干渉光学系の参照光波側において、前記参照光波が前記回折格子を経由することによって発生する回折光の波長分散を補正するため、前記回折格子からの回折光をレンズ系により光アレイセンサ上に投影することを特徴とする請求項1又は2記載の同軸型空間光干渉断層画像計測装置。   On the reference light wave side of the interference optical system, in order to correct the wavelength dispersion of the diffracted light generated by the reference light wave passing through the diffraction grating, the diffracted light from the diffraction grating is applied to the optical array sensor by the lens system. The coaxial spatial light coherence tomographic image measuring apparatus according to claim 1, wherein the coaxial spatial optical coherence tomographic image measuring apparatus is projected. 前記干渉光学系が、前記信号光波側において、前記被検体へ入射する光波をレンズ系を経て照射し、前記被検体からの信号光波を前記レンズ系を用いて集光し、さらに円柱レンズ系を用いて前記光アレイセンサの検出面上に投影することを特徴とする請求項3記載の同軸型空間光干渉断層画像計測装置。   The interference optical system irradiates a light wave incident on the subject through a lens system on the signal light wave side, condenses the signal light wave from the subject using the lens system, and further provides a cylindrical lens system. The coaxial spatial optical coherence tomographic image measuring apparatus according to claim 3, wherein the coaxial spatial optical coherence tomographic image measuring apparatus is used to project onto a detection surface of the optical array sensor. 前記干渉光学系が、前記信号光波側において、前記被検体へ入射する光波を該光波の入射方向と垂直な縦方向に線状に絞るために円柱レンズと集光レンズとを用い、前記被検体からの信号光波をレンズ系を用いて集光し、さらに前記円柱レンズを用いて前記光アレイセンサの検出面上に投影することを特徴とする請求項3記載の同軸型空間光干渉断層画像計測装置。   The interference optical system uses, on the signal light wave side, a cylindrical lens and a condensing lens to narrow down a light wave incident on the subject in a vertical direction perpendicular to the incident direction of the light wave, and the subject 4. The coaxial spatial light coherence tomographic image measurement according to claim 3, wherein the signal light wave from the light beam is condensed using a lens system, and further projected onto the detection surface of the optical array sensor using the cylindrical lens. apparatus. 請求項4又は5記載の同軸型空間光干渉断層画像計測装置において、前記被検体へ入射する光波を、偏向走査する機構を設けたことを特徴とする同軸型空間光干渉断層画像計測装置。   6. The coaxial spatial light coherence tomographic image measurement apparatus according to claim 4, further comprising a mechanism for deflecting and scanning a light wave incident on the subject. 前記請求項4記載の同軸型空間光干渉断層画像計測装置において、前記光アレイセンサが、受光素子が空間的に線形配列され、空間的な干渉信号をそれぞれ独立・並列検出できる光アレイセンサであり、該光アレイセンサの検出面は前記回折格子からの参照光波と前記被検体からの信号光波が投影される面に配置され、前記光アレイセンサの1方向に並んだ受光素子で検出された光干渉信号は、統合・処理により、前記被検体の信号光波照射位置での伝播方向の形態情報を構築するものであり、前記偏向走査により前記信号光波照射位置を順次移動して信号光波を検出・統合・処理することにより2次元断層画像を構築することを特徴とする同軸型空間光干渉断層画像計測装置。   5. The coaxial spatial optical coherence tomographic image measurement apparatus according to claim 4, wherein the optical array sensor is an optical array sensor in which light receiving elements are spatially linearly arranged and spatial interference signals can be detected independently and in parallel. The detection surface of the optical array sensor is disposed on the surface on which the reference light wave from the diffraction grating and the signal light wave from the subject are projected, and the light detected by the light receiving elements arranged in one direction of the optical array sensor. The interference signal is formed by integrating and processing to form morphological information in the propagation direction at the signal light wave irradiation position of the subject. The signal light wave irradiation position is sequentially moved by the deflection scanning to detect the signal light wave. A coaxial spatial light coherence tomographic image measuring apparatus that constructs a two-dimensional tomographic image by integration and processing. 請求項5の記載の同軸型空間光干渉断層画像計測装置において、前記光アレイセンサが、受光素子が空間的に2次元配列され、空間的な干渉信号をそれぞれ独立・並列検出できる2次元光アレイセンサであり、該2次元光アレイセンサの検出面は前記回折格子からの1次回折参照光波と前記被検体からの信号光波が投影される面に配置され、前記2次元光アレイセンサの1方向に並んだ受光素子で検出された光干渉信号は、統合・処理により、前記被検体の信号光波照射位置での伝播方向の形態情報を構築し、一方、前記2次元光アレイセンサの他の1方向に並んだ受光素子で検出された光干渉信号は、統合・処理により、前記被検体の線状信号光波照射位置での光伝播方向と垂直な縦方向の形態情報を構築する信号処理部を備えたことを特徴とする同軸型空間光干渉断層画像計測装置。   6. The coaxial spatial optical coherence tomographic image measurement apparatus according to claim 5, wherein the optical array sensor is a two-dimensional optical array in which light receiving elements are spatially two-dimensionally arranged and spatial interference signals can be detected independently and in parallel. A detection surface of the two-dimensional optical array sensor is disposed on a surface on which a first-order diffracted reference light wave from the diffraction grating and a signal light wave from the subject are projected, and is in one direction of the two-dimensional optical array sensor The optical interference signals detected by the light receiving elements arranged in a line are integrated and processed to construct form information of the propagation direction at the signal light wave irradiation position of the subject, while the other one of the two-dimensional optical array sensors. The optical interference signals detected by the light receiving elements arranged in the direction are integrated and processed by a signal processing unit that constructs vertical shape information perpendicular to the light propagation direction at the linear signal light wave irradiation position of the subject. Specially provided Coaxial type spatial light interference tomographic image measuring apparatus according to. 前記請求項8記載の同軸型空間光干渉断層画像計測装置において、前記干渉光学系が、前記参照光波側において、前記被検体へ入射する光波または前記被検体を、光波の伝播方向と垂直に1次元走査することにより、前記被検体の3次元形態情報を取得する機能を備えたことを特徴とする同軸型空間光干渉断層画像計測装置。   9. The coaxial spatial light coherence tomographic image measurement apparatus according to claim 8, wherein the interference optical system is configured to cause a light wave incident on the subject or the subject to be perpendicular to the propagation direction of the light wave on the reference light wave side. A coaxial spatial light coherence tomographic image measuring apparatus having a function of acquiring three-dimensional morphological information of the subject by two-dimensional scanning. 請求項1記載の同軸型空間光干渉断層画像計測装置において、前記干渉光学系が、前記被検体への照射光波の偏光方向を制御する偏光素子を備えることを特徴とする同軸型空間光干渉断層画像計測装置。   The coaxial spatial light coherence tomographic image measuring apparatus according to claim 1, wherein the interference optical system includes a polarization element that controls a polarization direction of a light wave applied to the subject. Image measuring device. 請求項2記載の同軸型空間光干渉断層画像計測装置において、前記干渉光学系が、振動機構により前記参照光波と前記信号光波の光路長差を伸縮することにより空間干渉信号に周波数シフトを与える周波数シフタを備え、背景光から干渉成分のみを抽出する機能をもつことを特徴とする同軸型空間光干渉断層画像計測装置。   3. The coaxial spatial light coherence tomographic image measurement apparatus according to claim 2, wherein the interference optical system gives a frequency shift to a spatial interference signal by expanding and contracting an optical path length difference between the reference light wave and the signal light wave by a vibration mechanism. A coaxial spatial light coherence tomographic image measuring apparatus comprising a shifter and having a function of extracting only interference components from background light. 請求項2記載の同軸型空間光干渉断層画像計測装置において、前記光源が、可干渉距離100μm以下のスーパールミネッセントダイオードであることを特徴とする同軸型空間光干渉断層画像計測装置。   3. The coaxial spatial light coherence tomographic image measurement apparatus according to claim 2, wherein the light source is a super luminescent diode having a coherence distance of 100 [mu] m or less. 請求項2記載の同軸型空間光干渉断層画像計測装置において、前記光源が、可干渉距離50μ以下の発光ダイオードであることを特徴とする同軸型空間光干渉断層画像計測装置。   3. The coaxial spatial light coherence tomographic image measurement apparatus according to claim 2, wherein the light source is a light emitting diode having a coherence distance of 50 [mu] m or less. 請求項2記載の同軸型空間光干渉断層画像計測装置において、前記被検体が光散乱媒体であることを特徴とする同軸型空間光干渉断層画像計測装置。   3. The coaxial spatial light coherence tomographic image measurement apparatus according to claim 2, wherein the subject is a light scattering medium. 請求項2記載の同軸型空間光干渉断層画像計測装置において、前記参照光波と信号光波間の光路長差を走査する遅延機構を設けたことを特徴とする同軸型空間光干渉断層画像計測装置。   3. The coaxial spatial light coherence tomographic image measurement apparatus according to claim 2, further comprising a delay mechanism that scans an optical path length difference between the reference light wave and the signal light wave. 請求項2記載の同軸型空間光干渉断層画像計測装置において、前記光アレイセンサがCCDあるいはMOS素子で構成されていることを特徴とする同軸型空間光干渉断層画像計測装置。   3. The coaxial spatial light coherence tomographic image measurement apparatus according to claim 2, wherein the optical array sensor is constituted by a CCD or a MOS element. 請求項2記載の同軸型空間光干渉断層画像計測装置において、前記光アレイセンサが電子増倍機構付き撮像デバイスであることを特徴とする同軸型空間光干渉断層画像計測装置。   3. The coaxial spatial light coherence tomographic image measurement apparatus according to claim 2, wherein the optical array sensor is an imaging device with an electron multiplication mechanism.
JP2004249545A 2004-08-30 2004-08-30 Coaxial spatial optical coherence tomographic image measurement device Expired - Fee Related JP3934131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004249545A JP3934131B2 (en) 2004-08-30 2004-08-30 Coaxial spatial optical coherence tomographic image measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004249545A JP3934131B2 (en) 2004-08-30 2004-08-30 Coaxial spatial optical coherence tomographic image measurement device

Publications (2)

Publication Number Publication Date
JP2006064610A true JP2006064610A (en) 2006-03-09
JP3934131B2 JP3934131B2 (en) 2007-06-20

Family

ID=36111215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004249545A Expired - Fee Related JP3934131B2 (en) 2004-08-30 2004-08-30 Coaxial spatial optical coherence tomographic image measurement device

Country Status (1)

Country Link
JP (1) JP3934131B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044424A1 (en) * 2006-10-10 2008-04-17 Hamamatsu Photonics K.K. Single terahertz wave time-waveform measuring device
JP2011158432A (en) * 2010-02-03 2011-08-18 Hamamatsu Photonics Kk Apparatus for measuring single-shot terahertz wave time waveform
CN103328921A (en) * 2011-01-25 2013-09-25 麻省理工学院 Single-shot full-field reflection phase microscopy
JP2015163862A (en) * 2014-01-31 2015-09-10 富士フイルム株式会社 Optical tomographic imaging apparatus and human skin measurement method using the same
JP5927112B2 (en) * 2010-03-17 2016-05-25 国立大学法人埼玉大学 Electric field spectrum measuring apparatus and object measuring apparatus
JP6030740B1 (en) * 2015-12-03 2016-11-24 リオン株式会社 Particle counter
CN110217069A (en) * 2018-03-01 2019-09-10 法雷奥开关和传感器有限责任公司 Sensor device for motor vehicle and the motor vehicle with sensor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103712573B (en) * 2013-12-27 2016-04-20 华南师范大学 The spatial match bearing calibration of array image sensor in binary channels interferometry

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044424A1 (en) * 2006-10-10 2008-04-17 Hamamatsu Photonics K.K. Single terahertz wave time-waveform measuring device
JP2008096210A (en) * 2006-10-10 2008-04-24 Hamamatsu Photonics Kk Device for measuring single terahertz wave time waveform
US8742353B2 (en) 2006-10-10 2014-06-03 Hamamatsu Photonics K.K. Single terahertz wave time-waveform measuring device
JP2011158432A (en) * 2010-02-03 2011-08-18 Hamamatsu Photonics Kk Apparatus for measuring single-shot terahertz wave time waveform
JP5927112B2 (en) * 2010-03-17 2016-05-25 国立大学法人埼玉大学 Electric field spectrum measuring apparatus and object measuring apparatus
CN103328921A (en) * 2011-01-25 2013-09-25 麻省理工学院 Single-shot full-field reflection phase microscopy
JP2014508922A (en) * 2011-01-25 2014-04-10 マサチューセッツ インスティテュート オブ テクノロジー Single-shot full-field reflection phase microscopy
US10451402B2 (en) 2011-01-25 2019-10-22 Massachusetts Institute Of Technology Single shot full-field reflection phase microscopy
JP2015163862A (en) * 2014-01-31 2015-09-10 富士フイルム株式会社 Optical tomographic imaging apparatus and human skin measurement method using the same
JP6030740B1 (en) * 2015-12-03 2016-11-24 リオン株式会社 Particle counter
CN110217069A (en) * 2018-03-01 2019-09-10 法雷奥开关和传感器有限责任公司 Sensor device for motor vehicle and the motor vehicle with sensor device

Also Published As

Publication number Publication date
JP3934131B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
JP7258082B2 (en) High resolution 3D spectral domain optical imaging apparatus and method
US8204300B2 (en) Image forming method and optical coherence tomograph apparatus using optical coherence tomography
US8488126B2 (en) Optical image measurement device including an interference light generator
JP5241806B2 (en) Apparatus and method for surface contour measurement
JP4344829B2 (en) Polarized light receiving image measuring device
US20090015842A1 (en) Phase Sensitive Fourier Domain Optical Coherence Tomography
WO2010143601A1 (en) Two-beam optical coherence tomography apparatus
JP2007512541A (en) Method and apparatus for three-dimensional spectrally encoded imaging
IL221187A (en) System for performing dual beam, two-dimensional optical coherence tomography (oct)
JP4512822B2 (en) Line condensing type Fourier domain interference shape measuring device
JP7175982B2 (en) Optical measurement device and sample observation method
JP3619113B2 (en) Angular dispersive optical spatial coherence tomographic imaging system
JP3934131B2 (en) Coaxial spatial optical coherence tomographic image measurement device
JP2006250849A (en) Optical image measuring method using light coherence tomography apparatus and optical image measuring device
JP6887350B2 (en) Optical image measuring device
JP7339447B2 (en) Apparatus and method for line scanning microscopy
JP2010164574A (en) Multiplexing spectrum interference optical coherence tomography
JP5173305B2 (en) Measurement signal noise processing method
KR101263326B1 (en) Heterodyne Optical Coherence Tomography using an AOTF
RU187692U1 (en) Device for endoscopic optical coherence tomography with wavefront correction
RU2655472C1 (en) Method and device for the hard-to-reach objects optical characteristics spatial distribution registration
JP5454769B2 (en) Spectroscopic solid shape measuring apparatus and spectral solid shape measuring method
RU2184347C2 (en) Process generating images of internal structure of objects
WO2024171583A1 (en) Observation device and observation method
JP2024097725A (en) Oct apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees